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A complete detection, channel estimation, synchronization, and equalization scheme for a transmitted reference (TR) ultra-
wideband (UWB) system is proposed in this paper. The scheme is based on a data model which admits a moderate data rate and
takes both the interframe interference (IFI) and the intersymbol interference (ISI) into consideration. Moreover, the bias caused
by the interpulse interference (IPI) in one frame is also taken into account. Based on the analysis of the stochastic properties of
the received signals, several detectors are studied and evaluated. Furthermore, a data-aided two-stage synchronization strategy
is proposed, which obtains sample-level timing in the range of one symbol at the first stage and then pursues symbol-level
synchronization by looking for the header at the second stage. Three channel estimators are derived to achieve joint channel
and timing estimates for the first stage, namely, the linear minimum mean square error (LMMSE) estimator, the least squares
(LS) estimator, and the matched filter (MF). We check the performance of different combinations of channel estimation and
equalization schemes and try to find the best combination, that is, the one providing a good tradeoff between complexity and
performance.
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1. Introduction

Ultra-wideband (UWB) techniques can provide high speed,
low cost, and low complexity wireless communications with
the capability to overlay existing frequency allocations [1].
Since UWB systems employ ultrashort low duty cycle pulses
as information carriers, they suffer from stringent timing
requirements [1, 2] and complex multipath channel esti-
mation [1]. Conventional approaches require a prohibitively
high sampling rate of several GHz [3] and an intensive
multidimensional search to estimate the parameters for each
multipath echo [4].

Detection, channel estimation, and synchronization
problems are always entangled with each other. A typical
approach to address these problems is the detection-based
signal acquisition [5]. A locally generated template is cor-
related with the received signal, and the result is compared
to a threshold. How to generate a good template is the task
of channel estimation, whereas how to decide the threshold
is the goal of detection. Due to the multipath channel,

the complexity of channel estimation grows quickly as the
number of multipath components increases, and because of
the fine resolution of the UWB signal, the search space is
extremely large.

Recent research works on detection, channel estimation,
and synchronization methods for UWB have focused on low
sampling rate methods [6–9] or noncoherent systems, such
as transmitted reference (TR) systems [5, 10], differential
detectors (DDs) [11], and energy detectors (EDs) [9, 12].
In [6], a generalized likelihood ratio test (GLRT) for frame-
level acquisition based on symbol rate sampling is proposed,
which works with no or small interframe interference (IFI)
and no intersymbol interference (ISI). The whole training
sequence is assumed to be included in the observation
window without knowing the exact starting point. Due to
its low duty cycle, an UWB signal belongs to the class of
signals that have a finite rate of innovation [7]. Hence, it can
be sampled below the Nyquist sampling rate, and the timing
information can be estimated by standard methods. The the-
ory is developed under the simplest scenario, and extensions



2 EURASIP Journal on Wireless Communications and Networking

are currently envisioned [13]. The timing recovery algorithm
of [8] makes cross-correlations of successive symbol-long
received signals, in which the feedback controlled delay
lines are difficult to implement. In [9], the authors address
a timing estimation comparison among different types of
transceivers, such as stored-reference (SR) systems, ED
systems, and TR systems. The ED and the TR systems
belong to the class of noncoherent receivers. Although their
performances are suboptimal due to the noise contaminated
templates, they attract more and more interest because
of their simplicity. They are also more tolerant to timing
mismatches than SR systems. The algorithms in [9] are
based on the assumption that the frame-level acquisition has
already been achieved. Two-step strategies for acquisition are
described in [14, 15]. In [14], the authors use a different
search strategy in each step to speed up the procedure, which
is the bit reversal search for the first step and the linear search
for the second step. Meanwhile, the two-step procedure in
[15] finds the block which contains the signal in the first
step, and aligns with the signal at a finer resolution in the
second step. Both methods are based on the assumption
that coarse acquisition has already been achieved to limit the
search space to the range of one frame and that there are no
interferences in the signal.

From a system point of view, noncoherent receivers
are considered to be more practical since they can avoid
the difficulty of accurate synchronization and complicated
channel estimation. One main obstacle for TR systems
and DD systems is the implementation of the delay line
[16]. The longer the delay line is, the more difficult it
is to implement. For DD systems [11], the delay line is
several frames long, whereas for TR systems, it can be only
several pulses long [17], which is much shorter and easier
to implement [18]. ED systems do not need a delay line,
but suffer from multiple access interference [19], since they
can only adopt a limited number of modulation schemes,
such as on-off keying (OOK) and pulse position modulation
(PPM). A two-stage acquisition scheme for TR-UWB systems
is proposed in [5], which employs two sets of direct-sequence
(DS) code sequences to facilitate coarse timing and fine
aligning. The scheme assumes no IFI and ISI. In [20], a blind
synchronization method for TR-UWB systems executes an
MUSIC-kind of search in the signal subspace to achieve high-
resolution timing estimation. However, the complexity of the
algorithm is very high because of the matrix decomposition.

