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CHAPTER 1

Introduction

“I believe that such a large circuit can be built on a single wafer.”

This is a one sentence paragraph in [1] published by Dr. Gordon E.
Moore in 1965. By “such a large circuit”, he meant “by 1975, the number
of components per integrated circuit for minimum cost will be 65,000”.
Back then, perhaps no one, not even Dr. Moore, would imagine that in
2011, the number of transistors in the latest released Intel six-core Core i7
(Sandy Bridge-E) microprocessor would be 2,270,000,000 [2].

The integrated circuit (IC) industry has followed the famous Moore’s
law for about half a century: the number of transistors that can be in-
tegrated on an integrated circuit doubles approximately every two years.
This has been achieved by the down-scaling of the technology node. The
great motivation behind the scaling is of course profits, which means faster
and more power-efficient chips, more functions on smaller-size electronics,
longer battery-time on portable devices, etc. For example, the total num-
ber of smartphone sales has almost doubled in one year (from 2009 to 2010)
and it takes 19.3% of the total mobile phone market share [3, 4].

However, nothing comes for free. While the scaling in the front-end
process enables faster transistors, an inverse scaling is observed in the
back-end process, which means interconnects are getting slower due to the
shrinking of the cross-sectional area. Moreover, since transistors are being
scaled down, more and more interconnects are needed for communication,
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2 Introduction

making the delay associated with signal propagation comparable to the
gate delay.

Another by-product of the laudable scaling is the ever-increasing man-
ufacturing variability. This has become a critical issue for circuit perform-
ance, reliability, production yield, etc. Such a problem, which has been
considered as secondary for a long time, has become quite serious espe-
cially since the technology node entered the deep sub-micron era. It has,
in fact, slowed down the process of scaling. The 2010 version of ITRS has
predicted that after 2013, the transistor count will only double every three
years instead of every two.

All relevant techniques for analyzing and solving the variability problem
have been broadly labeled Design for Manufacturability (DFM), and have
emerged across the spectrum of the whole IC industry. For example, the
use of resolution enhanced techniques (RETs), e.g. phase shift masks, in
lithography has been a primary enabler of the continuing reduction in the
critical dimensions (CD) [5]. Meanwhile, the optical proximity correction
(OPC) technique has been used to compensate for the layout distortion in-
duced during the lithography process due to the aggressive scaling. Apart
from the techniques deployed to directly improve the process steps, tech-
niques such as real-time feed-back control are also playing an important
role in reducing environmental variabilities [6].

Analog designers, especially those working on digital-to-analog con-
verters, reference sources, etc., were perhaps the first ones to notice the
impact of process variations in terms of (mis)matching [7, 8]. Since then,
various researches such as statistical designs (or optimizations) and adapt-
ive circuits have been proposed by both analog and digital circuit designers
to alleviate the effect of process variations, achieving a high performance
and/or a high yield [9–13].

While the technologists have been trying to realize scaling while con-
trolling the variability, and the designers have been investigating either
adaptive or variation-insensitive circuits to mitigate the impact of the vari-
ability, the EDA community has been dedicated to developing accurate and
efficient tools and methodologies to make this challenge transparent to the
designers. Proposed solutions involve deterministic methods such as the
worst- and best-case corner modeling and design methodology [14,15], and
statistical analysis such as sampling-based simulation (e.g. Monte-Carlo
and its variants) [16–18].

In fact, the technology, the circuit design and the EDA communities
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can not live independently, not any more. They have to work much closer
than before [19, 20]. For instance, it is proposed in [21] that design rules
should become yield-aware. It means that instead of “hard constraints”
that check yes/no, future design rules should specify “degrees of meeting
various design rules with an indication of the corresponding yield penalty”.
The development of such yield-aware design rules definitely demands a
collaboration between the three communities.

As part of the EDA community, we would also like to contribute our
humble capacity to the big family of DFM. The impact of the manufac-
turing variability on on-chip interconnects has notably increased since the
technology nodes entered the deep sub-micron era. Thus, the industry
needs a good understanding of the effects. “A good understanding” means
such effects should be captured and modeled in a way that it is under-
standable and useful to IC designers. Because, at the end of the day, it is
the functionality and performance (or profits) of the designed chips that
really matters.

Our research has been stimulated by such industry needs. Hence, the
goal of our work is to study and model the effect of manufacturing vari-
ations on on-chip interconnects, to make it transparent to designers. Spe-
cifically, we focus on interconnect capacitances. This thesis includes our
findings and results. Before listing our contributions, we will first give
a brief introduction of the categories and sources of the manufacturing
variability that relates to our research.

1.1 Manufacturing Variability

Manufacturing variability can be categorized into systematic and random
variations. Systematic variations are introduced by predictable design or
process procedures, and are often highly layout-dependent. Contour vari-
ations, for instance, are induced during the lithography step. Even with the
constraints of design rules and the compensation technique, i.e. the optical
proximity correction (OPC), the layout distortions (the difference between
the actual silicon image and the original design intent), are not fully elim-
inated, as indicated in Figure 1.1. It contains systematic as well as random
linewidth variations [22]. Another example is the thickness variations in
metals and interlevel dielectrics (ILD) caused by the chemical mechanical
polishing (CMP) step (Figure 1.2). Such thickness variations were at first
controlled by design rules which restricted the density range for each layer.
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As printed

Drawn

OPC-ed

Figure 1.1: Contour variation induced by lithography [23].

Then as the pitches became tighter, metal dummy fills were introduced.
Although the planarization has been greatly improved, variations still ex-
ist [24]. Theoretically, since systematic variations are layout-dependent,

Dishing Erosion Total Copper Loss

Isolated 
Wide-Lines

Dense Array
Thin-Lines

Dense Array
Wide-Lines

Figure 1.2: Variation in metal thickness induced by CMP [24].

it could be modeled deterministically at the pre-manufacturing stage by
conducting a thorough analysis of the layout. However, in practice, it is
better to be able to model systematic variation statistically. Because in
the early design stage, the layout information may not be fully available, or
layouts can be changed, adjusted and optimized (e.g. using the statistical
models) [25].

Random variations, on the other hand, are caused by various unpre-
dictable fluctuations in the manufacturing environment. In most cases,
random variations are not layout dependent, but often a spatial correlation
can be observed. One of the most typical random geometric variations is
the so-called line-edge roughness (LER), which has been intensively stud-



1.2 Contributions and Outline of the Thesis 5

ied for the critical dimensions of MOSFETs since the technology nodes
reached deep sub-micron dimensions [26]. With technology shrinking, the
impact of LER on interconnects and some novel designs of passive com-
ponents with high-precision requirements [27] needs to be understood and
modeled.

Edge detected SEM View

Figure 1.3: SEM view of a rough line and its detected edge is shown [26].

1.2 Contributions and Outline of the Thesis

The outline of this thesis is shown schematically in Figure 1.4. The contents
and contributions of each chapter are summarized as follows.

In this chapter (Chapter 1), we have given a brief introduction of man-
ufacturing variability, its ever-increasing impact on IC design and the need
for advanced post-layout verification tools taking into account such effect.
Our work focuses on modeling the interconnect capacitances and our goal
is to capture both the systematic and the random variations with a good
trade-off between efficiency and accuracy.

To achieve the goal, we propose a solution in Chapter 2, that is the
sensitivity-based modeling method. In this thesis, the term sensitivity spe-
cifically refers to the first derivative with respect to a geometric parameter.
The proposed method is applicable to Boundary Element Method (BEM)
based capacitance extractors. Hence, capacitance extraction using BEM is
briefly introduced, based on which we also explain the challenge associated
with the sensitivity computation.

Chapter 3 proposes a fast sensitivity computation method based on
the Adjoint Field Technique (AFT). It shows that the capacitance sensit-
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ivities with respect to multiple parameters can be obtained together with
the nominal capacitances with only one system solve. We also include an
alternative idea for the sensitivity computation based on a Domain De-
composition Method (Appendix C). This approach results in the same
algorithm and conclusion.

The proposed algorithm is then implemented in the SPACE layout-to-
circuit parasitics extractor. Chapter 4 explains the procedural algorithm,
the data structure and the complexity. A window-scheme is also intro-
duced for applications with larger structures. Several experiments have
been conducted on the SPACE platform to demonstrate the accuracy and
efficiency of the algorithm.

The conducted experiments indicate certain computational errors that
are unavoidable. Chapter 5 studies the cause of these errors and proposes a
supplementary algorithm for improving the accuracy of the computed sens-
itivity. The supplementary algorithm is based on the Schur Complement
Technique. A combination of the basic algorithm (proposed in Chapter 3
and Appendix C) and the supplementary algorithm leads to an enhanced
algorithm which is able to achieve an extremely high accuracy at the cost
of the computational time. Since the primary goal of our work is high effi-
ciency with good accuracy, it is still the basic algorithm that is adopted in
our application examples (Chapter 6 and 7), while the enhanced algorithm
enriches the theory part of our work and can be a potential topic for future
study.

Two possible applications of the proposed sensitivity-based modeling
method are demonstrated in this thesis. Chapter 6 shows an efficient ca-
pacitance modeling for not only systematic but also random variations.
Specifically, we study a real design case, an 8-bit binary-scaled differential
charge-redistribution digital-to-analog converter (a component of a low
power SAR ADC design). Measurements on test chips gives results sup-
porting the estimate given by our model.

Chapter 7 presents a highly efficient statistical analysis methodology
for RC nets subject to systematic variations. It achieves zero parameter
sampling, based on the combination of the proposed sensitivity-based para-
meterized parasitics extraction technique and a structure-preserving para-
meterized Model Order Reduction (pMOR) technique. Given the layout
and the process spreads of the technology, the statistical properties such
as the mean and the standard deviation of the system response can be
obtained very fast.
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Manufacturing variability of interconnects
(Chapter 1)

PROBLEM STATEMENT

PROPOSED SOLUTION

APPLICATIONS

Sensitivity-based modeling method for BEM-based capacitance extractors
(Chapter 2)

Basic sensitivity computation by Adjoint Field Technique  (Chapter 3)

Basic sensitivity computation by Domain Decomposition Method  (Appendix C)

Enhanced sensitivity computation by Schur Complement Technique  (Chapter 5)

Efficient capacitance modeling for both 
systematic and random variations  (Chapter 6)

Fast statistical analysis of RC nets 
subject to systematic variations  (Chapter 7)

IMPLEMENTATION (Chapter 4)

Procedural algorithm
Window-scheme

Experiments

SUMMARY (Chapter 8)

Figure 1.4: Outline of the thesis.
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1.3 Notations

For ease of discussion, the following notations will be used throughout
this thesis:

Cij Network capacitance between two conductors i and j

Csij Short-circuit capacitance between two conductors i and j

C̄sij Partial short-circuit capacitance between two panels i and j

C∗ Capacitance between a panel and a node/conductor

G Elastance matrix

A Incidence matrix relates C̄s and Cs

B Reduced branch incidence matrix in circuit networks

S Panel sensitivity of capacitance

1.4 Acronyms and Abbreviations

We also define in the following the acronyms and abbreviations that are
used in this thesis for readers’ reference:

AFT Adjoint Field Technique

ADCs Analog-to-Digital Converters

BEM Boundary Element Method

CD Critical Dimension

CMP Chemical Mechanical Polishing

DFM Design for Manufacturability

FD Finite Difference

ILD Interlevel Dielectrics

LER Line-edge Roughness

LPE Layout Parasitics Extraction

OPC Optical Proximity Correction

pMOR parameterized Model Order Reduction

RETs Resolution Enhanced Techniques

ROM Reduced Order Model

SPEF Standard Parasitics Exchange Format



CHAPTER 2

Sensitivity Modeling of
Capacitances for

Manufacturing Variability

2.1 Capacitance Extraction Using BEM

Since our proposed algorithm is intended for use with capacitance extract-
ors using Boundary Element Method (BEM), we will first give a brief
introduction on this extraction method.

Capacitance computation is an electrostatic problem. A problem in
the electrostatic field usually involves the set-up and solving the Poisson
equation, under a suitable boundary condition.

Consider a system with charged conductors floating in a homogeneous
dielectric medium with permittivity ε. Let Φ(a) and ρ(a) be, respectively,
the electrostatic potential and the charge density at a point a = (xa, ya, za).
The Poisson equation is then expressed as

∇2Φ(a) = −ρ(a)

ε
(2.1)

9



10 Sensitivity Modeling of Capacitances for Manufacturing Variability

with

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (2.2)

The solution of this equation can be written as

Φ(a) =

∫
all charges

G(a, b)ρ(a)db (2.3)

where G(a, b) = 1
4πε|a−b| is the so-called Green’s function. |a − b| is the

Euclidian distance between point a and point b. The Green’s function
G(a, b) can be interpreted as the potential induced at point a by a unit
point charge at point b.

By using the BEM, the surfaces of conductors are discretized into small
panels (or finite elements). Suppose the system has m panels after discret-
ization, equation (2.3) can be transformed into a matrix expression:

v = Gq (2.4)

where v = [v1 v2 ... vm]T and q = [q1 q2 ... qm]T are, respectively, the finite
element potentials and the finite element charges on the discretized panels,
and Gij is the induced potential at panel i due to the charge at panel j.

Using the above equation (2.4), capacitances amongst panels can be
derived. By reformulating the equation:

q = G−1v = C̄sv, (2.5)

we can obtain the partial short-circuit capacitance matrix:

C̄s = G−1, (2.6)

the entries of which are associated with the discretized panels. And G is
called the elastance matrix.

Finally, the conductor capacitances can be computed by collecting the
associated entries of C̄s. This is done with the help of an incidence matrix
A ∈ Rm×N , with N being the number of conductors, defined as

Aij =

{
1 if panel i is on conductor j

0 otherwise
(2.7)
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The conductor capacitances Cs can then be computed:

Cs = AT C̄sA. (2.8)

The obtained conductor capacitances Cs are known as the short-circuit
capacitances [28]. Its entry Csij is equal to the charge on conductor i
when conductor j is held at a unit potential and all other conductors are
short-circuited to the ground.

These capacitances, however, are not the ones shown in an equivalent
circuit which is used as an input for circuit simulators, such as SPICE [29].
Instead, it is the two-terminal or network capacitance that is used in an
equivalent circuit, with a value being the ratio of the free charge and
an associated voltage difference between two conductors (or between a
conductor and a reference). Network capacitances, denoted C, can be
calculated from the short-circuit capacitances Cs by using the following
simple relation:

Cij = −Csij (2.9a)

Cii =

N∑
j=1

Csij ∀ i = 1, 2, . . . N. (2.9b)

Above, we have briefly introduced the capacitance computation using
BEM. One can observe that it involves a matrix inversion (2.6), which is
known to be computationally expensive. There are techniques for avoid-
ing this costly matrix inversion operation, but this is not the focus of this
thesis, and actually indifferent for the proposed method. Instead, we will
mention two acceleration techniques adopted in the implementation plat-
form of the proposed algorithm, namely the matrix Schur interpolation al-
gorithm and a scan-line based window-scheme. These will be introduced in
Chapter 4. With some background knowledge of the BEM-based capacit-
ance extraction, we will then propose our modeling method of capacitances
for the manufacturing variability in the next section.

2.2 Sensitivity-based Model for Systematic and
Random Variations

Before proposing our method, we would like to first introduce a few studies
that have been presented to account for the impact of the ever-increasing
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process variations. The studies mentioned here mainly address the system-
atic geometric variations, while those focusing on random variations will
be discussed in Chapter 6.

A parameterized interconnect model library was proposed in [30]. This
was done by first generating a multidimensional table of capacitances for a
layout of interest using a numerical extractor, where the simulation points
were produced by varying the geometric parameters. Then, by curve fit-
ting, a parameterized model of capacitances was produced for that layout.
Another approach was described in [31] which modeled the capacitance
variations induced by the pattern-dependent ILD thickness variation, with
the help of a lookup table. Then, an enhanced lookup method based on
analytical capacitance models was presented in [32], of which the com-
plexity was improved over that of [31]. It computed the derivatives of
capacitances with respect to the thickness and the linewidth deviations.
These derivatives were later referred to as the sensitivities.

We have followed the idea of [32], and propose to use a sensitivity-
based modeling method to capture the effects of both the systematic and
the random variations on parasitic capacitances:

δCij =
∂Cij
∂λp

λp (2.10)

where δCij is the induced capacitance fluctuation due to a small parameter

variation λp and
∂Cij

∂λp
is the related sensitivity. The sensitivity and the

related parameter in this expression (2.10) have different meanings for the
systematic and the random variations.

Systematic variability often appears in the form of variations in the
structural dimensions, for example, layout expansion or shrinking. Thus,
the sensitivity for systematic variation modeling is defined to be with re-
spect to a geometric parameter variation. The parameters can be the
layout dimension, the thickness of the metal layer and the height of the
dielectric.

For random variations, e.g. the LER, λp represents the position devi-
ation of a panel which is used to capture the roughness of the line. ∂C

∂λp
is

then the associated panel sensitivity of capacitances, showing the impact
of the deviated panel on the capacitance. A discussion about the modeling
for random variations can be found in Chapter 6.

Sensitivities can be very useful:

• It has been shown that not all variations seem to be equally implic-
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ated to capacitances. For each capacitance, some variations deserve
further study and modeling, while others can be simply neglected.
Capacitance sensitivities with respect to these geometric parameters
can be used to setup the threshold for making this distinction [33].

• Capacitance sensitivities are necessary for establishing basic formu-
las in various variation-aware algorithms, such as the moment-based
timing analysis [34], the Hermite polynomial based statistic ana-
lysis [35] and the parametric Model Order Reduction (pMOR) pro-
posed in [36, 37]. Also, techniques including fast-corner generation,
multi-corner extraction and the variation-aware Static Timing Ana-
lysis (STA) presented in [38] are all based on sensitivity models.

• The Standard Parasitic Exchange Format (SPEF) has been extended
to incorporate sensitivities for process and temperature variations.
Based on the 2009 version of the SPEF standard [39], a netlist con-
sisting of the nominal values of the parasitics and their sensitivities
could be generated by Layout Parasitic Extraction (LPE) tools for
subsequent analysis.

To compute the sensitivity, however, is not a trivial task. As addressed
in 2.1, the (short-circuit) capacitances are obtained from the inversion of
the elastance matrix (2.6), of which an entry Gij amounts to the potential
induced at panel i by a unit charge at panel j. Equation (2.11) repeats
the Green’s function for a uniform dielectric of infinite dimensions:

Gij =
1

4πε|pi − pj |
(2.11)

with |pi−pj | being the Euclidean distance between panels pi and pj . Thus
the capacitance is a non-straightforward function of the panel position or
the dimensions of wires. Further, since capacitance is a mutual property
between panels (or wires), adding or removing a panel or changing its po-
sition can theoretically induce variations in all capacitances in the system.

These two facts make the computation of capacitance sensitivities very
complicated. Any technique whose computational complexity depends on
the number of parameters or the number of capacitances would not be
practically feasible. A major contribution of this thesis is that we present
a fast algorithm for capacitance sensitivity computation, as will be intro-
duced in the next chapter. The computational complexity of the proposed
algorithm depends on neither the number of parameters nor the number
of capacitances.
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2.3 Assumptions

Before proposing the algorithm for capacitance sensitivity computation,
we make a few constraints/assumptions as follows:

• We consider the electrostatic case only. As a matter of fact, the
capacitance computation is an electrostatic problem. Hence, it is
appropriate to make such assumption while computing the capacit-
ance sensitivities. Resistance of conductors are involved in the last
chapter of the thesis, and consequences of high-frequencies such as
the skin-effect are beyond the scope of our research. In the electro-
static case, the full Maxwell equations are reduced to more simple and
more precise descriptions such as the Poisson equation or the Laplace
equation. Indeed, modern analog circuits may easily approach high
frequencies in the GHz spectrum. The solution of modeling all elec-
tromagnetic behavior of on-chip features at such high frequencies
need to resort to the complete Maxwell equations. Various tech-
niques for electromagnetic field computation have been proposed in
the Computational Electromagnetism community.

• We assume that the conductors are perfect and that each conductor
forms an equipotential for the capacitance extraction.

• We only consider the geometric process variations of interconnects.
There are naturally other aspects of manufacturing variabilities, such
as the temperature gradient across the chip. This kind of variabilit-
ies needs to be handled separately and differently [40, 41], which is
beyond the scope of this thesis.



CHAPTER 3

Capacitance Sensitivity
Computation by the Adjoint

Field Technique∗

3.1 Adjoint Field Technique

The algorithm for the sensitivity computation to-be presented in this
chapter is derived from the adjoint of a linear operator [44] used in the
electrostatic field. In fact, the property of the adjoint has been observed
in the circuit network for a long time, in the form of the well-known Telle-
gen’s theorem [45]. Before the discussion of the adjoint in the electrostatic
field, we would like to first review a relatively more familiar case, i.e., the
adjoint in the circuit network.

∗Part of this chapter has been published in [42]: Yu Bi, N.P. van der Meijs and
D. Ioan, “Capacitance sensitivity calculation for interconnects by adjoint field tech-
nique,” in Proc. SPI, Avignon, France, May 2008, and [43]:Yu Bi, K.J. van der Kolk,
D. Ioan and N.P. van der Meijs, “Sensitivity computation of interconnect capacitances
with respect to geometric parameters,” in Proc. EPEP, San Jose, CA, pp. 209-212,
October, 2008.
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3.1.1 Circuit Network

Consider an arbitrary lumped network of which the graph L has (n + 1)
nodes, b branches, and some certain choices of the node-to-datum poten-
tials have been made. Let B ∈ Rn×b be the reduced branch incidence
matrix [46] for L. It is well known that the Kirchhoff’s voltage law (KVL)
and current law (KCL) hold:

KV L : v = BTe (3.1a)

KCL : Bi = 0 (3.1b)

where e ∈ Rn is the vector of node-to-datum potentials and v, i ∈ Rb are
the vectors of the branch voltages and currents respectively.

Define X , Rb, Y , Rn, and let < ·, · >X and < ·, · >Y be the
Euclidean inner products on X and Y respectively. With the Euclidean
inner products, BT is the adjoint of the linear operation B [44]. Hence,
we have

< BTe, i >X=< e,Bi >Y = 0 (3.2)

which is in fact the basic content of the Tellegen’s theorem [45]:

< v, i >X= 0 (3.3)

3.1.2 Electrostatic Field

In the previous section 3.1.1, we have reviewed that in the circuit network,
BT is the adjoint of the linear operator B. In this section, we will show
that using the property of the adjoint, circuit variables can be connected
with field variables, and from which we can derive an algorithm for the
capacitance sensitivity computation.

It has been proved in [47] that (−grad) is the adjoint of (div) under
an appropriate condition, which is defined as follows.

Let P be the class of all infinitely differentiable scalar functions ϕ on
R3 such that ϕ vanishes at infinity as fast as O(r−1) (r ∈ R)† and
the derivatives of ϕ vanish at infinity as fast as O(r−2). Let F be
the class of all infinitely differentiable vector fields ~u on R3 such that
~uj ∈ P , j = 1, 2, 3.

