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Abstract
This paper presents a new, efficient algorithm for capac-

itance sensitivity calculation w.r.t. geometric variations
due to process imperfection of interconnects. Sensitiv-
ity calculation can be a very important step in variation-
aware interconnect analysis. The algorithm is based on
the Adjoint Field Technique (AFT) derived from an ap-
plication of Tellegen’s theorem for the electrostatic (ES)
field. The algorithm relies on manipulating the interme-
diate data of a standard (without considering variations)
capacitance extraction. Thus no additional costly compu-
tations are required, which makes the algorithm very ef-
ficient. The algorithm has been verified for 2D structures
while the generalization for 3D structures is straightfor-
ward.
Introduction

The on-going reduction of feature size goes together
with an increase of manufacturing variability, of which
the impact on the interconnect performance has become
extremely important. In particular, capacitance extrac-
tion considering process variations has been gaining more
and more attention. A popular approach is to use sensi-
tivity models with the final capacitance as a function of
geometry variations [1] [2] and [3].

A key requirement for this type of approach is the abil-
ity to calculate the sensitivity coefficients accurately and
efficiently. Different techniques have been utilized to do
that: numerical differencing in [2] and analytic differenc-
ing of empirical capacitance models in [1] [3]. In this
paper, we propose a new technique of capacitance sensi-
tivity calculation by the Adjoint Field Technique (AFT)
which is in fact an application of Tellegen’s theorem [4].

The remainder of this paper is organized as follows: We
start with an introduction of AFT for the ES field derived
from Tellegen’s theorem; then a detailed analysis of our
algorithm is given, followed by an illustrative example.
Next, experiments and results will be shown to verify the
algorithm and the conclusion is given at the end.
Adjoint Field Technique/Tellegen’s Theorem

Consider a circuit network with m ports and n internal
branches (excluding the port branches). A combination
of Kirchhoff’s current law and voltage law applied to the
network can lead to

IT
mVm = IT

nVn (1)

where Im and Vm are currents and voltages at the ports
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while In and Vn are on the branches in the interior of the
network. This is called the “actual-power theorem”[5]
which is consistent with the principle of energy conser-
vation. While the “actual-power theorem” (1) being ap-
plied for one circuit network, the “quasi-power theorem”,
well-known as “Tellegen’s theorem” [4] [5], gives a similar
equation for two networks with the same topology:

IT
mV̂m = IT

n V̂n (2)

The two networks are usually referred to as the original
network and the adjoint/auxiliary network. To distin-
guish them, we use a notation “ˆ” for the adjoint network
quantities throughout this paper.

Originated from circuit networks, Tellegen’s theorem
has been generalized to the electromagnetic fields [6] [7].
In this paper we will show another application of Telle-
gen’s theorem for the ES field.

Assume that there are N conductors in the uncharged
open space where the absolute zero potential is considered
at infinity. We know the ES energy is

U =
1
2

N∑

i=1

Viqi (3)

where Vi is the absolute ES potential and qi is the total
charge of the ith conductor (i = 1, . . . , N) [8].

We also know that in the ES field, the stored electric
energy for a configuration of static charges is the amount
of work required to assemble such a configuration, which
is given as [8] [9]

W =
1
2

∫

Ω

EDdΩ. (4)

Apparently (3) and (4) are two different forms of the
expression of the ES energy, which means U = W . This
can be written as

(V,q) =< E,D > (5)

where (V,q) = VT · q and < E,D >=
∫
Ω

EDdΩ. Equa-
tion (5) shows the energy conservation for the ES field
and analogically to (1) and (2), we can, without proof,
obtain Tellegen’s theorem for the ES field expressed as

(V̂,q) =< Ê,D > (6)

or
(V, q̂) =< E, D̂ > . (7)

If q in the original network is changed by ∆q, based on
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the linearity of the inner product, (6) can lead us to

(V̂,∆q) =< Ê, ∆D > . (8)

Similarly, we can derive from (7) that

(∆V, q̂) =< ∆E, D̂ > . (9)

