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Abstract—- A time-domain methodology for noise analysis 
of non-linear dynamic integrated circuits with arbitrary 
excitations is presented. A non-stationary stochastic noise 
process is described as an Ito system of stochastic 
differential equations and a numerical solution for such a 
set of equations is found. Statistical simulation of specific 
circuits fabricated in 65 nm CMOS process shows that the 
proposed numerical methods offer accurate and efficient 
solution of stochastic differentials for noise analysis of 
integrated circuits. 

I.  INTRODUCTION 
Noise limitations pose a rudimentary issue for the 

robust circuit design and its evaluation has been subject 
of numerous studies [1]-[3]. The most important types of 
electrical noise sources (thermal, shot, and flicker noise) 
in passive elements and integrated circuit devices have 
been investigated extensively, and appropriate models 
have been derived [1] as stationary and in [4] as non-
stationary noise sources. In this paper we adapt model 
description as defined in [4], where thermal and shot 
noise are expressed as delta-correlated noise processes 
having independent values at every time point, modeled 
as modulated white noise processes. These noise 
processes correspond to the current noise sources which 
are included in the models of the integrated-circuit 
devices. The noise performance of a circuit can be 
analyzed in terms of the small-signal equivalent circuits 
by considering each of the uncorrelated noise sources in 
turn and separately computing its contribution at the 
output. Unfortunately, this method is only applicable to 
circuits with fixed operating points and is not appropriate 
for noise simulation of circuits with changing bias 
conditions. A widespread approach for noise simulation 
in time-domain is Monte Carlo analysis. However, 
accurately determining the noise content requires a large 
number of simulations, so consequently, Monte Carlo 
method becomes very cpu-time consuming if the chip 
becomes large. 

In this paper, we treat the noise as a non-stationary 
stochastic process, and introduce an Ito system of 
stochastic differential equations as a convenient way to 
represent such a process. Recognizing that the variance-
covariance matrix when backward Euler is applied to 
such a matrix can be written in the continuous-time 
Lyapunov matrix form, we then provide numerical 
solution to such a set of linear time-varying equations. 

II. STOCHASTIC MNA FOR NOISE ANALYSIS 
In general, for time-domain analysis, modified nodal 

analysis (MNA) leads to a nonlinear ordinary differential 
equation (ODE) or differential algebraic equation (DAE) 
system that, in most cases, is transformed into a 
nonlinear algebraic system by means of linear multistep 
integration methods [5]-[6] and, at each integration step, 
a Newton-like method is used to solve this nonlinear 
algebraic system. Therefore, from a numerical point of 
view, the equations modeling a dynamic circuit are 
transformed to equivalent linear equations at each 
iteration of the Newton method and at each time instant 
of the time-domain analysis. Thus, we can say that the 
time-domain analysis of a nonlinear dynamic circuit 
consists of the successive solutions of many linear 
circuits approximating the original (nonlinear and 
dynamic) circuit at specific operating points.  

Consider a linear circuit with N+1 nodes and B 
voltage-controlled branches (two-terminal resistors, 
independent current sources, and voltage-controlled n-
ports), the latter grouped in set B. We then introduce the 
source current vector î ∈RB and the branch conductance 
matrix G∈RB×B. By assuming that the branches (one for 
each port) are ordered element by element, the matrix is 
block diagonal: each 1×1 block corresponds to the 
conductance of a one-port and in any case is nonzero, 
while n×n blocks correspond to the conductance 
matrices of voltage-controlled n-ports. More in detail, 
the diagonal entries of the n×n blocks can be zero and, in 
this case, the nonzero off-diagonal entries, on the same 
row or column, correspond to voltage-controlled current 
sources (VCCSs). Now, consider MNA and circuits 
embedding, besides voltage-controlled elements, 
independent voltage sources, the remaining types of 
controlled sources and noise sources. We split the set of 
branches B in two complementary subsets: BV of voltage-
controlled branches (v-branches) and BC of current-
controlled branches (c-branches). Conventional nodal 
analysis (NA) is extended to MNA [6] as follows: 
currents of c-branches are added as further unknowns 
and the corresponding branch equations are appended to 
the NA system. The N×B incidence matrix A can be 
partitioned as A=[Av Ac], with Av∈RN×Bv and Ac∈RN×Bc. 
As in conventional NA, constitutive relations of v-
branches are written, using the conductance submatrix 
G·∈RBc×Bv in the form  

v v=i G v�      (1) 
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while the characteristics of the c-branches, including 
independent voltage sources and controlled sources 
except VCCSs, are represented by the implicit equation 

