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Abstract—A time-domain methodology for statistical simulation
of nonlinear dynamic integrated circuits with arbitrary excitations
is presented. The statistical behavior of the circuits is described as
a set of stochastic differential equations rather than estimated by
a population of realizations and Gaussian closure approximations
are introduced to obtain a closed form of moment equations. Sta-
tistical simulation of specific circuits shows that the proposed nu-
merical methods offer accurate and efficient solution of stochastic
differentials for variability and noise analysis of integrated circuits.

Index Terms—Noise analysis, statistical simulation, stochastic
differential equations, variability.

I. INTRODUCTION

NE of the most notable features of nanometer-scale

CMOS technology is the increasing magnitude of
variability of the key parameters affecting performance of
integrated circuits [1]. Although scaling made controlling
extrinsic variability more complex, nonetheless, the most pro-
found reason for the future increase in parameter variability is
that the technology is approaching the regime of fundamental
randomness in the behavior of silicon structures where device
operation must be described as a stochastic process. Since
placement of dopant atoms introduced into silicon crystal is
random, the final number and location of atoms in the channel
of each transistor is a random variable. As the threshold voltage
of the transistor is determined by the number and placement
of dopant atoms, it will exhibit a significant variation [2]. This
leads to variation in the transistors’ circuit-level properties,
such as delay and power [3]. Similarly, electric noise due to
the trapping and detrapping of electrons in lattice defects may
result in large current fluctuations, and those may be different
for each device within a circuit. At this scale, a single-dopant
atom may change device characteristics, leading to large vari-
ations from device to device [4]. As the device gate length
approaches the correlation length of the oxide-silicon interface,
the intrinsic threshold voltage fluctuations induced by local
oxide thickness variation will become significant [2]. Finally,
line-edge roughness, i.e., the random variation in the gate
length along the width of the channel, will also contribute to
the overall variability of gate length [5]. In addition to device
variability, which sets the limitations of circuit designs in terms
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of accuracy, linearity and timing, existence of electrical noise
associated with fundamental processes in integrated-circuit
devices represents an elementary limit on the performance of
electronic circuits.

Device variability effects and noise limitations are rudimen-
tary issues for the robust circuit design and their evaluation
has been subject of numerous studies. Several models have
been suggested for device variability [6]-[8] and for noise
[9]-[12], and correspondingly, a number of computer-aided
design (CAD) tools for statistical circuit simulation [13]—[18]
and noise analysis [9], [19], [20]. Monte Carlo analysis is a
widespread approach for statistical analysis of circuits affected
by technological variations and/or noise simulation in time
domain. The Monte Carlo algorithm takes random combina-
tions of values chosen from within the range of each process
parameter and repeatedly performs circuit simulations. The
result is an ensemble of responses from which the statistical
characteristics are estimated. Unfortunately, if the number of
iterations for the simulation is not very large, Monte Carlo
simulation always underestimates the tolerance window. Ac-
curately determining the bounds on the response requires a
large number of simulations, so consequently, the Monte Carlo
method becomes very cpu-time consuming if the chip becomes
large. Other approaches for statistical analysis of variation-af-
fected circuits, such as the one based on the Hermite polynomial
chaos [21] or the response surface methodology, are able to
perform much faster than a Monte Carlo method at the expense
of a design of an experiments preprocessing stage [22]. The
noise performance of a circuit can be analyzed in terms of
the small-signal equivalent circuits by considering each of the
uncorrelated noise sources in turn and separately computing
their contribution at the output. Unfortunately, this method is
only applicable to circuits with fixed operating points and is
not appropriate for noise simulation of circuits with changing
bias conditions. In this paper, we propose a direct approach to
statistical simulation, based on solving the equations (neces-
sarily stochastic) which describe the statistical behavior of the
circuit, rather than estimating it by a population of realizations.
The circuits are described as a set of stochastic differential
equations and Gaussian closure approximations are introduced
to obtain a closed form of moment equations. Even if a random
variable is not strictly Gaussian, a second-order probabilistic
characterization yields sufficient information for most practical
problems. The method employed is an enhanced version of
[18] with an extension for transient analysis. Additionally,
we suggest numerical methods for the efficient solution of
stochastic differentials for noise analysis.
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This paper treats static manufacturing variability and dy-
namic statistical fluctuation separately, and is organized as
follows: Section II focuses on the process variability and
noise models. Process variations are modeled as a wide-sense
stationary process and Section III discusses a solution of a
system of stochastic differential equations for such process.
On the other hand, circuit noise is a nonstationary process,
formulated as a system of mixed stochastic algebraic and Ito
stochastic differential equations. In Section IV, an accurate and
efficient solution of such a system based on a low rank version
of a Lyapunov equations approach is presented. In Section V
accuracy considerations of the stochastic state space models,
e.g., voltage nodes and current brunches, are discussed. In
Section VI, experimental results obtained on two prototypes,
a continuous-time biquad filter and a discrete-time variable
gain amplifier, both fabricated in standard 65-nm CMOS are
presented. Finally, Section VII provides a summary and the
main conclusions.