†In the original proof in [47], ϕ is defined to vanish at infinity as fast as O(r−2), but
in fact, being O(r−1) is already enough. This is also explained in Footnote 3 in [47], and
is proved in Appendix A.
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Then, [47] proves that the operator (−grad): P → F is the adjoint of
the operator (div): F → P :

〈div ~u, ϕ〉P = 〈~u,−grad ϕ〉F ∀ (~u, ϕ) ∈ F × P (3.4)

where the inner products on P and F are defined as

〈ϕ,ψ〉P ,
∫
R3

[ϕ(x)ψ(x)]dΩ (3.5)

〈~u, ~w〉F ,
∫
R3

[~u(x) · ~w(x)]dΩ (3.6)

for all ϕ,ψ ∈ P , ~u, ~w ∈ F , with ~u · ~w the standard dot product or scalar
product in R3.

We have included the most relevant details of the theorem and its proof
in Appendix A, and for the complete theorem, readers can refer to [47].

Next, we are going to apply (3.4) to the electrostatic field in order to
derive the two expressions (3.13) and (3.14) for further algorithm derivation
and development.

According to the relation between electric field and the scalar potential,
and the Gauss’s law, the following relations hold for the electrostatic case:

~E = −grad Φ (3.7a)

div ~D = ρ (3.7b)

where ~E is the electric field vector and ~D is the electric displacement field
vector, Φ is the scalar potential and ρ is the charge density.

Now, we define two electrostatic systems that have the same conductor
configuration and the same medium permittivity ε. In fact, the only dif-
ference between them is the voltages and charges on conductors. To dis-
tinguish them, we name one the original system, using notations ~D, ~E, Φ

and ρ, and the other one the auxiliary system, using notations ~̂D, ~̂E, Φ̂
and ρ̂.

In free space, Φ, Φ̂ vanish at infinity as fast as r−1 and ~D, ~̂D vanish at

infinity as fast as r−2. Thus Φ, Φ̂ ∈ P and ~D, ~̂D ∈ F , and using (3.4), we
have

〈div ~D, Φ̂〉 = 〈~D,−grad Φ̂〉 (3.8)

〈div ~̂D,Φ〉 = 〈 ~̂D,−grad Φ〉 (3.9)
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Next, substituting (3.7) into (3.8) gives us

〈ρ, Φ̂〉 = 〈~D, ~̂E〉 (3.10)

Since we only have charges on the surface of conductors and the po-
tential on the surface of each conductor is constant, it follows that∫

Si

ρ(r)Φ̂(r)dS = Φ̂i

∫
Si

ρ(r)dS

= Φ̂iQi (3.11)

where Si is the out-surface of a conductor i and Qi is the total charge on
this conductor in the original system. Φ̂i is the potential on conductor
i in the auxiliary system, and Φ̂i = V̂i with V̂i being the voltage on this
conductor.

Hence, for a system consisting of N conductors with Q =
[Q1 Q2 ... QN ]T and V̂ = [V̂1 V̂2 ... V̂N ]T being their charges and voltages
in the original system and the auxiliary system respectively, we have

〈ρ, Φ̂〉 = (Q, V̂) (3.12)

where (Q, V̂) = QT V̂ =
∑N

i=1QiV̂i.

Therefore, using (3.12), (3.8) becomes

(Q, V̂) = 〈~D, ~̂E〉 (3.13)

Analogously, from (3.9) we can derive the following:

(Q̂,V) = 〈 ~̂D, ~E〉 (3.14)

Here, we would like to emphasize that the electrical variables Q, V, ~D,

~E and Q̂, V̂, ~̂D, ~̂E, respectively characterize the original system and the
auxiliary system that have been constructed geometrically identical. Based
on the above expressions (3.13) and (3.14), we can derive an algorithm for
computing the capacitance sensitivities. Before doing so in Section 3.1.4
and 3.2, we would like to first present an alternative derivation of (3.13)
and (3.14) in the next section, which is from an energy conservation point
of view.
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3.1.3 Energy Conservation in the Electrostatic Field

For a configuration of static charges, the stored energy equals the energy
required to assemble the configuration with an initial condition in which
the potential field is zero. Thus for a system with N conductors, if we
want to know its stored electric energy, we shall study the amount of work
that is needed to construct such charge configuration. The initial situation
is assumed to be with all charges in a reservoir at infinity which is the zero
potential reference.

It has been shown in [48]‡ that the total amount of work required to
assemble a static charge configuration defined by charge density ρ(r) in
space Ω is

W =
1

2

∫
Ω∞

ρ(r)Φ(r)dΩ (3.15)

where Φ(r) represents the potential induced by ρ(r). And using the field
vectors ~D and ~E, (3.15) can also be expressed from a field-center view as

W =
1

2

∫
Ω∞

~D(r) · ~E(r)dΩ. (3.16)

As addressed, the charges exist only in the form of surface density on
conductors and the potential on each conductor is constant, thus∫

Ω∞

ρ(r)Φ(r)dΩ =
N∑
i=1

QiVi (3.17)

where Qi and Vi are the charge and the voltage on conductor i, (i =
1, 2, ..., N) respectively. Considering (3.15), (3.16) and (3.17), we obtain
the following relation:

W =
1

2

N∑
i=1

QiVi =
1

2

∫
Ω∞

~D(r) · ~E(r)dΩ (3.18)

It can be interpreted that the stored electric energy of the configuration
of N conductors with surface charges Qi and absolute potential Vi (i =
1, ..., N) is 1

2

∑N
i=1QiVi, and the amount of work to build this configuration

can be computed by 1
2

∫
Ω∞

~D(r) · ~E(r)dΩ using the field vectors supported
by the charge density ρ(r).

‡We have included the proof from [48] in Appendix B. Readers who are interested
may also refer to [49] Section 1.22 where an alternative proofing approach is stated.



20 Capacitance Sensitivity Computation by the Adjoint Field Technique

Naturally, the following equation holds:

(Q,V) = 〈~D, ~E〉 (3.19)

where (Q,V) = QT ·V and 〈~D, ~E〉 =
∫

Ω
~D · ~EdΩ.

Now, assume there are two systems with the same geometric configur-
ation as in Section 3.1.2, and using the same notations that ~D, ~E, Q, V

for the original system and ~̂D, ~̂E, Q̂, V̂ for the auxiliary system. Then,
we can obtain the same equations as (3.13) (3.14) while using a similar
derivation as for (3.19).

In fact, we may consider (3.18) as the actual-energy conservation and
(3.13) (3.14) the quasi-energy conservation, which is similar to the Tell-
egen’s actual-power theorem and quasi-power theorem for the circuit net-
work [45].

3.1.4 Small Variation in the Original System

If there are some very small geometric variations occurring in the ori-
ginal system, then the variables describing the system Q, V and ~D, ~E are
changed accordingly and the perturbed quantities are denoted as ∆Q, ∆V
and ∆~D, ∆~E respectively. The configuration in the auxiliary system, on

the other hand, remains the same. Thus Q̂, V̂ and ~̂D, ~̂E would not be
affected. Then considering the linearity of inner product, focusing on the
first-order of perturbation and neglecting higher order terms, (3.13) leads
to

(∆Q, V̂) = 〈∆~D, ~̂E〉 (3.20)

and (3.14) leads to

(Q̂,∆V) = 〈 ~̂D,∆~E〉. (3.21)

Subtracting (3.21) from (3.20) gives

(∆Q, V̂)− (Q̂,∆V) = 〈∆~D, ~̂E〉 − 〈 ~̂D,∆~E〉 (3.22)

Using Q = CsV, the change in Q can be written as

∆Q = (∆Cs)V + Cs(∆V) (3.23)

Then the left-hand side of (3.22) becomes

(∆Q, V̂)−(Q̂,∆V) = ((∆Cs)V, V̂)+(Cs(∆V), V̂)−(ĈsV̂,∆V) (3.24)
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Note that by construction, the original system and the auxiliary sys-
tem have the same geometric configuration and medium property. Thus
Cs = Ĉs, as the (short-circuit) capacitances are only determined by the
geometric information such as the dimensions and positions of the con-
ductors and the medium permittivity. Hence, the final two terms in (3.24)
cancel because

(Cs(∆V), V̂) = (ĈsV̂,∆V) =
N∑
i=1

N∑
j=1

Csij∆Vj V̂i (3.25)

and (3.24) becomes

(∆Q, V̂)− (Q̂,∆V) = ((∆Cs)V, V̂) (3.26)

Next, we study the right-hand side of (3.22). In linear isotropic media,

~D = ε~E and ~̂D = ε̂~̂E hold for the original and the auxiliary systems with ε
and ε̂ the material permittivities respectively. As indicated, the medium of
the auxiliary system is the same as that of the original system, i.e. ε̂ = ε.
And ∆~D = (∆ε)~E + ε(∆~E). Hence, the right-hand side of (3.22) becomes

〈∆~D, ~̂E〉 − 〈 ~̂D,∆~E〉 = 〈(∆ε)~E, ~̂E〉+ 〈ε(∆~E), ~̂E〉 − 〈ε~̂E,∆~E〉

= 〈(∆ε)~E, ~̂E〉 (3.27)

Now, using (3.26) and (3.27), (3.22) turns into

((∆Cs)V, V̂) = 〈(∆ε)~E, ~̂E〉 (3.28)

which is the main result for our capacitance sensitivity computation from
a theoretical point of view. As it is derived from the adjoint of an operator
in the electrostatic field, and in many publications related to the sensitivity
study ([50, 51]), the term adjoint system is used instead of the auxiliary
system, we will call the proposed method the adjoint field technique (AFT)
(it follows the term in [50]). In the next section, we will show how to
develop (3.28) into an applicable algorithm.

3.2 Algorithm Development

In the following, we will first derive the sensitivity of the short-circuit
capacitance Csij . Then the network capacitance sensitivity can be easily
calculated using (2.9a).
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Suppose there is a system consisting of N conductors, with V ∈ RN×1

being the vector of voltages on conductors and Cs ∈ RN×N being the
short-circuit capacitance matrix. To compute the sensitivity of a particular
capacitance with respect to a certain geometric parameter variation, e.g.,
∂Csij

∂λp
, we should first select the specific capacitance Csij .

To locate Csij , let’s look at the left-hand side of (3.28), which can be
expressed as

((∆Cs)V, V̂) = ((∆Cs)V))T V̂

=





∆Cs11 · · · ∆Cs1j · · · ∆Cs1N
...

...
...

∆Csi1 · · · ∆Csij · · · ∆CsiN
...

...
...

∆CsN1 · · · ∆CsNj · · · ∆CsNN





V1

...

Vj
...

VN





T

V̂1

...

V̂i
...

V̂N


.

(3.29)

As ∆Csij is the one to be studied, the voltages on conductors in the original
system are set to be

Vj = 1 and Vk = 0 ∀ k 6= j; (3.30)

and the voltages in the adjoint system are set to be

V̂i = 1 and V̂k = 0 ∀ k 6= i. (3.31)

Therefore,

((∆Cs)V
d
j , V̂

d
i ) = ∆Csij (3.32)

where Vd
j is a vector whose elements are given by (3.30) and V̂d

i is a vector
whose elements are given by (3.31).

As introduced in Chapter 2, when the BEM is applied, all surfaces
of all conductors are discretized into elements (or panels). For simplicity
reasons, we use constant elements and the charge distribution and the
potential over the conductor surfaces are also piecewise constant. Note
that the discretization is identical for the original system and the auxiliary
system.

As the short-circuit capacitance matrix is symmetrical, ∆Cs = ∆Cs
T ,

and using (2.8), the short-circuit capacitance variation ∆Csij can be writ-



3.2 Algorithm Development 23

ten as

∆Csij = (Vd
j )
T (∆Cs)

T V̂d
i

= (Vd
j )
TAT∆C̄sAV̂d

i (3.33)

where ∆C̄s is the perturbed partial short-circuit capacitance matrix.

Then let’s look at the right-hand side of (3.28): 〈(∆ε)E, Ê〉, which
implies that we need to study how the geometric variation λp influences

the inner product
∫

Ω(∆ε)~E · ~̂EdΩ.

Figure 3.1 schematically shows the cross-section of a conductor when
there is a small variation in parameter p (λp). Sp is the influenced surface
due to λp and we call it the victim surface incident to parameter p. Ana-
logously, the panels that are located on the victim surface are called the
victim panels. In fact, the dimensional variation λp is exactly the displace-
ment of the victim surface and also that of the victim panels. It is known
that in a perfect conductor, ~E = 0 and ~D = 0, thus we obtain

∫
Ω

∆ε~E · ~̂EdΩ =

∫
Sp

ε~E · ~̂E(λp~np)~nsdS (3.34)

where ~ns is pointing from the victim surface to the medium (characterized
by ε) and ~np is the direction of the geometric parameter we defined.

Figure 3.1: Illustration of the parameter variation λp in Ω.
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Thus, (3.28) becomes

((∆Cs)V, V̂) = 〈(∆ε)~E, ~̂E〉

=

∫
Sp

∆ε~E · ~̂EdΩ =

∫
∞
ε~E · ~̂E(λp~np)~nsds (3.35)

Since our goal is to know the induced capacitance fluctuation ∆Csij due to
the parameter variation λp, conditions (3.30) and (3.31) have to be applied.
Hence, considering (3.30), (3.31) and (3.32), it follows from (3.35) that

∆Csij
λp

= ~np~ns

∫
Sp

ε~Ed · ~̂Edds (3.36)

where ~Ed and ~̂Ed are the electric fields under condition (3.30) in the original
system and condition (3.31) in the auxiliary system respectively.

While using the piecewise constant shape function for BEM, the field
vector ~E is a piecewise constant quantity on the set of panels Sp. Hence

the integral over Sp becomes a summation. Using ~D = ε~E, ~̂D = ε~̂E and
the Gauss law ∇ ·D = ρ, (3.36) becomes

∆Csij
λp

= ~np~ns
1

ε

∑
k∈Sp

~D ~̂DAk

= ~np~ns
1

ε

∑
k∈Sp

ρkρ̂kAk (3.37)

where Ak is the corresponding area of victim panel k, ρk and ρ̂k are the
charge densities on panel k under the two conditions for the original sys-
tem (3.30) and the adjoint system (3.31) respectively. As the piecewise
constance shape function is used for the BEM, the charge density ρk can
be related to charge qk with the corresponding area Ak as qk = ρkAk.
Since the discretization condition is the same for the original system and
the auxiliary system, a similar relation q̂k = ρ̂kAk holds, which leads to

∆Csij
λp

= ~np~ns
1

ε

∑
k∈Sp

qkq̂k
Ak

(3.38)

Then, the sensitivity of the short-circuit capacitance Csij with respect to
the parameter variation λp can be calculated using (3.38):

∂Csij
∂λp

= lim
λp→0

∆Csij
λp

= ~np~ns
1

ε

∑
k∈Sp

qkq̂k
Ak

(3.39)
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Note that qk and q̂k are the charges on panel k given by the conditions
(3.30) and (3.31) respectively, which is repeated here:

qk : Vj = 1 and Vk = 0 ∀ k 6= j; (3.40a)

q̂k : V̂i = 1 and V̂k = 0 ∀ k 6= i. (3.40b)

Using (2.5), we can calculate

qk =
∑
a∈Nj

C̄sk,a (3.41a)

q̂k =
∑
b∈Ni

C̄sk,b (3.41b)

Subsituting (3.41) into (3.39) and also using (2.9a), we have derived the
computation of the coupling capacitance sensitivity with respect to a small
geometric parameter variation:

∂Cij
∂λp

= −~np~ns
ε

∑
k∈Sp

1

Ak
(
∑
a∈Nj

∑
b∈Ni

C̄sk,aC̄sk,b) (3.42)

The sensitivity computation of the ground capacitance is very similar
to that of the coupling capacitance. In the above discussion, we already
calculated the sensitivity of the short-circuit capacitance Csij towards the
geometric parameter variation (3.39). Using (2.9b), the ground capacit-
ance sensitivity can be easily derived:

∂Cii
∂λp

=
~np~ns
ε

∑
k∈Sp

1

Ak

∑
a∈Ni

C̄sk,a(

N∑
j=1

∑
b∈Nj

C̄sk,b) (3.43)

where N is the number of conductors in the system.
For ease of discussion, the default condition will be set to be ~np~ns = −1

in the rest of this thesis, and we introduce a short-hand notation:

C∗ki =
∑
a∈Ni

C̄ska (3.44)

which represents the capacitance between a panel k and a conductor Ni.
Hence, the sensitivities for the coupling capacitance and the ground capa-
citance can be rewritten as

∂Cij
∂λp

= −1

ε

∑
k∈Sp

C∗kiC∗kj
Ak

(3.45)
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and

∂Cii
∂λp

=
1

ε

∑
k∈Sp

N∑
j=1

C∗kjC∗ki
Ak

. (3.46)

Now, we consider a special case that Sp contains only one victim panel
k, then (3.45) becomes

∂Cij
∂λk

= −1

ε

C∗kiC∗kj
Ak

(3.47)

where λk is the displacement of this victim panel. This equation (3.47)
provides a way to evaluate the capacitance fluctuation (among conductors)
induced by a small displacement of ONE panel. It is thus named the panel
sensitivity of capacitance, denoted by Sk with k being the associated victim
panel. The concept of panel sensitivity and its description (3.47) will be
used for the random variation study in Chapter 6.

Until now, we have derived the capacitance sensitivity computation
using the adjoint field technique (AFT). It shows that the sensitivity can
be expressed in terms of the partial short-circuit capacitances, which are
the intermediate data of a standard capacitance extraction using the BEM.
Moreover, the descriptions (3.45) and (3.46) indicate that capacitance sens-
itivities with respect to different parameter variations are simply incident
to different sets of victim panels. All the sensitivities towards multiple
parameter variations can be computed simultaneously once the associated
partial short-circuit capacitances are available. In a nutshell, it shows
that both the nominal capacitances and their sensitivities towards mul-
tiple parameters can be obtained together with one system solve, which
makes the algorithm very efficient.

3.2.1 Illustrative Example

The following example illustrates the algorithm. As shown in Figure 3.2,
there are three conductors where each has three BEM panels. Assume that
there are two parameter variations, namely d1 with two associated victim
panels p1, p2 and d2 with two associated victim panels p2, p3.

For a standard capacitance extraction, the network capacitances can
be obtained from certain combinations of the partial short-circuit capacit-
ances. For instance, the coupling capacitance C12 can be computed as

C12 = −
∑
i∈N1

∑
j∈N2

C̄sij = −
∑
i∈N1

C∗i,N2
(3.48)
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p1
p2

p3

Cp1,N2

Cp1,N3

C p3,N3

N1

N2

N3

victim panel incident to d1

victim panel incident to d2

*

*

*

Figure 3.2: Illustration of C∗ki, where k represents a victim panel and i represents
a conductor.

and the ground capacitance C11 can be computed as

Cgnd1 =
∑
i∈N1

∑
j∈N1,N2,N3

C̄sij

=
∑
i∈N1

C∗i,N1
+
∑
i∈N1

C∗i,N2
+
∑
i∈N1

C∗i,N3
(3.49)

Then, according to (3.45), we can compute the sensitivities of coupling
capacitance between conductors, for instance, N2 and N3 towards the two
parameter variations:

∂C23

∂d1
= −

(C∗p1N2
C∗p1N3

εA1
+
C∗p2N2

C∗p2N3

εA2

)
(3.50)

∂C23

∂d2
= −

(C∗p2N2
C∗p2N3

εA1
+
C∗p3N2

C∗p3N3

εA2

)
(3.51)

Also the sensitivities of the ground capacitances can be computed accord-
ing to (3.45):

∂Cgnd2

∂d1
=
C∗p1N2(C∗p1N1 + C∗p1N2 + C∗p1N3)

εA1
+
C∗p2N2(C∗p2N1 + C∗p2N2 + C∗p2N3)

εA2
(3.52)
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∂Cgnd3

∂d2
=
C∗p2N3(C∗p2N1 + C∗p2N2 + C∗p2N3)

εA2
+
C∗p3N3(C∗p3N1 + C∗p3N2 + C∗p3N3)

εA3
(3.53)

The example illustrates that with only one 3-D capacitance extraction
using the BEM, we can obtain the nominal capacitances as well as their
sensitivities with respect to multiple geometric variations.

3.3 Analytical Example

In this section, we will discuss an analytical example to support the out-
come of the proposed algorithm. To distinguish the result of the analytical
calculation and the result given by the proposed algorithm, the following
notations will be used:

S†c i sensitivity of a coupling capacitance towards parameter i given by
the analytical calculation

S‡c i sensitivity of a coupling capacitance towards parameter i given by
the proposed algorithm

S†g i sensitivity of a ground capacitance towards parameter i given by the
analytical calculation

S‡g i sensitivity of a ground capacitance towards parameter i given by the
proposed algorithm

As shown in Figure (3.3), there are two concentric spheres. We define
the inner sphere as conductor 1 and the outer sphere as conductor 2, while
Qi, Vi (i = 1, 2) are the corresponding charges and voltages on them.

Analytically, the capacitance between the two spheres is

C12 =
4πε

( 1
r1
− 1

r2
)

(3.54)

where r1 and r2 are the radiuses of the two spheres respectively. Thus the
derivative of C12, in other words the sensitivity, towards r1 and r2 can be
easily calculated:

S†c r1 = 4πε
r2

2

(r2 − r1)2
(3.55)

S†c r2 = −4πε
r2

1

(r2 − r1)2
(3.56)
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ns1

r1

r2

ε

ns2

Figure 3.3: Illustration of the concentric spheres.

Next, we compute these two sensitivities using the proposed algorithm.
Without loss of generality, we consider the inner sphere and the outer
sphere to be a single panel each. Thus the area of each panel is Ai = 4πr2

i

(i = 1, 2). According to the proposed algorithm (3.39), the sensitivity of
C12 against r1 can be computed as

S‡c r1 = −Q1Q̂1

εA1
(3.57)

where Q1 and Q̂1 are the charges on the inner sphere under the conditions
that V1 = 0, V2 = 1 and V̂1 = 1, V̂2 = 0 respectively. Knowing that

Q1 = −Q̂1 = − 4πε
1
r1
− 1

r2

, (3.58)

it is trivial to calculate the sensitivity of the coupling capacitance towards
r1:

S‡c r1 = 4πε
r2

2

(r2 − r1)2
(3.59)

which is the same as the analytical result (3.55).

Similarly, the sensitivity of C12 w.r.t. r2 can be calculated using the
proposed algorithm, resulting in

S‡c r2 = −4πε
r2

1

(r2 − r1)2
(3.60)

which is identical to (3.56).
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Regarding the ground capacitance, we study a special case where there
is one isolated sphere with a radius of r. Alternatively, it can be con-
sidered that the radius of the outer sphere in Figure 3.3 is infinitely large.
Analytically, the capacitance to the infinity (the reference ground) is

Cgnd = 4πεr (3.61)

with a sensitivity towards its radius being

S†g r = 4πε (3.62)

Using the proposed algorithm (3.43), the ground capacitance sensitivity
can be derived

S‡g r =
1

ε

C2
gnd

a

=
1

ε

(4πεr)2

4πr2
= 4πε (3.63)

which agrees with the analytical result.