ˆ 0c c c c c c+ + + =B v R i v F �     (2) 

where Bc, Rc , Fc ∈RBc×Bc, ˆ cv =(ATvc)∈RBc [5] and � 
∈RBc is a random vector accounting for noise. By using 
the above notations, we obtain the system, written in the 
compact form  

( ', , ) ( , ) 0F t B t+ ⋅ =r r r �     (3) 

where r=[vc iv]T is the vector of stochastic processes 
that represents the state variables (e.g. node voltages) of 
the circuit, � is a vector of white Gaussian processes and 
B(r,t) is state and time dependent modulation for the 
vector of noise sources. Every column of B(r,t) 
corresponds to �, and has normally either one or two 
nonzero entries. The rows correspond to either a node 
equation or a branch equation of an inductor or a voltage 
source. Equation (3) represents a system of nonlinear 
stochastic differential equations, which formulate a 
system of stochastic algebraic and differential equations 
that describe the dynamics of the nonlinear circuit that 
lead to the MNA equations when the random sources � 
are set to zero. Solving (3) means to determine the 
probability density function P of the random vector r(t) 
at each time instant t. However, generally it is not 
possible to handle this distribution directly. Hence, it 
may be convenient to look for an approximation that can 
be found after partitioning the space of the stochastic 
source variables � in a given number of subdomains, and 
then solving the equation in each subdomain by means 
of a piecewise-linear truncated Taylor approximation. 
Since the magnitude of the noise content in a signal is 
much smaller in comparison to the magnitude of the 
signal itself in any functional circuit, a system of 
nonlinear stochastic differential equations described in 
(3) can be piecewise-linearized; it is then possible to 
combine the partial results and obtain the desired 
approximated solution to the original problem. Now, 
including the noise content description, (3) can be 
expressed in general form as 

'( ) ( ) ( )t E t F tλ λ χ= +                   (4) 

where �= [(r�r0)T,(�� �0)T]T. We will interpret (4) as 
an Ito system of stochastic differential equations. Now 
rewriting (4) in the more natural differential form 

( ) ( ) ( )d t E t dt F t dwλ λ= +                  (5) 

where we substituted dw(t)=�(t)dt with a vector of 
Wiener process w. If the functions E(t) and F(t) are 
measurable and bounded on the time interval of interest, 
there exists a unique solution for every initial value �(t0) 
[7].  

If � is a Gaussian stochastic process, then it is 
completely characterized by its mean and correlation 
function. From Ito’s theorem on stochastic differentials 

( ( ) ( )) / ( ) ( ( )) /
                  ( ( )) / ( ) ( ) ( )

T T

T T

d t t dt t d t dt
d t dt t F t F t dt

λ λ λ λ
λ λ
= ⋅

+ ⋅ + ⋅
       (6) 

and expanding (6) with (5), noting that � and dw are 
uncorrelated, variance-covariance matrix K(t) of �(t) 
with the initial value K(0)=�[� �T] can be expressed in 
differential Lyapunov matrix equation form as [7] 

( ) / ( ) ( ) ( ) ( ) ( ) ( )T Td t dt t t t t t t= + +K E K K E F F            (7) 

Note that the mean of the noise variables is always 
zero for most integrated circuits. In view of the 
symmetry of K(t), (7) represents a system of linear 
ordinary differential equations with time-varying 
coefficients. To obtain a numerical solution, (7) has to be 
discretized in time using a suitable scheme, such as any 
linear multi-step method, or a Runge-Kutta method. For 
circuit simulation, implicit linear multi-step methods, 
and especially the trapezoidal method and the backward 
differentiation formula were found to be most suitable 
[8]. If backward Euler is applied to (7), the differential 
Lyapunov matrix equation can be written in a special 
form referred to as the continuous-time algebraic 
Lyapunov matrix equation 

( ) ( ) 0T
r r r r rt t+ + =P K K P Q                  (8) 

K(t) at time point tr is calculated by solving the system 
of linear equations in (8). Such continuous time 
Lyapunov equations have a unique solution K(t), which 
is symmetric and positive semidefinite.  

