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Abstract—The on-going reduction of the on-chip feature size
goes together with an increase of process variability. While the
manufacturer is expected to improve the uniformity of its output,
and the designers are expected to enhance circuit adaptability and
reliability, the design tools are expected to deliver convenient and
fast approaches capable of giving accurate characterizations of
manufacturing tolerances. In this paper, we present an algorithm
that enables an extension of 3-D capacitance extractors to generate
both the nominal capacitances and their sensitivities w.r.t. all
geometric parameters with only one extraction. Using the domain-
decomposition technique, it is shown that sensitivities can be
derived from the intermediate data of the standard capacitance
extraction using the Boundary Element Method (BEM). The
algorithm has been implemented in a layout-to-circuit extractor. It
is shown by experiments that the additional cost for the sensitivity
computation is less than 20% of the standard time consumption,
essentially independent of the number of parameters.

I. INTRODUCTION
Accurate capacitance extraction is essential for signal in-

tegrity analysis of IC interconnects. However, as already broadly
acknowledged, the technology-scaling and the increase in pro-
cess complexity are introducing significant variabilities such that
the relative impact of interconnect delay is greatly enlarged.
One possible approach to deal with these variabilities is to use

sensitivities of the electrical elements with respect to process
parameters. These sensitivities are necessary for establishing
basic formulations in various variation-aware algorithms, such
as moment-based timing analysis [1], Hermite polynomial based
statistic analysis [2] and parametric Model Order Reduction
(pMOR) proposed in [3]. Also, techniques including fast corner
generation, multi corner extraction and the variation-aware
Static Timing Analysis (STA) presented in [4] are all based
on sensitivity models. The Standard Parasitic Exchange Format
(SPEF) has been extended to incorporate sensitivities for process
and temperature variations. The new sensitivity-based SPEF
format enables extraction tools to generate a netlist with nominal
values of parasitics and their sensitivities, which can be easily
read by subsequent tools for analysis.
In this paper, we will present a sensitivity computation algo-

rithm for BEM based capacitance extractors. The algorithm is
very efficient in the sense that the nominal capacitances and their
sensitivities can be generated with one single 3-D extraction.
The rest of the paper is organized as follows. Section II starts by
giving some preliminary information about the so-called partial
short-circuit capacitances. Then we show that simply with these
capacitances, sensitivities can be computed using the domain-
decomposition technique. Section III gives complexity analysis
of the algorithm based on the implementation in a circuit-
to-layout extractor. Two realistic experiments are presented in
Section IV. Numerical results demonstrate the accuracy and
the efficiency of our algorithm with concrete numbers. This

is followed by a statistical application of sensitivities. At last,
Section V concludes the paper.

II. ALGORITHM DERIVATION
A. Background
Capacitances used in SPICE netlists are in fact called network

capacitances (C) and can be specified in terms of the so-
called short-circuit capacitances (Cs) based on the following
relevance:

Cij = −Csij ∀ i #= j (1a)

Cii =
N∑

j=1

Csij ∀ i = 1, 2, . . .N (1b)

where Cij is the coupling capacitance between conductors i and
j; Cii is the ground capacitance of conductor i. The entry of
the short-circuit capacitance matrix Csij is equal to the charge
on conductor i when conductor j is held at a unit potential and
all other conductors are short-circuited to the ground.
When the BEM is used for capacitance extraction, conductor

surfaces are discretized into panels. The short-circuit capaci-
tances associated to the discretized panels before their associa-
tion to conductors are called partial short-circuit capacitances,
denoted C̄s in this paper. The matrix C̄s is given by the inversion
of the Green’s function matrix G, whose entry Gij amounts to
the potential induced at panel i by the charge at panel j.

