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Abstract—Time-based localization approaches attract a lot of
interest due to their high accuracy and potentially low cost for
wireless sensor networks (WSNs). However, time-based local-
ization is tightly coupled with clock synchronization. Thus, the
reliability of timestamps in time-based localization becomes an
important yet challenging task to deal with. In this paper, we
propose robust time-based localization strategies to locate a target
node with the help of anchors (nodes with known positions) in
asynchronous networks. Two kinds of asynchronous networks are
considered: one only with clock offsets, labeled quasi-synchronous
networks, whereas the other with not only clock offsets but also
clock skews, labeled fully asynchronous networks. A novel ranging
protocol is developed for both networks, namely asymmetric trip
ranging (ATR), to reduce the communication load and explore the
broadcast property of WSNs. Regardless of the reliability of the
timestamp report from the target node, closed-form least-squares
(LS) estimators are derived to accurately estimate the target node
position. As a result, we counter the uncertainties caused by the
target node by ignoring the timestamps from this node. Further-
more, in order to simplify the estimator in fully asynchronous
networks, localization and synchronization are decoupled. A
simple yet efficient method is proposed to first Calibrate the
Clock Skews of the anchors, and then Estimate the Node Position
(CCS-ENP). Finally, Cramér-Rao bounds (CRBs) and simulation
results corroborate the efficiency of our localization schemes.

Index Terms—Clock offset, clock skew, least-squares, localiza-
tion, synchronization, two-way ranging.

I. INTRODUCTION

D UE to their wide range of applications, such as target
tracking, surveillance, environment monitoring, geo-

graphical routing and smart home, location-aware wireless
sensor networks (WSNs) [1] have been intensively investigated
[2]–[5]. Location-awareness is crucial for WSNs [4], [5]. To
obtain accurate location estimates, range-based localization
algorithms are more favorable than range-free ones [6]–[8]. In
general, the range-based algorithms follow two steps [3]–[5]:
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they first measure some metrics bearing location information,
the so-called ranging or bearing, and second estimate the posi-
tions based on those metrics, the so-called location information
fusion. There are mainly four metrics: time-of-arrival (TOA)
or time-of-flight (TOF) [9], time-difference-of-arrival (TDOA)
[10], [11], angle-of-arrival (AOA) [12], and received signal
strength (RSS) [13]. The ranging methods using RSS can be
implemented by energy detectors, but they can only achieve a
coarse resolution. Antenna arrays are required for AOA-based
methods, which encumbers their popularity. On the other
hand, high accuracy and potentially low cost implementation
make TOA or TDOA based on ultra-wideband impulse radios
(UWB-IRs) a promising ranging method [4].

Since TOA or TDOA measurements are time-based, clock
synchronization is essential to achieve accurate localization.
Clock synchronization alone plays a critical role to guarantee
general operations of WSNs. It is under intensive investiga-
tion [14]–[17] and results in various protocols, such as the
Reference Broadcast Synchronization (RBS) protocol [18],
the Timing-sync Protocol for Sensor Networks (TPSN) [19],
and the Flooding Time Synchronization Protocol (FTSP) [20].
On the other hand, clock synchronization can also be handled
by signal processing tools: a maximum likelihood estimator
(MLE) for the clock offset is designed in [21], whereas theo-
retical performance limits for clock synchronization and MLEs
for the clock offset and skew under different delay models, are
developed in [22] and [23].

Because of the stringent cost and power constraints of
WSNs, low-cost clocks are normally employed. This makes
time-based localization and synchronization tightly coupled
and challenging [17]. However, only recently the two entangled
problems are jointly considered. A time-based positioning
scheme (TPS) is developed in [24], where only the clock offset
is considered. In [25], location in time and space is proposed,
but only at the MAC and application layers. The two-way
ranging (TWR) protocol proposed in the IEEE 802.15.4a stan-
dard [26] is employed in [27] for asynchronous networks. The
relative clock skews are first calibrated, and then the node po-
sitions are estimated by a distributed maximum log-likelihood
estimator (MLLE). Furthermore, a localization approach based
on triple-differences, which are the differences of two differen-
tial TDOAs, is proposed in [28], where the corrupted one-way
TOA measurements due to the relative clock offset and clock
skew are corrected by several steps. The TWR protocol is also
employed in [29], which considers TOA-based localization
using practical clocks with internal delays and clock skews.
Only recently, the joint estimation of the clock skew, the clock
offset, and the position of the target node is proposed in [30]
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for networks with synchronous anchors. A total least-squares
(TLS) estimator is further proposed in [30] to take the un-
certainties of the anchor positions and clock parameters into
account. Moreover, the target node position and clock offset are
estimated by a weighted least-squares (WLS) estimator in [31].
An asynchronous position measurement system is developed in
[32] for indoor localization.

Due to the burgeoning of WSNs, localization is vulnerable to
many types of attacks (see e.g., [33]–[35]). Lazos and Pooven-
dran [36] propose Secure Range-independent Localization
(SeRLoc) methods by taking advantage of antenna sectors in
the presence of malicious adversaries. Capkun et al. [37] design
Secure Positioning In sensor NEtworks (SPINE), which deal
with distance modification attacks. Moreover, Chen et al. [38]
design several attack detection schemes for wireless localiza-
tion systems. Li et al. [39] propose to use least median squares
(LMS) as the metric to develop localization algorithms, which
tolerate outliers. Liu et al. [40] use the minimum mean square
error (MMSE) as an indicator to filter out outliers, and further
propose another method to bear with outliers by adopting an
iteratively refined voting scheme.