Subtracting (8) from (9) gives us

(∆V, q̂)− (V̂,∆q) =< ∆E, D̂ > − < Ê,∆D > (10)

It is well-known that q = CV. Considering the fact
that ∆V = 0 in our sensitivity study because the excita-
tion voltages are not influenced by geometric variations,
the change in q due to the variation in p can be written
as

∆q = (∆C)V + C(∆V) = (∆C)V (11)

In linear isotropic media we have D = εE and D̂ = εÊ.
Thus using ∆V = 0, the substitution of (11) in (10) re-
sults in

−(V̂, (∆C)V) =< ∆E, εÊ > − < Ê,∆(εE) >

=< ∆E, εÊ > − < Ê, ε∆E > − < Ê,E∆ε >

= − < Ê,E∆ε >

Consequently,

(V̂, (∆C)V) =< (∆ε)E, Ê > (12)

This is the main result of AFT for our capacitance sensi-
tivity calculation from a theoretical point of view. Next
we will show how to develop (12) into an applicable algo-
rithm.
Algorithm Analysis

To compute the sensitivity of a particular capacitance
w.r.t. a certain geometric parameter, e.g., ∂Cij

∂p , we should
first select the specific capacitance Cij . For this pur-
pose, let’s look at the left-hand side of Equation (12):
(V̂, (∆C)V). Assume that there are N conductors in the
system and we have

(V̂, (∆C)V) =



V̂1

...
V̂i

...
V̂N




T 


∆C11 · · · ∆C1j · · · ∆C1N

...
...

...
∆Ci1 · · · ∆Cij · · · ∆CiN

...
...

...
∆CN1 · · · ∆CNj · · · ∆CNN







V1

...
Vj

...
VN




If we want to calculate ∆Cij , we need to define the exci-
tation voltages of the original system as

Vj = V0 = 1 and Vk = 0 ∀ k 6= j; (13)

and the excitation voltages of the adjoint system as

V̂i = V0 = 1 and V̂k = 0 ∀ k 6= i. (14)

Therefore,

(V̂i, (∆C)Vj) = (∆Cij)V 2
o = ∆Cij (15)

where Vj is a vector whose elements are under condition
(13) and V̂i is a vector whose elements are under condi-
tion (14).

Now we consider a more general situation where each
conductor is discretized so that the Boundary Element
Method (BEM) can be applied. For simplicity reasons, we
use the piecewise constant (PWC) shape function for the
rest of this paper. Each conductor is uniformly discretized
with n panels which leads to a total number of m = n×N
panels in series in the system. For example, conductor
j has panels numbered from (j − 1)n + 1 to jn. The
discretization is identical for the adjoint system.

We then use incidence matrices A (for the original sys-
tem) and Â (for the adjoint system) to relate the panels
to the applied voltage (φ ∈ {1, 0}), which further, as will
be explained later, determine the specific capacitance to
be calculated.

For example, we want to calculate ∆Cij . Based on (13),
(14) and (15), 1(V ) is applied to the jth conductor and
0(V ) to the others for the original system while for the
adjoint system 1(V ) to the ith conductor and 0(V ) to the
others. Considering there are n panels on each conductor
and making use of the incidence matrices A and Â, we
arrive at a generalization of (13) and (14):

Vj = Ajφ

=




zeros(1, (j − 1)n)T ones(1, (j − 1)n)T

ones(1, n)T zeros(1, n)T

zeros(1, (N − j)n)T ones(1, (N − j)n)T




(
1
0

)
(16)

V̂i = Âiφ

=




zeros(1, (i− 1)n)T ones(1, (i− 1)n)T

ones(1, n)T zeros(1, n)T

zeros(1, (N − i)n)T ones(1, (N − i)n)T




(
1
0

)
(17)

where we use the Matlab notation to describe Aj and Âi.
Substituting (16) and (17) in (15), we obtain

∆Cij = (V̂i, (∆C)Vj) = V̂
T

i ·(∆C)Vj = φT Â
T

i (∆c)Ajφ

where c is the so-called partial capacitance matrix (c-
matrix) [10]. The elements of c-matrix are in fact the
capacitances associated to the BEM discretization panels
before their association to conductors. Note that there are
in total m panels in the system, thus ∆c (the variation in
partial capacitances due to ∆p) is an m×m matrix. The
choice of incidence matrices A and Â for the original and
the adjoint systems respectively depends on the particular
capacitance (∆Cij) we want to calculate.