B. Domain-Decomposition
We will now discuss how the domain-decomposition tech-

nique can be applied to determine capacitance sensitivities.
Consider Figure 1(a), which shows a cross-section of a metal
conductor N1, with capacitive couplings to other conductors.
Assume that we are interested in the sensitivities of all the
capacitances w.r.t. the movement of the rightmost panel of the
conductor. As shown in Figure 1(b), the rightmost panel is
moved inward by −d (by convention, d is taken negative for
an inward displacement). By moving the panel, all capacitances
in the figure will change.
To find out how much the capacitances will change, we apply

domain-decomposition to Figure 1(b), obtaining Figure 1(c).
As shown, a virtual panel is placed at the original location
of the panel, making all the outer capacitances equal to the
capacitances in the original model. The only difference is the
capacitance that now appears inside conductor N1.
Since we are computing sensitivities, d is actually infinites-

imally small. Therefore there will only be a significant capac-
itance between the translated panel and the virtual panel. This
capacitance can be computed simply from the parallel-plate
formula ∆C = −εA/d, where ε is the material permittivity
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Fig. 1. Applying domain-decomposition to find capacitance sensitivities.

around the panel, A is the area of the panel and the minus sign
comes from the fact that the panel is moved inward.
Now, to see how the other capacitances will change, we write

down the partial short-circuit capacitance matrix,

C̄′
s =




C̄s11 0 C̄s1x

0 0 0
C̄T

s1x 0 C̄sxx



+




∆C −∆C 0
−∆C ∆C 0

0 0 0



 (2)

which is a block-matrix, partitioned as



1 × 1 1 × 1 1 × m
1 × 1 1 × 1 1 × m
m × 1 m × 1 m × m



 (3)

where m is the number of surrounding panels. The first node
(first row and column) in this matrix corresponds to the virtual
panel in Figure 1(c), and the second node corresponds to the
translated panel. The row-vector C̄s1x represents the couplings
from the virtual panel to the surrounding panels, and the matrix
C̄sxx represents the couplings among the surrounding panels
and their ground capacitances. Note that the second term in (2) is
the “MNA-stamp” which implements the parallel plate capacitor
between the translated and the virtual panel. For clarity, we
point out that the original partial short-circuit capacitance matrix
before the panel displacement is

C̄0
s =

[
C̄s11 C̄s1x

C̄T
s1x C̄sxx

]
(4)

where the entries are the same as the ones in the first term in (2).
We proceed by eliminating the first node in C̄′

s by taking its
Schur complement, giving

C̄s =
[

∆C 0
0 C̄sxx

]

− 1
C̄s11 + ∆C

[
−∆C
C̄T

s1x

]
·
[
−∆C C̄s1x

]
(5)

or, collecting terms,

C̄s =





C̄s11∆C

C̄s11 + ∆C

C̄s1x∆C

C̄s11 + ∆C

C̄T
s1x∆C

C̄s11 + ∆C
C̄sxx − C̄T

s1xC̄s1x

C̄s11 + ∆C




. (6)

Substituting the parallel-plate formula ∆C = −εA/d into (6)
and taking the derivative w.r.t. d gives us

∂C̄s

∂d
=

εA
(
εA − C̄s11d

)2



 C̄2
s11 C̄s11C̄s1x

C̄s11C̄T
s1x C̄T

s1xC̄s1x



 . (7)

Since we are interested in the sensitivity at d = 0, we may
simplify this as

∂C̄s

∂d
=

1
εA



 C̄2
s11 C̄s11C̄s1x

C̄s11C̄T
s1x C̄T

s1xC̄s1x



 . (8)

An entry of the above sensitivity matrix (8) can subsequently
be written as

∂C̄sab

∂d
=

C̄s1aC̄s1b

εA
(9)

where a and b can be any panels including the translated one.
This expression shows that the sensitivity between two panels
w.r.t. d can be computed by their couplings to the virtual
panel. And these couplings can directly be obtained from the
original partial short-circuit capacitance matrix C̄0

s . Note that
for BEM based extractors, capacitances are also computed from
the matrix C̄0

s . Therefore the sensitivities can be computed along
with the extraction of capacitances on-the-fly. This is a key
result of our algorithm. It explains why we can obtain both
capacitances and their sensitivities with only one system solve.
In the following, we will show how (9) is used to obtain the

final capacitance sensitivities between conductors. First, we sum
over all panels that belong to the same conductor. The sensitivity
of coupling (short-circuit) capacitance between conductors i and
j can therefore be written as