Recently, a multiuser TR-UWB system that admits not
only interpulse interference (IPI), but also IFI and ISI
was proposed in [21]. The synchronization for such a
system is at low-rate sample-level. The analog parts can run
independently without any feedback control from the digital
parts. In this paper, we develop a complete detection, channel
estimation, synchronization, and equalization scheme based
on the data model modified from [21]. Moreover, the per-
formance of different kinds of detectors is assessed. A two-
stage synchronization strategy is proposed to decouple the
search space and speed up synchronization. The property of
the circulant matrix in the data model is exploited to reduce
the computational complexity. Different combinations of
channel estimators and equalizers are evaluated to find

the one with the best tradeoff between performance and
complexity. The results confirm that the TR-UWB system
is a practical scheme that can provide moderate data rate
communications (e.g., in our simulation setup, the data rate
is 2.2 Mb/s) at a low cost.

The paper is organized as follows. In Section 2, the
data model presented in [21] is summarized and modified
to take the unknown timing into account. Further, the
statistics of the noise are derived. The detection problem is
addressed in Section 3. Channel estimation, synchronization,
and equalization are discussed in Section 4. Simulation
results are shown and assessed in Section 5. Conclusions are
drawn in Section 6.

Notation. We use upper (lower) bold face letters to
denote matrices (column vectors). x(·)(x[·]) represents a
continuous (discrete) time sequence. 0m×n (1m×n) is an all-
zero (all-one) matrix of size m × n, while 0m (1m) is an all-
zero (all-one) column vector of length m. Im indicates an
identity matrix of size m × m. �, ⊗ and � indicate time
domain convolution, Kronecker product, and element-wise
product. (·)†, (·)T , (·)H , | · |, and ‖ · ‖F designate pseu-
doinverse, transposition, conjugate transposition, absolute
value, and Frobenius norm. All other notation should be self-
explanatory.

2. Asynchronous Single User Data Model

The asynchronous single user data model derived in the
following paragraphs uses the data model in [21] as a starting
point. We take the unknown timing into consideration and
modify the model in [21].

2.1. Single Frame. In a TR-UWB system [10, 21], pairs of
pulses (doublets) are transmitted in sequence as shown in
Figure 1. The first pulse in the doublet is the reference pulse,
whereas the second one is the data pulse. Since both pulses go
through the same channel, the reference pulse can be used as
a “dirty template” (noise contaminated) [8] for correlation
at the receiver. One frame-period Tf holds one doublet.
Moreover, Nf frames constitute one symbol period Ts =
Nf T f , which is carrying a symbol si ∈ {−1, +1}, spread by a
pseudorandom code cj ∈ {−1, +1}, j = 1, 2, . . . ,Nf , which is
repeatedly used for all symbols. The polarity of a data pulse is
modulated by the product of a frame code and a symbol. The
two pulses are separated by some delay interval Dm, which
can be different for each frame. The delay intervals are in the
order of nanoseconds and Dm � Tf . The receiver employs
multiple correlation branches corresponding to different
delay intervals. To simplify the system, we use a single delay
and one correlation branch, which implies Dm = D. Figure 1
also presents an example of the receiver structure for a single
delay D. The integrate-and-dump (I&D) integrates over an
interval of length Tsam. As a result, one frame results in
P = Tf /Tsam samples, which is assumed to be an integer.

The received one-frame signal ( jth frame of ith symbol)
at the antenna output is

r(t) = h(t − τ) + sic jh(t −D − τ) + n(t), (1)
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where τ is the unknown timing offset, h(t) = hp(t)� g(t) of
length Th with hp(t) the UWB physical channel and g(t) the
pulse shape resulting from all the filter and antenna effects,
and n(t) is the bandlimited additive white Gaussian noise
(AWGN) with double-sided power spectral density N0/2 and
bandwidth B. Without loss of generality, we may assume
that the unknown timing offset τ in (1) is in the range of
one symbol period, τ ∈ [0,Ts), since we know the signal
is present by detection at the first step (see Section 3) and
propose to find the symbol boundary before acquiring the
package header (see Section 4). Then, τ can be decomposed
as

τ = δ · Tsam + ε, (2)

where δ = �τ/Tsam� ∈ {0, 1, . . . ,Ls − 1} denotes the sample-
level offset in the range of one symbol with Ls = Nf P,
the symbol length in terms of number of samples, and
ε ∈ [0,Tsam) presents the fractional offset. Sample-level
synchronization consists of estimating δ. The influence of ε
will be absorbed in the data model and becomes invisible as
we will show later.

Based on the received signal r(t), the correlation branch
of the receiver computes

x[n]

=
∫ nTsam+D

(n−1)Tsam+D
r(t)r(t −D)dt

=
∫ nTsam

(n−1)Tsam

{[
h(t − τ) + sic jh(t −D − τ) + n(t)

]

× [
h(t+D − τ)+sic jh(t − τ)+n(t +D)

]}
dt

= sic j

∫ nTsam

(n−1)Tsam

[
h2(t − τ) + h(t −D − τ)h(t +D − τ)

]
dt

+
∫ nTsam

(n−1)Tsam

[h(t − τ)h(t +D − τ)

+ h(t −D − τ)h(t − τ)]dt + n1[n],
(3)

where

n1[n]

= n0[n] + sic j

∫ nTsam

(n−1)Tsam

[h(t − τ)n(t)

+ h(t −D − τ)n(t +D)]dt

+
∫ nTsam

(n−1)Tsam

[h(t − τ)n(t +D)

+ h(t +D − τ)n(t)]dt

(4)

with

n0[n] =
∫ nTsam

(n−1)Tsam

n(t)n(t +D)dt. (5)