So far, we have proposed an efficient algorithm for the capacitance
sensitivity computation. It shows that the sensitivity can be obtained by
manipulating the intermediate data of the standard capacitance compu-
tation using the BEM. To validate its feasibility, the algorithm should be
developed further to allow an integration in an existing capacitance ex-
trator, which brings in the next chapter.



CHAPTER 4

Algorithm Implementation
and Experiments∗

In this chapter, we will first develop the mathematical algorithm presen-
ted in Chapter 3 into efficient procedural algorithms. The algorithm can
then e.g. be implemented in the SPACE layout-to-circuit extractor using
C++ language. A windowing technique is introduced so that the pro-
posed algorithm can be applied to larger structures. Based on such an
implementation, a complexity analysis is provided. This is followed by
two experiments verifying the accuracy and efficiency of the proposed al-
gorithm. Moreover, the second experiment also demonstrates one possible
application of sensitivities, for statistical analysis of capacitances. Finally,
another experiment is conducted to show the application of the windowing
technique. Comparisons of the accuracy and the efficiency are discussed
while various window sizes are used.

∗Part of this chapter has been published in [52]: Yu Bi, K.J. van der Kolk and
N.P. van der Meijs, “Sensitivity computation using domain-decomposition for boundary
element method based capacitance extractors,” in Proc. CICC, San Jose, CA, pp. 423-
426, September, 2009.
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4.1 Introduction

As introduced in Chapter 2, the capacitance extraction using the BEM
involves a computationally expensive matrix inversion (2.6): C̄s = G−1.
In the SPACE layout-to-circuit extractor, this operation is performed by
a matrix approximation technique, namely the Matrix Schur Interpolation
Algorithm. This algorithm for matrix approximation was first proposed
in [53]. And the version used in SPACE was originally proposed and mo-
tivated in [54]. The work has then been intensively carried out, developed
and exploited [55,56], leading to the design tool SPACE.

The implementation of the matrix approximation in SPACE is operated
in a pipeline fashion. That is, a correspondence is maintained between the
entries of the elastance matrix G (or its inversion, C̄s) and the pair of
panels that produced the entry in G. This is illustrated in Figure 4.1,
where a second pipeline (a queue or a FIFO data structure) operates in
parallel with and synchronous to the matrix inversion pipeline (i.e., the
Schur algorithm). When at time t an entry of G, e.g., Gkl, is injected in the
Schur pipeline, the corresponding pair of panels (pk, pl) is injected in the
panel queue. At time t+δt the entry C̄kl is ejected from the Schur pipeline,
and the corresponding pair of panels is ejected from the panel queue. The
pair of panels ejected from the panel queue then correspond to the entry of
G−1 (i.e., C̄kl) that is ejected from the Schur pipeline. Finally, based on the
association between the BEM panels and the circuit nodes, the network
capacitances can be updated with the partial short-circuit capacitances,
which is in fact the implementation of (2.8).

Schur
Algorithm

Schur
Algorithm

Panel
Queue

Panel
Queue

G Cskl

(pk,pl) (pk,pl)

kl

Figure 4.1: Illustration of the pipeline fashion of the Schur algorithm and the
panel queue. (Courtesy of [55])

The matrix approximation algorithm and its implementation is beyond
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the scope of this thesis† as the proposed algorithm for sensitivity computa-
tion only involves the partial short-circuit capacitances and some physical
parameters of the relevant BEM panels. Thus the implementation of the
sensitivity computation is mainly carried out after the partial short-circuit
capacitances and their corresponding pairs of panels are ejected from the
matrix inversion pipeline and the panel queue respectively. One thing
that should be noted regarding the Schur algorithm is that it works on
the upper triangular part of the elastance matrix only, and generates a
low-complexity approximate of the upper triangular part of the partial
short-circuit capacitance matrix. The complete matrix is then easy to ob-
tain as it is symmetrical. In fact, only the upper triangular part of the
matrix is necessary in the actual implementation, as will be indicated in
the next section.

4.2 Procedural Algorithm

The BEM based capacitance extractor SPACE operates by first discret-
izing all conductor surfaces into panels pi, i = 1, ...,m. The panels are
maintained in a linked list such that they can be iterated over by using
pointers. Each panel is associated to an electrical circuit node so that the
network capacitances can be accumulated from the partial short-circuit
capacitances. In addition, each panel is incident to a conductor surface
so that the victim panels can be determined according to the interest-
ing geometric parameter variations. These two incidences are realized via
pointers, that is, the nodes between which the capacitance or the sensit-
ivity needs to be updated and the surface where each panel is located are
identified by two types of pointers, namely node() and surface().

The main algorithm for the sensitivity computation is shown in Al-
gorithm 1, which operates following the Schur algorithm. In the algorithm,
pk (k ∈ 1, ...,m) represents a panel in the linked list and ni represents an
electrical circuit node.

The computeCapacitance operation computes the nominal network
capacitance which is maintained in the original SPACE for the standard
capacitance extraction. Note that the “2×” in Line 4, Algorithm 2, comes
from the fact that only the upper-triangular part of C̄s is generated by the
Schur module.

†For more information, a survey of the method can be found in [57] and details of
the implementation in SPACE can be found in PhD dissertation [55]
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Algorithm 1 main

1: for (k = 1; k < m; k + +) do
2: for (l = k; l < m; l + +) do
3: computeCapacitance (pk, pl, C̄sk,l)

{for nominal capacitance computation}
4: accumulateCstar (pk, pl, C̄sk,l)
5: end for
6: if victim(pk) = TRUE then
7: for all nodes ni do
8: computeSensitivityGnd (pk, ni)
9: end for

10: for all pairs of nodes (ni, nj) do
11: computeSensitivityCpl (pk, ni, nj)
12: end for
13: for all nodes ni do
14: DEL (cstar(pk, ni))

{to avoid searching}
15: end for
16: end if
17: end for

Algorithm 2 computeCapacitance

1: if pk = pl then
2: addCapacitance(pk, pl, val)

{diagonal entry of C̄s}
3: else if node(pk) = node(pl) then
4: addCapacitance (node(pk), gndNode, 2× val)

{both panels belong to the same conductor}
5: else
6: addCapacitance(node(pk), gndNode, val)
7: addCapacitance(node(pl), gndNode, val)
8: addCapacitance(node(pk), node(pl), val)
9: end if

The accumulateCstar operation is to implement Equation (3.44).
Each invocation will add one term of the summation, that is one partial
short-circuit capacitance C̄sk,l associated with panel k and panel l as shown
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in Line 3, Algorithm 1. This value is stored by addMap using a head() or
a tail() pointer as indicated in Algorithm 3 and Figure 4.2.

f1 f2 f3 f4 f5

p1 p2 p3 p4 p5

n1 n2 n3

head

tail

C*p1,n1

p5,n1

p2,n1

p4,n1

p1,gnd

p2,gnd

p1,n2 p1,n3

p4,gnd

C*
p5,gndvictim panel

C*

C*

C*

C*

C*

C* C*

C*

Figure 4.2: Illustration of the data structure when k = 1 loop proceeds till line
12 (before DEL). There are in total 5 panels where p1, p2, p4 and p5 are the
victim panels. They are associated with 5 nodes. f refers to the surface a panel
is located.

The choice between the activation of the head() or the tail() pointer
depends on whether pk or pl is under examination. This is done by victim(),
which tests if the panel argument refers to a victim panel on one of the
victim surfaces. Hence, if pk is a victim panel, the C̄sk,l is added by
the head() pointer, and if pl is a victim, the C̄sk,l is added by the tail()
pointer. Nothing has to be done if neither of the above situation applies.
In addition, for the addMap operation, there is no need for a distinction
of which victim surface is involved.

Finally, we need to implement Equations (3.45) and (3.46). The
operations are executed by the computeSensitivityCpl(pk, ni, nj)
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f1 f2 f3 f4 f5

p1 p2 p3 p4 p5

n1 n2 n3

head

tail

p5,n1

p2,n1

p4,n1

p2,gnd p2,n2 p2,n3

p4,gnd

p5,gnd
victim panel

C* C* C* C*

C*

C*

C*

C*

Figure 4.3: Illustration of the data structure when k = 2 loop proceeds till line
12 (before DEL).

Algorithm 3 accumulateCstar (pk, pl, val)

1: if victim(pk) = TRUE then
2: addMap (pk, gndNode, val)
3: addMap (pk, node(pl), val)

{pk: head pointer}
4: end if
5: if k 6= l & victim(pl) = TRUE then
6: addMap (pl, gndNode,val)
7: addMap (pl, node(pk), val)

{pl: tail pointer}
8: end if

andcomputeSensitivityGnd(pk, ni) procedures described in Al-
gorithm 4 and 5 respectively. These operations are invoked after each
l-for loop (Line 2 to 5 in Algorithm 1) if the current panel pk is on one of
the victim surfaces. For each invocation, the sensitivity related to pk is
computed, either being the sensitivity of ground capacitance incident to a
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f1 f2 f3 f4 f5

p1 p2 p3 p4 p5

n1 n2 n3

head

tail
p5,n1

p4,n1 p4,n2 p4,n3 p4,gnd

p5,gnd

victim panel

p5,n2 p5,n3

head head

tail tailC*

C*

C*

C* C*

C* C*

C*

Figure 4.4: Illustration of the data structure when k = 4 loop proceeds till line
12 (before DEL).

circuit node or the sensitivity of coupling capacitance between two nodes.
Special attention should be paid to the fact that since pk is associated
with certain (possibly multiple) geometric parameter variations via the
victim surface that it belongs to, the sensitivity value has to be carefully
placed. This is accomplished by the addSensitivity operation with the
help of surface().

Algorithm 4 computeSensitivityCpl (pk, ni, nj)

1: a := area of pk
2: Sij := -cstar(ni)× cstar(nj)/εa
3: addSensitivity (ni, nj , Sij)

Algorithm 5 computeSensitivityGnd (pk, ni)

1: a := area of pk
2: gndSi := cstarGnd(pk)× cstar(ni)/εa
3: addSensitivity (ni, gndNode, gndSi)

After computeSensitivityCpl is done for all pairs of nodes, the del
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operation is called as shown in Algorithm 1 so as to avoid unnecessary
searching during the iteration of pk. And the head and tail pointers are
reset.

Above, we have explained in detail the procedural algorithms for ca-
pacitance sensitivity computation, showing that the operations can be in-
tegrated in the nominal capacitance extraction. Finally, the sensitivities
with respect to multiple geometric variations are outputted together with
the nominal capacitances as part of the netlist. An example is shown in
Table 4.1 where Ni and Nj present electrical circuit nodes including the
ground node, m is the number of layers. li, di and ti represent respectively
the layout variation of metal layer i, the height variation of dielectric layer
i and the thickness variation of metal layer i.

Table 4.1: A partial output netlist example consisting the nominal capacitances
and their sensitivities w.r.t. multiple parameter variations.

(Ni, Nj) Cij
∂Cij

∂l0
· · · ∂Cij

∂lm

∂Cij

∂d0

∂Cij

∂t0
· · · ∂Cij

∂dm

∂Cij

∂tm

4.2.1 Complexity Analysis

As introduced in Chapter 2, the nominal capacitance computation without
using any acceleration technique involves a matrix inversion:

C̄s = ATG−1A (4.1)

where G ∈ Rm×m is the elastance matrix with m being the total number
of BEM panels. As G is a full matrix, it requires O(m2) time to construct
the matrix by evaluating the Green’s function and O(m3) time to perform
the matrix inversion.

In this case, the sensitivity computation using the proposed algorithm
requires an additional computational time of O(m2 + nN2) with n being
the number of victim panels and N being the number of electrical circuit
nodes. Since n ≤ m and normally N � m, the major computational cost
for the sensitivity computation is O(m2). Compared to the computational
complexity of the nominal capacitance computation O(m3), the additional
cost O(m2) is negligible.
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The major memory cost of the nominal capacitance extraction is for
the storage of the matrix G, being O(m2). The extra memory cost for the
sensitivity computation includes:

1. The storage for the C∗pk,ni
is O(nN);

2. The storage for the capacitance sensitivity outputs ∂C
∂pi

, i = 1, ...,M ,
with M being the number of geometric parameter variations, is

O

(
M(

N !

2!(N − 2)!
+N)

)
= O(MN2) (4.2)

Hence, the extra memory complexity for the sensitivity computation is
O(nN + MN2). As we know that n ≤ m, N � m and in most cases
M < m, the required storage for the sensitivity computation is thus also
negligible compared to that for the nominal capacitance computation.

4.3 Window-Scheme

For large circuits, the complexities of both the time consumption and the
memory cost derived above are too high to be used in practice. In SPACE,
this problem is solved by using the hierarchical Schur algorithm and the
window-scheme.

The window-scheme is based on the fact that when two panels are
far from each other, their capacitive coupling becomes less significant. In
the Matrix Schur Interpolation Method, the least significant capacitive
couplings are replaced by ground capacitances in such a way that the
resulting approximating matrix is as close as possible to the original matrix.
The window size W is a threshold for distinguishing whether this coupling
should be replaced or not. It is also a parameter to trade accuracy for
efficiency. If the distance between a pair of panels is larger than 2W , their
coupling capacitance will not be counted. Note that here the distance W
refers to the number of BEM panels rather than the real distance measured
in µm. In experiments, we will use the notation w to represent the actual
distance of a window in µm.

While solving a positive definite symmetrical matrix with size N ×N
that is specified on a staircase band with a width of b, the time complexity
of the Schur algorithm is O(N b2). Thus for each block in the elastance mat-
rix G (see Figure 4.5), the Schur algorithm costs O(W

√
m)×O((W 2)2) =
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O(
√
mW 5) time. As there are O(

√
m
W ) blocks in the layout, the total time

for solving the system is O(
√
mW 5) × O(

√
m
W ) = O(mW 4), which is lin-

ear in the size of the layout. Details of the complexity analysis of the

O(  m )

O(  m )

W

O(W m) O(W2)

(a) (b) (c)

Figure 4.5: (a) A square layout with m finite elements uniformly distributed;
(b) The constructed elastance matrix G with blocks corresponding to the strips; (c)
illustration of the staircase band with in one block.

hierarchical Schur algorithm in SPACE can be found in [55] Section 4.7.

In Chapter 3 and Appendix C, the sensitivity computation has been
derived without considering the window-scheme, or in other words, it is
under an assumption that the window size is infinitely large. In the follow-
ing, we will use an illustrative example to show that the algorithm is still
valid when the window-scheme is applied for the capacitance extraction.
The induced accuracy lost is also indicated.

As shown in 4.7, there are 4 conductors A, B, C, D, with 2 panels
each. Without loss of generality, we assume 4 victim panels, namely p1,
p3, p5 and p7. The space between two neighboring conductors is the same.
The window size w is assumed to be a conductor width plus the space
between two neighboring conductors, as shown in the figure. Thus, the
capacitive coupling between a pair of panels whose distance is larger than
2w is considered small enough to be neglected.

First, we consider the situation where the window size is infinitely large.
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O(W2)

0

0
O(m)

Figure 4.6: The output of the Schur module, that is the generated low-complexity
approximate of the upper triagular part of the partial short-circuit capacitance
matrix C̄s.

p1

p2

p3

p4

p5

p6

p7

p8

w victim panel

A B C D

Figure 4.7: Example to show the window-scheme.

Hence, the partial short-circuit capacitance matrix C̄s ∞ is

C̄s∞ =



C̄s11 C̄s12 C̄s13 C̄s14 C̄s15 C̄s16 C̄s17 C̄s18

C̄s21 C̄s22 C̄s23 C̄s24 C̄s25 C̄s26 C̄s27 C̄s28

C̄s31 C̄s32 C̄s33 C̄s34 C̄s35 C̄s36 C̄s37 C̄s38

C̄s41 C̄s42 C̄s43 C̄s44 C̄s45 C̄s46 C̄s47 C̄s48

C̄s51 C̄s52 C̄s53 C̄s54 C̄s55 C̄s56 C̄s57 C̄s58

C̄s61 C̄s62 C̄s63 C̄s64 C̄s65 C̄s66 C̄s67 C̄s68

C̄s71 C̄s72 C̄s73 C̄s74 C̄s75 C̄s76 C̄s77 C̄s78

C̄s81 C̄s82 C̄s83 C̄s84 C̄s85 C̄s86 C̄s87 C̄s88


Taking one coupling capacitance CAB and one ground capacitance CAgnd
for example and using (C.30) and (C.31), the sensitivities of the two capa-
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citances can be calculated as

C
′
AB ∞ = −1

ε

[
(C̄s11 + C̄s12)(C̄s13 + C̄s14)

A1
+

(C̄s31 + C̄s32)(C̄s33 + C̄s34)

A3

+
(C̄s51 + C̄s52)(C̄s53 + C̄s54)

A5
+

(C̄s71 + C̄s72)(C̄s73 + C̄s74)

A7

]
(4.3)

C
′
Agnd ∞ =

1

ε

[
(C̄s11 + C̄s12)(

∑8
i=1 C̄s1i)

A1
+

(C̄s31 + C̄s32)(
∑8

i=1 C̄s3i)

A3

(C̄s51 + C̄s52)(
∑8

i=1 C̄s5i)

A5
+

(C̄s71 + C̄s72)(
∑8

i=1 C̄s7i)

A7

]
(4.4)

where Ai, i = 1, 3, 5, 7 is the area of panel i.
Then, we apply the window-scheme with a window size of w and obtain

a partial short-circuit capacitance matrix C̄s w:

C̄s∞ =



C̄s11 C̄s12 C̄s13 C̄s14

C̄s21 C̄s22 C̄s23 C̄s24

C̄s31 C̄s32 C̄s33 C̄s34 C̄s35 C̄s36

C̄s43 C̄s44 C̄s45 C̄s46

C̄s53 C̄s54 C̄s55 C̄s56 C̄s57 C̄s58

C̄s65 C̄s66 C̄s67 C̄s68

C̄s75 C̄s76 C̄s77 C̄s78

C̄s85 C̄s86 C̄s87 C̄s88


The sensitivities of the two capacitances CAB and CAgnd now become

C
′
AB w = −1

ε

[
(C̄s11 + C̄s12)(C̄s13 + C̄s14)

A1
+

(C̄s31 + C̄s32)(C̄s33 + C̄s34)

A3

]
(4.5)

C
′
Agnd w =

1

ε

[
(C̄s11 + C̄s12)(

∑8
i=1 C̄s1i)

A1
+

(C̄s31 + C̄s32)(
∑8

i=1 C̄s3i)

A3

]
(4.6)
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Comparing (4.3) and (4.5), we notice that the accuracy loss of the
sensitivity computation using window size w is due to the two missing

terms in (4.3) related to victim panel p5 and p7, i.e., (C̄s51+C̄s52)(C̄s53+C̄s54)
A5

and (C̄s71+C̄s72)(C̄s73+C̄s74)
A7

. As addressed, the window size w is used to trade
accuracy for efficiency and serves as a threshold. That is, the capacitance
of two panels with a distance larger than 2w is very small and can be
neglected, compared to that of two panels within w. Therefore, the two
missing terms are much smaller compared to the remaining two terms and
the induced accuracy loss is well acceptable unless a very high accuracy
is required. In this case, the window size has to be increased. For the
sensitivity computation of the ground capacitance CAgnd, similar analysis
can be conducted, giving a similar conclusion.

At last, we will show the complexity of the sensitivity computation
under the window-scheme. The generated partial short-circuit capacitance
matrix C̄s, being the output of the Schur module, also has a staircase
band width of O(W 2) as shown in Figure 4.6. Since C̄s ∈ Rm×m, the
time complexity of the sensitivity computation by the proposed algorithm
is O(mW 2), which is also linear in the size of the layout and is negligible
compared to that of the nominal capacitance computation.

Regarding the memory cost of the sensitivity computation, the storage
for the C∗pk,ni

is reduced to O(nWNW ), where nW and NW are the num-
ber of victim panels and the number of electrical nodes within a window.
Obviously, we have O(nWNW ) � O(W 4). The storage for the sensitivity
computation, on the other hand, remains the same as (4.2).

From the above discussion, we may conclude that the proposed al-
gorithm for sensitivity computation is efficient in the sense that both the
required CPU time and the memory cost are negligible compared to that
of the standard capacitance computation. The high efficiency is an es-
sential feature of the proposed algorithm and can be particularly useful
for design exploration and optimization in the early design stage. This
will be shown in Chapter 6 and 7 using application examples. Yet, we will
first demonstrate the accuracy and the efficiency of the proposed algorithm
using experiments in the subsequent sections.

4.4 Experiment I: Accuracy Verification

Experiments in Section 4.4 and 4.5 have been conducted on a 2.66GHz
Intel Xeon CPU with 1GB memory. The first experiment is a 2-by-2 inter-
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connect structure of which the dimensions are shown in Figure 4.8. Since

l=10μm

w=2μm s=2μm

t1=2μm

d1=2μm

t0=2μm

d0=2μm

gnd

layer 1

layer 0

Cfs
Csgnd

Cf12

Cs12

Cfgnd

Figure 4.8: Illustration of a 2-by-2 interconnect structure.

the structure is symmetrical, three coupling capacitances (Cf12, Cs12, Cfs)
and two ground capacitances (Cfgnd, Csgnd) are studied. For each layer,
we consider variations three parameters, namely the layout dimension (li,
i = 0, 1), the thickness of the metal layer (ti, i = 0, 1) and the height of the
dielectric layer (di, i = 0, 1). Assuming a 10% variation in each parameter,
we model the capacitances with 1st order (i.e. linear) approximation using
the sensitivities given by the proposed algorithm. Then the dimensions of
the structure are changed accordingly by 10% and the extracted capacit-
ances will serve as a reference.

Figure 4.9 shows the comparison between the 0th order and the 1st

order approximations where the 0th order is equivalent to the situation in
which variability is not accounted for. Several observations can be made:

1. Process variations can not be simply neglected; some can introduce
errors of capacitances exceeding 10%.

2. The 1st order approximation improves much over the 0th order ap-
proximation. For instance, under a 10% variation in l0, the 0th order
of coupling capacitance Cf12 gives an error of almost 15%, which
drops to 3% using the 1st order approximation.
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Figure 4.9: Comparison between 0th order and 1st order approximations. Each
group of two bars, one in light grey (0th order approx.) and one in dark grey (1st

order approx.), represents the errors of capacitances for one parameter. The six
parameters are, in sequence, l0, l1, d0, t0, d1, t1.

3. The computed sensitivities have an acceptable accuracy indicated by
the small errors of the 1st order approximations (the maximum error
is less than 3%).

4. For each capacitance, not all parameter variations are influential;
some of them are even barely noticeable.

To further show the accuracy of the sensitivity computation, we con-
struct a 2nd order polynomial fit of the extracted capacitances, i.e.,
C(p) = a0 + a1p + a2p

2 for every parameter. Then we take its derivat-
ive at the nominal dimension p0, as the reference for sensitivities.

