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Abstract

Randomized gossip (RG) based distributed averaging has been popular for
wireless sensor networks (WSNs) in multiple areas. With RG, randomly two
adjacent nodes are selected to communicate and exchange information itera-
tively until consensus is reached. One way to improve the convergence speed
of RG is to use greedy gossip with eavesdropping (GGE). Instead of randomly
selecting two nodes, GGE selects the two nodes based on the maximum dif-
ference between nodes in each iteration. To further increase the convergence
speed in terms of transmissions, we present in this paper a synchronous version
of the GGE algorithm, called greedy gossip with synchronous communication
(GGwSC). The presented algorithm allows multiple node pairs to exchange their
values synchronously. Because of the selection criterion of the maximum di↵er-
ence between the values at the nodes, there is at least one node pair with di↵erent
information, such that the relative error must be reduced after each iteration.
The convergence rate in terms of the number of transmissions is demonstrated to
be improved compared to GGE. Experimental results validate that the proposed
GGwSC is quite e↵ective for the random geometric graph (RGG) as well as for
several other special network topologies.

1 Introduction

Distributed signal processing in wireless sensor networks (WSNs) has many operational
advantages. For instance, there is no need to have a fusion centre (or host) for facilitat-
ing computations, communication and time-synchronization. Positions of the network
nodes are not necessarily known a priori, and the network topology might change as
nodes join or disappear. For the design of fault-tolerant computation and information
exchange algorithms over such WSNs, decentralized randomized gossip (RG) based
averaging consensus is attractive, because it does not require any special routing, there
is no bottleneck or single point of failure, and it is robust to unreliable and changing
wireless network conditions. Moreover, the decentralized RG puts no constraints on
the network topology and requires no information about the actual topology.

Since the original RG algorithm was proposed in [1], many derivatives were proposed
to improve its convergence rate, and it has been employed into various applications (see
e.g., [2] and references therein). Dimakies introduced a geographic gossip [3], which
enables information exchange over multiple hops with the assumption that nodes have
knowledge of their geographic locations, such that it is a good alternative for the
grid network topology. In [4], a synchronous communication process was considered
and improvements were made to the synchronous RG of [1] in a speech enhancement
context. They allowed multiple node pairs to exchange their current values per iteration
synchronously. Other improvements to increase the convergence speed are to use clique-
based RG (CbRG) and cluster-based RG (see e.g., [5] and [6]), where cliques or clusters
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are used to compress the original graph. Deniz et al presented a greedy gossip with
eavesdropping (GGE) to accelerate the convergence [7]. Instead of randomly choosing
two nodes, they chose the two nodes to communicate that have the maximum di↵erence
between values per iteration. Another more competitive broadcasting based algorithm
was proposed in [8], although it cannot guarantee to reach the actual consensus surely.

To further increase the convergence speed in terms of transmissions, we present
in this paper a synchronous version of the GGE algorithm, called greedy gossip with
synchronous communication (GGwSC). Each time slot is divided into two time scales,
one is the time used for node pairs selection, and the other is for the gossip exchange
between every node pair. The simultaneous communicating node pairs are chosen
recursively. Each time, one node selects the node from its neighbors that has the maxi-
mum di↵erence. Then, the additional communicating node pairs are chosen recursively
by excluding the node pairs that are already formed. Finally, the chosen node pairs
communicate synchronously. Thus, unlike the synchronous gossip in [1] or [4], which
performs updates completely at random, the GGwSC, like GGE, makes use of the
greedy neighbor selection procedure. Whereas unlike GGE, we also permit multiple
node pairs to communicate so as to accelerate the convergence rate. Experiments have
demonstrated the e↵ectiveness of the proposed method. The convergence rate in terms
of the number of transmissions for random geographic graphs (RGGs) is accelerated
compared to the GGE algorithm. Additionally, we also test the improvement on the
convergence rate of the proposed method under di↵erent conditions in this paper, e.g.,
di↵erent initializations for the nodes and di↵erent network topologies.