Note that n0[n] is the noise autocorrelation term, and n1[n]
encompasses the signal-noise cross-correlation term and the
noise autocorrelation term. Their statistics will be analyzed
later. Taking ε into consideration, we can define the channel
correlation function similarly as in [21]

R(Δ,m)

=
∫ mTsam

(m−1)Tsam

h(t − ε)h(t − ε − Δ)dt, m = 1, 2, . . . ,
(6)

where h(t) = 0, when t > Th or t < 0. Therefore, the first
term in (3) can be denoted as sic j

∫ nTsam

(n−1)Tsam
h2(t − τ)dt =

sic j
∫ nTsam−δTsam

(n−1)Tsam−δTsam
h2(t − ε)dt = sic jR(0,n − δ). Other terms

in x[n] can also be rewritten in a similar way, leading x[n] to
be

x[n]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sic j

[
R(0,n− δ) + R

(
2D, n− δ +

D

Tsam

)]

+
[
R(D,n− δ) + R

(
D,n− δ +

D

Tsam

)]
+ n1[n],

n = δ + 1, δ + 2, . . . , δ + Ph,

n0[n], elsewhere,
(7)

where Ph = 	Th/Tsam
 is the channel length in terms
of number of samples, and R(0,m) is always nonnegative.
Although R(2D, m + D/Tsam) is always very small compared
to R(0,m), we do not ignore it to make the model more
accurate. We also take the two bias terms into account, which
are the cause of the IPI and are independent of the data
symbols and the code. Now, we can define the Ph×1 channel
energy vector h with entries hm as

hm = R(0,m) + R
(

2D,m +
D

Tsam

)
, m = 1, . . . ,Ph, (8)

where R(0,m) ≥ 0. Further, the Ph × 1 bias vector b with
entries bm is defined as

bm = R(D,m) + R
(

2D,m +
D

Tsam

)
, m = 1, . . . ,Ph. (9)

Note that these entries will change as a function of ε,
although ε is not visible in the data model. As we stated
before, sample-level synchronization is limited to the estima-
tion of δ. Using (8) and (9), x[n] can be represented as

x[n]

=
⎧⎨
⎩
sic jhn−δ+bn−δ+n1[n], n = δ + 1, δ + 2, . . . , δ + Ph,

n0[n], elsewhere.
(10)

Now we can turn to the noise analysis. A number of
papers have addressed the noise analysis for TR systems [22–
25]. The noise properties are summarized here, and more
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c1 = 1 c2 = −1 c3 = 1
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∫ nTsam+D

(n−1)Tsam+D
x[n]

(b)

Figure 1: The transmitted UWB signal and the receiver structure.

details can be found in Appendix A. We start by making the
assumptions that D � 1/B, Tsam � 1/B, and the time-
bandwidth product 2BTsam is large enough. Under these
assumptions, the noise autocorrelation term n0[n] can be
assumed to be a zero mean white Gaussian random variable
with variance σ2

0 = N2
0BTsam/2. The other noise term

n1[n] includes the signal-noise cross-correlation and the
noise autocorrelation, and can be interpreted as a random
disturbance of the received signal. Let us define two other
Ph × 1 channel energy vectors h′ and h′′ with entries h′m and
h′′m to be used in the variance of n1[n] as follows:

h′m = R(0,m) + R
(

0,m− D

Tsam

)
, m = 1, . . . ,Ph, (11)

h′′m = R(0,m) + R
(

0,m +
D

Tsam

)
, m = 1, . . . ,Ph. (12)

Using those definitions and under the earlier assumptions,
n1[n] can also be assumed to be a zero mean Gaussian ran-
dom variable with variance (N0/2)(h′n−δ +h′′n−δ + 2sic jbn−δ) +
σ2

0 , n = δ+1, δ+2, . . . , δ+Ph. This indicates that all the noise
samples are uncorrelated with each other and have a different
variance depending on the data symbol, the frame code, the
channel correlation coefficients, and the noise level. Note that
the noise model is as complicated as the signal model.

2.2. Multiple Frames and Symbols. Now let us extend the
data model to multiple frames and symbols. We assume the
channel length Ph is not longer than the symbol length Ls.
A single symbol with timing offset τ will then spread over
at most three adjacent symbol periods. Define xk = [x[(k −
1)Ls + 1], x[(k− 1)Ls + 2], . . . , x[kLs]]T , which is an Ls -long

sample vector. By stacking M + N − 1 such received sample
vectors into an MLs ×N matrix

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xk xk+1 . . . xk+N−1

xk+1 xk+2 . . . xk+N

... . . .
...

xk+M−1 xk+M . . . xk+M+N−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (13)

where N indicates the number of samples in each row of X,
andM denotes the number of sample vectors in each column
of X, we obtain the following decomposition:

X = Cδ′
(

IM+2 ⊗ h
)

S + Bδ′1(MNf +2Nf

)
×N + N1, (14)

where N1 is the noise matrix similarly defined as X,

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sk−1 sk . . . sk+N−2

sk sk+1 . . . sk+N−1

... . . .
...

sk+M sk+M+1 . . . sk+M+N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (15)

and the structure of the other matrices is illustrated
in Figure 2. We first define a code matrix C. It is a
block Sylvester matrix of size (Ls + Ph − P) × Ph, whose
columns are shifted versions of the extended code vector:
[c1, 0TP−1, c2, 0TP−1, . . . , cNf , 0TP−1]