∂Csij

∂d
=

1
εA

∑

a∈Ni

∑

b∈Nj

C̄s1,aC̄s1,b. (10)

Then we consider a geometric parameter p with a nominal
value p0, and d is actually (p − p0). Hence,

∂Csij

∂d
|d=0 =

∂Csij

∂(p − p0)
|p=p0 =

∂Csij

∂p
|p=p0 . (11)

Until now we worked with the short-circuit capacitances and
they need to be converted into network capacitances using (1a).
Thus the coupling capacitance sensitivity w.r.t. parameter p,
using (11), becomes

∂Cij

∂p
= − 1

εA

∑

a∈Ni

∑

b∈Nj

C̄s1,aC̄s1,b. (12)

For simplicity reasons, we only considered one moving panel
in the above discussion while actually there is a set of panels
on the moving surface incident to d (or parameter p). We will
call them the victim panels in the rest of this paper. The Schur
complement of a matrix block is then used to deal with the
multiple victim panels. Details of the derivation, due to the lack
of space here, can be found in [5]. Basically we can accumulate
the victim panels and reach the final equation for the capacitance
sensitivity between conductors i and j:

∂Cij

∂p
= −

∑

k∈sp



 1
εAk

∑

a∈Ni

∑

b∈Nj

C̄sk,aC̄sk,b



 (13)

where sp is the set of victim panels incident to p. This descrip-
tion shows that sensitivities w.r.t. different parameters are simply
incident to different sets of victim panels. All the sensitivities
w.r.t. multiple parameters can be computed simultaneously once
the associated partial short-circuit capacitances are available.



Analogically, the sensitivity for the ground capacitance can
be derived and written as follows

∂Cii

∂p
=

∑

k∈sp

1
εAk

∑

a∈Ni

C̄sk,a(
N∑

j=1

∑

b∈Nj

C̄sk,b). (14)

III. COMPLEXITY ANALYSIS
The algorithm is implemented in, while not limited to, a

layout-to-circuit extractor SPACE [6] using C++. Complexity
analysis based on this implementation is given in this section.
Due to the lack of space here, we will present the main results,
while more detailed explanation can be found in [7] and [5].
The time consumption for capacitance extraction without

using any acceleration technique, is O(m3), with m the total
number of panels. The additional computational burden for sen-
sitivity computation using our algorithm is O(m2) + O(nN2),
where n is the number of victim panels and N is the number
of conductors. Since n ≤ m and normally N & m, O(m2)
is the major cost for the sensitivity computation. Compared to
the complexity of standard capacitance extraction O(m3), the
additional cost O(m2 + nN2) is negligible. For the memory
complexity, the standard capacitance extraction is O(m2). The
extra storage cost for sensitivities is O(MN 2 + m) with M
the number of parameters (M & m), which is also negligible
compared to the complexity of O(m2).
However the complexities of both the time consumption and

the memory cost are too high too be used in practice. This
problem can be solved by using the windowing technique in
SPACE. This technique is based on the fact that when two
panels are far enough away from each other, their capacitive
coupling can be small enough to be neglected. The window
size w is the threshold for distinguishing whether this coupling
should be considered or not. If the distance between the pair
is larger than 2w, their capacitance will not be counted. Using
the windowing technique, the time complexity for the standard
capacitance extraction is reduced to O(mw4). In this case, the
major cost for the sensitivity computation is equal to O(p2

wnw),
with pw being the number of panels within one window and
nw the number of windows in the layout. Since in realistic
layout, pw = O(w2) and nw = O(m/w2), the major time
consumption for sensitivities amounts to O(mw2). Also, the
memory cost of standard capacitance extraction is reduced to
O(w4). The cost for the sensitivities becomes O(MN 2

w + w2),
where Nw (Nw & w) is the number of conductors within
one window. Therefore, the extra time and memory costs for
computing sensitivities are essentially negligible compared to
the complexities for the standard capacitance extraction.