II. PROCESS VARIABILITY AND NOISE MODELS

A. Modeling Process Variability

The availability of large data sets of process parameters ob-
tained through parameter extraction allows the study and mod-
eling of the variation and correlation between process parame-
ters, which is of crucial importance to obtain realistic values of
the modeled circuit unknowns. The fundamental notion for the
study of spatial statistics is that of stochastic (random) process
defined as a collection of random variables on a set of temporal
or spatial locations. Generally, a second-order stationary [wide
sense stationary (WSS)] process model is employed, but other
more strict criteria of stationarity are possible. This model im-
plies that the mean is constant and the covariance only depends
on the separation between any two points. In a second-order sta-
tionary process only the first and second moments of the process
remain invariant. The covariance and correlation functions cap-
ture how the codependence of random variables at different lo-
cations changes with the separation distance. These functions
are unambiguously defined only for stationary processes. For
example, the random process describing the behavior of the
transistor length L is stationary only if there is non system-
atic spatial variation of the mean L. If the process is not sta-
tionary, the correlation function is not a reliable measure of
codependence and correlation. Once the systematic wafer-level
and field-level dependencies are removed, thereby making the
process stationary, the true correlation is found to be negligibly
small. From a statistical modeling perspective, systematic vari-
ations affect all transistors in a given circuit equally. Thus, sys-
tematic parametric variations can be represented by a deviation
in the parameter mean of every transistor in the circuit.

We model the manufactured values of the parameters p; €
{p1...,pm} for transistor 4 as a random variable

Di = phpi + op(d;) - p(d;, 0) (D

where p, ; and 0,(d;) are the mean value and standard devia-
tion of the parameter p;, respectively, p(d;, #) is the stochastic
process corresponding to parameter p, d; denotes the location
of transistor ¢ on the die with respect to a point origin and
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Fig. 1. Behavior of modeled covariance functions ZP using M = 5fora/p =
[1,...,10].

6 is the die on which the transistor lies. This reference point
can be located, say in the lower left corner of the die, or in
the center, etc. A random process can be represented as a se-
ries expansion of some uncorrelated random variables involving
a complete set of deterministic functions with corresponding
random coefficients. A commonly used series involves spectral
expansion [23], in which the random coefficients are uncorre-
lated only if the random process is assumed stationary and the
length of the random process is infinite or periodic. The use of
the Karhunen—Loeéve expansion [24] has generated interest be-
cause of its biorthogonal property, that is, both the deterministic
basis functions and the corresponding random coefficients are
orthogonal [25], e.g., the orthogonal deterministic basis func-
tion and its magnitude are, respectively, the eigenfunction and
eigenvalue of the covariance function. Assuming that p; is a
zero-mean Gaussian process and using the Karhunen—-Loeve ex-
pansion, p; can be written in truncated form (for practical im-
plementation) by a finite number of terms M as

M
Pi = Hp,i +0p(di) - Z Vp.n0pn(0) fp.n(di) @)
n=1

where {6,,(6)} is a vector of zero-mean uncorrelated Gaussian
random variables and f, ,,(d;) and ¥, ,, are the eigenfunctions
and the eigenvalues of the covariance matrix »_ (di,d>)
(Fig. 1) of p(d;, 8, controlled through a distance based weight
term, the measurement correction factor, correlation parameter
p and process correction factors ¢, and c,.

Without loss of generality, consider for instance two tran-
sistors with given threshold voltages. In our approach, their
threshold voltages are modeled as stochastic processes over the
spatial domain of a die, thus making parameters of any two
transistors on the die two different correlated random variables.
The value of M is governed by the accuracy of the eigen-pairs
in representing the covariance function rather than the number
of random variables. For instance, in Fig. 1, process correction
factor ¢, = 0.001 relates to a very mature process, while
¢z,y = 1 indicates that this is a process in a ramp-up phase.
The correlation parameter p reflecting the spatial scale of
clustering defined in [—a, a] regulates the decaying rate of the
correlation function with respect to distance (d;, ds) between
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Fig. 2. The model fitting on the available measurement data.

the two transistors located at Euclidian coordinates (x1,y1)
and (x2, y2). Physically, lower a/p implies a highly correlated
process and hence, a smaller number of random variables are
needed to represent the random process and correspondingly,
a smaller number of terms in the Karhunen—-Loéve expansion.
This means that for ¢, ,, = 0.001 and a/p = 1, the number of
transistors that need to be sampled to assess, say, a process pa-
rameter such as threshold voltage is much less than the number
that would be required for ¢, , = 1 and a/p = 10 because of
the high nonlinearity shown in the correlation function.

One example of spatial correlation dependence and
model fitting on the available measurement data through
Karhunen—Loeve expansion is given in Fig. 2.