Here we study the sensitivities that are associated with the capacit-
ances with 0th order errors larger than 5%. The average error of these
sensitivities compared to the references is 15.16%. This error comes from
the fact that only the moving panels are considered in our algorithm (see
Figure C.1), while the change of the panel size (e.g., the top and the bot-
tom panels of N1) is not accounted for. While detailed explanation and
further improvement of the algorithm will be given in Chapter 5, we would
like to give some discussions here. Considering the variations are usually
very small for the sensitivity study, the error should be limited. Besides,
since the sensitivity itself is a second-order effect to the capacitance, an
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accuracy of better than 20% should be good enough for the sensitivity
computation for most cases.

4.5 Experiment II: Statistical Interpretation of
Sensitivity

In this section, we will illustrate one possible application of sensitivities
in statistical analysis. Based on the sensitivities given by the proposed
algorithm, we can immediately obtain the standard deviations of capa-
citances given the process spreads of the technology, i.e. the statistical
properties of the geometric parameters. The accuracy is verified by a
Monte-Carlo simulation. At last, comparisons of the time consumption
are given.

We start by establishing a linear approximation of capacitance matrix
C:

C = C0 +

Q∑
i

λiCi (4.7)

where matrix C0 contains the nominal values of capacitances, and Ci con-
tains the capacitance sensitivities towards the i-th parameter variation λi,
i = 1, ..., Q with Q being the number of parameters.

Since the geometric parameter variations, namely the variations in the
layout, the metal and the dielectric thicknesses of each layer are induced in
different process steps, they can be considered to be independent. Thus,
with the process spreads of technology, we can derive the statistical prop-
erty, such as the standard deviation of the capacitances once the capacit-
ance sensitivities are computed. For instance, given the standard deviation
of parameters σλi , the standard deviation of the capacitance can be easily
computed by

σC(a,b) =

√√√√ Q∑
i=1

(Ci(a, b)σλi)
2 (4.8)

where C(a, b) represents an element in the capacitance matrix.

To check the accuracy of the computed standard deviation of capa-
citances, we perform a Monte-Carlo simulation on the same 2-by-2 inter-
connect structure as in the previous experiment. Parameters are assumed
to be Gaussian distributed with means of their nominal values and pro-
cess spreads, i.e. the 3-sigma tolerance being 10% of their nominal values.



4.5 Experiment II: Statistical Interpretation of Sensitivity 47

1000 capacitance samples are generated using the standard capacitance
extraction by SPACE, based on which their standard deviation is derived.
Results, used as a reference, are shown in Table 4.2, in comparison to the
standard deviations of capacitances given by (4.8). As shown in the table,
the results given by the linear model have very good accuracies, which also
implies the accuracy of the computed sensitivities. More importantly, it
takes only 23 seconds to get the nominal capacitances and their standard
deviations using the computed sensitivities, while the Monte-Carlo simu-
lation consumes 21 hours and 43 minutes.

Table 4.2: Comparison of the standard deviations given by the estimation from
Monte-Carlo capacitance samples (left column) and the computation result of the
linear model (middle column).

Monte-Carlo (F ) Proposed Model (F ) Error

σCfs
8.94e− 18 8.19e− 18 8.40%

σCf12
25.81e− 18 23.38e− 18 9.41%

σCs12 27.75e− 18 25.70e− 18 7.39%

σCfgnd
29.64e− 18 26.03e− 18 12.19%

σCsgnd
11.60e− 18 9.89e− 18 14.70%

Next, we will show a larger example to show the induced capacitance
fluctuation due to the geometric variations. The experiment is conducted
on a 3-metal layer interconnect structure. There are 120 capacitances, 105
being the coupling capacitances and 15 being the ground capacitances. In
this case, there are 9 dimensional parameters and in total 1080 capacitance
sensitivities. Again we assume the parameters are Gaussian distributed
with a 3-sigma being 10% of their mean values.

We compute the 3-sigma for every capacitance according to (4.8). To
study the effect of geometric variations on capacitances from a statistical
point of view, we partition the range of the 3-sigma which is expressed in
percentage of the mean value of each capacitance; and plot the percentage
of capacitances in each bin (see Figure 4.10).

While most of the 3-sigma values are less than 15%, we do notice that
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Figure 4.10: Percentage of total 120 capacitances.

there are a few of them being around 40%. However, the nominal values
of these capacitances are in the order of 10−18, which are small enough,
compared to other capacitances being in the order of 10−16, to be neglected.

The total CPU time for this extraction including the sensitivities is
228.6s. Compared to the time for a standard 3-D extraction on the same
configuration being 200.9s, the additional cost for the sensitivity computa-
tion is only 27.7s, counting for 13.94% of the standard time consumption.
In comparison, Cadence uses another technique to construct capacitance
sensitivity models for the fast corner generation and 10% extra time is
needed to generate sensitivity models per parameter per layer [38]. Hence
for their method, it would take in total 90% additional time to generate
all the sensitivity models for this structure. The proposed method is much
more efficient.

4.6 Experiment III: Windowing Technique

In this section, an experiment is shown to demonstrate the accuracy and
efficiency while the windowing technique is applied. This experiment is
conducted on a 3.00GHz Intel 2 Core CPU with 4GB memory.

As shown in Figure 4.11, the structure has 2 layers, with 6 interesting
dimensional parameters, namely the layout dimensions (l0, l1) and the
thicknesses (t0, t1) of the two metal layers, as well as the heights of the
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two dielectric layers (d0, d1).

Figure 4.11: 3d Illustration of the experiment for the windowing technique.

First of all, an extraction is performed with an infinitely large window
size, i.e., w ≥ 24µm, and the obtained capacitances and sensitivities are
served as references. For ease of discussion, we show in Table 4.3 4 ground
capacitances and 10 coupling capacitances with the largest nominal val-
ues among 194 capacitances. Their computed sensitivities w.r.t. the 6
parameters are also shown.

Next, we perform extraction on this structure with various window
sizes, namely w = 18µm, w = 12µm, w = 8µm and w = 5µm, and
compare the obtained results to that given by the infinite window size.
As representatives, part of the comparison results (errors in percentage)
from window size of 12µm and 5µm are shown in Table 4.4 and Table 4.5
respectively. The capacitances are the ones shown in Table 4.3.

To save some space, Table 4.6 collects only the largest errors for extrac-
tions with window size 18µm (upper row) and 8µm (lower row). Clearly,
further study is needed for these errors as some of them can reach 50%
and even up to 99%.

As addressed, the values of sensitivities represent the impacts on the
induced capacitance fluctuations due to the corresponding parameter vari-
ations. To show such impact explicitly, we assume a 10% variation for
each parameter and compute the induced relative capacitance fluctuation:
∂Cij

∂λp
∆p/Cij , where

∂Cij

∂λp
is the sensitivity of capacitance Cij towards para-

meter p, and ∆p is 10% of its nominal value.

Figure 4.12 shows the induced relative variations of the capacitances
with the largest computational errors of sensitivities for each parameter



50 Algorithm Implementation and Experiments

(left Y-axis). As an indication, these sensitivity errors are also shown
in the same figure (right Y-axis). We notice that although some com-
putational errors of sensitivities due to the application of the windowing
technique can be high, the corresponding capacitance variations are very
low. This is because the corresponding sensitivities themselves are very
small. It implies that the associated parameters have little impact on the
capacitances of interest. Therefore, the computational errors of these sens-
itivities can be considered irrelevant, and the windowing technique used
for nominal capacitance extraction can also be applied for the sensitivity
computation.

Finally, the CPU time consumption for extraction with different win-
dow sizes is shown in Table 4.7. Naturally, the smaller the window size is,
the less CPU time is needed for the extraction. Note that the CPU time
shown includes the computations of both the nominal value of capacitances
and their sensitivities w.r.t. 6 parameters.
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Table 4.3: Capacitances and sensitivities given by infinite window size. (unit of
capacitances is fF; unit of sensitivity is fF/µm). It shows that for each capacit-
ance (each row of the table), some sensitivities are much larger than the others
and some sensitivities are relatively small. It means some parameter variations
are more influential for a capacitance while some variations have little impact.
Besides, different capacitances may be sensitive to different parameters. Hence,
when an acceleration method such as the windowing technique is applied, we need
to make sure that the induced computational error of the sensitivity associated
with critical parameter variations remain low.

Cap. Sens l0 Sens l1 Sens d0 Sens t0 Sens d1 Sens t1

Cgnd1 1.014 0.903 -0.214 -1.130 0.230 0.147 -0.018

Cgnd2 0.811 1.200 -0.201 -0.759 0.231 0.060 -0.024

Cgnd3 0.735 0.742 -0.171 -0.767 0.194 0.117 -0.014

Cgnd4 0.573 1.180 -0.183 -0.381 0.262 0.118 -0.016

Ccpl1 0.820 5.980 -0.067 0.154 0.829 0.128 -0.001

Ccpl2 0.527 4.000 -0.043 0.100 0.543 0.080 -0.001

Ccpl3 0.296 -0.035 1.480 0.009 0.009 0.056 0.299

Ccpl4 0.292 -0.036 1.470 0.007 0.007 0.063 0.298

Ccpl5 0.284 2.110 -0.027 0.061 0.299 0.048 -0.000

Ccpl6 0.282 2.110 -0.027 0.061 0.295 0.049 -0.000

Ccpl7 0.281 2.080 -0.026 0.059 0.291 0.048 -0.000

Ccpl8 0.281 -0.035 1.420 0.006 0.006 0.054 0.286

Ccpl9 0.280 2.090 -0.025 0.058 0.291 0.047 -0.000

Ccpl10 0.280 2.100 -0.025 0.057 0.290 0.045 -0.000
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Table 4.4: Errors (%) of capacitances and sensitivities given by window size
of 12µm, compared to the results given by the infinite window size. For each
parameter, the largest computational error is written in bold and is collected in
the bottom-row.

Cap. Sens l0 Sens l1 Sens d0 Sens t0 Sens d1 Sens t1

Cgnd1 0.102 2.547 0 2.655 0.870 0 3.889

Cgnd2 0.151 1.667 1.493 3.953 2.598 0.167 2.917

Cgnd3 0.094 2.830 0.585 4.172 2.577 0 1.429

Cgnd4 0.118 0 1.093 0 0.382 0 4.375

Ccpl1 0.033 0.334 0.597 0 1.568 0 16.30

Ccpl2 0.011 0.500 0.930 0.100 2.578 0.125 42.40

Ccpl3 0.164 0.286 0 1.444 4.556 0.179 0

Ccpl4 0.043 0.556 0 4.571 1.429 0.794 0

Ccpl5 0.032 0 1.852 0 0.669 0.625 0

Ccpl6 0.150 0 1.482 0.164 0 0.612 0

Ccpl7 0.072 0 0.769 0 0.344 0.625 0

Ccpl8 0.145 0.857 0 4.000 1.500 0.185 0

Ccpl9 0.151 0.479 0.800 0.172 2.749 0.426 0

Ccpl10 0.134 0 5.200 0.702 0 0.889 0

max val 0.164 2.830 5.200 4.571 4.556 0.889 42.40
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Table 4.5: Errors (%) of capacitances and sensitivities given by window size of
5µm, compared to the results given by the infinite window size. For each para-
meter, the largest computational error is written in bold and is collected in the
bottom-row.

Cap. Sens l0 Sens l1 Sens d0 Sens t0 Sens d1 Sens t1

Cgnd1 0.153 7.088 6.075 4.425 0.870 4.762 21.111

Cgnd2 1.328 3.333 10.448 6.061 7.792 7.333 8.333

Cgnd3 0.137 5.256 2.339 4.563 0.516 2.564 31.071

Cgnd4 0.656 0.848 6.011 1.312 2.672 3.390 15.000

Ccpl1 0.200 1.171 0.597 1.299 6.876 0.000 1.000

Ccpl2 0.086 1.500 1.628 0.200 8.840 1.125 50.100

Ccpl3 0.038 0 0 5.667 8.889 0.714 0.334

Ccpl4 0.584 0.833 0.680 95.000 98.859 3.016 1.342

Ccpl5 0.088 0.474 2.593 0.984 3.679 1.042 0

Ccpl6 0.267 0.474 1.482 0.492 4.746 0.408 0

Ccpl7 0.233 0.481 2.692 2.034 3.780 1.667 0

Ccpl8 0.384 1.714 0.000 45.167 48.167 3.889 1.399

Ccpl9 0.180 0.479 0.400 0.172 4.467 0.426 0

Ccpl10 0.087 0.476 4.000 0.702 0.000 0.889 0

max val 1.328 7.088 10.448 95.000 98.859 7.333 50.100



54 Algorithm Implementation and Experiments

Table 4.6: Largest errors (%) of capacitances and sensitivities given by window
size of 18µm (first row of the table) and 12µm (second row of the table), compared
to the results given by the infinite window size.

Cap. Sens l0 Sens l1 Sens d0 Sens t0 Sens d1 Sens t1

win 18 0.186 1.667 5.200 4.571 4.556 0.889 47.500

win 8 0.361 4.983 5.200 5.310 6.667 2.041 45.400

Table 4.7: CPU time comparison for various window sizes

w →∞ w = 18µm w = 12µm w = 8µm w = 5µm

CPU time 6′27′′ 4′54′′ 2′43′′ 1′24′′ 35′′
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Figure 4.12: Induced relative capacitance variations (left Y-axis) corresponding
to the largest computational errors of sensitivities (right Y-axis) for 4 different
window sizes. The assumed parameter variations are 10% of their nominal values.
It shows that some computational errors of sensitivities due to the application of
the windowing technique can be high, but the corresponding capacitance variations
are very low, because the corresponding sensitivities themselves are very small.
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CHAPTER 5

Enhanced Computation of
the Capacitance Sensitivity∗

In the previous chapters, we have presented the computation of capacitance
sensitivity by the adjoint field technique. While the proposed algorithm
can provide a high efficiency, it has difficulties in achieving a very high
accuracy. In this chapter, we will explain the source of this error and
provide a method to improve the accuracy of the proposed algorithm.

5.1 Problem Statement

As mentioned, the technique proposed in the previous chapters has a draw-
back in terms of achieving a very high accuracy. The computational error
of sensitivities by this method is mostly in the range of 5% − 25%, de-
pending on the structure of conductors and the geometric parameters of
interest.

In order to study the cause of this error, we firstly review the technique
briefly. Without loss of generality, we consider in the theoretical deriva-
tions only a single parameter p. It being a linear sensitivity based model,

∗Part of this chapter has been published in [58]: Yu Bi, S. de Graaf and N.P. van der
Meijs,“Enhanced sensitivity computation for BEM based capacitance extraction using
the Schur complement technique,” in Proc. CICC, San Jose, CA, September 2011.
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extension towards more parameters is trivial.
Suppose we would like to compute the sensitivity of capacitance

between two conductors Ni and Nj w.r.t. a geometric parameter p, i.e.,
∂Csij

∂p . Let a ∈ Ni and b ∈ Nj denote any panel associated with the two
conductors respectively. Also let panel k denote any panel lying on the
moving plate sp incident to the parameter p, with Ak being its area and
ε being the material permittivity around it. The algorithm proposed in
Chapter 3, which will be referred to as the basic algorithm in this chapter,
states that the capacitance sensitivity can be computed as

∂Cij
∂p

= −
∑
k∈sp

 1

εAk

∑
a∈Ni

∑
b∈Nj

C̄sk,aC̄sk,b

 (5.1)

where, as defined already, C̄sk,a and C̄sk,b are the partial short-circuit ca-
pacitances associated with panel k, a and panel k, b respectively.

Note that the moving plate is the surface of which the position is moved
slightly due to a small variation in parameter p. For instance, assume there
is a cubic conductor with a parameter of interest p as shown in Figure 5.1.
The moving plate is hence the rightmost sidewall and the panels lying on
it are named moving panels indicated as the light gray part in the figure.
For clarity of discussion in the following, we give a notation of C

′
plt(p) for

the sensitivity
∂Cij

∂p computed by the basic algorithm (5.1). This descrip-
tion (5.1) shows that sensitivities w.r.t. different parameters are simply
incident to different sets of victim panels. All sensitivities w.r.t. multiple
parameters can be computed simultaneously once the associated partial
short-circuit capacitances are available, i.e., once the standard BEM ex-
traction is done. This is why such BEM-based algorithm for the sensitivity
computation can be highly efficient.

However, these moving panels are not the only victims due to the
parameter variation ∆p and they are not the only cause of the capacitance
fluctuation. Obviously, the edge panels connected to the moving surface are
also influenced by ∆p. Their sizes (widths) are either growing or shrinking
depending on the direction of ∆p, indicated as the hashed part in the
figure.

Thus these size-changing edge panels also contribute to the capacit-
ance variation induced by ∆p. As will be shown later, neglecting the
contribution of these panels is the main reason of the accuracy loss of the
capacitance sensitivity computation by the technique presented in the pre-
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p

moving panels

edge/fringe panels

wp

Δp

Figure 5.1: A cubic conductor to demonstrate two parts of contributions to the
capacitance fluctuation due to parameter variation ∆p. Partial meshing condition
is shown.

vious chapters. In the next section, an extension of this existing technique
will be proposed to achieve an improved accuracy by taking into account
the influence of the size-changing panels.

5.2 Algorithm Extension by the Schur Comple-
ment Technique

As discussed, the capacitance fluctuation is a combined result of the contri-
butions of the moving panels and the size-changing panels. Hence, using
the rules of differentiation, the sensitivity w.r.t. a parameter p can be
computed as

C
′
tot(p) = C

′
plt(p) + C

′
frg(p) (5.2)

where C
′
tot(p) is the total or the enhanced capacitance sensitivity to be

derived and C
′
plt, given by (5.1), refers to the contribution to the sensitivity

from the field lines emanating from the moving plate. C
′
frg(p) refers to the

contribution from the fringe field emanating from the size changing edge
panels on the shortened or elongated side of the conductor. Hence, the
main task now is to compute C

′
frg(p).

To proceed, we first study carefully the relation between these pan-
els and the parameter variation ∆p. Note that if the variation is in the
opposite direction of the positive direction of parameter p, as shown in
Figure 5.1, and the size (width) of the edge panels is exactly the same
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as the value of the variation ∆p, these panels can thus be considered dis-
appeared or eliminated due to such a parameter variation. They will be
referred to as fringe panels in the following context. In other words, the
effect of these fringe panels on capacitances can be captured by eliminating
their associated entries from the original partial short-circuit capacitance
matrix. To do so, it is necessary to let the fringe panels have an identical
width (wp), which can be done by setting appropriate parameters for the
mesh generation. This is the basic idea for computing C

′
frg(p), a major

supplement of the existing sensitivity computation (5.1).

In the following, we will discuss how to develop such basic idea into an
implementable algorithm, using the Schur complement technique. For a
system not being subjected to process variations, its partial short-circuit
capacitance matrix C̄s o is given by the inverse of the elastance matrix Go
for the originally designed dimensions. To distinguish the fringe panels
from the rest of the panels, the C̄s o and the Go matrices can be written
as block matrices:

C̄s o =

(
Ac Bc

Cc Dc

)
Go =

(
Ag Bg

Cg Dg

)
(5.3)

where Ac, Ag ∈ Rn×n correspond to the n fringe panels to be eliminated,
Dc, Dg ∈ R(m−n)×(m−n) correspond to the rest of the panels. Bc =
CcT ∈ Rn×(m−n) and Bg = CgT ∈ Rn×(m−n) describe the connection
between these two groups of panels.

Preserving the matrix block dimensions, the relation C̄s o = G−1
o can

be expressed as(
Ac Bc

Cc Dc

)
=

(
Ag Bg

Cg Dg

)−1

=(
SDg

−1 −SDg
−1BgDg−1

−Dg−1CgSDg
−1 Dg−1+ Dg−1CgSDg

−1BgDg−1

)
(5.4)

where

SDg = Ag −BgDg−1Cg (5.5)

is the Schur complement of the block Dg [59].
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Next, we write down the Schur complement of block Ac, using (5.4):

SAc = Dc−CcAc−1Bc

= Dg−1 + Dg−1CgSDg
−1BgDg−1−

(−Dg−1CgSDg
−1) · SDg · (−SDg

−1BgDg−1)

= Dg−1 + Dg−1CgSDg
−1BgDg−1 − Dg−1CgSDg

−1BgDg−1

= Dg−1 (5.6)

As addressed, Dg corresponds to the rest of the panels other than the
fringe panels to be eliminated. In other words, it is the elastance matrix
for the remaining panels after eliminating the fringe panels. Hence, the
Schur complement of Ac, being the inverse of Dg, is the updated partial
short-circuit capacitance matrix (C̄s∆frg

) after the fringe panel elimination:

C̄s∆frg
= Dc−CcAc−1Bc (5.7)

It is exactly what needs to be calculated to further derive the supplement
sensitivity C

′
frg(p) in (5.2).

Above, we have explained that instead of solving Dg−1 to account
for the impact of the fringe panels, we only need to compute the Schur
complement of Ac. In fact, from the internal node elimination point of
view in RC networks, the derivation is quiet basic.

Again, let C̄s o =

(
Ac Bc

Cc Dc

)
be the original partial short-circuit

capacitance matrix, and Ac, Dc correspond to the fringe panels and the
rest of the panels respectively. Also let Uf ∈ Rn×1 be associated with the
fringe panels, and Ur ∈ R(m−n)×1, er ∈ R(m−n)×1 be associated with the
other panels. We may formulate the following:(

Ac Bc

Cc Dc

)(
Uf

Ur

)
=

(
0

er

)
(5.8)

The above formula (5.8) can be considered as a simplified MNA equation.
To eliminate Uf , we rewrite (5.8), obtaining

AcUf + BcUr = 0 (5.9a)

CcUf + DcUr = er (5.9b)
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Solving (5.9a) for Uf leads to

Uf = −Ac−1BcUr (5.10)

While it can be proved that Ac is nonsingular, we then substitute Uf

into (5.9b), obtaining

(Dc−CcAc−1Bc)Ur = er (5.11)

which gives the updated partial short-circuit capacitance matrix after elim-
inating the fringe panels:

C̄s∆frg
= Dc−CcAc−1Bc. (5.12)

From the updated partial short-circuit capacitance matrix C̄s∆frg
, we

can now first derive the updated short-circuit capacitance matrix Cs∆frg

with an updated incidence matrix A∆frg analogously to (2.8). Then us-
ing (2.9), the updated network capacitances C∆frg can be computed. Fi-
nally, using the original network capacitances Co, the supplement sensit-
ivity that accounts for the effect of the fringe panels incident to parameter
p can be derived:

C
′
frg(p) =

C∆frg(p)−Co

−wp
(5.13)

where the minus sign of wp comes from the fact that the variation wp
makes the corresponding parameter p smaller (shrinking). For first-order
sensitivity study, it is common to assume only one side of the variation
against the nominal parameter value, as the variation should be small. In
fact, we can consider the above approach for calculating the sensitivity
C
′
frg as an enhanced FD method.

The cost of the sensitivity extraction is the sum of the cost of extract-
ing C

′
plt(p) and C

′
frg(p). Note that the cost of computing C

′
plt(p) was

established to be negligible in section 4.2.1. We now show that the com-
putational cost of computing C

′
frg(p) is also small compared to that of the

nominal extraction.
In essence, two configurations must be computed as shown in (5.13).