2 Fundamentals of GGE

To guide the reader, we first give a brief overview of the GGE algorithm presented
in [7]. We consider a network of N nodes and represent network connectivity as a
graph, G = (V,E), with vertices V = {1, 2, ..., N} and edge set E ⇢ V ⇥ V such
that (i, j) 2 E if and only if nodes i and j directly communicate. We assume that
communication relationships are symmetric and that the graph is connected. Let
Ni = {j : (i, j) 2 E} denote the set of neighbors of node i (excluding i). Each node
in the network has an initial value yi, and the goal is to use only local information
exchanges to arrive at a state where every node knows the average ȳ = 1

N

PN
i=1 yi.

Each node is initialized with xi(0) = yi.
At the kth iteration of GGE [7], an activated node sk is chosen uniformly at random.

This can be accomplished using the asynchronous time model, where each node “ticks”
according to a Poisson clock with rate 1. Then, sk identifies a neighboring node tk
satisfying

tk 2 argmax
t2Nj

n1

2
(xsk(k � 1)� xt(k � 1))2

o

, (1)

in other words, sk identifies a neighbor that currently has the most di↵erent value
from itself. This choice is possible because each node i maintains not only its own
local variable, xi(k � 1), but also a copy of the current values at its direct neighbors,
xj(k�1), for j 2 Ni, because of eavesdropping with wireless communications. When sk
has multiple neighbors whose values are equally (and maximally) di↵erent from sk’s, it
chooses one of these neighbors at random. Then the update is performed by enforcing
the average 1

2(xsk(k � 1) � xtk(k � 1)) to sk and tk, while all other nodes i 62 {sk, tk}
hold their values at xi(k) = xi(k�1). Finally, the two nodes, sk and tk, broadcast these
new values so that their neighbors have up-to-date information. If the values xi on all
sensors are stacked as a vector, i.e., x(k) = [x1(k), x2(k), ..., xN(k)]T , we can formulate
the above update as

x(k) = UGGE(k)x(k � 1), (2)
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where UGGE(k) is an n⇥n dimensional update matrix, which is dependent across time.
For two communicating nodes xsk and xtk at iteration k, the update matrix is

UGGE(k) = I � 1

2
(esk � etk)(esk � etk)

T , (3)

where ei = [0, ..., 1, 0, ..., 0]T is an N� dimensional vector with the ith entry equal to 1.
Note that similar to the standard RG, the update matrix is doubly stochastic, which
implies UGGE1 = 1 and 1TUGGE = 1T with 1 denoting a vector of all ones.

Given the initial vector of a network x(0) = [x1(0), x2(0), ..., xN(0)]T , the theoretical
consensus will be x̃ave = 1x̃(0)/N . To measure the convergence rate, we use the relative
convergence error defined as

RE =
kx̃(k)� x̃ave1k
kx(0)� x̃ave1k

, (4)

such that the iteration can be quitted when RE  " (or after a fixed amount of
iterations).

3 GGwSC

In this section, we will present the proposed GGwSC algorithm based on GGE. As
mentioned above, in GGE, a node selects a neighboring node whose state value is most
di↵erent from its own value. This strategy can indeed accelerate the convergence at
the cost of additional communication bandwidth compared to the original gossip al-
gorithm [1], because it has to send (broadbast) the new values (eavesdrop) to all its
neighbors. In spite of this, it still has a relatively slow convergence because only two
nodes are allowed to exchange their state values at each iteration. In [4], a synchronous
randomized gossip (SRG) was proposed for distributed delay and sum beamforming
(DDSB) based speech enhancement in WSNs, where each node is permitted to commu-
nicate with one of its neighbors randomly at each iteration, such that the state values
of multiple nodes are updated after each iteration. Given su�cient communication
bandwidth, we combine the idea of GGE and SRG to further accelerate the conver-
gence. Hence for the GGwSC, multiple node pairs can communicate at each iteration.
These active node pairs are constrained to be disjoint, and the communicating node
pairs are chosen according to argmax distance vectors.