For comparison purposes, a grid-based spatial-correlation
model is intuitively simple and easy to use, yet its limitations
due to the inherent accuracy-versus-efficiency necessitate a
more flexible approach, especially at short to midrange dis-
tances [26]. We now introduce a model 7, = f(.), accounting
for voltage and current shifts due to random manufacturing
variations in transistor dimensions and process parameters
defined as

np:f<1/7W*7L*7p*) (3)

where v defines a fitting parameter estimated from the extracted
data, W* and L* represent the geometrical deformation due to
manufacturing variations, and p* models electrical parameter
deviations from their corresponding nominal values, e.g., al-
tered transconductance, threshold voltage, etc.

B. Noise Models

The most important types of electrical noise sources (thermal,
shot, and flicker noise) in passive elements and integrated cir-
cuit devices have been investigated extensively, and appropriate
models have been derived [9] as stationary and in [10] as non-
stationary noise sources. In this paper we adapt model descrip-
tions as defined in [10], where thermal and shot noise are ex-
pressed as delta-correlated noise processes having independent
values at every time point, modeled as modulated white noise
processes. These noise processes correspond to the current noise
sources, which are included in the models of the integrated cir-
cuit devices.

ysis (MNA) leads to a nonlinear ordinary differential equation
(ODE) or differential algebraic equation (DAE) system, which,
in most cases, is transformed into a nonlinear algebraic system
by means of linear multistep integration methods [27], [28] and,
at each integration step, a Newton-like method is used to solve
this nonlinear algebraic system. Therefore, from a numerical
point of view, the equations modeling a dynamic circuit are
transformed to equivalent linear equations at each iteration of
the Newton method and at each time instant of the time-domain
analysis. Thus, we can say that the time-domain analysis of a
nonlinear dynamic circuit consists of the successive solutions of
many linear circuits approximating the original (nonlinear and
dynamic) circuit at specific operating points.

Consider a linear circuit with N +1 nodes and B voltage-con-
trolled branches (two-terminal resistors, independent current
sources, and voltage-controlled n -ports), the latter grouped in
set B. We then introduce the source current vector 7 € R and
the branch conductance matrix G € RE*E, By assuming that
the branches (one for each port) are ordered element by element,
the matrix is block diagonal: each 1 x 1 block corresponds
to the conductance of a one-port and in any case is nonzero,
while n x n blocks correspond to the conductance matrices of
voltage-controlled n-ports. More in detail, the diagonal entries
of the n X n blocks can be zero and, in this case, the nonzero
off-diagonal entries, on the same row or column, correspond
to voltage-controlled current sources (VCCSs). Now, consider
MNA and circuits embedding, besides voltage-controlled
elements, independent voltage sources, the remaining types
of controlled sources and sources of process variations. We
split the set of branches B in two complementary subsets:
By of voltage-controlled branches (v-branches) and B¢ of
current-controlled branches (c-branches). Conventional nodal
analysis (NA) is extended to MNA [28] as follows: currents
of c-branches are added as further unknowns and the corre-
sponding branch equations are appended to the NA system. The
N x B incidence matrix A can be partitioned as A = [A,A.],
with A, € RN*Bv and A, € RV*B¢. As in conventional
NA, constitutive relations of v -branches are written, using the
conductance submatrix G € RB*B? in the form

i'n = G-Vv (4)

while the characteristics of the c-branches, including indepen-
dent voltage sources and controlled sources except VCCSs, are
represented by the implicit equation

Bovet+Reic+ve+Fep=0 )

where B, R.., F. € RB*Bc v = (ATv,) € RP°[27] and
n € RP¢is a random vector accounting for device variations
as defined in (3). These definitions are in agreement with those
adopted in the currently used simulators and suffice for a large
variety of circuits. Note that from the practical use perspective,
a user may only be interested in voltage variations over a period
of time or in the worst case in a period of time. This information
can be obtained once the variations in any given time instance
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are known. By using the above notations, (4) and (5) can be
written in the compact form as

where q = [v.i,]” is the vector of stochastic processes which
represents the state variables (e.g., node voltages) of the circuit
and 7 is a vector of wide-sense stationary processes. B(q, t) is
an N x B. matrix, the entries of which are functions of the state
q and possibly ¢. Every column of B(q,t) corresponds to 7,
and has normally either one or two nonzero entries. The rows
correspond to either a node equation or a branch equation of an
inductor or a voltage source. Equation (6) represents a system
of nonlinear stochastic differential equations, which formulate a
system of stochastic algebraic and differential equations that de-
scribe the dynamics of the nonlinear circuit that lead to the MNA
equations when the random sources 7 are set to zero. Solving (6)
means to determine the probability density function P of the
random vector q(t) at each time instant ¢. Formally the proba-
bility density of the random variable q is given as

P(q) = [T(q)|N(h™"(q)m, 2) ()

where [I'(q)| is the determinant of the Jacobian matrix of the in-
verse transform »~1(q) with A a nonlinear function of 7. How-
ever, generally it is not possible to handle this distribution di-
rectly since it is non-Gaussian for all but linear h. Therefore
it may be convenient to look for an approximation which can
be found after partitioning the space of the stochastic source
variables 7) in a given number of subdomains, and then solving
the equation in each subdomain by means of a piecewise-linear
truncated Taylor approximation. If the subdomains are small
enough to consider the equation as linear in the range of vari-
ability of m, or that the nonlinearites in the subdomains are so
smooth that they might be considered as linear even for a wide
range of 7, it is then possible to combine the partial results
and obtain the desired approximated solution to the original
problem.