The delta configuration is computed by a fast update of the nominal config-
uration, using a much smaller system of which evaluation of (5.7) forms the
main cost. The cost of the update can be estimated as follows. Note that
n is the number of fringe panels and m is the total number of panels. In
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practical cases, n � m. Since Ac−1 ∈ Rn×n and Bc = CcT ∈ Rn×(m−n),
the evaluation of (5.7) is much faster than the evaluation of (2.6), which
has a size of m×m and is the main cost of nominal extraction. In case of np
parameters, (5.7) must be evaluated np times. Hence, the computational
cost is linear in np. In the next section, a comparison of the accuracy and
the efficiency between the proposed enhanced algorithm and the traditional
FD method is discussed using experiments.

5.3 Experiment and Results

This section presents an experiment for verifying the accuracy and the
efficiency of the enhanced algorithm. The algorithm has been implemented
in C/C++ and the experiment has been conducted on a 3.00GHZ Intel
Core 2 Duo CPU.

5.3.1 Experiment-1: Sensitivity Computation

As shown in Figure 5.2, the example has 4 layers with 8 cubic conductors.
The cubic conductors present some kind of practical worst case situation
as for the relevance of the fringe terms. Typically, the width of conductors
is changed by process variability, and not so much the length. If the
length is changed, it can be relevant only if the conductor is very short,
which means an almost cubic conductor. Hence this experiment studies
the effects of the width variations of cubic conductors. Since the structure
is symmetrical, only the widths of the left side cubes (w1, w2, w3, w4) are
studied. Sensitivities given by the traditional FD method are used as
references.

Results of the sensitivity computation and its comparison to that of
the FD method are shown in Table 5.1, where for each parameter, 2 out
of 36 capacitances are selected to demonstrate the accuracy improvement
of the enhanced algorithm. These two capacitances are selected mainly
based on the effect of the parameter variation of interest, which can be
indicated by the magnitude of sensitivities. As shown, the errors of the
sensitivities given by the basic algorithm (C

′
plt) may reach 26%, compared

to the reference given by the FD method (C
′
ref ). While it is acceptable for

many cases since sensitivity itself is a second order effect to capacitances,
the proposed enhanced algorithm can be used when greater accuracy is
needed. Indeed, the C

′
tot rows of Table 5.1 show errors of less than 6%,
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Figure 5.2: 3-D representation of 8 cubic conductors on 4 layers.
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providing a substantial accuracy improvement.

5.3.2 Experiment-2: Variational Study

Using the computed sensitivity, it is also interesting to conduct a vari-
ational study on the same structure to show how much is the effect of
parameter variations on capacitances, and whether a linear model can
capture such effects.

We assume ±30% variations of the nominal value of each parameter.
As for the reference, the dimensions of the structure are modified manu-
ally by ±30% and a standard extraction is performed to obtain the varied
capacitance (Cvar). As shown in Table 5.2, the resulting variation in ca-
pacitance (compared to the nominal capacitance Cnom) goes easily beyond
15%, and even 20%. It indicates that process variations can not be simply
neglected. An appropriate modeling method needs to be found and ap-
plied, for instance, a linear model. With the computed sensitivities (C

′
plt

and C
′
tot), it is very easy to build the linear model of capacitances, obtain-

ing Cplt and Ctot (see Table 5.2). It shows that the linear model using C
′
plt

can already capture the variational effect very well, with an error better
than 5% for all cases shown. With the enhanced sensitivity C

′
tot, the lin-

ear model is able to further decrease the error. Note that in general, the
variation hardly goes up to ±30% for back-end-of-line (BEOL) processing.
Thus, for realistic variations, the error of the sensitivity using the proposed
algorithm can be even less, given smaller process variations.

With respect to the CPU time, the linear model is much faster than
the FD method, as shown in Table 5.3. Note that the CPU time of the
linear model (Cplt or Ctot) includes both the computation of the nominal
capacitance (Cnom) and the sensitivities (C

′
plt or C

′
tot). It indicates that the

algorithm for the basic sensitivity computation is extremely fast and results
in only a little overhead. And the proposed algorithm for the enhanced
sensitivity also provides a competitive efficiency, especially compared to the
traditional FD method which requires np extra full capacitance extractions
given np parameters of interest.

5.4 Conclusion

This chapter describes an extension for the sensitivity computation presen-
ted in the previous chapters. The extended algorithm is much faster than
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the traditional FD approach while providing a similarly high accuracy.
The extension serves as a useful and sometimes necessary supplement for
the basic algorithm using AFT which features its high speed in generating
good accuracy results. The enhanced algorithm thus is able to offer users
various solutions for various requirements and applications.

For many practical applications on the other hand, the accuracy re-
quirement for sensitivity computation is not particularly high. And the
main feature of our method for capacitance modeling subject to process
variations is high efficiency. Thus unless stated especially, in the follow-
ing chapters (in particular the experiments), we will be using the basic
algorithm proposed in Chapter 3.
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Table 5.1: Results of experiment-1. Comparison of the sensitivity computation
by different techniques. C

′

ref is the reference of the computed sensitivity given by

the FD method. Errors of C
′

plt, being the sensitivity given by the basic algorithm,

may reach 26%. The enhanced sensitivity presented in this chapter C
′

tot provides
a substantial accuracy improvement and can be used when greater accuracy is
needed.

parameter: w1 parameter: w2

N1-GND N1-N2 N2-M2 N2-M3

Cnom (fF) 0.1969 0.0746 0.0666 0.0194

C
′
ref (fF/um) 0.1665 0.0548 0.0804 0.0188

C
′
plt (fF/um) 0.1297 0.0427 0.0717 0.0148

error -22.08% -22.05% -10.48% -21.30%

C
′
tot (fF/um) 0.1687 0.0572 0.0849 0.0191

error 1.34% 4.35% 5.57% 1.58%

parameter: w3 parameter: w4

N3-N4 N3-M4 N4-GND N4-M4

Cnom (fF) 0.0798 0.0228 0.1496 0.0844

C
′
ref (fF/um) 0.0594 0.0217 0.1207 0.0901

C
′
plt (fF/um) 0.0440 0.0170 0.0927 0.0789

error -25.99% -21.63% -23.20% -12.44%

C
′
tot (fF/um) 0.0603 0.0220 0.1209 0.0943

error 1.44% 1.30% 0.17% 4.64%
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Table 5.2: Results of experiment-2: Variational study of capacitances using the
linear model. Cvar is the reference of the varied capacitance induced by ±30%
parameter variations. Cplt and Ctot is obtained from the linear model of capacit-

ances using sensitivities C
′

plt and C
′

tot respectively. It shows that Cplt can already
capture the variational effect pretty well and Ctot which uses the enhanced sensit-
ivity is able to further decrease the error.

parameter variations: -30%

N1-N2 N2-M2 N3-N4 N4-M4

Cnom (fF) 0.0746 0.0666 0.0798 0.0844

Cvar (fF) 0.0660 0.0548 0.0706 0.0712

variation in C -11.53% -17.72% -11.53% -15.64%

Cplt (fF) 0.0682 0.0558 0.0733 0.0726

error 3.29% 1.82% 3.81% 2.02%

Ctot (fF) 0.0660 0.0539 0.0708 0.0703

error 0.00% -1.79% 0.38% -1.22%

parameter variations: +30%

Cvar (fF) 0.0822 0.0808 0.0882 0.0999

variation in C 10.19% 21.32% 10.53% 18.36%

Cplt (fF) 0.0810 0.0773 0.0864 0.0963

error -1.41% -4.29% -1.94% -3.63%

Ctot (fF) 0.0832 0.0793 0.0889 0.0986

error 1.23% -1.84% 0.84% -1.32%
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Table 5.3: Results of experiment-2: CPU time comparison of the capa-
citance variational study. The CPU time of the linear model (Cap basic
and Cap enhanced) includes both the computation of the nominal capacitance
(C nominal) and the sensitivities (C

′

plt and C
′

tot). The linear model, even given
by the enhanced algorithm, is much faster than the traditional FD method which
requires np extra full capacitance extractions given np parameters of interest.

Cap nominal Cap basic Cap enhanced Cap FD

CPU Time 37.33′′ 37.69′′ 41.25′′ 186.69′′

(1×) (1.01×) (1.11×) (5.00×)
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CHAPTER 6

Efficient Sensitivity-Based
Capacitance Modeling for
Systematic and Random

Variations∗

In the first part of this chapter, a statistical modeling method of capacit-
ances based on the panel sensitivities is proposed to capture the impact
of the random geometric variation line-edge-roughness (LER). A real case
study with measurement data is then discussed to demonstrate its applic-
ation.

The second part of this chapter shows that using the panel sensitivities,
the nominal parasitic capacitances and their relative standard deviations
caused by both the systematic and random geometric variations can be

∗Part of this chapter has been published in [60]: Yu Bi, P.J.A. Harpe and
N.P. van der Meijs, “Efficient sensitivity-based capacitance modeling for systematic
and random geometric variations,” in Proc. ASP-DAC, Yokohama, Japan, pp. 61-
66, January, 2011, and [61]: P.J.A. Harpe, C. Zhou, Yu Bi, N.P. van de Meijs, X. Wang,
K. Philips, G. Dolmans and H. de Groot, “A 26µw 8 bit 10 MS/s Asynchronous SAR
ADC for low energy radios,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1585-1595,
2011.
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obtained with a single system solve.

6.1 Copper Damascene and Random Geometric
Variations

In the past, feature sizes were sufficiently large so that the roughness of
printed lines or the irregularity on sidewalls was a small fraction of the
critical dimension error budget and the overall performance of the de-
signed circuits was not affected. However, situations have changed since
the technology nodes reached deep sub-micron dimensions. The line-edge
roughness (LER), a typical random geometric variation, has been intens-
ively studied for the critical dimensions of FETs as its impact cannot be
neglected anymore [26, 62]. With technology shrinking, the impact of the
roughness on interconnects and some novel designs of precision passive
components also becomes important and demands to be understood and
modeled.

Recently, several methods were proposed for modeling random geo-
metric variations of on-chip interconnects. A perturbation based 3D BEM
solver [63] and Hermite polynomial chaos technique based approaches [64],
[65] and [66] have assessed the effects of variational surfaces on interconnect
capacitances by generating quadratic models.

Unfortunately, examples demonstrated in these papers are general cases
based on theoretical assumptions, which is advantageous in indicating the
robustness of the methods. The obtained results, however, consequently
provide less guidance for real circuit designs. The variational surfaces of
interconnects, for example, are modeled using spatially correlated Gaus-
sian distribution in 3-dimensions. This implies that the irregularity on
various surfaces of interconnects, including the top, bottom surfaces and
the sidewalls, are correlated. However, studies on the formation of surface
roughness and measurement results suggest that roughness on different
surfaces should be considered independent [62, 67–71]. In fact, the term
surface roughness is usually referred to the roughness on the top and bot-
tom surfaces [72, 73], while the roughness on the sidewalls is called the
sidewall roughness [68, 71].

To understand the formation of the sidewall roughness of interconnects,
we first briefly describe the copper damascene process, especially the steps
related to the roughness formation [74].

The most widely adopted Cu-damascene process for today’s techno-
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logies is the via-first approach. Figure 6.1 shows the main steps of this
approach.

Step-0 Step-1 Step-2

Step-3 Step-4 Step-5

Step-6 Step-7 Step-8

Figure 6.1: The schematic of a typical copper damascene process after [75].

Step-1 The wafer is coated with photoresist and patterned lithographic-
ally for the via structure.

Step-2 An anisotropic etch is performed to etch down through the two
dielectric layers.

Step-3 This via photoresist layer is removed and another photoresist layer
is placed, patterned lithographically for the trench structure. Some
of the photoresist remains at the bottom of the via to prevent the
lower portion of the via from being over-etched during the following
trench etching.

Step-4 The trench is formed by another anisotropic etching which cuts
through the upper dielectric layer.

Step-5 The photoresist is removed.

Step-6 The via hole and the trench are lined with a conductive barrier
layer to prevent Cu diffusion. Then, a thin seed-layer of Cu is de-
posited. Both layers should be deposited as conformally as possible.
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Step-7 The bulk copper is deposited

Step-8 Chemical-mechanical polishing (CMP) is performed to planarize
the copper to the surface of the trenches.

As the feature size has become continuously smaller (< 100nm), the
thickness versus width ratio, i.e. the aspect ratio, is getting much higher.
Hence a very fine anisotropic etching is desired during the trench formation.
This would ensure that the pattern transfer from the photoresist to the
underlying dielectric layer is sharp and clear. Thus the line-edge roughness
of the resist layer which is caused by the imperfect lithography and etching
processes, becomes a template for the emerging dielectric layer. It forms,
in the end, striations on the sidewall [68].

Following the etching step, the depositions of the barrier layer and the
Cu-seed layer have to be conformal enough to later form a void-free Cu
interconnect with a high aspect ratio. As a result, the striations on the
dielectric sidewall transfer to the sidewall of the Cu-interconnect. There-
fore, the problem of capturing the irregularity of the interconnect sidewall
is in fact a problem of modeling the line-edge roughness.

6.2 Statistical Model of LER

The LER can be modeled with a sequence of random variables ρ, rep-
resenting the fluctuation behavior along the line which in this context is
defined as the y-direction (see Figure 6.2). The fluctuation itself is in the
direction orthogonal to y-direction, defined as the x-direction. The ran-
dom variables are often assumed to be Gaussian spatially correlated along
the y-direction [26,70], described as

cov(ρi, ρj) = σ2
LERexp(−

‖ri,y − rj,y‖2

η2
LER

) (6.1)

where ri,y and rj,y are the y-coordinates of the positions associated with ρi
and ρj respectively. σLER and ηLER are two parameters that characterize
the LER. σLER is the standard deviation representing the absolute rough-
ness amplitude orthogonal to the line-edge, i.e. in x-direction, and ηLER
is the correlation length along the line-edge, i.e. in y-direction, as shown
in Figure 6.2. One can see from (6.1) that the closer two variables locate,
the stronger they are correlated. The correlation length is a parameter
that measures the strength of the correlation between two variables: if the
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distance (in y-direction) between them is much larger than ηLER, they can
be considered independent.

6.3 Physical Description of LER: Random Line
Pattern

Although the physical description of LER, i.e. the line pattern, is not
needed for the capacitance modeling method to be presented in the next
section, it is necessary for conducting Monte Carlo simulations for veri-
fication purposes. In this chapter, the same approach presented in [26] is
used to physically capture the LER. This is done by producing random
line patterns generated from the inverse Fourier transform of the power
spectrum of the Gaussian autocorrelation function. Then these random
line patterns can be used for approximating the LER when Monte Carlo
simulations are performed as a comparison with the proposed method.

Figure 6.2: Illustration of the LER on two parallel conductors.

6.4 Statistical Model of Capacitances Using
Panel Sensitivities

The statistical model of LER can be naturally applied to the BEM. The
random variables can even be directly adopted as the displacement of the
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corresponding BEM discretized panels. These panels will be called devi-
ation panels throughout this chapter. Each rough line corresponds to a set
of deviation panels. Different sets of deviation panels incident to different
rough lines are independent.

A linear model for BEM-based extraction tools is thus proposed to
capture the effect of LER on capacitances:

∆C =

L∑
l=1

nl∑
i=1

Siρi (6.2)

where ∆C is the capacitance variation induced by the LER; Si is the panel
sensitivity given by (3.47) and is associated with the panel displacement
ρi; nl is the number of deviation panels for rough line l while L is the
number of rough lines.

Due to the linearity of (6.2), the variance of ∆C can be calculated as

var(∆C)LER = var(
L∑
l=1

nl∑
i=1

Siρi)

=
L∑
l=1

 nl∑
i=1

S2
i var(ρi)+2

∑
i,j:i<j

SiSjcov(ρi, ρj)

 (6.3)

where var(ρi) is the squared standard deviation of ρi in x-direction, i.e.
σ2
LER , and the covariance cov(ρi, ρj) follows the correlation function (6.1).

Note that this statistical model of capacitances (6.3) can be easily adjusted
or extended if the model (6.1) of the geometric variations changes. Thus
the proposed method is not limited to Gaussian distribution.

From the key Equation (6.3), it follows that the statistical property of
the deviated capacitance due to the LER can be easily obtained using the
panel sensitivities introduced in Chapter 3 and described in (3.47). Also
note that the computational burden of (6.3) includes two parts, namely the
calculation of the panel sensitivity Sk and the calculation of the covariance
cov(ρi, ρj). As has been addressed in Section 4.2.1, the panel sensitivity Sk
is computed from C∗k which is an accumulation of partial short-circuit capa-
citances incident to a conductor. These partial short-circuit capacitances
C̄s are the intermediate data for calculating the nominal capacitance (2.8),
thus they are already computed for the standard capacitance extraction.
The time consumption for accumulating C∗k , i.e. the calculation of Sk is



6.5 Verification and Experiment 77

negligible compared to a system solve for the nominal capacitance extrac-
tion.

As for cov(ρi, ρj), the computational complexity is related to the cor-
relation length. Within the distance of a correlation length, a certain num-
ber of panels are required in order to be able to physically approximate
the roughness, which can not be avoided. However, since the correlation
cov(ρi, ρj) decays rapidly as the ratio of ‖ri,y − rj,y‖ and ηLER increases,
the computational complexity can be greatly reduced by calculating only

the non-negligible elements in the double summation
∑
i,j:i<j

SiSjcov(ρi, ρj).

Meanwhile, the longer the structure of interest is (in y-direction) compared
to the correlation length, the more panels are needed and thus the longer
the computational time will be. However, as can be seen in Section 6.5.2,
once the dependence of the statistical property of a capacitance on the size
of a structure is acquired, quick estimates can be made without having to
simulate the complete structure.

6.5 Verification and Experiment

This section presents experiments to first verify the accuracy and the effi-
ciency of the proposed method, and then explore its potential applications.
It is common to use the relative standard deviation σC

C , which is often
referred to as “mismatch” by designers, to model the effect of LER on
capacitances. Hence, we will evaluate the proposed model using σC

C . The
method has been implemented in the C/C++ language and the experiment
has been conducted on a 3.00GHz Intel Core 2 Duo CPU.

6.5.1 Experiment I

As shown in Figure 6.2, there are two parallel conductors with the two
sidewalls facing each other subject to the LER. As addressed earlier, the
impact of LER depends largely on the values of σLER and ηLER. These
values are closely related to the materials and the manufacturing process.
Thus in this experiment, the two parameters have been chosen according
to the measurement data of Cu wires in meander-fork structures, provided
by IMEC [70]:

σLER = 3.5nm

ηLER = 16nm (6.4)
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Table 6.1: Simulation results and CPU time for modeling LER

σC
C Error CPU Time

Proposed model 0.603% 11.5% 50′′

MC simulation 0.681% 0 48653′′

The width/space of the conductors is 80nm/80nm. The thickness is 100nm
and the length is 200nm. Using the proposed method, we can easily cal-
culate σC(= σ∆C) from (6.3).

To verify the result of the modeling method, a Monte Carlo simula-
tion with 1000 samples is performed as a reference. For each sample, the
random line pattern describing the LER is generated as explained in Sec-
tion 6.3. The simulation results and the CPU time consumption of the
proposed method and the MC simulation are shown in Table 6.1.

The table shows that the error of σC
C given by the proposed model is

around 10%. The error may come from two parts. One is the computa-
tional error of the panel sensitivities. The other one is due to the fact that
the line-edge roughness is modeled using piecewise constant function, thus
the variational surface is not smooth [66]. The error could be reduced by
using a piecewise linear function, which is beyond the scope of this thesis.
In fact, a 10% error for modeling mismatch is well acceptable in most cases
since the mismatch is already small compared to the nominal value. Thus,
the introduced error is a second-order effect.

With respect to the CPU time, the proposed model is almost 1000
times faster than the MC simulation. More importantly, the CPU time
in the table already includes the computation for the nominal value of
the capacitance. With a simple calculation, it follows that the compu-
tational time for one system solve is 48.653s (= 48653s/1000), while the
additional time for the σC calculation using the statistical model is only
2.77% (= (50s−48.653s)/48.653s). Hence, the proposed modeling method
is extremely fast, and results in little overhead.

6.5.2 Experiment II

Using the proposed model, one can easily study:
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1. the relationship between σC
C and the conductor length;

2. the impact of parameters σLER and ηLER on σC
C .

Figure 6.3 shows five examples of mismatch σC
C as a function of the

conductor length using the same structure as in Experiment I. Each plot
is generated with a combination of various σLER and ηLER.
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Figure 6.3: The mismatch (σC

C ) versus conductor length with various LER para-
meter combinations.

All five plots indicate that the mismatch drops rapidly with the increase
of the conductor length. Being able to identify such a trend is very helpful
for certain designs with particular variability requirements. Sometimes,
for instance, it is necessary to find a good tradeoff between high accuracy
(i.e. small mismatch thus longer conductor length) and low power con-
sumption (i.e. small layout area thus shorter conductor length). Then,
the proposed modeling method provides a convenient tool to estimate the
expected mismatch.

However, analyzing only five combinations of σLER and ηLER is far
from enough for a real mismatch analysis. This is because these paramet-
ers are highly technology-dependent, thus any change in the manufacturing
process in the fab could result in different estimates of them. Besides, the
measurement-based estimation is normally given as a range but not a spe-
cific value. Hence the statistical modeling of mismatch should use two
sweeping parameters (σLER and ηLER) instead of two particular values.
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Figure 6.4 shows the simulation results of mismatch with sweeping para-
meters using the proposed method, which costs about an hour. For MC
simulation with only a modest number of 1000 samples per data point, this
would have taken 43 days.
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Figure 6.4: The mismatch (σC

C ) versus σLER and ηLER for a pair of 200nm
long conductors.

This experiment shows that the proposed modeling method provides
a fast and practical tool for circuit designers to estimate mismatches and
optimize dimensions of critical structures accordingly.

6.6 A Case Study

Following the experiments in the previous section, this section presents a
real design case that can benefit from the proposed statistical modeling
method. This is an 8-bit binary-scaled differential charge-redistribution
digital-to-analog converter (DAC), a component of a low power SAR ADC
design [61]. For ease and clarity of discussion in the following, we first
introduce some basic concepts and notations of DA converters that relate
to our study.

Least-significant bit (LSB) In a binary number, the LSB is the least
weighted bit in the number.
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Most-significant bit (MSB) In a binary number, the MSB is the most
weighted bit in the number. Typically, binary numbers are written
with the MSB in the left-most position and the LSB in the furthest-
right bit.

Major-carry transition At the major-carry transition (around mid-
scale), either the MSB changes from low to high and all other bits
change from high to low, or the MSB changes from high to low and
all other bits change from low to high. For example, 01111111 to
10000000 is a major-carry transition.

Differential nonlinearity (DNL) The deviation of two adjacent code
analog values from the ideal 1-LSB step.

The designers have implemented the differential 8-bit binary-scaled
capacitors C7,...,0 with a differential capacitor array consisting of 510
(2 × (28 − 1)) identical unit capacitors. Figure 6.5 shows a partial lay-
out of one side of the capacitor array. The value of the unit capacitor has
to be minimized to reduce the analog power consumption. Thus a metal-
metal unit capacitor, as illustrated in Figure 6.6, with an extremely small
value of 0.5fF is proposed by the designers.