Next, let’s look at the right-hand side of Equation (12):
< (∆ε)E, Ê >, where ∆ε is the variation in the permit-
tivity due to the variation in p (∆p).

By combining (12) and (15), we can derive that

∂Cij

∂p
=

∫

Ω

(
∂ε

∂p
)EÊdΩ (18)

where by definition

∂Cij

∂p
= lim

∆p→0

∆Cij

∆p
.
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There are two different cases depending on how the
surface of the conductor varies:

1. The surface of the conductor expands outwards into
the air. As we can see in Figure 1(a), the shadow
area is where ε is changed. Specifically, the ε in the
shadow area varies from ε0 (εair = ε0 in the air) to 0
(εmetal ≈ 0 in the metal ) so ε is changed by a value
of

∆ε = 0− ε0 = −ε0. (19)

2. The opposite situation is that the surface shrinks
(Figure 1(b)) and the ε in the shadow area varies
from 0 (in the metal) to ε0 (in the air):

∆ε = ε0 − 0 = ε0. (20)

Figure 1: Schematics for the changes of ε.

Since the variation of the permittivity due to ∆p only
happens on the corresponding surface sp, which is moved
due to ∆p, we have

dΩ = ∆pds

where dΩ is basically the shadow area in Figure 1(a)/(b).
Therefore the sensitivity (18) can be rewritten as,

∂Cij

∂p
=

∫

sp

lim
∆p→0

(
∆ε

∆p
)EÊ∆pds = ∆ε

∫

sp

EÊds (21)

When the BEM is applied, E is a piecewise constant
quantity on the set of panels. Hence, the integration over
sp becomes a summation. When also using D = εE, we
get

∂Cij

∂p
= ∆ε

∫

sp

EÊds = ∆ε
∑

k∈sp

EkÊkak =
1

∆ε

∑

k∈sp

DkD̂kak

(22)
where ak is the corresponding area of the kth panel on
the surface (sp). With Gauss law ∇ · D = ρ (where ρ
is the charge density) applied to the conductor surfaces,
(22) can be written

∂Cij

∂p
=

1
∆ε

∑

k∈sp

ρkρ̂kak. (23)

For a panel k (k ∈ {1, · · · ,m}), since PWC is used for the
BEM, the charge density ρk can be related to the charge
qk with the corresponding area ak as qk = ρkak, which
leads to

∂Cij

∂p
=

1
∆ε

∑

k∈sp

qk q̂k/ak. (24)

Based on (16) we have

q = CVj = cAjφ

=




c1,(j−1)n+1 + c1,(j−1)n+2 + · · ·+ c1,jn

c2,(j−1)n+1 + c2,(j−1)n+2 + · · ·+ c2,jn

...
cm,(j−1)n+1 + cm,(j−1)n+2 + · · ·+ cm,jn




=




∑jn
a=(j−1)n+1 c1,a∑jn
a=(j−1)n+1 c2,a

...∑jn
a=(j−1)n+1 cm,a




Therefore

qk =
jn∑

a=(j−1)n+1

ck,a, (25)

Similarly, based on (17) we have

q̂ = CV̂i = cÂiφ =




∑in
b=(i−1)n+1 c1,b∑in
b=(i−1)n+1 c2,b

...∑in
b=(i−1)n+1 cm,b




(26)

and

q̂k =
in∑

b=(i−1)n+1

ck,b. (27)

The substitution of (25) and (27) in (24) gives us the
final equation which will be used for the calculation of
capacitance sensitivities:

∂Cij

∂p
=

1
∆ε

∑

k∈sp

(
jn∑

a=(j−1)n+1

ck,a)(
in∑

b=(i−1)n+1

ck,b)/ak.