Let o = x(no,t) be the generic point around which to lin-
earize, and with the change of variable { = x — zp = [(q —
p0)T, (n — 10)T]7, the first-order Taylor piecewise-lineariza-
tion of (6) in z( yields

C(:L’o)gl + (G(:L’o) + Cl(ﬂfo))f =0 ®)

where G(z) = B’, C(z) = F’'(z). Transient analysis re-
quires only the solution of the deterministic version of (6), e.g.,
by means of a conventional circuit simulator, and of (8) with
a method capable of dealing with linear stochastic differential
equations with stochasticity that enters only through the initial
conditions. Since (8) is a linear homogeneous equation in &, its
solution, will always be proportional to 1 — 7. We can rewrite
(8) as

€ (z0) = E(z0)é0 + F(zo)no. )

Equation (9) is a system of stochastic differential equations
which is linear in the narrow sense (right-hand side is linear in
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¢ and the coefficient matrix for the vector of variation sources
is independent of &) [29]. Since these stochastic processes have
regular properties, they can be considered as a family of clas-
sical problems for the individual sample paths and be treated
with the classical methods of the theory of linear stochastic dif-
ferential equations. By expanding every element of £(¢) with

&) =T#)(m—m) = Z a;j(t)n; (10

for m elements of a vector 7). As long as a;(t) is obtained, the
expression for £(¢) is known, so that the covariance matrix of
the solution can be written as

e =I's,, T (11)

Deﬁning Oz]'(t) = (a1j7a2j7...,anj)T, Fj(t) =
(F1j, Faj,. .., Fn;)T, the requirement for «(t) is

os(t) = E(t)ey + F(t) (12)

Equation (12) is an ordinary differential equation, which can
be solved by a fast numerical method.

IV. STOCHASTIC MNA FOR NOISE ANALYSIS

The inherent nature of white noise process x differ funda-
mentally from a wide-sense stationary stochastic process such
as static manufacturing variability and cannot be treated as an
ordinary differential equation using similar differential calculus
as in Section III. The MNA formulation of the stochastic process
that describes random influences which fluctuate rapidly and ir-
regularly (i.e., white noise x) can be written as

F(r',r,t)+ B(r,t)-x=0 (13)
where r is the vector of stochastic processes which represents
the state variables (e.g., node voltages) of the circuit, x is a
vector of white Gaussian processes, and B(r, ) is a state- and
time-dependent modulation of the vector of noise sources. Since
the magnitude of the noise content in a signal is much smaller
in comparison to the magnitude of the signal itself in any func-
tional circuit, a system of nonlinear stochastic differential equa-
tions described in (13) can be piecewise-linearized under similar
assumptions as noted in the previous section. Now, including the
noise content description, (9) can be expressed in general form
as

N(t) = B+ F(t)x (14)
where A = [(r — 70)" - (x — x0)T]". We will interpret (14) as
an Ito system of stochastic differential equations. Now rewriting
(14) in the more natural differential form

dA(t) = E(t)Adt + F(t)dw (15)
where we substituted dw(t) = x(t)dt with a vector of Wiener
process w. If the functions E(¢) and F'(t) are measurable and
bounded on the time interval of interest, there exists a unique
solution for every initial value A(¢o) [29].
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If A\ is a Gaussian stochastic process, then it is completely
characterized by its mean and correlation function. From Ito’s
theorem on stochastic differentials

dABAT (1))
dt

dAT(®) | dA®))
dt dt
M)+ F(t) - F(t)dt

= )\(t)~
(16)

and expanding (16) with (15), noting that A and dw are uncor-
related, variance-covariance matrix K(¢) of A(¢) with the initial
value K(0) = E[AAT] can be expressed in differential Lya-
punov matrix equation form as [29]

Y _ pK () + KOET (1) + FOFT(1).

dt a7

Note that the mean of the noise variables is always zero for
most integrated circuits. In view of the symmetry of K (%), (17)
represents a system of linear ordinary differential equations with
time-varying coefficients. To obtain a numerical solution, (17)
has to be discretized in time using a suitable scheme, such as any
linear multistep method, or a Runge—Kutta method. For circuit
simulation, implicit linear multistep methods, and especially the
trapezoidal method and the backward differentiation formula
were found to be most suitable [30]. If backward Euler is applied
to (17), the differential Lyapunov matrix equation can be written
in a special form referred to as the continuous-time algebraic
Lyapunov matrix equation

P, K(t,)+ K(t, )P + Q, = 0. (18)

K(t) at time point ¢, is calculated by solving the system of
linear equations in (18). Such continuous time Lyapunov equa-
tions have a unique solution K(¢), which is symmetric and pos-
itive semidefinite.