The major concern regarding this implementation is the mismatch of
these unit capacitors due to their very small nominal values. Before eval-
uating the actual mismatch of this implementation, we first discuss the
requirement of the capacitor matching for this design. The unit capacitors
are modeled with a nominal value of Cu and a standard deviation of σCu .
This differential binary-scaled DAC is composed of 510 Cu-elements, with
an LSB step of 2Cu. Note that the factor of 2 comes from the differen-
tial implementation. The major-carry transition is usually considered as
the worst case for matching, since at this transition (code transit from
01111111 to 10000000), all the capacitors in the binary-scaled design are
active. It means all 510 unit capacitors are switched, leading to a DNL
deviation of

σDNL,mid =

√
510σCu

2Cu
(6.5)

The requirement of matching is evaluated using the 3σ deviation of DNL
and has been set to a maximum error of 0.5LSB:

3σDNL,mid <
1

2
LSB (6.6)
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Substituting (6.5) into (6.6) results in a requirement of 1.5% for unit ca-
pacitor matching:

3

√
510σCu

2Cu
<

1

2
⇒ σCu

Cu
< 1.5% (6.7)

Figure 6.5: Partial layout of the capacitor array consisting 510 unit capacitors.

Figure 6.6: The 0.5fF unit capacitor implementation, with a zoom-in window
for indicating the LER effect.

The mismatch originates from various random fluctuations during the
manufacturing process. In this case of a metal-metal structure, the side-
walls of two metals facing each other are the main contributions of the
intended parasitic capacitance. In other words, the distance between the
sidewalls of the conductors is a critical parameter. Hence, we consider the
LER effects to be the main cause of this mismatch (see Figure 6.6).

While not being able to get the estimation of σLER and ηLER from the
technology based on which the chips have been fabricated, the estimation
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from IMEC (6.4) is used for this simulation, as it is the closest meas-
urement data available on a similar scale technology. Using the proposed
modeling method, the mismatch of the unit capacitor caused by the LER is
estimated to be around 0.25%. Although unavoidably, there are also other
random variations during the manufacturing process, considering LER is
the primary contributor, we estimate that the design should have enough
margin to be fabricated.

In the end, we have conducted measurements on nine test-chips† to
verify the matching of the unit capacitors. To distinguish the systematic
and the random errors, the measured DNL is split into two parts: the
systematic DNL and the random DNL. The systematic DNL is computed
by averaging the nine measured samples. Then, the random DNL curves
are obtained for each measured sample by subtracting the systematic DNL
from the measured DNL. Figure 6.7 shows the measured systematic DNL
and random DNL for all chips. As can be observed (note the different
vertical scales), the systematic DNL is dominant for the overall DNL, which
suggests that a systematic layout issue is causing DNL performance loss.

From the random DNL component, the random mismatch of the unit
capacitors can be analyzed. Using (6.5), the

σCu
Cu

can be estimated based
on the measured σDNL,mid at the major-carry transition. Analogously, for
each bit i (where the major-carry transition corresponds to i = 7), the

σCu
Cu

can be derived from the related code transition according to:

σCu

Cu
=

2σDNLi√
2× (2(i+1) − 1)

(6.8)

where DNLi is the DNL at the code transition of bit i, while the term
2 × (2(i+1) − 1) accounts for the number of active unit capacitors at this
transition. Figure 6.8 shows, in solid line, the estimated capacitor matching
for each bit transition, averaged over the 9 measured samples.

For comparison, a Matlab Monte-Carlo simulation is conducted using
an ADC model. It takes into account the capacitor mismatch and the ran-
dom noise during measurement. Results are also shown in Figure 6.8 in
different dashed lines. Comparing to the MC simulation model, the capa-
citor matching is estimated to be better than 1%, most likely in the order
of 0.5% or less. Since the measured mismatch includes various fluctuations

†Although more samples would be appreciated for statistical analysis, there are only
nine test-chips available. Still, the measurement results can to some extent indicate the
magnitude of the matching.
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Figure 6.7: Measured systematic and random DNL for nine test chips.

and noises from all aspects during the fabrication and the measurement
processes, it agrees with the simulation results.

Without a proper modeling tool as presented, the designers may not be
confident in making such a small-size high-precision design, as the match-
ing is a major requirement to successfully achieve the desired performance.
Results suggest that the mismatch of the unit capacitors is in fact small
enough for such an implementation with even higher resolution, for in-
stance a 10-bit ADC.

6.7 Sensitivity-Based Modeling for Both System-
atic and Random Variations

From derivation of the capacitance modeling methods for systematic vari-
ations (Chapter 3, Appendix C) and for random variations (Chapter 6.4),
the following observations can be made:

1. Nominal capacitances are computed with the partial short-circuit
capacitances C̄s, using an incidence matrix (2.9) and (2.8);
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Figure 6.8: Estimated capacitor mismatch based on DNL measurements.

2. The dimensional capacitance sensitivity for modeling systematic vari-
abilities is computed by assembling the associated panel sensitivit-
ies (5.1);

3. The statistical modeling for random variation LER also counts on
combinations of the panel sensitivities (6.3);

4. The computation of panel sensitivities solely relies on C̄s (C.10).

From these observations, one can conclude that a sensitivity-based al-
gorithm can be developed to model both the systematic and the random
variabilities with only one system solve, integrated with the standard capa-
citance extraction. This is illustrated in Figure 6.9. The sensitivity-based
modeling method can be integrated in BEM-based LPE tools to account
for both variabilities simultaneously. Using the additional inputs of the di-
mensional parameters with their process spreads (σsys) as well as the rough
lines of interest characterized with σLER and ηLER, the resulting statistical
properties of the capacitance, i.e. the mismatch, can be obtained together
with the nominal capacitance with one system solve.

Note that the input for the systematic variability can be multiple di-
mensional parameters, including the widths of all conductors, the thick-
nesses of all metal layers and the heights of all dielectric layers. A win-
dowing technique can be applied to handle large structures. Similarly, the
input for the random variability LER can be multiple rough lines with
various characterizing parameters σLER and ηLER. Most importantly, this
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Figure 6.9: Diagram of the proposed sensitivity-based method integrated in BEM-
based LPE tools for both systematic and random variabilities.

can all be done with one system solve with an additional computational
time being a small portion of that for a standard capacitance extraction
without considering any variability.

To demonstrate the proposed sensitivity-based modeling method for
both systematic and random variabilities, an illustrative example is con-
ducted. All parameters in this example are chosen based on pure assump-
tions.

There are two parallel conductors with the width/space being
2µm/2µm, the thickness being 2µm and the length being 8µm. It is
assumed that all four edges along the length of the conductor are sub-
ject to the LER. The characterizing parameters are σLER = 0.03µm,
ηLER = 2.00µm for one conductor and σLER = 0.04µm, ηLER = 2.88µm
for the other. With this experiment, it is also interesting to compare the
impacts of the systematic and the random variations on capacitances. To
do so, we take the conductor width as the geometric parameter for sys-
tematic variations, with a standard deviation (σsys) being the same as the
associated σLER, i.e. 0.03µm and 0.04µm for the two conductors respect-
ively.

To verify the accuracy and the efficiency of the proposed method, three
Monte-Carlo simulations with 1000 samples each, are performed for the
systematic variation, the random variation and a superposition of them
respectively (3000 samples in total). Since systematic and random vari-
ations are originated from different sources during the manufacturing pro-
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cess, they are often considered independent. Hence, the proposed model
evaluates their superposition effect using

σC
C

=

√(σCsys

C

)2
+
(σCLER

C

)2
. (6.9)

Simulation results are shown in Table 6.2. Using MC simulations as a
reference, the errors of the relative standard deviations of the capacitance
given by the model are smaller than 15%. Also notice that the systematic
variation is the dominant one, given the same process spreads of paramet-
ers as for the random variation. Thus, for designs that are sensitive to both
variations, mainly the systematic variability should be improved. On the
other hand, some designs are only vulnerable to random variations. There-
fore, being able to distinguish the two variations and apply the appropriate
modeling technique is essential.

Table 6.2: Simulation results and CPU time for both systematic and random
variations

MC simulation Proposed model

σCsys

C 2.22% 2.05% (7.72% error)

σCLER
C 0.21% 0.24% (14.23% error)

σC
C 2.22% 2.06% (7.18% error)

CPU Time 38h52′ 58′′

6.8 Conclusion

The high efficiency of the proposed method enables the possibility to ana-
lyze, from various aspects, the mismatches of the capacitance caused by
both systematic and random variations. With a good enough accuracy for
most application purposes, this method provides a fast and useful tool for
Design-for-Manufacturability (DFM).
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CHAPTER 7

Fast Statistical Analysis of
RC Nets Subject to

Manufacturing Variabilities∗

Much work has been done aimed at capturing the effects of process vari-
ations using parameter-aware techniques. The research focuses mainly
on two aspects. One is parameterized Layout Parasitic Extraction (LPE),
which models the effect of physical variations by generating linear or quad-
ratic models of capacitances and resistances as a function of process para-
meters. For on-chip interconnects, most work has concentrated on the ca-
pacitances and a relatively modest amount of work has been published for
parameterized resistance extraction [77,78], because it is relatively simple†.
More importantly, it is the capacitance computation rather than the res-
istance computation which dominates the complexity of the overall LPE
procedure.

∗This chapter is based on [76]: Yu Bi, K.J. van der Kolk, J.F. Villena, L.M. Silveira
and N.P. van der Meijs, “Fast statistical analysis of RC nets subject to manufacturing
variabilities,” in Proc. DATE, Grenoble, France, pp. 32-37, March, 2011.

†When it concerns substrate or other distributed resistance, the extraction becomes
more complicated. While this is beyond the scope of our research, readers who are
interested could refer to [79–81].

89
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The capacitance and the resistance models generated by the parameter-
ized LPE tools may be used directly for SPICE simulations, or more often,
they are fed to a parameterized Model Order Reduction (pMOR) proced-
ure to achieve an essential speedup. This pMOR procedure is the other
aspect of using parameter-aware techniques for capturing variabilities.

Many pMOR methods are based on multi-dimensional moment match-
ing. They rely on matching the moments of the parameterized system
transfer function, which depends on both the frequency and the paramet-
ers [36, 82]. A sampling based approach [83] extended from the PMTBR
algorithm [84] proposes to use the statistical information of the parameters
as a guidance for a multidimensional sampling of the joint frequency plus
parameter space. Recently, a structure-preserving pMOR technique [37]
proposes a reformulation of the system to maintain an explicit parameter
dependence of the transfer function. This property is very convenient for
variational and statistical analysis, as will be demonstrated in this chapter.

In order to understand the impact of the physical process variations on
the performance of a circuit, the above two aspects have to be fully and
well integrated. This has seldom been studied yet, and therefore to draw
the overall picture is an important contribution of the work presented in
this chapter.

However, a simple combination of the above two aspects does not solve
the real problem. The final goal of modeling manufacturing variabilities is
to obtain the statistical properties of the circuit performance, for instance
the system response, given the process spreads of the technology. The
traditional Monte Carlo approach has a fatal drawback: the parameter
sampling implies a huge computational burden for both the extraction
and the reduction procedures, which is least favorable in practice. The
proposed method avoids parameter samplings by using the parameterized
LPE and the pMOR techniques. In particular, we only consider system-
atic variation in this chapter. The parameterized extraction applies the
linear model of capacitances presented in Chapter 3, and the linear model
of resistances which will be presented in Section 7.2. As mentioned, the
structure-preserving pMOR technique [37] is used for the reduction pro-
cedure.

This chapter is organized as follows. Section 7.1 briefly reviews the
description of a parameterized system and the capacitance sensitivity com-
putation. Section 7.2 presents the parameterized extraction methods for
conductances. Section 7.3 introduces the reduction methods for the para-
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meterized system generated by the previous extraction, focusing on the
structure-preserving pMOR technique. In Section 7.4, the proposed stat-
istical analysis methodology for RC nets is presented.

7.1 Parameterized Capacitance Extraction

A system subject to manufacturing variabilities is often described using
a parameterized representation of the conductance and the (short-circuit)
capacitance matrices G(λ) ∈ Rn×n and Cs(λ) ∈ Rn×n. These matrices can
be approximated by a Taylor series w.r.t. multiple parameter variations,
for instance, a first order approximation

Cs(λ) = Cs0 +

Q∑
i=1

λiCsi (7.1a)

G(λ) = G0 +

Q∑
i=1

λiGi (7.1b)

where Cs0 and G0 are the nominal values for the matrices, Csi and Gi are
the sensitivities w.r.t. the i-th parameter variation λi, and Q is the number
of parameters. Thus for such linear approximation, the most important
task is to compute the sensitivities Csi and Gi.

First of all, a very brief review of the capacitance sensitivity compu-
tation is given below. Let a ∈ Ni and b ∈ Nj be any panel associated
with two nodes i and j respectively. Let sp denote the set of victim panels
incident to parameter p, and k ∈ sp be any victim panel with Ak being its
area and ε being the material permittivity around it. Then according to
the algorithm proposed in Chapter 3, the sensitivity of the (short-circuit)
capacitance between nodes i and j w.r.t. a parameter variation λp is given
by

∂Csij
∂p

=
∑
k∈sp

 1

εAk

∑
a∈Ni

∑
b∈Nj

C̄sk,aC̄sk,b

 (7.2)

where, as defined already, C̄sk,a and C̄sk,b are the partial short-circuit ca-
pacitances associated with panel k, a and panel k, b respectively.

The above discussion shows:

• Sensitivities between different nodes can be obtained simply by as-
sembling different sets of associated partial short-circuit capacit-
ances, i.e.,

∑
a∈Ni

C̄sk,a.
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• Sensitivities w.r.t. different parameter variations are local for differ-
ent sets of victim panels, i.e., k ∈ sλp .

• The nominal capacitances are computed using the partial short-
circuit capacitances C̄s.

It follows that the data needed for the sensitivity computation and for
the nominal capacitance calculation is the same, i.e., the partial short-
circuit capacitances C̄s. Therefore, all the sensitivities between various
nodes w.r.t. multiple variations can be computed simultaneously with
the nominal capacitance extraction. The representation Cs(λ) in (7.1)
can be obtained with a single extraction procedure. It has been shown
in Section 4.2.1 that the extra computational time for the sensitivity is
negligible compared to that of the standard capacitance extraction. The
high efficiency of capacitance sensitivity computation is essential because
during the parasitics extraction, the overall performance is ruled by the
capacitance extraction instead of the conductance extraction. As can be
seen in the next section, both the nominal conductance extraction and its
sensitivity computation are simpler and more straightforward compared to
that of the capacitances.

7.2 Parameterized Conductance Extraction

This section presents the generation of the parameterized conductances.
Firstly, a brief summary of the nominal conductance extraction using the
Finite Element Method (FEM) is given (see [85] for more details). Then,
the computation of sensitivities w.r.t. geometric variations is presented.

7.2.1 FEM-based Conductance Extraction

To perform FEM, the interconnect polygons are firstly discretized into
rectangles or triangles, which are often called tiles. Computation is then
conducted for each tile to place a conductance element to each branch, as
illustrated in Figure 7.1.

For rectangle tiles, the conductance element on a branch between two
vertices (xi, yi) and (xj , yj) is computed as [85]

Gij =


Gsh

(xi−xj)2

2A if yi = yj

Gsh
(yi−yj)2

2A if xi = xj

0 otherwise

(7.3)
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where A is the area of the tile, and Gsh is the sheet conductance, i.e. the
inverse of the sheet resistance, of the material. Sheet conductances or
sheet resistances of different layers are usually defined in the technology
file provided by the foundry.

(xi,yi) (xj,yj) Gij

(xi,yi)

(xk,yk) (xj,yj)

Gik
Gij

Figure 7.1: Illustration of the FEM for conductance extraction using rectangle
tiles and triangle tiles respectively.

As to the triangle tiles defined by three vertices (xi, yi), (xj , yj) and
(xk, yk), the conductance element Gij can be calculated as [85]

Gij = Gsh
(xk − xi)(xk − xj) + (yk − yi)(yk − yj)

4A
. (7.4)

It is known that the sheet conductance Gsh is defined as a product of the
conductivity σ and the layer thickness t

Gsh = σt. (7.5)

Thus Equation (7.3) and (7.4) can be summarized in the following expres-
sion:

Gij(tα, lα) = Gsh(tα)F (lα) (7.6)

where i and j are indices of the vertices of a tile α, tα is its corresponding
layer thickness, and lα represents the layout dimension associated with the
vertices. It follows that the dependencies of Gij on the layer thickness
(z-dimension) and the layout (x, y-dimensions) are separate, which is very
convenient for the sensitivity computation.
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7.2.2 Conductance Sensitivities

Unlike capacitances, there are practically only two geometric parameters
relevant to each conductance, namely the thickness of its corresponding
layer tα and its corresponding tile dimension lα. Furthermore, as concluded
from Equation (7.6), the sensitivities of a conductance w.r.t. these two
parameter variations can be computed separately, i.e.,

∂Gij
∂λt

= F
∂Gsh(t)

∂λt
; (7.7)

∂Gij
∂λl

= Gsh
∂F (l)

∂λl
. (7.8)

Variation in the layer thickness

The calculation is simple and straightforward. Considering the sensitivity
is for the nominal or designed system, the substitution of (7.5) in (7.7)
leads to:

∂Gij
∂λt
|t0 = Fσ =

Fσt0
t0

=
Gij(t0)

t0
(7.9)

where t0 is the nominal layer thickness and Gij(t0) is the nominal conduct-
ance.

Layout variation

The perturbation method is used to calculate the sensitivities w.r.t. the
layout variation.

Unlike capacitance, conductance is a self -property of an interconnect,
depending solely on its own dimension and material property. Thus the
sensitivities of all the conductances in the system w.r.t their related layout
variations can be obtained using only one finite difference (FD) compu-
tation with simply one extra system solve for conductances. In this case,
the perturbation method is a very appropriate choice for its high accuracy
and the modest additional computational complexity, i.e., 1× the nominal
extraction.

Using the perturbation method, the sensitivities of conductances w.r.t.
the layout variation can be calculated as

∂Gij
∂λl

= lim
λl→0

Gij(l0 + λl)−Gij(l0)

λl
(7.10)
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where λl is the layout perturbation, Gij(l0) is the nominal conductance
and Gij(l0 + λl) represents the perturbed conductance. An issue related
to the computation of (7.10) in a matrix form is that the size of the con-
ductance matrix G has to remain the same. To do so, the geometry of
the perturbed system is generated by adjusting the vertex coordinates of
the original system, illustrated in Figure 7.2. This implies that only the

lλ lλ

lλ

lλ

Adjust the vertex coordinates

Figure 7.2: Illustration of the layout perturbation for the sensitivity computation,
where λl represents a small layout perturbation.

conductances related to the boundary nodes are affected and generate non-
zero sensitivities. It can also be seen from the figure that irregular shapes
can be handled as well. This has a practical meaning because the corners
of wires or wire-like structures are usually no longer right angles after the
lithography and the etching processes.

7.3 Order Reduction of Parameterized Systems

This section summarizes the pMOR methods for the parameterized system
generated in the previous sections, focusing on the structure-preserving
technique to be applied in the proposed statistical analysis methodology.

7.3.1 Parameterized Model Order Reduction

In Section 7.1 and 7.2, the sensitivity-based parameterized LPE technique
generates the capacitance and the conductance matrix descriptors (7.1) for
a parameterized system. Such a system has an associated parameter de-
pendent frequency response that can be modeled via the transfer function

H(s, λ) = E [sCs(λ) + G(λ)]−1 B (7.11)
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where Cs(λ),G(λ) ∈ Rn×n are the generated parameter dependent capa-
citance and conductance matrices, and B ∈ Rn×m and E ∈ Rp×n are the
input and the output incidence matrices respectively.

For a complete analysis, a linear system of dimension n has to be solved
for every point of the parameter plus frequency space. Thus when the size
of the system n is large, the analysis of the function in (7.11) becomes
prohibitive.

To overcome this issue, Parameterized Model Order Reduction
(pMOR) approaches seek to efficiently generate a reduced order approx-
imation, usually by projecting the system into a suitable reduced q-
dimensional subspace, q � n, spanned by the columns of a projector
V ∈ Rn×q (see [36, 82, 83] for details). The projection generates a Re-
duced Order Model (ROM) with an associated reduced transfer function

Ĥ(s, λ) = Ê
[
sĈs(λ) + Ĝ(λ)

]−1
B̂ (7.12)

where Ĉs(λ), Ĝ(λ) ∈ Rq×q, B̂ ∈ Rq×m, and Ê ∈ Rq×p define the ROM of
dimension q � n, which can be handled much more efficiently.

7.3.2 Explicit Parameter Matching

Standard projection based pMOR approaches generate a ROM with an
equivalent Taylor series formulation for the Ĉs(λ) and Ĝ(λ) matrices,
which is useful in terms of compatibility. This allows for a fast evalu-
ation of the system matrix for any parameter and frequency point, but
still requires solving the system in order to obtain the system response.
Any modification of the frequency or parameter values implies another
solve. For statistical analysis with potentially a large number of Monte
Carlo (MC) samples, this could be expensive.

A different pMOR approach which is interesting in terms of statistical
analysis is the one presented in [37], valid for the cases in which the output
behavior w.r.t. the parameters is smooth, which as can be seen is indeed
the case. It proposes a reformulation of the system as a Taylor series
approximation of the transfer function w.r.t. the parameters.

This is achieved by a truncated Taylor series representation of the
matrices Cs(λ) and G(λ) as in (7.1), plus an expansion of the state vec-
tor in Taylor series w.r.t. the parameters of order T , but not w.r.t. the
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frequency:

x(s, λ) = x0(s) +

Q∑
i=1

T∑
j=1

λjixij(s) (7.13)

with x0 the nominal state vector, and xij the sensitivity of order j
(j1, ..., T ) w.r.t. parameter λi (i = 1, ..., Q). This formulation, presented
here without cross terms, can be extended to any desired order, includ-
ing cross terms. As an example, for a single parameter λ1, using the first
order sensitivities in (7.1) (i.e. G0,Cs0,G1 and Cs1), the states can be
approximated as

x(s, λ1) = x0(s) + λ1x1(s) + λ2
1x2(s) + . . .

x0(s) = (G0 + sCs0)−1Bu

x1(s) = −(G0 + sCs0)−1(G1 + sCs1)x0(s)

x2(s) = −(G0 + sCs0)−1(G1 + sCs1)x1(s)

. . .

(7.14)

This explicit parameter dependence can be shifted to the output, which
generates a parameterized transfer function as [37]

H(s, λ) = H0(s) +

Q∑
i=1

T∑
j=1

λjiHij(s) (7.15)

where Hij = Exij are the frequency dependent transfer function sensitiv-
ities, each one related to one sensitivity of the states x. In other words,
the parameterized transfer function can be written as the contribution of
the nominal transfer function plus the contribution of each one of the non-
parameterized transfer function sensitivities w.r.t. the parameters, i.e. a
linear combination of the multiple non-parameterized transfer functions
weighted by the parameter variation.