T
. The shift step is one

sample. Its structure is shown in Figure 3. The matrix Cδ′ of
size MLs× (MPh +2Ph) is composed of M+2 block columns,
where δ = (Ls − δ′) mod Ls, δ′ ∈ {0, 1, . . . ,Ls − 1}. As long
as there are more than two sample vectors (M > 2) stacked in
every column of X, the nonzero parts of the block columns
will contain M−2 code matrices C. The nonzero parts of the
first and last two block columns result from splitting the code
matrix C according to δ′: C′i (2Ls − i + 1 : 2Ls, :) = C(1 : i, :)
and C′′i (1 : Ls +Ph−P− i, :) = C(i+ 1 : Ls +Ph−P, :), where
A(m : n, :) refers to column m through n of A. The overlays
between frames and symbols observed in Cδ′ indicate the
existence of IFI and ISI. Then we define a bias matrix B which
is of size (Ls + Ph − P) × Nf made up by shifted versions of
the bias vector b with a shift step of P samples, as shown in
Figure 3. The matrix Bδ′ of size MLs× (MNf + 2Nf ) also has
M+2 block columns, the nonzero parts of which are obtained
from the bias matrix B in the same way as Cδ′ . Since the bias
is independent of the data symbols and the code, it is the
same for each frame. Each column of the resulting matrix
Bδ′1(MNf +2Nf )×N is the same and has a period of P samples.
Defining b f to be the P × 1 bias vector for one such period,
we have

Bδ′1(MNf +2Nf

)
×N = 1MNf ×N ⊗ b f . (16)

Note that b f is also a function of δ, but since it is independent
of the code, we cannot extract the timing information from
it.

Recalling the noise analysis of the previous section, the
noise matrix N1 has zero mean and contains uncorrelated
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Figure 2: The data model structure of X.
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c1

c2

P

b

Ph

N f

B

Ls − P + Ph

Figure 3: The structure of the code matrix C and the bias matrix B.

samples with different variances. The matrix Λ, which
collects the variances of each element in N1, is

Λ = E
(

N1 �N1
)

= N0

2

{(
H′
δ′ + H′′

δ′
)

1(
MNf +2Nf

)
×N

+ 2Cδ′
(

IM+2 ⊗ b
)

S
}

+ σ2
0 1MLs×N ,

(17)

where H′
δ′ and H′′

δ′ have exactly the same structure as Bδ′ ,
only using h′ and h′′ instead of b. They all have the same

periodic property, if multiplied by 1. Defining h′f and h′′f to
be the two P × 1 vectors for one such period, we obtain

H′
δ′1

(
MNf +2Nf

)
×N = 1MNf ×N ⊗ h′f , (18)

H′′
δ′1

(
MNf +2Nf

)
×N = 1MNf ×N ⊗ h′′f . (19)

3. Detection

The first task of the receiver is to detect the existence
of a signal. In order to separate the detection and the
synchronization problems, we assume that the transmitted
signal starts with a training sequence and assign the first
segment of the training sequence to detection only. In this
segment, we transmit all “+1” symbols and employ all “+1”
codes. It is equivalent to sending only positive pulses for
some time. This kind of training sequence bypasses the
code and the symbol sequence synchronization. Therefore,
we do not have to consider timing issues when we handle
the detection problem. The drawback is the presence of
spectral peaks as a result of the periodicity. It can be
solved by employing a time hopping code for the frames.
We omit this in our discussion for simplicity. It is also
possible to use a signal structure other than TR signals for
detection, such as a positive pulse training with an ED.
Although the ED doubles the noise variance due to the
squaring operation, the TR system wastes half of the energy
to transmit the reference pulses. Therefore, they would have
a similar detection performance for the same signal-to-noise
ratio (SNR), that is, the ratio of the symbol energy to the
noise power spectrum density. We keep the TR structure
for detection in order to avoid additional hardware for the
receiver.

In the detection process, we assume that the first training
segment is 2M1 symbols long, and the observation window is
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M1 symbols long (M1Ls =M1Nf P samples equivalently). We
collect all the samples in the observation window, calculate a
test statistic, and examine whether it exceeds a threshold. If
not, we jump into the next successive observation window
of M1 symbols. The 2M1-symbol-long training segment
makes sure that there will be at least one moment, at which
the M1-symbol-long observation window is full of training
symbols. In this way, we speed up our search procedure
by jumping M1 symbols. Once the threshold is exceeded,
we skip the next 2M1 symbols in order to be out of the
first segment of the training sequence and we are ready
to start the channel estimation and synchronization at the
sample-level (see Section 4). There will be situations where
the observation window only partially overlaps the signal.
However, for simplicity, we will not take these cases into
account, when we derive the test statistic. If these cases
happen and the test statistic is larger than the threshold, we
declare the existence of a signal, which is true. Otherwise, we
miss the detection and shift to the next observation window,
which is then full of training symbols giving us a second
chance to detect the signal. Therefore, we do not have to
distinguish the partially overlapped cases from the overall
included case. We will derive the test statistic using only
two hypotheses indicated below. But the evaluation of the
detection performance will take all the cases into account.