Several iterative techniques have been proposed for the solu-
tion of the algebraic Lyapunov matrix equation (18) arising in
some specific problems where the matrix P,. is large and sparse
[31]-[34], such as the Bartels—Stewart method [35], and Ham-
marling’s method [29], which remains the one and only refer-
ence for directly computing the Cholesky factor of the solution
K(t,) of (18) for small to medium systems. For the backward
stability analysis of the Bartels—Stewart algorithm, see [36]. Ex-
tensions of these methods to generalized Lyapunov equations
are described in [37]. In the Bartels—Stewart algorithm, first P,
is reduced to upper Hessenberg form by means of Householder
transformations, and then the QR-algorihm is applied to the
Hessenberg form to calculate the real Schur decomposition [38]
to transform (18) to a triangular system which can be solved ef-
ficiently by forward or backward substitutions of the matrix P,.

s =u’pP, U (19)
where the real Schur form S is upper quasi-triangular and U is
orthonormal. Our formulation for the real case utilizes a similar
scheme. The transformation matrices are accumulated at each
step to form U[35]. If we now set

K =UTK(t,)U
Q=UuTqQ,u (20)
then (18) becomes
SK+KS' =-Q. Q1)

To find a unique solution, we partition (21) as

- f3 2Je-[o 2]

0 Un kT knn
~_ |1 Q1 a }
Q [ a” gun

where S1, K;, Q; € ¢0=x(n=1. 5 k¢ € ¢~V The
system in (21) then gives three equations

(S1 + o D)k +q+knns =0 (23)
S1K; +K;ST + Qi +sk? + ks’ =0. (24)

k.. can be obtained from (22) and set in (23) to solve for K.
Once K is known, (24) becomes a Lyapunov equation which
has the same structure as (21) but of order (n — 1), as

S:K; + K;ST = —Q; —sk? — ks?. (25)

We can apply the same process to (25) until S; is of the order
—1. Note under the condition that ¢ = 1,...,n at the kth step
(k =1,2,...,n) of this process, we can obtain a unique solu-
tion vector of length (n+ 1 — k) and a reduced triangular matrix
equation of order (n — k). Since U is orthonormal, once (21) is
solved for K, then K(¢,.) can be computed using

K(t,) = UKUT. (26)

Large dense Lyapunov equations can be solved by sign func-
tion based techniques [38]. Krylov subspace methods, which are
related to matrix polynomials have been proposed [40] as well.
Relatively large sparse Lyapunov equations can be solved by it-
erative approaches, e.g., [41]. In this paper, we apply a low rank
version of the iterative method [42], which is related to rational

matrix functions. The postulated iteration for the Lyapunov (18)
is given by K(0) = 0 and

(Pr 4+ %iln)Ki—1/2 = — Qr — Kioa(PF = vil)
(Pr+3il)K = = Qr = KLy )o(PF = 7il,) 27)

for s = 1,2,... This method generates a sequence of matrices
K which often converges very fast towards the solution, pro-
vided that the iteration shift parameters ; are chosen (sub)op-
timally. For a more efficient implementation of the method, we
replace iterates by their Cholesky factors, i.e., K; = L; L and
reformulate in terms of the factors L;. The low rank Cholesky
factors L; are not uniquely determined. Different ways to gen-
erate them exist [42]. Note that the number of iteration steps
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imax Needs not be fixed a priori. However, if the Lyapunov equa-
tion should be solved as accurate as possible, correct results are
usually achieved for low values of stopping criteria which are
slightly larger than the machine precision.

V. SIMULATION ACCURACY

In general, there are three sources which can cause loss of
simulation accuracy. The first source is due to the structural
approximation of the original circuit block by the primitive,
although it is more general than the conventional inverter type
primitive and therefore introduces less error. This mapping
problem is universal in large-scale digital simulation and cannot
be avoided. The second source of error is due to the use of
second-order polynomial models for the I-V characteristics of
MOS transistors. The threshold-voltage-based models, such as
BSIM and MOS 9, make use of approximate expressions of the
drain-source channel current Ipg in the weak inversion region
and in the strong-inversion region. These approximate equations
are tied together using a mathematical smoothing function,
resulting in neither a physical nor an accurate description of
Ipgs in the moderate inversion region. The major advantages
of surface potential [43] over threshold voltage based models
is that surface potential models do not rely on the regional
approach and I-V and C-V characteristics in all operation
regions are expressed/evaluated using a set of unified formulas.
Numerical progress has also removed a major concern in
surface potential modeling: the solution of the surface potential
either in a closed form (with limited accuracy) exists or with
use of the second-order Newton iterative method to improve
the computational efficiency in MOS model 11 [44]. The third
source of error is due to the piecewise-linear approximation.
Conventionally, the piecewise-linear approximation is done
implicitly in the timing analysis process. Since the information
on the whole waveform is not available until the timing anal-
ysis is completed, the piecewise-linear waveforms generated
as such in a noise environment can not always approximate
nonfully-switching waveforms and glitches and thus can cause
significant errors. The piecewise-linear approximation greatly
improves calculation speed and allows direct approach. The
precision of our models is in line with the piecewise-linear
models used in industry practice. If better precision is required,
more advanced optimum filter models (e.g., extended or un-
scented Kalman—Bucy, etc.) can be employed, however, at the
cost of a decreased calculation speed.