In this paper, we consider time-related attacks which tightly
connect with localization and synchronization. UWB-IRs are
employed for high resolution TOA ranging [4], [41]. Low duty
cycle, low probability of detection and speed of light transmis-
sion make UWB-IRs ideal for secure communication and local-
ization. The TWR protocol in the IEEE 802.15.4a standard [26]
promotes UWB ranging. However, this TWR protocol is vul-
nerable to an internal ranging attack by deceitful target nodes,
which means that target nodes can send fraudulent timestamps
to spoof their processing time. Furthermore, target nodes may
submit inaccurate timestamps due to their asynchronous clocks
or other reasons. Thus, the current protocol is not efficient and
can even fail under the above circumstances.

We adopt UWB transmissions and propose robust TOA-based
localization methods for asynchronous networks with possible
internal attacks. We deal with two kinds of asynchronous
networks: one with only clock offsets referred to as quasi-syn-
chronous networks, whereas the other with not only clock
offsets but also clock skews referred to as fully asynchronous
networks. A novel ranging protocol, namely the asymmetric
trip ranging (ATR) protocol is proposed in this paper by taking
advantage of the broadcast property of WSNs. All the anchors
can obtain ranging information in one ranging procedure. The
ATR protocol reduces the communication load dramatically
compared to the TWR protocol. In addition, by ignoring the
processing time report from the target node, we estimate the
target node position based only on the reliable timestamps from
the anchors. As a result, the fact that the target node is not
synchronized to the anchors, or an internal attack is mounted
by a compromised target node, does not have any influence
on the performance of our method. Furthermore, closed-form
least-squares (LS) and WLS estimators are proposed for
quasi-synchronous networks. For fully asynchronous networks,
closed-form LS estimators are derived to jointly estimate the
target position and clock parameters taking practical issues
into account. To further simplify these estimators, synchro-
nization and localization can be decoupled with almost no cost

in performance. A simple yet efficient solution is proposed
to first Calibrate the Clock Skews of the anchors and then
Estimate the Node Position (CCS-ENP). At the same time, our
scheme is immune to an internal ranging attack. To the best of
our knowledge, this is the first paper that combines all three
aspects: localization, synchronization and security.

The rest of the paper is organized as follows. In Section II,
we review the TWR protocol, analyze its error sources and ex-
plain its vulnerability. The robust time-based localization algo-
rithms for quasi-synchronous and fully asynchronous networks
are proposed in Sections III and IV, respectively. Performance
bounds and simulation results are shown in Section V. The con-
clusions are drawn at the end of this paper.

Notation: We use upper (lower) bold face letters to denote
matrices (column vectors). and denote
the element on the th row and th column, the th row, and
the th column of the matrix , respectively. indicates the

th element of . and are an all-zero (all-one)
column vector of length and an identity matrix of size

, respectively. Moreover, and designate
transposition, element-wise multiplication, absolute value and

norm, respectively.

II. THE TWO-WAY RANGING PROTOCOL

The TWR protocol used in the IEEE 802.15.4a standard [26]
facilitates ranging between two nodes. The packet structure
proposed by the standard is composed of a synchronization
header (SHR) preamble, a physical layer header (PHR) and
a data field (see Fig. 3). The first pulse of the PHR is called
the ranging marker (RMARKER). The moment when the
RMARKER leaves or arrives at the antenna of a node is critical
to ranging. An example of the TWR protocol is shown in
Fig. 1. Node A (or Node B) records (or ) and
(or ) upon the departure and the arrival of the RMARKER,
respectively. Thus, the time of flight (TOF) , which is linear
to the distance (the ranging target) between node A and node
B ( , where is the speed of light), is given by

(1)

where is the processing time at node B,
and are the clock skews of node A and node B, respectively,
and is the aggregate error term. In general, is several hun-
dreds of milliseconds and is several tens of nanoseconds for
an indoor environment. As a result, is heavily influenced by
clock drift due to the relative clock skew between node A and
node B.

As the differences of the timestamps are employed in (1), the
clock offsets are canceled. The aggregate error term in (1)
accounts for different kinds of errors, such as the leading edge
detection (LED) errors [26], [42], and the uncertainties of the
internal delays [26], [29], which we explain next. The LED er-
rors are due to the detection of the first multipath component of
the received RMARKER. It is not a trivial task to detect the first
multipath component, or in other words, the leading edge of the
first cluster of the arriving RMARKER. It depends on the mul-
tipath channel, the signal bandwidth, the signal-to-noise ratio
(SNR) and the detection strategy [4]. Even if we can detect the
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Fig. 1. An example of the TWR protocol.