3.1. Detection Problem Statement. Since we only have to tell
whether the whole observation window contains a signal
or not, the detection problem is simplified to a binary
hypothesis test. We first define the M1Nf P × 1 sample vector

x = [xTk , xTk+1, . . . , xTk+M1−1]T with entries x[n],n = (k −
1)Nf P+1, (k−1)Nf P+2, . . . , (k+M1−1)Nf P, which collects
all the samples in the observation window. The hypotheses
are as follows.

(1) H0: there is only noise. Under H0, according to the
analysis from the previous section, x is modeled as

x = n0, (20)

x a∼ N
(
0, σ2

0 I
)
, (21)

where n0 is the noise vector with entries n0[n],n =
(k − 1)Nf P + 1, (k − 1)Nf P + 2, . . . , (k + M1 − 1)Nf P,

and a∼ indicates approximately distributed according to.
The Gaussian approximation for x is valid based on the
assumptions in the previous section.

(2) H1: signal with noise is occupying the whole
observation window. Under H1, the data model (14) and
the noise model (17) can be easily specified according to the
all “+1” training sequence. We define Hδ′ having the same
structure as Bδ′ , only taking h instead of b. It also has a period
of P samples in each column, if multiplied by 1. Defining h f

to be the P × 1 vector for one such period, we have

Hδ′1(MNf +2Nf

)
×N = 1MNf ×N ⊗ h f . (22)

By selecting M = M1 and N = 1 for (14) and taking (16),
(18), (19) and (22) into the model, the sample vector x can
be decomposed as

x = 1M1Nf ⊗
(

h f + b f
)

+ n1, (23)

where the zero mean noise vector n1 has uncorrelated entries
n1[n],n = (k−1)Nf P+1, (k−1)Nf P+2, . . . , (k+M1−1)Nf P,
and the variances of each element in n1 are given by

λ = E
(

n1 � n1
)

= N0

2
1M1Nf ⊗

(
h′f + h′′f + 2b f

)
+ σ2

0 1M1Nf P.
(24)

Due to the all “+1” training sequence, the impact of the
IFI is to fold the aggregate channel response into one frame,
so the frame energy remains constant. Normally, the channel
correlation function is quite narrow, so R(D,m) � R(0,m)
and R(2D,m) � R(0,m). Then, we can have the relation

h′f + h′′f + 2b f ≈ 4
(

h f + b f
)
. (25)

Defining the P × 1 frame energy vector z f = h f + b f with
entries z f [i], i = 1, 2, . . . ,P and frame energy E f = 1TP z f , we
can simplify x and λ

x = 1M1Nf ⊗ z f + n1, (26)

λ ≈ 2N01M1Nf ⊗ z f + σ2
0 1M1Nf P. (27)

Based on the analysis above and the assumptions from the
previous section, x can still be assumed as a Gaussian vector
in agreement with [23]

x a∼ N
(

1M1Nf ⊗ z f , diag(λ)
)
, (28)

where diag(a) indicates a square matrix with a on the main
diagonal and zeros elsewhere.

3.2. Detector Derivation. The test statistic is derived using H0

and H1. It is suboptimal, since it ignores other cases. But it is
still useful as we have analyzed before. The Neyman-Pearson
(NP) detector [26] decides H1 if

L(x) = p
(

x; H1
)

p
(

x; H0
) > γ, (29)

where γ is found by making the probability of false alarm PFA
to satisfy

PFA = Pr
{
L(x) > γ; H0

} = α. (30)

The test statistic is derived by taking the stochastic properties
of x under the two hypotheses into L(x) (29) and eliminating
constant values. It is given by

T(x)=
P∑
i=1

z f [i]

σ2
1 [i]

{(k+M1−1)Nf −1∑
n=(k−1)Nf

(
x[nP + i] +

N0

σ2
0
x2[nP + i]

)}
,

(31)
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where σ2
1 [i] = 2N0z f [i] + σ2

0 . A detailed derivation is
presented in Appendix B. Then the threshold γ will be found
to satisfy

PFA = Pr
{
T(x) > γ; H0

} = α. (32)

Hence, for each observation window, we calculate the test
statistic T(x) and compare it with the threshold γ. If the
threshold is exceeded, we announce that a signal is detected.

The test statistic not only depends on the noise knowl-
edge σ2

0 but also on the composite channel energy profile
z f [i]. All data samples make a weighted contribution to the
test statistic, since they have different means and variances.
The larger z f [i]/σ2

0 is, the heavier the weighting coefficient
is. If we would like to employ T(x), we have to know σ2

0

and z f [i] first. Note that σ2
0 can be easily estimated, when

there is no signal transmitted. However, the estimation of the
composite channel energy profile z f [i] is not as easy, since it
appears in both the mean and the variance of x under H1.