The voltage nodes and current branches in the integrated cir-
cuits and systems, which are time varying, can be formulated
as stochastic state space models, and the time evolution of the
system can be estimated using optimal filters. We model the
state transitions as a Markovian switching system, which is per-
turbed by a certain process noise. This noise is used for mod-
eling the uncertainties in the system dynamics and in most cases
the system is not truly stochastic, but the stochasticity is only
used for representing the model uncertainties. The model is de-
fined as

xp =f(xp -1,k —1)+dp 1

Vi =h(xp, k) + 1 (28)
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where x;, € C™ is the state, y, € C™ is the measure-
ment, dg_; ~ N(0,Dj_;) is the Gaussian process noise,
1 ~ N(0,Ly) is the Gaussian measurement noise, f(.) is the
dynamic model function and h(.) is the measurement model
function. The idea of constructing mathematically optimal
recursive estimators was first presented for linear systems due
to their mathematical simplicity and the most natural optimality
criterion from both the mathematical and modeling points of
view is least squares optimality. For linear systems the optimal
solution coincides with the least squares solution, that is, the
optimal least squares solution is exactly the calculated mean.
However, the problem of (least squares) optimal filtering can
only be applied to stationary signals and construction of such
a filter is often mathematically demanding. As a result an
efficient solution can only be found for simple low dimensional
problems. On the other hand, the recursive solution to the
optimal linear filtering problem containing a least square filter
as its limiting special case offers a much simpler mathematical
approach. Because computing the full joint distribution of
the states at all time steps is computationally very inefficient
and unnecessary in real-time applications, our objective is to
compute distributions

P(xi|y1:x) = N(xi|mg, Xy) (29)

recursively in a sense that the previous computations do not need
to be redone at each step and the amount of computations is, in
principle, constant per time step. Defining the prediction step
with the Chapman—Kolmogorov equation

m,; :f(mk,l,k’ - 1)
Z =T (my_q,k—1)8,_T7

X (my_1,k—1)+Djyq (30)
the update step can be found with
Z, =H,(m; k)X H (m k) + Ly
B, =%, Hy (m , k)Z; "
my = m,: + Bivy
¥, =%, — B,Z,BY 31

where vy, is the residual of the prediction, Zj, is the measure-
ment prediction covariance in the time step k, and By des-
ignates the prediction correction in time step k. The matrices
I'.(m,k — 1) and H,(m, k) are the Jacobian matrices of f
and h, respectively. Note that in this case the predicted and es-
timated state covariances on different time steps do not depend
on any measurements. Similarly, optimal smoothing methods
have evolved at the same time as filtering methods, and as in the
filtering case the optimal smoothing equations can be solved in
closed form only in a few special cases The linear Gaussian case
is such a special case, and it leads to the Rauch—Tung—Striebel
smoother. Following the notation given in (31), the smoothing
solution for the model (28) is computed as

m; =f(my, k)
Tt =To(my, k)BT (my, k) + Dy
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All proposed methods and all sparse techniques have been 100
implemented in Matlab. All the experimental results are car- 40 45 50 55 60 65 70 75 80
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ried out on a single processor Linux system with Intel Core 2
Duo CPUs with 2.66 Ghz and 3 GB of memory. In order to be
able to perform a statistical simulation, the proposed method re-
quires, in addition to a netlist description of the circuit written
in the language of currently used simulators such as Spice or
Spectre, some supplementary information on the circuit geome-
tries and on extra stochastic parameters describing the random
sources. The geometric information may be readily obtained by
a layout view of the circuit available in standard CAD tools, or
may be entered by the user should the layout not be available at
the current design stage. The stochastic parameters are related
to a specific technology, and may be extracted as pointed out
in Section II. When all the necessary parameters for the statis-
tical simulation are available, these parameters, together with
the output of the conventional simulator, enable, with the pro-
posed method, to solve either the stochastic linear differential
equations describing the circuit influenced by the process varia-
tions (11) or the set of linear time-varying (18) including the
noise content description to get the steady state value of the
time-varying covariance matrix. This gives the variance at the
output node and its cross correlation with other nodes in the cir-
cuit. The covariance matrix is periodic with the same period as
either the input signal (e.g., translinear circuits) or the clock (in
circuits such as switched capacitor circuits).

The effectiveness of the proposed approaches was evaluated
on several circuits exhibiting different distinctive features in
a variety of applications. As one of the representative exam-
ples of the results that can be obtained, we show firstly an ap-
plication of statistical simulation to the characterization of the
continuous-time bandpass G,,, — C — OT A biquad filter [45]

Fig. 4. G,, — C — OT A biquad filter frequency response. Middle line desig-
nates the nominal behavior.
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Fig. 5. Transient response of G,,, — C' — OT A biquad filter.