IV. EXPERIMENTS AND RESULTS
A. Accuracy Verification
Experiments have been conducted on a 2.66GHz Intel Xeon

CPU with 1GB memory. The first experiment is a 2-by-2
interconnect structure of which the dimensions are shown in
Figure 2. Since the structure is symmetrical, three coupling
capacitances (Cf12, Cs12, Cfs) and two ground capacitances
(Cfgnd, Csgnd) are studied. For each layer, we consider three
parameters, namely the layout variation (l i, i = 0, 1), the
thickness of the metal (ti, i = 0, 1) and the height of the

d0 = 2µm

t0 = 2µm

t1 = 2µm

d1 = 2µm

w = 2µm s = 2µm

l = 10µm

Cs12

Cf12

Cfs

Csgnd

Cfgnd

layer 0

layer 1

gnd

Fig. 2. 3-D representation of a 2-by-2 interconnect structure.
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Fig. 3. Comparison between 0th order and 1st order approximations. Each
group of two bars, one in blue (0th order approx.) and one in yellow (1st

order approx.), represents the errors of capacitances for one parameter. The six
parameters are, in sequence, l0, l1, d0, t0, d1, t1.

dielectric (di, i = 0, 1). Assuming a 10% variation in each
parameter, we model the capacitances with 1st order (i.e. linear)
approximations using the sensitivities given by our algorithm.
Then we manually change the dimensions of the structure
accordingly by 10% and the extracted capacitances will serve
as a reference.
Figure 3 shows the comparison between the 0 th order and the

1st order approximations where the 0 th order is equivalent to
the situation in which variability is not accounted for. Several
observations can be made:
1) Process variations can not be simply neglected; some can
introduce errors of capacitances exceeding 10%.

2) The 1st order approximation improves much over the 0 th

order approximation. For instance, under a 10% variation
in l0, the 0th order of coupling capacitance Cf12 gives
an error of almost 15%, which drops to 3% using the 1st

order approximation.
3) The computed sensitivities have an acceptable accuracy
indicated by the small errors of the 1st order approxima-
tions (the maximum error is less than 3%).

4) For each capacitance, not all parameter variations are
influential; some of them are even barely noticeable.

To further show the accuracy of the sensitivity computation,
we construct a 2nd order polynomial fit of the extracted ca-
pacitances, i.e., C(p) = a0 + a1p + a2p2 for every parameter.
Then we take its derivative at the nominal dimension p0, i.e.,
2a2p0 + a1 as the reference for sensitivities. Here we study the
sensitivities incident to capacitances with 0th order errors larger
than 5%. The average error of these sensitivities compared to
the references is 15.16%. This error can come from the fact
that only the translated panels are considered in our algorithm
(see Figure 1), while the change of the panel size (e.g., the
top and the bottom panels of N1) is not accounted for. Further
study on this is still undertaken. However, since the sensitivity
itself is a second-order effect to the capacitance, an accuracy



TABLE I
COMPARISON OF THE STANDARD DEVIATIONS GIVEN BY THE ESTIMATION

FROM MONTE-CARLO SAMPLE DATA (LEFT COLUMN) AND THE

COMPUTATION RESULT OF THE LINEAR MODEL (MIDDLE COLUMN).
normfit (F ) model (F ) error

σfs 8.94e − 18 8.19e − 18 8.40%
σf12 25.81e − 18 23.38e − 18 9.41%
σs12 27.75e − 18 25.70e − 18 7.39%

σfgnd 29.64e − 18 26.03e − 18 12.19%
σsgnd 11.60e − 18 9.89e − 18 14.70%

of better than 20% should be good enough for the sensitivity
computation.