leading edge accurately, there may still be a ranging bias due to
different kinds of environments. The LED could lead to accu-
rate ranging for line-of-sight (LOS). However, the TOF of the
first arriving multipath component in non-line-of-sight (NLOS)
environments may not indicate the correct distance information
due to the obstacles between two ranging nodes. In that case,
the TOF estimates are biased, and calibration is indispensable to
remove the bias. A ranging model that can distinguish between
different environments is proposed in [42]. A more sophisticated
ranging model as an enhancement of [42] is presented in [27],
which takes the detection noise and the drift compensation into
account. Next to LED errors, internal delays are caused by the
difficulty to measure events at the antenna exactly. Since the
ranging counter is typically somewhere in the digital section, the
signal has to go through some transmitting (or receiving) chain
after (or before) the ranging counter records the timestamp to
reach the antenna (or the ranging counter). There is a differ-
ence between the real time the RMARKER leaves or arrives at
the antenna and the recorded time by the ranging counter. This
time-varying internal delay can be a few hundreds of nanosec-
onds depending on the transceiver structure [29]. The standard
proposes a calibration mechanism to compensate for the internal
propagation time but some uncertainties still remain. Note that
can also contain communication and quantization errors as dis-
cussed next. Since the timestamps are distributed over the two
nodes, they have to be brought together, which cannot be accom-
plished perfectly due to the limited communication resources.
Furthermore, the abstract ranging counter, which assigns values
to the timestamps, runs at a nominal 64 GHz in the standard,
which causes some quantization effects.

We remark that the timestamps employed for ranging are dif-
ferent from the timestamps used in traditional clock synchro-
nization protocols. Since the timestamps used here are recorded
at the physical layer when the RMARKER leaves or arrives at
the antenna, it excludes most of the conventional sources of
uncertainty of message delivery delays in clock synchroniza-
tion [19], [20], [43], including send time, access time, reception
time and receive time, which are the main error sources in clock
synchronization. The TOF for ranging, called the propagation
time in clock synchronization, is one of the sources of uncer-
tainty of message delivery delays, but it only contributes a little
compared to other sources in traditional clock synchronization.
Therefore, if these timestamps are used not only for ranging, but
also for clock synchronization, a much better accuracy could be
achieved than the existing clock synchronization protocols (see

[14], [19], [20], and references therein). This kind of physical
layer synchronization is also referred to as the pulse coupling
method in [15].

Let us now focus on the security issues of the TWR pro-
tocol. The standard provides optional private ranging as a se-
cure mode. The dynamic preamble selection and the encryp-
tion of the timestamp reports are used to facilitate the private
ranging [26], [41]. However, the TWR protocol is vulnerable to
an internal attack, which cannot be addressed by conventional
cryptographic countermeasures. According to (1), the TOF
depends not only on the timestamps and at node A,
but also on the processing time at node B. The dependence
on the reliability and synchronization of two different nodes is a
weak point of the TWR protocol. For example, assume node B
is compromised and tries to cheat node A about its distance by
tampering its processing time as . Then, will be miscalcu-
lated, since node A is not aware of the attack. In the following,
we adopt the same signal structure as in Fig. 3 and propose a
new protocol which is immune to internal attacks.

III. LOCALIZATION FOR QUASI-SYNCHRONOUS NETWORKS

Considering anchor nodes and one target node, we would
like to estimate the position of the target node. All the nodes are
distributed in an -dimensional space, e.g., (a plane) or

(a space). The coordinates of the anchor nodes are known
and defined as , where the vector

of length indicates the known co-
ordinates of the th anchor node. We employ a vector of length

to denote the unknown coordinates of the target node. Our
method can also be extended for multiple target nodes. We re-
mark that in a large scale WSN, it is common to localize target
nodes in a sequential way [19], [30]. The target nodes that have
enough anchors are localized first. Then, these located target
nodes can be viewed as new anchors that can facilitate the local-
ization of other target nodes. Therefore, the scenario here is of
practical interest. In this section, we tackle quasi-synchronous
networks, and we leave the fully asynchronous case to the next
section.

A. System Model

In quasi-synchronous networks, the target node clock runs
freely, and the clock skews of all the anchors are equal to or
treated as . There are only clock offsets among all the anchors.
The timing relation between the th anchor clock and the
absolute time can be described as [14]

(2)

where is the unknown clock offset of relative to the
absolute clock. Moreover, the model for the target clock is given
by

(3)

where and denote the unknown clock skew and clock
offset of the target node clock relative to the absolute clock.

A novel asymmetric trip ranging (ATR) protocol is shown in
Fig. 2, which subsumes the protocol used in [44] as a special
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Fig. 2. An illustration of the ATR protocol.

case. The ATR protocol makes all the other anchors listen to the
ranging packets and record timestamps locally, when one an-
chor and the target node exchange their ranging packets. It can
obtain more information than the TWR protocol, where all the
other nodes are idle, when two nodes exchange their ranging
packets. The ATR protocol starts with one of the anchors ini-
tiating the ranging request and recording a timestamp when
its RMARKER departs, which can also be interpreted as the
time when that anchor receives its own RMARKER without any
delay. Without loss of generality, we assume the th anchor
initiates the ranging request, and we denote the time recorded at
the th anchor as . Consequently, all the other anchors and
the target node receive the ranging request and record their own
timestamps and , respectively, as
soon as they detect the RMARKER from the th anchor. The
target node processes the ranging request and broadcasts a re-
sponse. The departure time of the target RMARKER is recorded
as , and we define as the true processing
time of the target node. Each anchor in the network detects the
broadcasted ranging response from the target node, and records
its own timestamp for the arrival of the target RMARKER as

. If a compromised target node tampers its
processing time as , or a target node reports due to the clock
skew or the internal delay, all the distance measurements would
be decreased or enlarged by (where is the speed of
light), which would lead to a meaningless position estimate.