(Fig. 3) with the frequency response illustrated in Fig. 4. The
implemented double feedback structure yields an overall im-
provement on the filter linearity performance. With the opposite
phase of the distortion amount introduced by the transconduc-
tors in the feedback path, the smaller loop (with G,,,2) partially
attenuates the nonlinearity deriving from transconductor G,,3,
whereas the larger loop (with G,,,4) attenuates the nonlinearity
deriving from the input G,,1. The transconductor G,,2 intro-
duces some partial positive feedback (acts as a negative resistor)
so that the quality factor can be made as high as desired, only
limited by parasitics and stability issues. The filter cut-off fre-
quency is controlled through G,,,3 and G4, the Q-factor is con-
trolled through a G,,,2, and the gain can be set with G,,,1. The
calculated transient response of the filter is illustrated in Fig. 5.
In comparison with Monte Carlo analysis (it can be shown that
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1500 iterations are necessary to accurately represent the per-
formance function) the difference is less then 1% and 3% for
mean and variance, respectively, while significant gain on the
cpu-time is achieved (12.2 s versus 845.3 s). Similarly, in com-
parison with the measured transient response (measured across
25 prototype samples), the calculated variance is within 5%. In
Fig. 6 we have plotted the filtered and smoothed estimates of
the probabilities of the model in each time step. It can be seen
that it takes some time for the filter to respond to model transi-
tions. As expected, smoothing reduces this lag as well as giving
substantially better overall performance. The quality criterion
adopted for estimating parameter = with an optimal filter and
smoothing algorithm is the root-mean-squared error (RMSE)
criterion, mainly because it represents the energy in the error
signal, is easy to differentiate and provides the possibilities to
assign weights (Fig. 7). For noise simulations we have included
only the shot and thermal noise sources as including the flicker
noise sources increases the simulation time due to the large time
constants introduced by the networks for flicker noise source
synthesis.

We assumed that the time series r are composed of a smoothly
varying function, plus additive Gaussian white noise x (Fig. 8),
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and that at any point r can be represented by a low order poly-
nomial (a truncated local Taylor series approximation). This is
achieved by trimming off the tails of the distributions and then
using percentiles to reverse the desired variance. However, this
process increases simulation time and introduces bias in the re-
sults. Inadvertently, this bias is a function of the series length
and as such predictable, so the last steps in noise estimation are
to filter out that predicted bias from the estimated variance. The
results of the estimation of the noise variance are illustrated in
Fig. 9. In comparison with 1500 Monte Carlo iterations, the dif-
ference is less then 1% and 4% for mean and variance, respec-
tively, with considerable cpu-time reduction (1241.7 s versus
18.6 s). Similarly, the noise figure measured across 25 sam-
ples is within 5% of the simulated noise figure obtained as av-
erage noise power calculated over the periodic noise variance
waveform.

The Bartels—Stewart algorithm and Hammarling’s method
carried out explicitly (as done in Matlab) can exploit the
advantages provided by modern high performance computer
hardware, which contains several levels of cache memories.
For the recursive algorithms presented here it is observed that
a faster lowest level kernel solver (with suitable block size)
leads to an efficient solver of triangular matrix equations.
For models with large dimension N, and N,, usually the
matrix P, has a banded or a sparse structure and applying
the Bartels—Stewart type algorithm becomes impractical due
to the Schur decompositions (or Hessenberg—Schur), which
cost expensive O(N?3) flops. In comparison with the standard
Matlab function lyap.m, the cpu-time shows that computing the
Cholesky factor directly is faster by approximately N flops.
Similarly, when the original matrix equation is real, using real
arithmetic is faster than using complex arithmetic. Hence we
resort to iterative projection methods when N. and N, are
large, and the Bartels—Stewart type algorithms including the
ones presented in this paper become suitable for the reduced
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Fig. 12. SC variable gain amplifier frequency response.

small to medium matrix equations. The approximate solution of
the Lyapunov equation is given by the low rank Cholesky factor
L, for which LL¥ ~ K. L has typically fewer columns than
rows. In general, L can be a complex matrix, but the product
LLH is real. More precisely, the complex low rank Cholesky
factor delivered by the iteration is transformed into a real low
rank Cholesky factor of the same size, such that both low rank
Cholesky factor products are identical. However, doing this
requires additional computation. The iteration is stopped after
a priori defined iteration steps (Fig. 10) as in [46].