Several iterative techniques have been proposed for the 
solution of the algebraic Lyapunov matrix equation (11) 
arising in some specific problems where the matrix Pr is 
large and sparse [9]-[10], such as the Bartels-Stewart 
method [11], and Hammarling’s method [7], which 
remains the one and only reference for directly 
computing the Cholesky factor of the solution K(tr) of 
(8). Large dense Lyapunov equations can be solved by 
sign function based techniques [12]. Krylov subspace 
methods, which are related to matrix polynomials have 
been proposed [13] as well. Relatively large sparse 
Lyapunov equations can be solved by iterative 
approaches, e.g., [14]. In this paper, we apply a low rank 
version of the iterative method, which is related to 
rational matrix functions. The postulated iteration for the 
Lyapunov equation (8) is given by K(0) = 0 and 

1/ 2 1

1/ 2

( ) ( )

( ) ( )

T
r i n i r i r i n

T T T
r i n i r i r i n

P I K Q K P I
P I K Q K P I

γ γ
γ γ

− −

−

+ = − − −

+ = − − −
                (9) 

for i = 1,2,… This method generates a sequence of 
matrices Ki which often converges very fast towards the 
solution, provided that the iteration shift parameters �i 
are chosen (sub)optimally. For a more efficient 
implementation of the method, we replace iterates by 
their Chlesky factors, i.e., Ki=LiLi

H and reformulate in 
terms of the factors Li. The low rank Cholesky factors Li 
are not uniquely determined. Different ways to generate 
them exist [15]. 
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Figure 1: Gm-C-OTA biquad filter                   Figure 2: Prototype micrograph 
 

Note that the number of iteration steps imax needs not be fixed 
a priori. However, if the Lyapunov equation should be solved 
as accurate as possible, correct results are usually achieved for 
low values of stopping criteria that are slightly larger than the 
machine precision. 

III. EXPERIMENTAL RESULTS 
The proposed method and all sparse techniques have been 

implemented in Matlab. All the experimental results are 
carried out on a single processor Linux system with Intel Core 
2 Duo CPUs with 2.66 Ghz and 3 GB of memory. The 
proposed method solves the set of linear time-varying 
equations (8) including the noise content description to get the 
steady state value of the time-varying covariance matrix. This 
gives the variance at the output node and its cross-correlation 
with other nodes in the circuit. The covariance matrix is 
periodic with the same period as either the input signal (e.g., 
translinear circuits) or the clock (in circuits such as switched 
capacitor circuits). Moreover, with the proposed method, it is 
also possible to compute all the cross-correlations between 
any electrical quantity and any stochastic source. This makes 
it possible for the designer to evaluate the devices that most 
affect a particular performance, so that design efforts can be 
addressed to the most critical section of the circuit. 

The effectiveness of the proposed approaches was evaluated 
on several circuits exhibiting different distinctive features in a 
variety of applications. As a representative example of the 
results that can be obtained, we show an application of noise 
analysis to the characterization of the continuous-time 
bandpass Gm-C-OTA biquad filter fabricated in standard 65 nm 
CMOS technology (Figure 1 and Figure 2) with the frequency 
response illustrated in Figure 3. The implemented double 
feedback structure yields an overall improvement on the filter 
linearity performance. With the opposite phase of the 
distortion amount introduced by the transconductors in the 
feedback path, the smaller loop (with Gm2) partially attenuates 
the nonlinearity deriving from transconductor Gm3, whereas 
the larger loop (with Gm4) attenuates the nonlinearity deriving 
from the input Gm1. The transconductor Gm2 introduces some 
partial positive feedback (acts as a negative resistor) so that 
the quality factor can be made as high as desired, only limited 
by parasitics and stability issues. The filter cut-off frequency 
is controlled through Gm3 and Gm4, the Q-factor is controlled 
through a Gm2, and the gain can be set with Gm1. In the 