3.3. Detection Performance Evaluation. Until now, the opti-
mal detector for the earlier binary hypothesis test has been
derived. The performance of this detector working under
real circumstances has to be evaluated by taking all the
cases into account. As we have described before, there are
moments where the observation window partially overlays
the signal. They can be modeled as other hypotheses H j , j =
2, . . . ,M1Nf P. Applying the same test statistic T(x) under
these hypotheses including H1, the probability of detection
is defined as

PD, j = Pr
{
T(x) > γ; H j

}
, j = 1, . . . ,M1Nf P. (33)

We would obtain PD,1 > PD, j , j = 2, . . . ,M1Nf P. Since
the observation window collects the maximum signal energy
under H1 and the test statistic is optimized to detect H1,
it should have the highest possibility to detect the signal.
Furthermore, if we miss the detection under H j , j =
1, . . . ,M1Nf P, we still have a second chance to detect the
signal with a probability of PD,1 in the next observation
window, recalling that the training sequence is 2M1 symbols
long. Therefore, the total probability of detection for this
testing procedure is PD, j + (1− PD, j)PD,1, j = 1, . . . ,M1Nf P,
which is larger than PD,1 and not larger than PD,1 + (1 −
PD,1)PD,1. Since all hypotheses H j , j = 1, . . . ,M1Nf P have
equal probability, we can obtain that the overall probability
of detection PDo for the detector T(x) is

PDo =
1

M1Nf P

M1Nf P∑
j=1

{
PD, j +

(
1− PD, j

)
PD,1

}
,

j = 1, . . . ,M1Nf P,

(34)

where PD,1 < PDo < PD,1 + (1 − PD,1)PD,1. Since the
analytical evaluation of PDo is very complicated, we just
derive the theoretical performance of PD,1 under H1. In the
simulations section, we will obtain the total PDo by Monte
Carlo simulations and compare it with PD,1 and PD,1 + (1 −
PD,1)PD,1, which can be used as boundaries for PDo .

A theoretical evaluation of PD,1 is carried out by first
analyzing the stochastic properties of T(x). As T(x) is
composed of two parts, we can define

T1(x) =
P∑
i=1

z f [i]

σ2
1 [i]

(k+M1−1)Nf −1∑
n=(k−1)Nf

x[nP + i], (35)

T2(x) =
P∑
i=1

z f [i]

σ2
1 [i]

(k+M1−1)Nf −1∑
n=(k−1)Nf

x2[nP + i]. (36)

Then we have

T(x) = T1(x) +
N0

σ2
0
T2(x). (37)

First, we have to know the probability density function (PDF)
of T(x). However, due to the correlation between the two
parts, it can only be found in an empirical way by generating
enough samples of T(x) and making a histogram to depict
the relative frequencies of the sample ranges. Therefore, we
simply assume that T1(x) and T2(x) are uncorrelated, and
T(x) is a Gaussian random variable. The mean (variance) of
T(x) is the sum of the weighted means (variances) of the two
parts. The larger the sample number M1Nf P is, the better
the approximation is, but also the longer the detection time
is. There is a tradeoff. In summary, T(x) follows a Gaussian
distribution as follows:

T(x) a∼ N
(
E
(
T1(x)

)
+
N0

σ2
0
E
(
T2(x)

)
,

var
(
T1(x)

)
+
N2

0

σ4
0

var
(
T2(x)

))
.

(38)

The mean and the variance of T1(x) can be easily obtained
based on the assumption that x is a Gaussian vector. The
stochastic properties of T2(x) are much more complicated.
More details are discussed in Appendix C. All the perfor-
mance approximations are summarized in Table 1, where
the function Q(·) is the right-tail probability function for a
Gaussian distribution.

A special case occurs when P = 1, which means that
one sample is taken per frame (Tsam = Tf ). For this case,
where no oversampling is used, we have constant energy
E f and constant noise variance σ2

1 = 2N0E f + σ2
0 for each

frame. Then the weighting parameters for each sample in the
detector would be exactly the same. We can eliminate them
and simplify the test statistic to

T′1(x) =
(k+M1−1)Nf∑
n=(k−1)Nf +1

x[n], (39)

T′2(x) =
(k+M1−1)Nf∑
n=(k−1)Nf +1

x2[n], (40)

T′(x) = T′1(x) +
N0

σ2
0
T′2(x). (41)
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Table 1: Statistical Analysis and Performance Evaluation for Different Detectors, P > 1,Tsam = Tf /P.

T1(x) T2(x) T(x)

H0
μ μT1,0 = 0 μT2,0 =M1Nf σ0

2
∑P

i=1

z f [i]

σ2
1 [i]

μT0 = μT1,0 +
N0

σ2
0
μT2,0

σ2 σ2
T1,0

=M1Nf σ0
2
∑P

i=1

z2
f [i]

σ4
1 [i]

σ2
T2,0

= 2M1Nf σ0
4
∑P

i=1

z2
f [i]

σ4
1 [i]

σ2
T0
= σ2

T1,0
+
N2

0

σ4
0
σ2
T2,0

H1
μ μT1,1 =M1Nf

∑P

i=1

z2
f [i]

σ2
1 [i]

μT2,1 =M1Nf

∑P

i=1
z f [i]

(
1 +

z2
f [i]

σ2
1 [i]

)
μT1 = μT1,1 +

N0

σ2
0
μT2,1

σ2 σ2
T1,1 =M1Nf

∑P

i=1

z2
f [i]

σ2
1 [i]

σ2
T2,1

= 2M1Nf

∑P

i=1
z2
f [i]

(
1 +

2z2
f [i]

σ2
1 [i]