The second evaluated circuit is switched capacitor (SC)
variable gain amplifier illustrated in Fig. 11. The frequency
response of the circuit is shown in Fig. 12. The circuit employs

two pipelined stages. The first stage is designed to have a coarse
gain tuning control while the second stage provides the fine gain
tuning. The circuit includes seven fully differential amplifiers
and high-resolution capacitive banks for accurate segments
definition of a discrete-time periodic analog signal. The first
gain stage (FGS) is a cascade of three amplifiers of FG1, F'Go,
and F'G3 while the second gain stage (SGS) is designed with a
parallel connection of three weighted gain amplifiers of SG(H),
SG(M), and SG(L). Each pipelined cascaded SC amplifier op-
erates with two clocks, ¢; and @2, which are nonoverlapping.
In the ¢ phase, the reference signal is sampled at the input
capacitors of the first stage to be transferred, and in the next
phase, on the feedback capacitor. Simultaneously, the output
signal of the first stage is sampled by the input capacitor of the
next stage. Each stage of Fig. 11 operates in the same manner.
The gain in the first stage is set by the feedback capacitance.
For example, in the first pipelined amplifier stage F'Gy, the
input capacitance is chosen as 4C'r1, and the feedback capac-
itance is then given by 4Cr1/GF1, where Gp1 = 1, 2, or 4.
In the second stage, the gain is set by the input capacitance.
The high resolution of the gain is achieved by the parallel
connection of three SC amplifiers. To illustrate that, consider,
the SG(H) stage, where the input capacitance is chosen as
Cs1 X Gyg with Gyg = 2,3,...,7, so that the gain is set
to CS1 X Gypu/4Csy = Garg /4. The calculated transient
response of the circuit is illustrated in Fig. 13. In comparison
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with 1500 Monte Carlo iterations, the difference is less then 1%
and 5% for mean and variance, respectively, with considerable
cpu-time reduction (1653.2 s versus 23.8 s). Similarly, the mea-
sured transient response (across 25 samples) is within 5% of the
calculated variance. Fig. 14 illustrates the RMSE of estimating
parameter z with optimal filter and smoothing algorithm.

When the gain is changed in discrete steps, there may be a
transient in the output signal. There are two different causes of
transients when the gain of a variable gain amplifier is changed.
The first is the amplification of a dc offset with a programmable
gain, which produces a step in the output signal even when
the amplifier has no internal dc offsets or device mismatches.
Secondly, when the gain of a programmable gain amplifier is
changed in a device, in which a dc current flows, the dc offset
at the output may be changed due to device mismatches, even
when there is no dc offset at the input of the amplifier. In the first
case, the cause of a transient is in the input signal, which con-
tains a dc offset. In the latter case, the output dc offset of the pro-
grammable gain amplifier depends on the gain setting because
of changes in the biasing, i.e., the topology of the VGA and mis-
matches cause the transients. The step caused by a change in the
programmable gain may be a combination of both effects, al-
though if properly deployed, the following high-frequency low-
pass filtering stage will filter out this step if a sufficiently small
time constant is deployed.

Noise estimation is robust to a few arbitrary spikes or discon-
tinuities in the function or its derivatives (Fig. 15). Since any
voltage at any time in a SC circuit can be expressed as a linear
combination of capacitor voltages and independent voltage
sources, we are interested in the time evolution of the set of all
capacitor voltages.
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Note that in our case where the independent voltage sources
are white noise, the modeling has to be such that any phys-
ical voltage is a linear combination of capacitor voltages only;
the mathematical fiction of white noise inhibits it from being
observed as a nonfiltered process. To simplify computations
the capacitor voltage variance, matrices at the end of the time
slots are computed as for stationary processes, i.e., for each
time slot we consider the corresponding continuous time cir-
cuit driven by white noise and determine the variance matrix
of the stationary capacitor voltage processes. The results of the
estimation of the noise variance are illustrated in Fig. 16. In
comparison with 1500 Monte Carlo iterations, the difference is
less then 1% and 6% for mean and variance, respectively, with
considerable cpu-time reduction (2134.3 s versus 26.8 s). The
noise figure measured across 25 samples is within 7% of the
simulated noise figure obtained similarly as in the previous ex-
ample. Fig. 17 illustrates the maximal number of iteration steps
of a low rank version of the iterative method.

VII. CONCLUSION

Statistical simulation is one of the foremost steps in the
evaluation of successful high-performance IC designs due
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to process variations and circuit noise which strongly affect
devices behavior in today’s deep submicrometer technologies.
In this paper, rather than estimating statistical behavior of the
circuit by a population of realizations, we describe integrated
circuits as a set of stochastic differential equations and intro-
duce Gaussian closure approximations to obtain a closed form
of moment equations. The static manufacturing variability and
dynamic statistical fluctuation are treated separately. Process
variations are modeled as a wide-sense stationary process and
the solution of MNA for such a process is found. On the other
hand, noise is a nonstationary process and can not be treated
directly as process variation. For this purpose Ito stochastic
differentials are introduced and effective solution for Lyapunov
equations found. The effectiveness of the proposed approaches
was evaluated on several circuits with the continuous-time
bandpass biquad filter and the discrete-time variable gain
amplifier as representative examples. As the results indicate,
the suggested numerical methods provide accurate and efficient
solutions of stochastic differentials for both process variation
and noise analysis of various scales of integrated circuits.
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