For the th anchor node, the difference between and
relates to the distance as

(4)

where is the un-
known distance between the th anchor and the target node,

is the unknown distance corresponding to the target
node processing time, and is the known dis-
tance between the th and the th anchors. Furthermore,
and denote the distance errors translated from the measure-
ment errors of and , respectively, which are aggregate
error terms, as we have discussed in Section II. Note that the
recordings of and are triggered
by the received RMARKERs, and thus the same internal delays
are involved, which are canceled out by making differences of

timestamps recorded at the same node as indicated in (4). By
making these differences, the clock offsets at the anchors are
canceled as well.1 The situation is different for the th anchor,
since it records and upon transmitting and receiving
the RMARKERs, respectively. As a result, the internal delays
of the transmission path and the receiving path are added up
when computing . Thus, we assume that the main
part of the th anchor’s internal delay is compensated before-
hand as accomplished in [29]. But different from [29], com-
pensation is not required for the other anchors in our scheme.
Consequentially, and can be modeled as zero-mean
random variables with variance and , respectively [42].
Note that the timestamps employed here are recorded at the
physical layer, which are totally different from the conventional
timestamps recorded at the MAC or other upper layers in clock
synchronization, which have different error sources. A NLOS
environment would introduce a biased LED error, and in that
case or will have a non-zero mean. However, since
this bias is not known, the only safe assumption is to view it
as zero mean, or we assume that a calibration is carried out
to remove it beforehand. More sophisticated error models such
as the one in [27] can be considered in future work. Defining

and ,
we can write (4) in vector form as

(5)

In order to be immune to an internal attack by the compro-
mised target node or to incorrect timestamps due to the random-
ness of the target node clock, we do not employ the timestamp
report from the target node, but only use it as a trigger at each
anchor. We estimate the target position only based on the times-
tamps and , recorded locally at the
anchors. Because we do not use the timestamps of the target
node, its clock parameters, such as clock skew, clock offset and
internal delay, do not have any impact on our scheme. This dis-
tinguishes our algorithm from others that use the timestamps
of the target node, such as [27], [29], [30]. It is easy for the
target node to cheat one anchor, but it is almost impossible to
cheat all the anchors simultaneously. We remark that the coop-
erative positioning protocol proposed in [45] is similar to our
ATR protocol. However, our method differs from [45] in sev-
eral aspects: (i) we do not use the timestamps from the target
node, and thus our method is more robust to unreliable times-
tamps; (ii) the target node processing time is unknown; and (iii)
we propose low-complexity closed-form solutions for localiza-
tion, instead of complex MLEs.

B. Localization Algorithm

Since we do not use the timestamps from the target node,
the clock parameters of the target node do not impact its po-
sition estimate. More specifically, we treat (the distance cor-
responding to the target node processing time) in (5) as an un-
known parameter. Note that (5) is a linear equation with respect

1Note that this is different from the traditional TDOA approach, which re-
quires synchronization among anchor nodes [5].
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to (w.r.t.) , but it is a complicated nonlinear equation w.r.t.
due to and . We are not interested in methods with a high
computational complexity, such as the MLE which also requires
the unknown noise pdf. Because of the low-cost and low-power
constraints of a WSN, we explore low-complexity closed-form
solutions for localization.

Since is a dominant term at the right hand side of
(5). In order to extract useful distance information, we have to
preprocess (5). Instead of choosing a reference anchor node as
proposed in [44], we employ an orthogonal projection onto
the orthogonal complement of , which is given by

. Since can be used to eliminate the
term in (5). As a result, premultiplying both sides
of (5) with , we obtain

(6)

Note that , where is the un-
known average of the distances between the target node and the
anchors. Thus, (6) can be rewritten as

(7)

Keeping on one side, moving the other terms to the other side,
and making an element-wise multiplication, we achieve

(8)

where , and

(9)

Defining and , where
and , we can write the

entries of as

(10)

Recall that and
, leading to and

. The stochastic properties of can be ob-
tained in a similar way. Moreover, and
are uncorrelated. As a result, the stochastic properties of are
given by

(11)

where we ignore the higher order noise terms to obtain (12),
shown at the bottom of the page, and assume
under the condition of sufficiently small measurement errors.
Note that the noise covariance matrix depends on the un-
known .

As (8) is still a nonlinear equation w.r.t. , we make again
use of the orthogonal projection to eliminate the terms
and in (8). By premultiplying both sides of (8) with and
rearranging the terms, we arrive at

(13)

As a result, (13) becomes a linear equation w.r.t. both and .
Defining

, and , we can finally
rewrite (13) as

(14)

We can find the LS and WLS solutions for (14) as

(15)

and

(16)

respectively, where is a weighting matrix. The optimal
weighting matrix is given by

(17)

where we use the pseudo inverse because the projection
matrix has rank . Furthermore, should be a full rank
tall matrix. Thus, the number of anchors should be no less

(12)
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than , which indicates that we need at least five anchors to
estimate the target position on a plane. Since depends on
the unknown , we can update it iteratively. Consequently, the
iterative WLS is summarized as follows:

1) Initialize using the estimate of based on the LS esti-
mate of ;

2) Estimate using (16);
3) Construct using (17), where is computed using ;
4) Repeat Steps 2) and 3) until no obvious improvement of

the cost function is observed.
An estimate of is finally given by

(18)

We remark that the estimator (15) [or (16)] is equivalent to
the unconstrained LS (or WLS) estimator to obtain and

all together as discussed in [46]. We may even
improve the estimation performance by exploring the relations
among and as constraints. Constrained LS
(CLS) and weighted CLS estimators can be derived as in [9],
[10]. However, it is extremely difficult to take the relation
between and into account, since it is highly nonlinear.