)
σ2
T1
= σ2

T1,1
+
N2

0

σ4
0
σ2
T2,1

PFA Q
(
γ1

σT1,0

)
= α Q

(
γ − μT2,0

σT2,0

)
= α Q

(
γ − μT0

σT0

)
= α

γ γ1 = σT1,0Q
−1(α) γ2 = σT2,0Q

−1(α) + μT2,0 γ = σT0Q
−1(α) + μT0

PD,1 Q
(
γ1 − μT1,1

σT1,1

)
Q
(
γ2 − μT2,1

σT2,1

)
Q
(
γ − μT1

σT1

)

Therefore, T′2(x)/σ2
0 will follow a central Chi-squared distri-

bution under H0, and T′2(x)/σ2
1 will follow a noncentral Chi-

squared distribution under H1. We calculate the threshold
for T′2(x) as

γ′2 = σ0
2Q−1

χ2
M1N f

(α), (42)

and the probability of detection under H1 as

PD,1 = Qχ2
M1N f

(M1Nf E
2
f /σ

2
1 )

(
γ′2
σ2

1

)
, (43)

where the functions Qχ2
ν
(x) and Qχ2

ν (λ)(x) are the right-
tail probability functions for a central and noncentral Chi-
squared distribution, respectively. The statistics of T′1(x) can
be obtained by taking P = 1, z f [i] = E f , and σ2

1 [i] = σ2
1

into Table 1, and multiplying the means with σ2
1 /E f and the

variances with σ4
1 /E

2
f . As a result, the threshold γ′1 for T′1(x) is√

M1Nf σ
2
0Q

−1(α), which can be easily obtained. The PD,1 of
T′(x) could be evaluated in the same way as T(x) in Table 1.

The theoretical contributions of T′1(x) and T′2(x) to T′(x)
are assessed in Figure 4. The simulation parameters are set
to M1 = 8, Nf = 15, Tf = 30 ns, Tp = 0.2 ns, and
B ≈ 2/Tp. For the definition of Ep/N0, we refer to Section 5.
The detector based on T′1(x) (dashed lines) plays a key role
in the performance of the detector based on T′(x) (solid
lines) under H1. For low SNR, they are almost the same,
since T′1(x) can be directly derived by ignoring the signal-
noise cross-correlation term in the noise variance under H1.
There is a small difference between them for medium SNRs.
T′2(x) (dotted lines) has a performance loss of about 4 dB
compared to T′(x). Thanks to the ultra-wide bandwidth of
the signal, the weighting parameter N0/σ0

2 greatly reduces
the influence of T′2(x) on T′(x). It enhances the performance
of T′(x) slightly in the medium SNR range. According to
these simulation results and the impact of the weighting
parameter N0/σ

2
0 , we can employ T′1(x) instead of T′(x).

It has a much lower calculation cost and almost the same
performance as T′(x).

Furthermore, the influence of the oversampling rate P to
the PD,1 of T(x) can be ignored because the oversampling
only affects the performance of T2(x), which only has a
very small influence on T(x). Therefore, the impact of
the oversampling can be neglected. In Section 5, we will
evaluate the PD,1 of T(x) using the IEEE UWB channel
model by a quasi-analytical method and also by Monte Carlo
simulations. Based on the simulation results in this section,
we can predict that for small P (P > 1), the PD,1 for T(x) will
be more or less the same as the PD,1 for T′(x) or T′1(x).

4. Channel Estimation, Synchronization,
and Equalization

After successful signal detection, we can start the channel
estimation and synchronization phase. The sample-level
synchronization finds out the symbol boundary (estimates
the unknown offset δ), and the result can later on be
used for symbol-level synchronization to acquire the header.
This two-stage synchronization strategy decomposes a two-
dimensional search into two one-dimensional searches,
reducing the complexity. The channel estimates and the tim-
ing information can be used for the equalizer construction.
Finally, the demodulated symbols can be obtained.

4.1. Channel Estimation

4.1.1. Bias Estimation. As we have seen in the asynchronous
data model, the bias term is undesired. It does not have
any useful information, but it disturbs the signal. We will
show that this bias seriously degrades the channel estimation
performance later on. The second segment of the training
sequence consists of “+1,−1” symbol pairs employing a
random code. The total length of the second segment should
be M1 + 2Ns symbols, which includes the budget for jumping
2M1 symbols after the detection. The “+1,−1” symbol pairs
can be used for bias estimation as well as channel estimation.
Since the bias is independent of the data symbols and the
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Figure 4: Performance comparison between T ′(x) and its compo-
nents T ′1(x) and T ′2(x).

useful signal part has zero mean, due to the “+1,−1” training
symbols, we can estimate the Ls×1 bias vector of one symbol,
bs = 1Nf ⊗ b f , as

b̂s = 1
2Ns

[
xk xk+1 · · · xk+2Ns−1

]
12Ns . (44)

4.1.2. Channel Estimation. To take advantage of the second
segment of the training sequence, we stack the data samples
as

X̃ =
⎡
⎣ xk xk+2 . . . xk+2Ns−2

xk+1 xk+3 . . . xk+2Ns−1

⎤
⎦ , (45)

which is equivalent to picking only odd columns of X in
(14) with M = 2 and N = 2Ns − 1. As a result, each
column depends on the same symbols, which leads to a great
simplification of the decomposition in (14) as follows:

X̃ = [(
C′Ls+δ′ + C′′Ls+δ′

) (
C′δ′ + C′′δ′

)](
I2 ⊗ h

)