This newly proposed GGWSC algorithm can generally be described as in Algo-
rithm 1. For the practical realization, there are several points worthy to be noted:

⇧ Given N (even) nodes, the desired case is that N/2 node pairs are chosen syn-
chronously by the SelectNodePair function at each iteration. This would be
most e�cient. However, this will not always happen. For example, at kth itera-
tion, when the node sk is randomly activated, but all of its neighbors are selected
already (i.e., Nsk = O), sk has a bye (i.e., xsk = xsk�1

) and needs to wait for the
next iteration k + 1.

⇧ For the kth iteration, the update matrix UGGwSC(k) is a manifold stochastic
process approximately, that is, UGGwSC(k) =

Q

{sk,tk}2V U sk,tk
GGE(k).

⇧ Note that for a communicating node pair, two transmissions are required during
an iteration, e.g., sk computes the average, such that sk broadcasts it to its
neighbors, and tk also needs to broadcast the received average from sk to its
neighbors.
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Algorithm 1: GGwSC

Input: x(0) = [x1(0), x2(0), ..., xN(0)]T , G = (V,E)
1 while RE > " do
2 function SelectNodePair(G)
3 sk = N ⇥ rand;

4 tk 2 argmaxt2Nsk

n

1
2(xsk(k � 1)� xt(k � 1))2

o

;

5 updating topology by excluding {sk, tk} to G0 = (V 0, E 0);
6 if (V 0 6= O) SelectNodePair(G0);
7 else break;
8 end function

9 U sk,tk
GGE(k) = I � (esk � etk)(esk � etk)

T/2;

10 UGGwSC(k) =
Q

{sk,tk}2V U sk,tk
GGE(k);

11 x(k) = UGGwSC(k)x(k � 1);
12 end
13 return x(k)

3.1 Convergence Rate: GGwSC versus GGE

In the following, we investigate the convergence rate in terms of the underlying commu-
nication topology. The convergence rate for gossip algorithms [1] is typically defined
in terms of the "�avergaing time

Tave(") = sup
x(0) 6=0

inf
n

k : Pr
⇣kx̃(k)� x̃ave1k
kx(0)� x̃ave1k

> "
⌘

 "
o

. (5)

The averaging time Tave(", P r) is bounded by the second largest eigenvalue of the
expected value of the update matrix E[UGGwSC ], that is [1]

0.5 log "�1

log �2(E[UGGwSC ])�1
 Tave(", P r)  3 log "�1

log �2(E[UGGwSC ])�1
. (6)

Although this bound is suitable for the GGwSC as well, it is hard to relate it as a
homogeneous Markov chain, and Tave(", P r) is di�cult to calculate as a function of
�2(E[UGGwSC ]), because E[UGGwSC ] depends on the network topology. Therefore, we
use here an alternative bound to investigate the convergence rate, which is based on
results from [7]. Given a graph G = (V,E), we will have

E[kx̃(k)� X̃ave1k2]  A(G)kkx(0)� X̃ave1k2, (7)

where A(G) is the graph-dependent constant defined as

A(G) = max
x 6=x̃ave1

1

N

N
X

s=1

⇣

1� kgs(k)k2
4kx̃� x̃ave1k2

⌘

, (8)

where g(k) is the subgradient function defined in [7]. Indeed, A(G) is equivalent to
�2(E[UGGWSC ]) functionally. Obviously, the smaller of A(G), the faster of the conver-
gence rate. For the kth iteration of GGwSC, there is at least one node pair (sk, tk)
communicating synchronously, such that g(k) has more than two elements unequal
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to 0. Yet for the GGE algorithm, one node pair (sk, tk) is allowed to communicate
per iteration, such that there are only two elements of the subgradient function un-
equal to 0. Therefore, we have the relationship between the subgradient functions, as
kgGGwSC(k)k2 � kgGGE(k)k2, which leads to

AGGwSC(G)k  AGGE(G)k, (9)

with equality if and only if only one node pair gossips per iteration. Consequently, we
have demonstrated theoretically that GGwSC converges faster than GGE.