(28)

The development above actually presents the sensi-
tivity in terms of partial capacitances, which can be
extracted by the BEM-based layout-to-circuit extractor
SPACE [11]. In the next section, we will use an example
to illustrate the algorithm.

Illustrative Example

This is a system with two conductors (N = 2) as shown
in Figure 2(a). In order to make the explanation clear and
easy to understand, we assume that there are 2 panels on
every surface and therefore n = 8 panels on each conduc-
tor. The system has thus altogether m = n × N = 16
panels. The geometry parameter p is the width of con-
ductor 1 and the affected surface sp consists of panels nr.7
and 8.

According to (28), the sensitivity of the mutual capac-
itance (C21) between conductor 1 and 2 w.r.t. p can be
calculated as (Figure 2(b)),

∂C21

∂p
=

1
∆ε

[(
8∑

a=1

c7,a)(
16∑

b=9

c7,b)/a7+(
8∑

a=1

c8,a)(
16∑

b=9

c8,b)/a8].
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Figure 2: The system schematic (a) and the partial c-matrix (b)
in the illustrative example.

Experiments and Results
In this section, two experiments will be shown to verify

the accuracy of the algorithm described above. Again, we
assume a system with two conductors for simplicity rea-
sons (the schematic is the same as Figure 2(a)), but this
is not a restriction of the method. In the first experiment,
the distance between these two conductors (d) is taken as
the geometric parameter. The widths of the conductors
are 2µm and the heights are 3µm. The total number of
panels is 500. The main steps of the experiment are as
follows:

1. Use the BEM to compute C as a function of d, re-
sulting in CBEM (d).

2. Fit CBEM (d) with appropriate polynomial approx-
imations. In this experiment, 1/d is taken as the
variable of the polynomial and 2nd order expansion
of C is utilized:

Capprox.(d) = m0 + m1
1
d

+ m2(
1
d
)2.

To achieve a high accuracy, the approximation is fur-
ther divided into several subsections (i.e., three sub-
sections in this case).

3. Use the polynomial fit above to compute the sensitiv-
ity by calculating the derivatives of the approximated
capacitance w.r.t. d, resulting in ∂C

∂d

n
(where the no-

tation “n” represents for the numerical differencing
method), which is considered as the reference of the
sensitivity computed by the AFT method (∂C

∂d

A
).

4. Compute the sensitivity using (28), and compare the
result ∂C

∂d

A
with ∂C

∂d

n
.

Figure 3 shows ∂C
∂d

n
and ∂C

∂d

A
w.r.t. d in the range of

0.5µm - 2µm. The sensitivity calculated by AFT agrees
well with ∂C

∂d

n
, which is taken as the reference. Table 1

shows the average and the maximum differences between
them while the distance ranges from 0.5µm up to 12µm
divided into three subsections.

Distance(µm) Average Deviation Max. Deviation

0.5 - 2 1.74% 2.99%
2 - 6 2.82% 4.76%
6 - 12 3.82% 4.93%

Table 1: Comparison between ∂C
∂d

A
and ∂C

∂d

n
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Figure 3: Simulation results w.r.t. d: d = 0.5 - 2 µm.

We also conducted another similar experiment with t,
the thickness of the conductors, instead of d as the ge-
ometric parameter. The system contains two conduc-
tors with a width w = 2µm and a separation distance
d = 3µm. The total number of panels is 2000. The
average and the maximum differences between ∂C

∂t

A
and

∂C
∂t

n
are 5.36% and 5.74% respectively over the range of

t = 2µm− 5µm.
Conclusion and Future Work

A new AFT-based algorithm is proposed for the cal-
culation of capacitance sensitivity w.r.t. geometric varia-
tions for capacitance extraction considering process vari-
ability. This highly efficient algorithm requires no ad-
ditional costly computation once the partial c-matrix is
extracted. Although so far the experiments shown above
only consider 2D interconnect structures, we believe the
algorithm can be applied to 3D structures as well.
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