The work in [37] also presents a compact state-space formulation for
the complete system generating the individual transfer functions in (7.15),
plus a scheme for efficiently reducing each transfer function independently
(via preservation of the system structure), in order to maintain the explicit
parameter dependence (see [37] for details).

A very important property of this representation and reduction is that
it maintains an explicit parameter dependence on the output. Every re-
duced transfer function sensitivity, which only depends on the frequency,
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can be solved independently. The parameterized response is obtained by a
linear combination of the multiple transfer functions, as shown in (7.15).

This specific structure-preserving property enables a very fast way to
evaluate the statistical properties, for instance the standard deviation of
the system response, which is a main topic of this chapter presented in the
next section.

7.4 Statistical Analysis of RC Nets

In this section, a statistical analysis methodology for RC nets is proposed.
By combining the parameterized parasitics extraction and the structure-
preserving MOR techniques, the transfer function and its standard devi-
ation due to systematic variations can be obtained with a significant speed
up, compared to the traditional Monte Carlo approach.

7.4.1 Design Flow

Traditionally, to compute the statistical properties of the transfer func-
tion, one has to perform a Monte Carlo simulation which implies a huge
computational burden, as indicated in Figure 7.3.

A parameter sampling has to be conducted using the layout and the
technology based on the particular process spread, obtaining k problem
instances for the layout parasitics extractor. Then k standard parasitics
extractions are performed to generate k non-parameterized systems, i.e., k
groups of matrix descriptors (Gvar, Csvar). This is followed by k SPICE
simulations or non-parameterized MOR procedures. Finally, the mean and
the standard deviation of the transfer function can be calculated from the
generated k transfer functions, denoted H̄(s). Since the sampling num-
ber k has to be large enough to ensure a reliable statistical distribution,
the workload of this traditional design flow is enormous due to the k-fold
parasitics extraction and the k-fold SPICE simulation or standard MOR
procedure.

The above two issues can be conquered by the proposed method us-
ing the parameterized LPE and the structure-preserving pMOR techniques
respectively. The design flow is shown in Figure 7.4. With the input of
the layout information from designers and the technology file from the
foundry, parameterized RC extraction generates the first order parameter-
ized Taylor series G(λ) and Cs(λ) as in (7.1).
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Figure 7.3: The design flow of the Monte Carlo approach. Sampling of the
parameter space is needed, which implies a huge computational burden.

As addressed earlier, the computational complexity of setting up the
parameterized conductance representation is two times the complexity of
the nominal conductance G0 extraction and the complexity of setting up
the parameterized capacitance representation is almost the same as the
nominal capacitance extraction. The computation of capacitances rather
than conductances dominates the overall computational burden. There-
fore, the asymptotic complexity of the parameterized RC extraction, in-
cluding the nominal values G0, Cs0 and their sensitivities Gi, Csi w.r.t.
multiple parameters, is the same as the asymptotic complexity of the nom-
inal capacitance extraction. The high efficiency of the parameterized ex-
traction technique is one essential advantage of the proposed method.

Using the generated parameterized matrix descriptors (7.1), the
structure-preserving pMOR technique is applied to calculate the reduced
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Figure 7.4: The design flow of the proposed method. No sampling of the para-
meter space is needed because of the use of the parameterized parasitics extraction
technique and the structure-preserving pMOR technique.

transfer function with an explicit parameter dependence, expressed as

Ĥ(s, λ) = Ĥ0(s) +

Q∑
i=1

T∑
j=1

λji Ĥij(s) (7.16)

where i represents the parameter index and j represents the order in the
Taylor series expansion.

Applying various parameter settings, the induced variability of the
transfer function can be easily obtained from (7.16). Furthermore, and
unlike standard projection based pMOR approaches, any change of the
parameter variations simply requires evaluating the linear combination,
with no need for additional system solution. This implies a major boost
in the efficiency of the variational analysis.

More importantly, given the process spreads of the parameters (3σλi)
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from the manufacturer, the statistical properties such as the standard de-
viation of the transfer function (7.16) can be evaluated with a negligible
complexity. This is the other essential advantage of the proposed method
and will be discussed in Section 7.4.2.

At last, the obtained mean and the standard deviation of the transfer
function µĤ(s) and σĤ(s) are fed back to the designers so that adjustments
or improvements can be carried out before the tape-out. Thus it is very
convenient for design exploration and optimization.

As illustrated in Figure 7.4, both the parasitics extraction and the MOR
procedures have avoided the parameter sampling. Therefore, the proposed
method is highly efficient as a variation-aware modeling approach, espe-
cially for statistical analysis.

7.4.2 Statistical Property Computation

This section explains the computation of the mean and the standard de-
viation of the reduced transfer function (7.16). Both the nominal transfer

function Ĥ0(s) and the transfer function sensitivities Ĥij(s) are vectors of
the system response to frequency samples. The following computation is
conducted for each frequency sample sk. For the ease of discussion, some
short-hand notations are used:

a0 = Ĥ0(sk), aij = Ĥij(sk), F (λi) =

T∑
j=1

aijλ
j
i (7.17)

The expectation of Ĥ(sk, λ) can then be expressed as

E[Ĥ(sk, λ)] = E[a0] +

Q∑
i=1

E[F (λi)] (7.18)

where E[a0] = a0 and the expectation of F (λi) can be computed as

E[F (λi)] =

∫ ∞
−∞

T∑
j=1

aijλ
j
if(λi)dλi

=
T∑
j=1

aij

∫ ∞
−∞

λjif(λi)dλi (7.19)
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with f(λi) the probability density function of λi. It is common to assume
the distribution of the geometric parameter variations to be Gaussian with
a mean of zero, i.e., λi ∼ N (0, σλi). Then∫ ∞

−∞
λjif(λi)dλi = E[(λi − µλi)

j ], µλi = 0 (7.20)

is the central moment of the Gaussian distribution with a zero mean of
order j, which is calculated as

E[(λi − µλi)
j ] =

{
0 if j is odd

σjλi(j − 1)!! if j is even
(7.21)

with (j−1)!! denotes the double factorial, that is the product of every odd
number from j− 1 to 1. Therefore Equation (7.19) is a linear combination
of the Gaussian central moments from order 1 to T , weighted by the corres-
ponding transfer function sensitivities. The mean of the transfer function
(µ
Ĥ0

(sk)) can then be computed by substituting (7.19) into (7.18).
As for the standard deviation, it is interesting to note that the vari-

ations of different parameters are usually independent since they are origin-
ated from different process steps. Assuming this is the case, the standard
deviation of Ĥ(sk, λ) can be computed as

σ
Ĥ

(sk) =

√√√√ Q∑
i=1

V ar(F (λi)) (7.22)

where the variance of F (λi) is calculated as follows, using the computed
expectation of F (λi), i.e., µF (λi),

V ar(F (λi)) = E[(F (λi))− µF )2]

= −µ2
F (λi)

+ E[F 2(λi)], (7.23)

with

E[F 2(λi)] =
T∑
j=1

a2
ijE[λ2j

i ] + 2

T∑
j=1

T∑
l=j+1

aijailE[λj+li ]. (7.24)

Note that E[λ2j
i ] and E[λj+li ] are also central moments of Gaussian distri-

butions with zero means. Thus substituting (7.24) into (7.23) solves the
variance of F (λi), which is a combination of the Gaussian central moments
with various orders, weighted by the incident transfer function sensitivities.
At last, the standard deviation of the transfer function of each frequency
sample σ

Ĥ
(sk) can be obtained by substituting (7.23) into (7.22).
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7.4.3 Experiment and Result

To demonstrate the efficiency and the accuracy of the proposed method,
a two-terminal RC structure is studied. As shown in Figure 7.5, the ex-
ample has two layers consisting of a meandering poly resistor connected to
terminal A and a fork-structure metal capacitor connected to terminal B.
This example is initially modeled with 410 states.

A

B

Figure 7.5: Layout of the RC example with a poly resistor (connected to A) and
a metal capacitor (connected to B).

This structure depends on six geometric parameters, namely the poly
and the metal thicknesses, the layout variations and the dielectric thick-
nesses of the two layers. The process spreads (3σλi) of these parameters
are assumed to be 10% of their nominal values. To verify the results of the
proposed method, a Monte Carlo (MC) simulation with 700 samples is per-
formed according to the flow in Figure 7.3. The experiment is conducted
on a 3.00GHz Intel 2 Core CPU.

Results are summarized in Figure 7.6 and 7.7. The mean of the transfer
function computed by the proposed method shows a good agreement with
the result obtained from the MC simulation (see Figure 7.6). To indicate
how much is the effect of the assumed process spreads, Figure 7.6 also
shows the induced variability of the transfer function, i.e., µH(s)±3σH(s),
given by the proposed method and the MC approach respectively. Fig-
ure 7.7 shows the accuracy of the proposed method. The relative error
of the computed mean µĤ(s) is very small, with an average over the fre-
quency being 0.0125 and the maximum being 0.0274. The computed relat-
ive standard deviation

σĤ
µĤ

(s), known as the mismatch by designers, has an

average relative error (absolute value) over the frequency of 0.0206 and a
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Figure 7.6: Results of the proposed method compared to the Monte Carlo ap-
proach.

maximum of 0.0274. Therefore, the proposed method nicely captures the
effect of the physical process variations on the system response.

More importantly, the proposed method achieves a significant speed up
over the traditional Monte Carlo approach. Table 7.1 shows the elapsed
time and speed ups in the extraction procedure and the evaluation of the
statistical properties, for the traditional MC analysis, the traditional MC
analysis plus non-parameterized MOR (in this case PRIMA [86]) on each
extracted system, and the proposed approach. Note that the speed up,
which already achieves two orders of magnitude for a middle size example
(410 states), will further increase with the increase of the size of the system
and the number of samples.

7.5 Conclusion

This chapter presents a highly efficient statistical analysis methodology
for RC nets subject to manufacturing variabilities. It achieves zero para-
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Figure 7.7: Results of the proposed method compared to the Monte Carlo ap-
proach.

meter sampling, based on the combination of a sensitivity-based paramet-
erized parasitics extraction technique and a structure-preserving pMOR
technique. Given the layout and the process spreads of the technology,
the statistical properties such as the mean and the standard deviation of
the system response can be obtained extremely fast. As such, the pro-
posed method provides a very convenient tool for design exploration and
optimization.
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Table 7.1: CPU time and speed ups in the extraction procedure and the evaluation
of the statistical properties, for the traditional MC analysis, the traditional MC
analysis plus non-parameterized MOR (in this case PRIMA [86]) on each extracted
system, and the proposed approach.

Extraction Evaluation Total

MC 55h49′ (1×) 46′12′′ (1×) 56h35′ (1×)

MC + MOR 55h49′ (1×) 3′30′′ (13×) 55h52′ (1.01×)

Proposed 4′49′′ (695×) 0.43′′ (6446×) 4′50′′ (701×)



CHAPTER 8

Conclusion

In this thesis, we have proposed a sensitivity-based modeling method to
capture the effects of systematic and random manufacturing variations on
on-chip interconnect capacitances. We are able to compute all sensitivit-
ies of important capacitances efficiently in a one pass algorithm that runs
concurrently with the layout-to-circuit extraction and does only cause a
small percentage increase of computational complexity. Such an algorithm
forms a core of other algorithms for handling various aspects of variability-
related problems in practice, such as quick estimates of capacitance mis-
match induced by either systematic or random geometric variations, and
fast evaluation of circuit performances, e.g. system responses. For valida-
tion, we have tested the algorithms using a layout-to-circuit extractor on
concrete circuits. In this chapter, we will summarize our findings and give
an overall picture of the major results presented in this thesis.

We first present a fast algorithm for the sensitivity computation, which
is applicable for BEM based LPE tools. The algorithm can be derived
from an adjoint method (Chapter 3) or a domain-decomposition technique
(Appendix C). It is efficient in the sense that both the nominal values
of capacitances and their sensitivities with respect to multiple parameters
can be obtained with a single system solve. This can be done because
the data needed for the sensitivity computation can be found during the
standard capacitance extraction, i.e., they are the intermediate data of a

107
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nominal capacitance computation. Therefore, no extra costly computation
is required.

To validate its feasibility, we implement the proposed algorithm in a
layout-to-circuit parasitics extractor SPACE (Chapter 4). The on-chip in-
terconnect capacitances computation in SPACE is based on the BEM, thus
the proposed algorithm can be applied. One feature of SPACE is the use of
a window-based scheme as an acceleration technique, which remains valid
with the extension of the sensitivity computation. We have subsequently
conducted several experiments on the SPACE platform. The results sug-
gest a very high efficiency as desired and a good accuracy. Although a
good accuracy should be generally acceptable for most applications, the
algorithm should not be limited due to the lack of knowledge of the accur-
acy lost.

We therefore study the cause of the error and propose a supplementary
algorithm for accuracy improvement (Chapter 5). For ease of discussion,
we have named the algorithm introduced in Chapter 3 and Appendix C
the basic algorithm. A combination of the basic algorithm and the sup-
plementary algorithm leads to an enhanced algorithm which provides very
high accuracy results at the cost of a moderate reduce of the efficiency.
The enhanced algorithm enables flexibility of the sensitivity computation
as it offers optional trade-offs between accuracy and efficiency to users for
different application requirements.

The algorithm for sensitivity computation forms a core of other al-
gorithms which tackle different aspects of variation-induced problems in
practice. We have developed two extension algorithms in this thesis. Spe-
cifically, we have chosen high efficiency as the primary goal of our work
and thus it is still the basic algorithm that is adopted in the two extensions
(Chapter 6 and Chapter 7).

Chapter 6 demonstrates a technique for computing the statistical
properties of interconnect capacitances resulting from line-edge-roughness
(LER). Using the proposed algorithm, the nominal values of capacitances
as well as their statistical properties accounting for both the systematic
and the random variations can be obtained at a negligible extra computa-
tional time, compared to the nominal capacitance computation. The fast
estimate of LER effects on interconnect capacitances can be very useful
for designs of passive components with high-precision requirements. In
this context, a real design case is studied. Supported by the measurement
results on test chips, our technique successfully estimates the mismatch of
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capacitances due to LER.

Calculating the statistical properties of capacitances is, in many cases,
not the eventual purpose of modeling manufacturing variabilities. Instead,
it is the circuit performance, e.g. the transfer function, that designers
care about. Traditionally, the statistical properties of the system response
are obtained by the Monte-Carlo approach, which, however, suffers from
a huge computational burden due to the need of sampling the parameter
space. This problem can be solved by the second extension algorithm
(Chapter 7), which achieves zero parameter sampling, by combining the
proposed sensitivity-based parameterized parasitics extraction technique
and a structure-preserving parameterized model order reduction technique.

Chapter 7 demonstrates a highly efficient methodology for the statist-
ical analysis of RC nets subject to systematic variations. The sensitivity-
based layout-to-circuit extraction generates first-order Taylor series ap-
proximations of resistances and capacitances with respect to multiple geo-
metric parameter variations. This formulation becomes the input of the
parameterized model order reduction, which exploits the explicit parameter
dependence to produce a linear combination of multiple non-parameterized
transfer functions weighted by the parameter variations. Such a formula-
tion enables a fast computation of statistical properties such as the stand-
ard deviation of the transfer function given the process spreads of the
technology. Both the extraction and the reduction techniques avoid any
parameter sampling. Therefore, the proposed method achieves a signific-
ant speed up compared to the traditional Monte-Carlo approaches.

Lastly, we would like to conclude by giving a pictorial overview of the
major results of this thesis. As shown in Figure 8.1, with the additional
input of the process spreads, besides the layout description and the tech-
nology file, the proposed method (sensitivity-based capacitance modeling
method) can generate both the nominal capacitances and their sensitivit-
ies. These sensitivities can be with respect to multiple parameter variations
that could be either systematic or random, or both. Users are provided
options of trade-offs between the accuracy and the efficiency so that they
can have preference for one over another according to the applications.

Efforts, in this thesis, have been made mainly on exploiting the be-
nefit of the high efficiency of the proposed algorithm. Applications can
be various. We have highlighted two possible ones: a quick estimate of
capacitance mismatch induced by the LER, which has been deployed in a
real design case, and a fast evaluation of circuit performance on RC nets



110 Conclusion

Design for Manufacturing (DFM)

Technology �le

Process spreads

Sensitivity-based 
capacitance modeling

systematic variations

random variations

Layout

Nominal capacitances
&

Sensitivities

Estimate of mismatch

Evaluation of circuit 
performance

EDAManufacturing IC Design

BEM based LPE tools

Figure 8.1: Summary of the major results obtained in this thesis.

subject to systematic variations, generating the statistical properties of the
system response.



APPENDIX A

Proof 1: The adjoint in the
electrostatic field.∗

A function f : R3 → R will be said to be O(r−a) at infinity if it vanishes
at infinity at least as fast as r−a, i.e., if

lim
‖x‖→∞

‖x‖b f(x) = 0, ∀ b < a

where ‖ · ‖ is the Euclidean norm on R3.
Definition:
Let P be the class of all infinitely differentiable scalar functions ϕ on

R3 such that ϕ is O(r−1) and the derivative of ϕ is O(r−2). Let F be the
class of all infinitely differentiable vector fields ~u on R3 such that uj ∈ P ,
j = 1, 2, 3. Define inner products on P and F by

〈ϕ,ψ〉P ,
∫
R3

[ϕ(x)ψ(x)]dΩ (A.1)

〈~u, ~w〉F ,
∫
R3

[~u(x) · ~w(x)]dΩ (A.2)

for all ϕ,ψ ∈ P , ~u, ~w ∈ F , with ~u · ~w the standard dot product or scalar
product in R3.

∗The content is based on [47]. This is a special case of the Hodge dual in Differential
Geometry.
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112 Proof 1: The adjoint in the electrostatic field

Theorem:
The operator (−grad): P → F is the adjoint of the operator (div):

F → P , i.e.,

〈div ~u, ϕ〉P = 〈~u,−grad ϕ〉F ∀ (~u, ϕ) ∈ F × P . (A.3)

Proof:
Using (A.1), (A.2) and the vector identity

(div ~u)ϕ+ ~u · (grad ϕ) = div (ϕ~u), (A.4)

as well as using the divergence theorem, it follows that

〈div ~u, ϕ〉P − 〈~u,−grad ϕ〉F =

∫
R3

div(ϕ~u)dΩ (A.5)

=

∫
S∞

ϕ~udS (A.6)

where S∞ is the bounding surface that recedes toward infinity. As defined,
ϕ ∈ P is O(r−1), ~u ∈ F is O(r−2), thus ‖ϕ~u‖ is O(r−3) at infinity, while
S(r) only grows as 4πr2. Hence,∫

S∞

ϕ~udS = 0 (A.7)

and it proves theorem (A.3).



APPENDIX B

Proof 2: Electrostatic stored
energy∗

The work required to move a point charge q from the zero potential refer-
ence to a position r in a potential field Φ(r) is

W = qΦ(r) . (B.1)

If instead, we have a potential field Φ with a continuous charge density ρ,
then the work required to increase ρ by a small quantity of charge δρ is

δW =

∫
Ω∞

δρ(r)Φ(r)dΩ . (B.2)

This construction could start from the initial condition that all charges are
in a reservoir at infinity, and the charge density ρ is built up by adding
infinitesimal spatially identical distributions

δρ(r) =
ρ(r)

K
(B.3)

with K a very large number. Note that in linear medium, everytime after
δρ(r) is added, the potential is increased proportionally by δΦ(r), i.e.,

∗The content is based on [48].
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114 Proof 2: Electrostatic stored energy

δΦ(r) = Φ(r)
K . Thus more work needs to be performed with the proceeding

of the steps.
Hence, the total amount of work is

W =
K∑
k=1

∫
Ω∞

δρ(r) [(k − 1)δΦ(r)] dΩ

=

[
K∑
k=1

(k − 1)

∫
Ω∞

ρ(r)

K

Φ(r)

K
dΩ

]
. (B.4)

The number of steps K has to be infinitely large so that the charge added
each time is infinitesimally small to avoid energy lost to radiation. Hence
using

K∑
k=1

(k − 1) =
K(K − 1)

2
, (B.5)

and taking the limit for K →∞ (B.4) becomes

W =
1

2

∫
Ω∞

ρ(r)Φ(r)dΩ . (B.6)

Next, we will rewrite (B.6) from a field-centric point of view and use
the field vectors ~E and ~D. Substituting the Gauss law,

ρ = ∇ · ~D , (B.7)

into (B.6) gives us

W =
1

2

∫
Ω∞

[∇ · ~D(r)]Φ(r)dΩ

=
1

2

∫
Ω∞

∇ · [Φ(r)~D(r)]dΩ− 1

2

∫
Ω∞

~D(r) · [∇Φ(r)]dΩ . (B.8)

Using the divergence theorem and ∇Φ(r) = −~E(r), (B.8) becomes

W =
1

2

∫
S∞

Φ(r)~D(r)dS− 1

2

∫
Ω∞

~D(r)[∇Φ(r)]dΩ

=
1

2

∫
S∞

Φ(r)~D(r)dS +
1

2

∫
Ω∞

~D(r) · ~E(r)dΩ (B.9)

where S∞ is the bounding surface towarding infinity. Finally, since Φ ∼ 1/r
and ~D ∼ 1/r2 as r →∞, the integral over S∞ will vanish, thus

W =
1

2

∫
Ω∞

~D(r) · ~E(r)dΩ . (B.10)



APPENDIX C

Sensitivity Computation
Using the Domain

Decomposition Method

K.J. van der Kolk and Yu Bi

In this chapter, we will discuss how the domain decomposition method can
be applied to determine capacitance sensitivities.

Consider Figure C.1(a), which shows a cross-section of a metal con-
ductor N1, with capacitive couplings to other conductors. Our goal is
to derive the sensitivities of all capacitances w.r.t. a small variation of a
geometric parameter. Assume that there is a negative variation in a para-
meter p as shown in the figure, which results in an inward displacement
−d of the rightmost sidewall of conductor N1 (d is taken negative for its
inward movement). For ease of discussion, we first consider that there is
only one panel on this affected sidewall and name it the victim panel. By
moving the victim panel, all capacitances in the system will change. It can
certainly be treated as a new system and the updated capacitances can
be computed by generating a new elastance matrix and applying a matrix
inversion. However when the system is large and there are multiple para-
meters, this method becomes prohibitive due to the huge computational
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Figure C.1: Applying domain decomposition to find capacitance sensitivities.

burden. We thus seek for a faster solution.
What we propose to do is to place a virtual panel at the original position

of the victim panel as shown in Figure C.1. This is based on the fact
that an equipotential can be theoretically replaced by an infinitely thin
but infinitely conductive sheet, thereby creating capacitances both sides.
Thus the victim panel is now shielded from the surrounding panels and is
only coupled to the virtual panel. In such a way, the capacitive couplings
among the panels in the original system remains the same and the only
difference is the capacitance ∆C that appears inside the original boundary
of conductor N1. Then the virtual panel is removed and the capacitance
matrix is updated by eliminating the associated element. In the following,
we will show how to execute this idea.