The distance corresponding to the target node processing
time can be estimated as

(19)

where are the distance estimates
between the target node and the anchors based on . We remark
that there are mathematical similarities between our data model
(5) and the data model in [29], if we regard in (5) as
an unknown internal delay. However, we employ a novel ATR
protocol and estimate the parameters in a different way.

IV. LOCALIZATION FOR FULLY ASYNCHRONOUS NETWORKS

A. System Model

In this section, we release all the synchronization constraints
on the anchors and the target node. There are not only clock
offsets, but also clock skews among all the anchors and the target
node. We use the same clock model (3) here for the target node
to indicate its clock skew and clock offset . The anchor
clock model is now given by

(20)

where denotes the unknown clock skew of relative to
the absolute clock, and again is the unknown clock offset.
Thus, the relations between the clocks and are given
by

(21)

Applying the same ATR protocol as in Section III-A, we ob-
tain and , which are in total times-
tamps. Fig. 3 shows an example of a transmitted ranging packet
and a received ranging packet. The time intervals in Fig. 3 are
measured by the local clocks of the nodes. The length of the
preamble is defined as . Since the ranging packet is gener-

Fig. 3. An example of a transmitted ranging packet and a received ranging
packet.

ated by the th anchor, it generates the preamble of length
relative to its own clock. The th anchor regards the length of
the received preamble as due to the relative clock
skew. Therefore, the difference between and is not
only related to the TOF between the anchors (measured by the
th anchor as ), but also to the relative clock drift over

the whole preamble. However, the relations between the two
timestamps recorded at the same anchor are relatively simple.
By making differences of the timestamps from the same anchor,
the clock offsets are again canceled out. As a result, the differ-
ence between and can be described as

(22)

There is no impact of the relative clock drift over the whole pre-
amble in (22). Note that the error terms and are also
influenced by the clock skew of the th anchor. We remark that
the target clock does not have any impact on (22), but the influ-
ence of the asynchronous anchors remains. This again confirms
that ignoring the timestamps from the target node can thwart in-
ternal attacks.

In (22), there are equations and unknown pa-
rameters in total. It is clear that there are not enough obser-
vation data (timestamps) to estimate all the parameters, if the
ranging procedure is only executed once. To solve that problem,
the ranging procedure can be repeated several times in order
to obtain sufficient observations for making an accurate esti-
mate as in [47]. However, in a power-hungry WSN, data com-
munications could consume much more power than data pro-
cessing [48], and the communication load should be reduced
as much as possible. Therefore, we would like to add another
RMARKER in the ranging packet to facilitate the clock syn-
chronization in order to achieve the lowest communication load.
The new ranging packet not only includes RMARKER1 in the
PHY header (PHR), but also has another RMARKER2 as the
first pulse in the last symbol of the data field as shown in Fig. 3.
We further make use of the prior knowledge about the length
of the ranging packet, and thus the time interval between
RMARKER1 and RMARKER2 is known to all the anchors.
The length of the received ranging packet can be extended or
reduced due to the relative clock skew of the receiver clock,
and thus yields the parameter bearing the information of the
relative clock skew. This parameter is different from the ones
used in [29], [42], where ranging packets have to be consecu-
tively or periodically transmitted. By making use of the known
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length of the ranging packet [42] or the known transmission pe-
riod [29], they also obtain parameters bearing the relative clock
skew information. However, our scheme has a smaller commu-
nication load than theirs. In Fig. 3, we show an example of an
extended ranging packet, where the clock skew difference be-
tween the receiver and the transmitter is positive. We remark
that should be long enough to observe sufficient clock drift,
which means that after the clock drift should be larger than
the resolution of the TOA estimation. According to the standard,
the time interval could be several milliseconds, e.g., 5 ms.
With a typical value of the relative clock skew of ppm, we
will observe 200 ns clock difference after 5 ms, whereas the res-
olution of TOA estimation using an UWB signal with a 1 GHz
bandwidth can reach several nanoseconds [4]. Therefore, using
a standard ranging packet, it is sufficient to estimate the drift be-
tween RMARKER1 and RMARKER2. Consequently, each an-
chor records two timestamps, when it receives a ranging packet
during the procedure. The first set of timestamps is still repre-
sented by and , while the second one is denoted by
and . Their relations are summarized as

(23)

(24)

where and are the corresponding distance errors
due to the measurement errors of and , respectively.
We assume that the variances of the measurement errors for
RMARKER1 and RMARKER2 in the same packet are the
same, and thus and are also modeled as zero-mean
random variables with variances and , respectively.
Note that the clock skew of the target in (24) influences the
time differences between RMARKER1 and RMARKER2 of
the ranging response, which are generated by the target node.
We remark that the other clock parameters of the target node,
i.e., the clock offset and the internal delay, do not influence
our scheme, since we still do not use the timestamps from the
target node.