simulation we have included only the shot and thermal noise 
sources as including the flicker noise sources increases the 
simulation time due to the large time constants introduced by 
the networks for flicker noise source synthesis. We assumed 
that the time series r are composed of a smoothly varying 
function, plus additive Gaussian white noise � (Figure 4), and 
that at any point r can be represented by a low order 
polynomial (a truncated local Taylor series approximation). 
This is achieved by trimming off the tails of the distributions 
and then using percentiles to reverse the desired variance. 
However, this process increases simulation time and 
introduces bias in the results. Inadvertently, this bias is a 
function of the series length and as such predictable, so the 
last steps in noise estimation are to filter out that predicted 
bias from the estimated variance. Noise estimation is robust to 
a few arbitrary spikes or discontinuities in the function or its 
derivatives (Figure 5). The results of the estimation of the 
noise variance are illustrated in Figure 6. In comparison with 
1500 Monte Carlo iterations, the difference is less then 1% 
and 4% for mean and variance, respectively, with considerable 
cpu-time reduction (1241.7 sec versus 18.6 sec). 
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Figure 3: Gm-C-OTA biquad filter frequency response. Middle line 

designates the nominal behavior. 
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Figure 4: Time series with additive Gaussian noise. 
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Figure 5: Noise estimation for functions with multiple discontinuities. 
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Figure 6: Estimation of noise variance. 
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Figure 7: Stopping criterion: maximal number of iteration steps. 

Similarly, the measured noise figure at the filter output 
node (measured across 25 prototype samples) is within 5% of 
the simulated noise figure obtained as average noise power 
calculated over the periodic noise variance waveform. The 
Bartels-Stewart algorithm and Hammarling’s method carried 
out explicitly (as done in Matlab) can exploit the advantages 
provided by modern high performance computer hardware, 
which contains several levels of cache memories. For the 
recursive algorithms presented here it is observed that a faster 
lowest level kernel solver (with suitable block size) leads to an 
efficient solver of triangular matrix equations. For models 
with large dimension Nc and Nv, usually the matrix Pr has a 
banded or a sparse structure and applying the Bartels-Stewart 
type algorithm becomes impractical due to the Schur 
decompositions (or Hessenberg-Schur), which cost expensive 
O(N3) flops. In comparison with the standard Matlab function 
lyap.m, the cpu-time shows that computing the Cholesky 
factor directly is faster by approximately N flops. Similarly, 
when the original matrix equation is real, using real arithmetic 
is faster than using complex arithmetic. Hence, we resort to 
iterative projection methods when Nc and Nv are large. The 
approximate solution of the Lyapunov equation is given by the 
low rank Cholesky factor L, for which LLH~K. L has typically 

fewer columns than rows. In general, L can be a complex 
matrix, but the product LLH is real. More precisely, the 
complex low rank Cholesky factor delivered by the iteration is 
transformed into a real low rank Cholesky factor of the same 
size, such that both low rank Cholesky factor products are 
identical. However, doing this requires additional 
computation. The iteration is stopped after a priori defined 
iteration steps (Figure 7).  

IV. CONCLUSIONS 
Statistical simulation is one of the foremost steps in the 

evaluation of successful high-performance IC designs due to 
circuit noise that strongly affect devices behavior in today’s 
deep submicron technologies. As circuit noise is non-
stationary process, Ito stochastic differentials are introduced 
and effective solution for Lyapunov equation found. The 
effectiveness of the proposed approaches was evaluated on 
several circuits with the continuous-time biquad filter as a 
representative example. As the results indicate, the suggested 
numerical method provides accurate and efficient solutions of 
stochastic differentials for noise analysis. 
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