B. Statistical Application of Sensitivities
In this section, we will illustrate one possible application

of sensitivities in statistical analysis. Based on the sensitivities
given by our algorithm, we can immediately obtain the standard
deviations of capacitances given the statistical assumption of
the geometric parameters. The accuracy is verified by a Monte-
Carlo simulation of an experimental layout. Finally, compar-
isons of the time consumption are given.
We start by establishing a linear model of capacitance C:

C = C0 +
∑

i

∂C

∂pi
∆pi. (15)

Normally, the technology part can provide statistical distribu-
tions of the parameters. Therefore once the sensitivities are
computed, we can derive the statistical distribution of C. For
instance, we assume that there are n Gaussian distributed
parameters. Due to the linearity of (15), C is also Gaussian
with a mean C0 and a variance given as following

σ2
C =

n∑

i=1

(
∂C

∂pi
σpi)

2. (16)

Hence the standard deviation of a capacitance (σC ) can easily
be computed using the sensitivities given by our algorithm.
To check the accuracy of these computed sigmas, we perform

1000 Monte Carlo samplings on the same 2-by-2 interconnect
structure as in the previous section. Parameter p i (i = 1, ..., 6)
is assumed to be Gaussian with a mean (µpi ) of its nominal
value and the 3-sigma tolerance (3σpi ) being 10% of µpi .
The output capacitance samplings are proven to be Gaussian

distributed with a Lilliefors test using the Matlab command
lillietest at a 5% confidence level. This also agrees with the
linearity assumption. Then we use another Matlab command
normfit to estimate, at 95% confidence intervals, the standard
deviation of the sample data. The result, used as a reference, is
shown in Table I, in comparison to the sigmas given by (16).
As shown in the table, the computed sigmas have good enough
accuracies, which also implies the accuracy of the computed
sensitivities. More importantly, it takes only 23 seconds to get
the nominal capacitances and their standard deviations based
on the sensitivities and the linear model, while the Monte-Carlo
simulation consumes 21 hours and 43 minutes.
The other experiment is conducted on a 3-metal layer in-

terconnect structure. There are 120 capacitances, 105 being
the coupling capacitances and 15 the ground capacitances. In
this case, there are 9 parameters and in total 1080 capacitance
sensitivities. Again we assume the parameters are Gaussian with
a 3-sigma being 10% of the mean.
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Fig. 4. Percentage of total 120 capacitances.

We compute the 3σ for every capacitance according to (16).
To study the effect of geometric variations on capacitances from
a statistical point of view, we partition the range of the 3σ
which is expressed in percentage of the mean value of each
capacitance; and plot the percentage of capacitances in each bin
(Figure 4). While most of the 3σ values are less than 15%, we do
notice that there are a few of them being around 40%. However,
after looking into the numbers we found out that the nominal
values of these capacitances are small enough, compared to
other capacitances, to be neglected.
The total CPU time for this extraction including the sensi-

tivities is 228.6s. Compared to the time for a standard 3-D ex-
traction on the same configuration being 200.9s, the additional
cost for the sensitivity computation is only 27.7s, counting for
13.94% of the standard time consumption. In comparison, Ca-
dence uses another technique to construct capacitance sensitivity
models for the fast corner generation and 10% extra time is
needed to generate sensitivity models per parameter per layer
[4]. Hence for their method, it would take in total 90% additional
time to generate all the sensitivity models for this structure. The
method presented in this paper is much more efficient.

V. CONCLUSION
This paper addressed an algorithm to compute capacitance

sensitivities w.r.t. multiple geometric parameters using domain-
decomposition. We have proved, analytically and numerically,
that the algorithm is highly efficient in the sense that all the sen-
sitivities can be generated along with the nominal values under
one 3-D capacitance extraction with a very modest computation
time. Its accuracy has been shown by realistic testing results.
The conducted experiments demonstrate that the method can be
easily used in conjunction with statistical analysis.
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