We can now write (22), (23) and (24) in vector form as

(25)

(26)

(27)

where

,
and . Recall that

and .
Our goal is to estimate and based on (25)–(27).
Note that the last equation in (25) does not offer any useful
information, since is at both sides of the equation. Thus,

we collect the equations related to and write them
in vector form as

(28)

where

and

B. Localization Algorithm

From now on, we ignore the error terms in the analysis for
simplicity. The localization algorithms based on (25)–(27) are
also naturally immune to the unreliable timestamps from the
target node, and robust to the randomness of the target node
clock, since we do not use the timestamps from the target
node. We would like to investigate low-complexity localiza-
tion methods. Although the data model (28) is a complicated
nonlinear equation w.r.t. , it is linear w.r.t. to . We can first
estimate as a function of and based on (28), and then
estimate based on (27) by plugging in the estimate of . From
(28), the LS estimate of is given by

(29)

Plugging (29) into (27), and rearranging the terms, we achieve

(30)

where , which is full rank, and
whose inverse is explored in Appendix A. Premultiplying both
sides of (30) with , we arrive at

(31)

where . We remark that at
this point an MLE can be derived to jointly estimate and

based on (31) via exhaustive search. It needs at least four
anchors to locate a target node on a plane in this case. However,
it has a high computational complexity. Thus, we continue to
investigate low-complexity closed-form solutions. Applying
to get rid of , recalling that , and
moving to one side and the other terms to the other side, we
obtain

(32)
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Executing element-wise multiplication and rearranging the
equation, we obtain the linear equation

(33)

where

and

However, as investigated in Appendix B, is always rank-de-
ficient in the noiseless case or with sufficiently small noise.
Hence, it is impossible to have a unique estimate of based
on (33). We can also interpret this problem from another point
of view. Our method is equivalent to first jointly estimating

, and (in total parameters) based on
(25)–(27), then plugging the estimate of into (27), linearizing
the equations w.r.t. , and finally estimating . But (25) and (26)
are linearly dependent in the noiseless case or with sufficiently
small noise, and there are only independent equations in
(25)–(27). Therefore, we cannot estimate without ambigui-
ties, and that is why (33) does not have a unique solution.

However, let us take some practical issues into account to
solve this problem. The clock skew of the th anchor relative
to the absolute time is , which is in the order of several
tens of ppm . The typical range of is from 2 ppm to
80 ppm according to the standard, which means that is in the
range of 0.99992 to 1.00008, and also is in the same range.
Thus, we can make a first-order Taylor expansion of as a
function of around 1 by ignoring the higher order terms
as . We can plug it into (33), rearrange the
terms, and then obtain an equation w.r.t. and

(in total unknowns). However, if we make
further use of the prior knowledge that is very close to 1,
we can obtain an equation with even fewer unknowns, leading
to a better estimation performance. Thus, we can further assume
that , and plug this together with
into (33), which leads to

(34)

where
and . Note
that there are only unknowns in (34). The LS estimate of

is then given by

(35)

Note that the rank of should be in order to estimate all
the parameters, which indicates . It needs at least
six anchors to estimate all the parameters in a plane.

Now that we can simplify the problem by considering prac-
tical issues, let us revisit the data model (32). Since is very
close to 1, we may assume by ignoring the ef-
fect of , which means we treat as 1, although it may not

be exactly equal to 1. Note that this approximation can be im-
proved by first applying conventional synchronization methods
to the target node. We can then rewrite (32) as

(36)

Sequentially, after element-wise multiplication and moving
terms, we arrive at

(37)

where
, and .

The LS estimate of is then given by

(38)

The rank of should be in order to estimate all the pa-
rameters, which indicates . It needs at least five
anchors to estimate all the parameters in a plane. As a result,
taking such practical issues into account can dramatically sim-
plify the problem. Moreover, we remark that the data model (36)
is similar to the data model (7) in Section III-B. Thus, the local-
ization algorithms in Section III-B for quasi-synchronous net-
works can also be applied here to estimate .

Since it is always complicated to estimate and
jointly, we can also resort to simple solutions to de-
couple the synchronization and the localization. Defining

of length , and
of length , we can first estimate based

on (25) and (26), which means that we first make use of be-
tween the two RMARKERs to Calibrate the Clock Skews, and
then Estimate the Node Position (CCS-ENP). As is tightly
coupled with the other clock skews, we can only estimate their
ratios. We combine (25) and (26) ignoring the noise terms as

(39)

where , and

(40)

Consequently, the LS estimates of and are given by

(41)

(42)

respectively. Since only (27) is related to , we rewrite it as an
equation in and without noise terms

(43)

where . Due to the fact that , we can
write and . Thus, we can rewrite (43) as

(44)

where is tightly coupled with . Again, we can improve
this approximation by first synchronizing the th anchor in
order to improve the localization performance. Plugging into
(44), we observe that it is equivalent to the position estimation
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based on (5). Therefore, the time-based localization algorithms
in Section III.B for quasi-synchronous networks can again be
applied here to estimate . For brevity, we do not repeat the al-
gorithms here. We remark that employing this separate method,
we also need five anchors to calibrate the clock skews and esti-
mate the target position in a plane. As an extension, even if some
of the anchors are manipulated by attackers to report misinfor-
mation, we could still combine our approach with the methods
in [39] or [40] to mitigate the influence of outliers. This is left
for future work.