Since we are computing sensitivities, d is actually infinitesimally small.
Therefore there will only be a significant capacitance between the shielded
victim panel and the virtual panel. This capacitance can be computed
simply from the parallel-plate formula

∆C =
εA

d
(C.1)

where ε is the material permittivity around the panel and A is the area of
the panel.
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Now, to see how the other capacitances will change, we write down the
partial short-circuit capacitance matrix,

C̄1
s =

 C̄s11 0 C̄s1x

0 0 0

C̄T
s1x 0 C̄sxx

+

 ∆C −∆C 0

−∆C ∆C 0

0 0 0

 (C.2)

which is a block-matrix, partitioned as

 1× 1 1× 1 1×m
1× 1 1× 1 1×m
m× 1 m× 1 m×m

 (C.3)

where m is the number of surrounding panels. The first node and the
second node in this matrix corresponds to the virtual panel and the shielded
panel respectively. Thus matrix element C̄1

s(1, 2) = C̄1
s(2, 1) implements

the parallel plate capacitor between these two panels. The row-vector C̄s1x
represents the couplings from the virtual panel to the surrounding panels,
and the matrix C̄sxx represents the couplings among the surrounding pan-
els. Since the (shielded) victim panel has no capacitive coupling to the
surrounding panels, the second row and the second column in the matrix
contains only ∆C as the non-zero elements.

It is also necessary to point out that the original partial short-circuit
capacitance matrix before the panel displacement is

C̄0
s =

[
C̄s11 C̄s1x

C̄T
s1x C̄sxx

]
(C.4)

where the entries are the same as the non-zero ones in the first term
in (C.2).

We proceed by eliminating the first node in C̄1
s by taking its Schur

complement, giving

C̄s =

[
∆C 0

0 C̄sxx

]
− 1

C̄s11 + ∆C

[
−∆C

C̄T
s1x

]
·
[
−∆C C̄s1x

]
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or, collecting terms,

C̄s =


C̄s11∆C

C̄s11 + ∆C

C̄s1x∆C

C̄s11 + ∆C

C̄T
s1x∆C

C̄s11 + ∆C
C̄sxx −

C̄T
s1xC̄s1x

C̄s11 + ∆C

 . (C.5)

Substituting the parallel-plate formula (C.1) into (C.5) and taking the
derivative towards d gives us

∂C̄s

∂d
=

εA(
εA− C̄s11d

)2
 C̄2

s11 C̄s11C̄s1x

C̄s11C̄
T
s1x C̄T

s1xC̄s1x

 . (C.6)

Since we are interested in the sensitivity at d = 0, we may simplify this as

∂C̄s

∂d
=

1

εA

 C̄2
s11 C̄s11C̄s1x

C̄s11C̄
T
s1x C̄T

s1xC̄s1x

 . (C.7)

An entry of the above sensitivity matrix (C.7) can subsequently be written
as

∂C̄sab
∂d

=
C̄s1aC̄s1b
εA

(C.8)

where a and b can be any panels in the original system including the
victim panel. This expression shows that the sensitivity between two pan-
els towards d can be computed by their couplings to the victim panel.
These capacitive couplings can directly be obtained from the original par-
tial short-circuit capacitance matrix C̄0

s.
Note that for BEM based extractors, capacitances are also computed

from the matrix C̄0
s. Therefore the sensitivities can be computed along

with the extraction of capacitances on-the-fly. This is a key result of the
proposed algorithm.

Above we have derived the sensitivity of the partial short-circuit ca-
pacitance between a pair of panels (C.8). Using this, we can compute the
sensitivity between conductors. This is done by summing over all panels
that belong to the same conductor:

∂Csij
∂d

=
1

εA

∑
a∈Ni

∑
b∈Nj

C̄s1aC̄s1b (C.9)
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where Csij represents the short-circuit capacitance between conductors Ni

and Nj .

However, until now we worked with the short-circuit capacitances and
they need to be converted into network capacitances using (2.9a). Thus
the coupling capacitance sensitivity with respect to the panel displacement
d, becomes

∂Cij
∂d

= − 1

εA

∑
a∈Ni

∑
b∈Nj

C̄s1aC̄s1b. (C.10)

We notice that this equation (C.10) is in fact the same as (3.47), which
is named the panel sensitivity of capacitance, describing the capacitance
fluctuation (among conductors) induced by a small displacement of one
panel. Again, using the short-hand notation C∗ki =

∑
a∈Ni

C̄ska, (C.10) can
be expressed as

S1 =
∂Cij
∂d

= − 1

εA
C∗1aC∗1b. (C.11)

In fact, the basic idea of the proposed algorithm is very simple and can
be illustrated by a simple example. Suppose there are two plates α and β
that are capacitively coupled as shown in Figure C.2 (a). Then we move
plate β by a short distance and “copy” it to its original place. The distance
d between plate β and its copy β1 is so short that the capacitance between
them is significant and the plate β can be considered to be shielded from
the other plate α. As indicated in Figure C.2 (b), this capacitance can be
calculated as ∆C = εA

d , where A is the area of plate β and ε is the material
permittivity around it.

Now we remove plate β1 and the capacitance between plates α and β
can be approximated, by neglecting the minor contribution from the fringe
fields,

C =
C0∆C

C0 + ∆C
(C.12)

which, by substituting the parallel plate formula of capacitor, can be writ-
ten as

∂C

∂d
= − εAC2

0

(εA+ C0d)2
(C.13)

Using d ≈ 0, we obtain the capacitance sensitivity between plates α and β
towards a small displacement of plate β:

∂C0

∂d
= −C

2
0

εA
. (C.14)
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Figure C.2: Illustrative example with a shielded victim plate and an “added-
removed” virtual plate.

Thus, once we have solved the field problem to get an accurate value
of capacitance C0, we can also calculate its sensitivity towards a small dis-
placement of one of the plates without any extra solve. We only need the
area of the plate and the local value of the permittivity. All the other as-
pects of the geometry and physics of the system, including the conductors,
are already encoded in the solve of C0.

Above, we introduced the panel sensitivity of capacitances and derived
its computation. However, in most cases, more than one victim panel is
needed to approximate a physical variation and its contribution to the
capacitance fluctuation has to be evaluated. As addressed in Chapter 2,
the sensitivities for systematic variation modeling are defined to be with
respect to a geometric parameter variation, for instance the thickness vari-
ation of a metal layer or the width variation of a conductor. Such para-
meter variation leads to small movements of surfaces. These surfaces are
named, as in Chapter 3, the victim surfaces, of which the displacements
equal their associated parameter variations. With a BEM, each surface
consist of a set of panels. The panels that belong to the victim surfaces
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are thus the victim panels, which apparently have the same displacements
as the incident victim surfaces and thus the associated parameter vari-
ations.

In the following, we will study the case with multiple victim panels.
This is done by repeating the steps from (C.1) to (C.8) multiple times.
For ease of discussion and without loss of generality, we will derive the
capacitance sensitivities w.r.t. one parameter variation with two associated
victim panels.

First of all, one of the two victim panels is moved by a small distance
d and one virtual panel is added to maintain the original capacitive coup-
lings. Then the virtual panel is eliminated, leading to a partial short-circuit
capacitance matrix:

C̄10
s =



C̄s11∆C1

C̄s11 + ∆C1

C̄s12∆C1

C̄s11 + ∆C1

C̄s1x∆C1

C̄s11 + ∆C1

C̄s21∆C1

C̄s11 + ∆C1
C̄s22 −

C̄2
s12

C̄s11 + ∆C1
C̄s2x −

C̄s12C̄s1x

C̄s11 + ∆C1

C̄T
s1x∆C1

C̄s11 + ∆C1
C̄T
s2x −

C̄s12C̄
T
s1x

C̄s11 + ∆C1
C̄sxx −

C̄T
s1xC̄s1x

C̄s11 + ∆C1


(C.15)

where the first node represents the displaced victim panel and the second
node represents the other victim panel to be moved. The other nodes in the
matrix corresponds to the surrounding panels other than the two victims.
Also,

∆C1 = −εA1

d
(C.16)

where A1 is the area of the moved victim panel.

Next, the same steps are repeated for the second victim panel. It is
displaced by the same distance d and a virtual panel is added at its original
position so that the victim panel is shielded from the surrounding panels,
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which results in a partial short-circuit matrix as

C̄2
s =



C̄s11∆C1

C̄s11 + ∆C1

C̄s12∆C1

C̄s11 + ∆C1
0

C̄s1x∆C1

C̄s11 + ∆C1

C̄s21∆C1

C̄s11 + ∆C1
C̄s22 −

C̄2
s12

C̄s11 + ∆C1
0 C̄s2x −

C̄s12C̄s1x

C̄s11 + ∆C1

0 0 0 0

C̄T
s1x∆C1

C̄s11 + ∆C1
C̄T
s2x −

C̄s12C̄
T
s1x

C̄s11 + ∆C1
0 C̄sxx −

C̄T
s1xC̄s1x

C̄s11 + ∆C1



+


0 0 0 0

0 ∆C2 −∆C2 0

0 −∆C2 ∆C2 0

0 0 0 0

 (C.17)

(C.18)

where this virtual panel corresponds to the third node and

∆C2 = −εA2

d
(C.19)

with A2 being the area of the second victim panel. Thus this time we
eliminate the third node from the matrix, using again the Gaussian elim-
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ination:

C̄s =



C̄s11∆C1

C̄s11 + ∆C1
0

C̄s1x∆C1

C̄s11 + ∆C1

0 ∆C2 0

C̄T
s1x∆C1

C̄s11 + ∆C1
0 C̄sxx −

C̄T
s1xC̄s1x

C̄s11 + ∆C1


− 1

C̄s22 −
C̄2

s12

C̄s11+∆C1
+ ∆C2

·



C̄s12∆C1

C̄s11 + ∆C1

−∆C2

C̄T
s2x −

C̄s12C̄
T
s1x

C̄s11 + ∆C1





C̄s21∆C1

C̄s11 + ∆C1

−∆C2

C̄T
s2x −

C̄s21C̄
T
s1x

C̄s11 + ∆C1



T

(C.20)

Then terms are collected and (C.16) (C.19) are substituted in the matrix
before the derivative of C̄s towards d is taken. Since the matrix is too big
to be shown, some entries are presented instead.

• The coupling capacitance between the two victim panels:

C̄s(1, 2) =
C̄s12∆C1∆C2

C̄s11C̄s22 − C̄s122 + C̄s11∆C2 + C̄s22∆C1 + ∆C1∆C2

=
ε2A1A2C̄s12

ε2A1A2 − (C̄s11εA2 + C̄s22εA1)d+ (C̄s11C̄22 − C̄2
s12)d2

(C.21)

Taking the derivative of C̄s(1, 2) towards d at d = 0 gives us

∂C̄s(1, 2)

∂d
|d=0 =

C̄s11C̄s12

εA1
+
C̄s21C̄s22

εA2
(C.22)

• The second diagonal entry (associated with the second victim panel):



124 Sensitivity Computation Using the Domain Decomposition Method

C̄s(2, 2) =
(C̄s11C̄s22 + C̄s22∆C1 − C̄2

s12)∆C2

C̄s11C̄s22 + C̄s22∆C1 − C̄2
s12 + C̄s11∆C2 + ∆C1∆C2

=
C̄s22ε

2A1A2 − (C̄s11C̄s22 − C̄2
s12)εA2d

ε2A1A2 − (C̄s22εA1 + C̄s11εA2)d+ (C̄s11C̄s22 − C̄2
s12)d2

(C.23)

Taking the derivative of C̄s(2, 2) towards d at d = 0 gives us

∂C̄s(2, 2)

∂d
|d=0 =

C̄2
s12

εA1
+
C̄2
s22

εA2
(C.24)

• The capacitive coupling among the surrounding panels:

C̄s(x,x) = C̄sxx −
C̄T

s1xC̄s1x

C̄s11 + ∆C1
− (C̄s11 + ∆C1)C̄T

s2xC̄s2x

(C̄s22 + ∆C2)(C̄s11 + ∆C1)− C̄2
s12

− C̄2
s12C̄

T
s1xC̄s1x

(C̄s22 + ∆C2)(C̄s11 + ∆C1)2 − C̄2
s12(C̄s11 + ∆C1)

+

+
C̄s21C̄

T
s2xC̄s1x

(C̄s22 + ∆C2)(C̄s11 + ∆C1)− C̄2
s12

+
C̄s12C̄

T
s1xC̄s2x

(C̄s22 + ∆C2)(C̄s11 + ∆C1)− C̄2
s12

(C.25)

Taking the derivative of C̄s(x,x) towards d at d = 0 gives us

∂C̄s(x,x)

∂d
|d=0 =

C̄T
s1xC̄s1x

εA1
+

C̄T
s2xC̄s2x

εA2
(C.26)

Now, we have the derivative of the partial capacitance matrix towards
d with two associated victim panels

∂C̄s

∂d
=



C̄2
s11

εA1
+
C̄2
s21

εA2

C̄s11C̄s12

εA1
+
C̄s21C̄s22

εA2

C̄s11C̄s1x

εA1
+
C̄s21C̄s2x

εA2

C̄s12C̄s11

εA1
+
C̄s22C̄s21

εA2

C̄2
s12

εA1
+
C̄2
s22

εA2

C̄s12C̄s1x

εA1
+
C̄s22C̄s2x

εA2

C̄s11C̄
T
s1x

εA1
+
C̄s21C̄

T
s2x

εA2

C̄s21C̄
T
s1x

εA1
+
C̄s22C̄

T
s2x

εA2

C̄T
s1xC̄s1x

εA1
+

C̄T
s2xC̄s2x

εA2
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which shows that the sensitivity of capacitance between any pair of panels
a and b is

∂C̄sab
∂d

=
C̄s1aC̄s1b
εA1

+
C̄s2aC̄s2b
εA2

(C.27)

Analogously, if there are multiple victim panels incident to a parameter
variation d, the above expression (C.27) becomes

∂C̄sab
∂d

= −
∑
k∈sp

(
1

εAk
C̄sk,aC̄sk,b

)
(C.28)

where sp is the set of victim panels incident to d. This description shows
that capacitance sensitivities with respect to different parameter variations
are simply incident to different sets of victim panels. All the sensitivities
towards multiple parameter variations can be computed simultaneously
once the associated partial short-circuit capacitances are available.

With (C.28), we can obtain the sensitivity of short-circuit capacitance
between two conductors i and j by summing over all panels belonging to
the same conductor:

∂C̄sij
∂d

=
∑
k∈sp

 1

εAk

∑
a∈Ni

∑
b∈Nj

C̄sk,aC̄sk,b


=
∑
k∈sp

1

εAk
C∗kiC∗kj (C.29)

Subsequently, converting the short-circuit capacitances into network capa-
citances (with (2.9a)) gives us the final equation for coupling capacitance
sensitivity between conductors towards a parameter variation d:

∂Cij
∂d

= −
∑
k∈sp

1

εAk
C∗kiC∗kj . (C.30)

Using (2.9b), we also obtain the sensitivity of the ground capacitance:

∂Cgndi
∂d

=
∑
k∈sp

1

εAk
C∗ki(

N∑
j=1

C∗kj). (C.31)

The sensitivity computation derived by the domain decomposition
method is identical to the result (3.45) and (3.46) given by the adjoint
field technique.
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Summary

With each new generation of IC process technologies, the impact of manu-
facturing variability is increasing. As such, design optimality is harder and
harder to achieve and effective modeling tools and methods are needed to
capture the effects of variability in such a way that it is understandable
and useful to IC designers.

Our research has been inspired by such needs and the goal of our work is
to study and model the effect of manufacturing variations (systematic and
random) on on-chip interconnects, and to make it transparent to designers.
Specifically, we focus on interconnect capacitances.

We propose a sensitivity-based modeling method. The term sensitiv-
ity refers to the first derivative of interconnect capacitance with respect
to a geometric parameter. Using multiple sensitivities, for multiple rel-
evant geometric parameters, we can estimate the effect of manufacturing
variability on the values of the interconnect capacitances.

We have developed an algorithm for sensitivity computation, which is
applicable for layout parasitics extraction (LPE) tools based on a bound-
ary element method (BEM). The algorithm consists of two parts, i.e., the
basic algorithm and the supplementary algorithm, which offers optional
trade-offs between accuracy and efficiency. The basic algorithm is very
efficient in the sense that the sensitivities of the capacitances with respect
to multiple parameters can be obtained to a smaller accuracy at a fraction
of the cost for extracting the nominal capacitances. Solving extra or larger
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systems of equations is not necessary. This can be achieved because all
the data needed for the sensitivity computation is in fact already available
during the nominal capacitance extraction. The supplementary algorithm
achieves a high accuracy at a moderate cost of extra computational time.
The proposed basic algorithm is, with or without the supplementary al-
gorithm, suitable as a core of other algorithms for handling various aspects
of variability-related problems in practice. Two application algorithms
have subsequently been developed in this thesis.

The first application provides a technique for computing the statistical
properties of interconnect capacitances resulting from line-edge-roughness
(LER). Using the proposed algorithm, the nominal values of capacitances
as well as their statistical properties can be obtained at a negligible extra
computational time, compared to the nominal capacitance computation.
The fast estimate of LER effects on interconnect capacitances can be very
useful for designs of passive components with high-precision requirements.
In this context, a real design case is studied. Supported by the measure-
ment results on test chips, we can conclude that our technique successfully
estimates the mismatch of capacitances due to LER.

Calculating the statistical properties of capacitances is, in many cases,
not the eventual purpose of modeling manufacturing variability. Instead,
designers care about the circuit performance, as e.g. expressed by the
frequency response or the transfer function. Traditionally, the statist-
ical properties of the relevant performance parameters are obtained by a
Monte-Carlo method. This approach, however, suffers from a huge com-
putational burden due to the need of sampling the parameter space. This
problem can be solved by the second application algorithm, which achieves
zero parameter sampling, by combining the proposed sensitivity-based
parameterized parasitics extraction technique and a structure-preserving
parameterized model order reduction technique. It demonstrates a highly
efficient methodology to obtain the statistical properties, such as the mean
and the standard deviation, of the transfer function of RC nets subject to
systematic variations.

During our research, we constantly felt the necessity of a good col-
laboration and communication with both technologists and IC designers.
In fact, we think a major challenge for developing tools serving the DFM
purpose is the lack of both silicon validation and statistical foundry data.
Finally, we wish to note that the modeling tools should move beyond pure
analysis to enable applications that can be used by designers for design
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exploration, optimization and achievement of single-pass design.
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Samenvatting

De impact van variaties in productieprocessen van gëıntegreerde schake-
lingen neemt toe met iedere volgende procesgeneratie. Het wordt daarom
steeds moeilijker om een ontwerp te optimaliseren, en er ontstaat steeds
meer behoefte aan doelmatige modelleringstools en –methoden om het ef-
fect van de productievariaties voor ontwerpers inzichtelijk en hanteerbaar
te maken.

Ons onderzoek is gëınspireerd door bovengenoemde behoeften en het
doel van ons werk is om het effect van zowel systematische als toevallige
productievariaties te bestuderen, te modelleren en op een transparante
manier aan de ontwerpers te presenteren. We richten ons daarbij in het
bijzonder op de interconnectcapaciteiten.

Onze methode is gebaseerd op gevoeligheidsanalyse. Met het begrip
gevoeligheid wordt hier bedoeld de eerste afgeleide van interconnectcapa-
citeit naar een geometrische parameter. Wanneer de gevoeligheid voor de
verschillende relevante geometrische parameters bekend is, kan de afwij-
king van de capaciteit als gevolg van een afwijking in de geometrie geschat
worden.

We hebben een algoritme ontwikkeld wat de betreffende gevoeligheden
snel kan uitrekenen. Het algoritme is bedoeld als basis voor layout-naar-
circuit extractoren welke zelf gebruik maken van de boundary element
methode (BEM). Het bestaat uit twee delen, te weten het basisalgoritme
en het aanvullende algoritme, wat een afweging mogelijk maakt tussen re-
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kentijd en nauwkeurigheid. Het basisalgoritme is zeer efficiënt in die zin
dat gevoeligheid voor meerdere parameters benaderd wordt voor een frac-
tie van de kosten voor de extractie van de nominale capaciteitswaarden.
Het is hierbij niet nodig om een extra of een groter stelsel vergelijkingen
op te lossen. Dit is mogelijk omdat alle gegevens die nodig zijn voor de
gevoeligheidsberekening reeds aanwezig zijn tijdens de nominale extractie.
Het aanvullende algoritme verbetert de nauwkeurigheid ten koste van een
beperkte extra hoeveelheid rekentijd. Het basisalgoritme is, met of zonder
het aanvullende algoritme, geschikt als kern van andere algoritmen voor
praktische variabiliteit-gerelateerde ontwerpproblemen. Vervolgens wor-
den twee van zulke toepassingsalgoritmen in dit proefschrift behandeld.

De eerste toepassing betreft een techniek om de statistische eigenschap-
pen van interconnectcapaciteit te bepalen afhangend van de line-edge-
roughness (LER). Met behulp van het voorgestelde algoritme kunnen zowel
de nominale capaciteitswaarden als hun statistische eigenschappen bepaald
worden, en dit met een verwaarloosbare extra rekentijd. Een dergelijke
snelle berekening van het effect van LER op interconnectcapaciteiten kan
zeer nuttig zijn bij het ontwerp van passieve componenten met hoge eisen
aan de precisie. Bevestigd door praktische meetresultaten op test chips,
konden we concluderen dat onze techniek de mismatch van de capaciteiten
als gevolg van LER correct kan inschatten.

In veel gevallen is het bepalen van de statistische eigenschappen van
de capaciteiten niet het hoofddoel van het modelleren van de variabiliteit.
Een ontwerper is meer gëınteresseerd in de prestatie van de schakeling, en
daarmee in aspecten zoals de frequentie-responsie of de overdrachtsfunc-
tie. Traditioneel worden de statistische eigenschappen hiervan bepaald met
behulp van een Monte-Carlo benadering, wat vanwege de benodigde be-
monstering van de parameterruimte een enorme rekenkracht vraagt. Dit
probleem kan opgelost worden door een tweede toepassingsalgoritme dat
bemonstering van de parameterruimte vermijdt door gebruik te maken van
een combinatie van gevoeligheids-gebaseerde extractie van interconnectpa-
rameters en een structuur-behoudende techniek voor geparameteriseerde
modelreductie. Het levert zo een zeer efficiënte methode om de statisti-
sche eigenschappen, zoals gemiddelde en standaardafwijking, te bepalen
van prestatie-gerelateerde grootheden van RC-schakelingen die onderhevig
zijn aan systematische procesvariaties.

Gedurende dit onderzoek zijn we ons steeds bewust geweest van de
noodzaak tot een goede samenwerking en een goede communicatie met
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zowel technologiespecialisten als IC-ontwerpers. Sterker nog, we denken
dat het ontbreken van zowel siliciumvalidatie als statistische gegevens van
het fabricageproces één van de grootste uitdagingen is bij het maken van
gereedschap voor DFM. Tenslotte willen we opmerken dat modelleringsge-
reedschappen meer moeten zijn dan pure analyse-instrumenten, en dat ze
toepassingen moeten krijgen in gereedschap voor exploratie en optimalisa-
tie van het ontwerp en het reduceren van het aantal ontwerpiteraties.
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