4 Performance Analysis

In this section, we present simulations to compare the GGwSC with several state-of-
the-art methods, including Boyd’s original RG [1], GGE [7], synchronous gossip [4],
CbRG [5] and geographic gossip [3], by observing the convergence rate in terms of
transmissions. We also investigate how this is e↵ected by the network topology.

4.1 Random Geometric Graph (RGG)

Firstly, in order to observe the general performance of convergence, we place 200 nodes
randomly in a (1⇥1) m enclosure. A Gaussian distribution N (0, 1), is used to initialize
the values of x(0) on each sensor. The maximum number of transmissions is fixed to
20000, and the results are averaged over 100 realizations for the RGG. The transmission
radius is set to be

p

logN/N , which determines the RGG topology.

(a) RGG (b) Convergence

Figure 1: Convergence of relative error of the state-of-the-art methods for the RGG
topology with 200 nodes.

Fig. 1(a) shows a typical RGG with 200 nodes, and Fig. 1(b) shows the corre-
sponding convergence behaviours. We can see that our method achieves the fastest
convergence rate, and randomized gossip and synchronous gossip are slowest.

4.2 Initialization

Secondly, we examine performance for four di↵erent initial conditions, x(0), which are
consistent to those in [7], in order to explore the impact of the initial values on the
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convergence behaviour. The first two of these cases are a Gaussian bumps field, and
a linearly-varying field. For these two cases, the initial value x(0) is determined by
sampling these fields at the locations of the nodes. The remaining two initializations
consist of the “spike” signal, constructed by setting the value of one random node to
1 and all other node values to 0, and a random initialization where each value is i.i.d.
drawn from a Gaussian distribution N (0, 1) of zero mean and unit variance. The first
three of these signals were also used to examine the performance of geographic gossip
in [3].

Figure 2: Comparison of the performance of the state-of-the-art methods with four
di↵erent initializations of x(0).

Fig. 2 shows that GGwSC converges to the average at a faster rate asymptotically
than the other state-of-the-art methods for all initial conditions. Out of these candidate
initializations, the linearly-varying field is the worst case, because it improves the
convergence rate least compared to GGE. This is not surprising since the convergence
analysis in Section 3.1 suggests that constant di↵erences between neighbors cause both
GGwSC and GGE to provide minimal gain.

4.3 Special topologies

Finally, we investigate the influence of the network topologies on the convergence rates.
We test three special kinds of topologies, including complete connected, grid, and a
star topology. Note that for the grid network topology, the number of nodes must be a
square. Some results are shown in Fig. 3 versus the number of transmissions. To this
end, we can conclude:
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Figure 3: Comparisons of the performance of the state-of-the-art methods for three
special network topologies (left: grid; middle: grid, where the number of nodes must
be a square, e.g., 196; right: star).

⇧ GGwSC is the most e↵ective gossiping strategy, and it has the fastest convergence
rate generally, except for the grid topology. For these grid-structured networks,
geographic gossip has the best performance, because it is specified to thes kind
of networks.

⇧ Although both GGwSC and GGE perform gossiping according to the di↵erence
between neighboring nodes, through the synchronous communication strategy the
former guarantees that at least one node pair has a value di↵erence per iteration
except in the case when the average is reached. That is why GGwSC is faster
than GGE in terms of transmissions.

Accordingly, in general the proposed GGwSC algorithm obtains the fastest rate of
convergence.

5 Conclusions

In this paper, we proposed a greedy gossip with synchronous communication (GGwSC)
as an extension of the GGE algorithm [7] for averaging consensus. The convergence
rate of GGwSC was analyzed theoretically as being faster than GGE. The experimental
results demonstrated the e↵ectiveness of the proposed method. Additionally, we also
tested the performance on the convergence rate of our method under several conditions,
e.g., di↵erent initializations for the nodes and di↵erent network topologies. In general,
the proposed GGwSC algorithm obtained the fastest rate of convergence.
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