V. PERFORMANCE BOUNDS AND NUMERICAL RESULTS

As a well-adopted lower bound, the Cramèr-Rao bound
(CRB) is derived for quasi-synchronous and fully asyn-
chronous networks, respectively. Here, we exemplify the CRBs
for location estimation on a plane, e.g., we take . The
Fisher information matrix (FIM) based on the model
(5) in Section III-A for quasi-synchronous networks is derived
in Appendix C, where , and .
Consequently, we obtain and

. We observe that is not part
of . Therefore, no matter how large is, it has the
same influence on the CRB for quasi-synchronous networks.
On the other hand, the FIM based on the model
(25)–(27) in Section IV-A for fully asynchronous networks is
derived in Appendix D, where ,
and . As a result, we achieve

and .
All the parameters of appear in , and thus they all
influence the CRB for fully asynchronous networks.

Let us now evaluate the performance of the proposed ro-
bust localization algorithms by Monte Carlo simulations, and
compare it with the CRB. We consider two simulation setups:
Setup 1 and Setup 2. In Setup 1, the anchors are evenly located
on the edges of a 40 m 40 m rectangular to mimic an indoor
geometry scale. Meanwhile the target node is randomly located
on a grid with cells of size 1 m 1 m inside the rectangular.
In Setup 2, all anchors and the target node are randomly dis-
tributed on the grid inside the rectangular. Furthermore, and

have the same variance , while and have the
same variance . Due to the broadcast property of the ranging
protocol, we assume that and are related to the dis-
tances according to the path loss law. Thus we define the av-
erage noise power as , where and
are chosen to fulfill the condition that all and
are equal as in [9]. Note that since , we simply as-
sume and . The processing time of the
target node is 5 ms, and as a result the corresponding distance

is m. The time interval be-
tween RMARKER1 and RMARKER2 is 1 ms. The clock skews
of the anchors and the target are randomly generated in the range
of . The performance criterion is the
root mean square error (RMSE) of versus SNR, which can be

expressed as , where is the
estimate obtained in the th trial. Each simulation result is av-
eraged over Monte Carlo trials. We would like to

Fig. 4. RMSE of target node position � for quasi-synchronous networks. (a)
Setup 1,� � �. (b) Setup 2,� � �.

compare our localization algorithms with the conventional lo-
calization algorithm using the TWR protocol, which is clarified
in Appendix E, and the algorithm LS-I in [30]. We assume that
the algorithm LS-I in [30] is employed with accurate knowledge
of the anchor clock parameters and positions. The number of
rounds of two-way message exchanges for LS-I in [30] is four,
as with more than four rounds, the estimation performance im-
provement is only marginal [30]. The clock offsets are randomly
generated in the range of [1 ns, 10 ns].

A. Localization for Quasi-Synchronous Networks

Fig. 4(a) and (b) shows the localization performance of re-
spectively Setup 1 and Setup 2 with eight anchors that do not
suffer from clock skews. In each Monte Carlo run, we generate
a new geometry. In both figures, the dashed lines with no and
“ ” markers represent the conventional localization algorithm
using the fraudulent timestamp report from the target node with
3 m and 15 m errors, respectively. According to the figures,



4406 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 9, SEPTEMBER 2011

they cannot estimate the target position correctly even with suffi-
ciently small noise terms. A larger timestamp error introduces a
higher error floor. The dashed line with “ ” markers illuminates
the conventional localization algorithm using the correct time-
stamp report. It is slightly better than the CRB of our method for
Setup 1 (the dotted line with “ ” markers), but much better than
the one for Setup 2. This is reasonable, since the conventional
method estimates less parameters than the proposed method.
The performance of the algorithm LS-I (the dashed line with
“ ” markers) in Setup 1 and Setup 2 is quite different. It is
worse than our method (the solid lines with different markers)
in Setup 1, whereas it is better than our method in Setup 2.
As a result, the algorithm LS-I seems to be sensitive to the ge-
ometry, when the target node is inside the region restricted by
the anchors. Moreover, ranging packets are transmitted in
the algorithm LS-I compared to only 2 ranging packets in our
scheme, so our communication load is much smaller. Further-
more, the method in Section III-B is immune to a fraudulent
timestamp report and robust to the randomness of the target node
clock. Moreover, its localization performance is accurate with
sufficiently small noise terms. The solid line with “ ” markers
shows the performance of the LS estimator using the eighth
anchor as the reference node [44], whereas the solid line with
“ ” markers indicates the performance of our proposed LS esti-
mator using the projection . Note that they almost overlap. The
solid lines with “ ” and “ ” markers denote the performance
of our proposed WLS method with an optimal weighting and
an iterative weighting matrix, respectively. The fact that they
almost overlap indicates that if we use the LS estimate as an
initial point, the iterative WLS can converge to the WLS with
optimal weighting. The performance of the WLS with optimal
weighting is slightly better than the LS and the iterative WLS
estimators. Considering the computational complexity and the
performance, the LS estimator would be the best option.

B. Localization for Fully Asynchronous Networks

Fig. 5(a) and (b) illustrates the localization performance of re-
spectively Setup 1 and Setup 2 with eight anchors in fully asyn-
chronous networks. The dotted lines with “ ” markers depict
the performance of the conventional TWR algorithm without
clock skew calibration. The high error floors indicate that it
cannot estimate the correct position of the target even with suf-
ficiently small noise. The dotted line with “ ” markers indi-
cates the performance of the conventional TWR algorithm using
a correct timestamp report and with clock skew calibration. It is
lower than the dotted line with “ ” markers, which represents
the CRB and serves as a benchmark for fully asynchronous net-
works. There are performance gaps between the CRB and the
proposed methods in both figures. However, the gap is smaller in
Setup 2. The proposed methods make a tradeoff between perfor-
mance and complexity. The performance of the algorithm LS-I
(the dashed line with “ ” markers) in Setup 1 and Setup 2 is
again quite different. It is slightly worse than our method (the
solid lines with different markers) in Setup 1, whereas it is better
than the CRB in Setup 2. Note that it estimates much fewer pa-
rameters than ours, since it assumes the exact knowledge of the

Fig. 5. RMSE of target node position � for fully asynchronous networks. (a)
Setup 1,� � �. (b) Setup 2,� � �.

anchor clock parameters. On the other hand, we estimate the an-
chor clock skews and the target node position together. The al-
gorithm LS-I still seems to be sensitive to the geometry, and has
much more communication load than ours. The estimator (the
lines with “ ” markers) and the CCS-ENP method (the lines
with “ ” markers) achieve the same performance. The perfor-
mance of the estimator (the lines with “ ” markers) is worse
than them in general, as it estimates more parameters. Note that

treats as 1, and treats as and as
. Therefore, there are error floors when (the solid lines

with “ ” and “ ” markers), but these floors only appear at high
SNR. The performance degradation at high SNR caused by the
approximation error in is more important than the benefit of
less unknowns. Thus, has a slightly higher error floor than
when at high SNR. However, as long as the condition

is fulfilled, both and (the dashed lines with “ ”
and “ ” markers) can achieve accurate estimates, even for high
SNR. The CCS-ENP method is developed by treating as 1.
Thus, it has a similar error floor at high SNR when ,
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which is indicated by the solid line with “ ” markers. Based
on the above analysis, both the estimator and the CCS-ENP
method are good choices considering the implementation cost
and performance.

VI. CONCLUSION

In this paper, we have proposed robust localization strategies
based on TOA measurements to localize a target node with the
help of anchors for asynchronous networks. We have dealt with
two kinds of asynchronous networks: one with only clock off-
sets referred to as quasi-synchronous networks, and the other
not only with clock offsets but also clock skews referred to as
fully asynchronous networks. Regardless of the reliability of
the timestamps from the target node, we have proposed a novel
ranging protocol, namely asymmetric trip ranging (ATR), which
leads to localization methods that are naturally immune to in-
ternal attacks mounted by a compromised target node. LS and
WLS estimators have been proposed to localize the target node
for quasi-synchronous networks. For fully asynchronous net-
works, we have also developed closed-form LS estimators to
jointly estimate the position and clock parameters taking prac-
tical issues into account. Furthermore, we have decoupled local-
ization and synchronization, and proposed a simple yet efficient
method, which is to first Calibrate the Clock Skews, and then
Estimate the Node Position (CCS-ENP). Moreover, the CRBs
for both quasi-synchronous and fully asynchronous networks
have been derived, respectively. Simulation results have corrob-
orated the efficiency of our localization methods. In future work,
we can formulate a total least squares (TLS) estimator taking the
inaccuracies of the anchor position and clock parameters into
account, when we use located target nodes as new anchors to
localize other target nodes in large WSNs.

APPENDIX A
COMPUTATION OF

Since can be written as

(45)

Recalling that , we arrive at

(46)

where
, which is a diagonal matrix of size

with and
. The inverse of is given by

(47)

where . We further have

can be obtained by plugging the expression of
into (45).

APPENDIX B
COMPUTATION OF

In the noiseless case or with sufficiently small
noise, . Recalling that

,
we explore the properties of . With

(where ),
, and

, we obtain

(48)

(49)

(50)

Based on (49) and (50), we have

(51)

Consequently, the independent columns of are
. The rank of is , but its size

is . Thus, is rank-deficient.
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APPENDIX C
CRB DERIVATION FOR QUASI-SYNCHRONOUS NETWORKS

We analyze the CRB for jointly estimating and based on
(5). The FIM is employed, with entries defined as

(52)

where is shown in (54). In the case of localization
on a plane can be specified as

(53)

where , and and are defined in
(55) and (56) at the bottom of the page, respectively.

(54)

APPENDIX D
CRB DERIVATION FOR FULLY ASYNCHRONOUS NETWORKS

We rewrite (25)–(27) as

(57)

(58)

(59)

We analyze the CRB for jointly estimating and
based on (57)–(59). The FIM is employed, with entries
defined as

(60)

where

(61)

(62)

where and
. Furthermore, we achieve

(63)

(64)

[see (65)–(66) at the bottom of the page]. We obtain
by plugging in the above results. Then we can derive
based on (60).

(55)

(56)

(65)

(66)
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APPENDIX E
CONVENTIONAL LOCALIZATION BY THE TWR PROTOCOL

Assume the distances between the target and the anchor nodes
are measured by executing the TWR protocol. For each execu-
tion, we obtain four timestamps, namely and (the time
when the RMARKER leaves the th anchor), and and
at the target. Recalling the parameters defined in the previous
sections, the relations between the timestamps can be described
as follows:

(67)

(68)

where we assume that exact knowledge of the time when the
RMARKER leaves, thus , and is a zero-
mean random variable with the same variance as . We
first obtain an estimate of based on (68)

(69)

Plugging (69) into (67), we can write (67) in vector form without
noise terms as

(70)

where . The target position can then
be estimated based on (70) using the same LS estimator as in
Section III.
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