× [− sk sk
]T

1TNs
+ 12×Ns ⊗ bs + Ñ1,

(46)

where Ñ1 is the noise matrix similarly defined as X̃. For
simplicity, we only count the noise autocorrelation term with
zero mean and variance σ2

0 into Ñ1, where σ2
0 can be easily

estimated in the absence of a signal. Because we jump into
this second segment of the training sequence after detecting
the signal, we do not know whether the symbol sk is “+1” or
“−1”. Rewriting (46) in another form leads to

X̃ = Cshssδ1TNs
+ 12×Ns ⊗ bs + Ñ1, (47)

where Cs is a known 2Ls × 2Ls circulant code matrix, whose
first column is [c1, 0TP−1, c2, 0TP−1, . . . , cNf , 0TLs+P−1]

T
, and the

vector hssδ of length 2Ls blends the timing and the channel
information, which contains two channel energy vectors with
different signs, skh and −skh, located according to δ as
follows:

hssδ

=

⎧⎪⎪⎨
⎪⎪⎩

circshift
([
skhT , 0TLs−Ph ,−skhT , 0TLs−Ph

]T
, δ
)

, δ /= 0,
[
− skhT , 0TLs−Ph , skhT , 0TLs−Ph

]T
, δ = 0,

(48)

where circshift (a,n) circularly shifts the values in the vector a
by |n| elements (down if n > 0 and up if n < 0). According to
(47) and assuming the channel energy has been normalized,
the linear minimum mean square error (LMMSE) estimate
of hssδ then is

ĥssδ = CH
s

(
CsCH

s +
σ2

0

Ns
I
)−1

1
Ns

(
X̃− 12×Ns ⊗ bs

)
1Ns . (49)

Defining

ĥsδ =
[

ĥssδ
(
1 : Ls

)− ĥssδ
(
Ls + 1 : 2Ls

)]

2
, (50)

where a(m : n) refers to element m through n of a, we can
obtain a symbol-long LMMSE channel estimate as

ĥδ =
∣∣ĥsδ

∣∣. (51)

According to a property of circulant matrices, Cs can be
decomposed as Cs = F ΩF H , where F is the normalized
DFT matrix of size 2Ls × 2Ls, and Ω is a diagonal matrix
with the frequency components of the first row of Cs on the
diagonal. Hence, the matrix inversion in (49) can be simpli-

fied dramatically. Observing that CH
s (CsCH

s + (σ2
0 /Ns)I)

−1
is

a circulant matrix, the bias term actually does not have to
be removed in (49), since it is implicitly removed when we
calculate (50). Therefore, we do not have to estimate the bias
term explicitly for channel estimation and synchronization.

When the SNR is high, ‖CsCH
s ‖F � ‖(σ2

0 /Ns)I‖F , (49)
can be replaced by

ĥssδ = 1
Ns

F Ω−1F H
(

X̃− 12×Ns ⊗ bs
)

1Ns . (52)

It is a least squares (LS) estimator and equivalent to a
deconvolution of the code sequence in the frequency domain.
On the other hand, when the SNR is low, ‖CsCH

s ‖F �
‖(σ2

0 /Ns)I‖F , (49) becomes

ĥssδ = 1
σ2

0
F ΩHF H

(
X̃− 12×Ns ⊗ bs

)
1Ns , (53)

which is equivalent to a matched filter (MF). The MF can
also be processed in the frequency domain. The LMMSE
estimator in (49), the LS estimator in (52), and the MF in
(53) all have a similar computational complexity. However,
for the LMMSE estimator, we have to estimate σ2

0 and the
channel energy.
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Figure 6: The signal structure for training sequence.

and the LMMSE equalizer gives

Ŝ = sign
{(
Φ̂
H
Φ̂ + σ2

0 I4

)−1
Φ̂
H(

X− 12×N ⊗ b̂s
)}

, (57)

where Φ̂ = Cδ̂′(I4 ⊗ ĥ). Ŝ is a 4 × N symbol matrix. We

can choose either the second or the third row of Ŝ as the
demodulated symbol sequence.

Until now, the sample-level synchronization confirms
the boundaries of the symbols. However, it is not able
to explore the boundary of the training header, since the
second segment of the training sequence just employs pairs
of “+1,−1” symbols. After the sample-level synchronization,
the demodulation is triggered. The third segment of the
training sequence is a known training symbol pattern. Once
we find the matching symbol pattern, we can distinguish
the training header. Symbol-level synchronization is then
accomplished. To summarize the training segments used in
every stage, the overall structure of the training sequence is
shown in Figure 6.

5. Simulation Results

We evaluate the performance of different detectors and the
performance of different combinations of channel estimation
and equalization schemes for a single user and single delay
TR-UWB system. We use a Gaussian second derivative pulse,
which is 0.2 ns wide. The delay interval D between two
pulses in a doublet is 4 ns. The first segment of the training
sequence is 2M1 = 16 symbols long, all of which are
composed of positive pulses. Hence, the observation window
includes M1 = 8 symbols. The second segment of the
training sequence has M1 + 2Ns = 38 symbols and employs
a pseudonoise (PN) code sequence. The code length Nf is
15. The frame-period Tf is 30 ns. The IEEE UWB channel
model CM3 [27] is employed and truncated to 90 ns, which
represents a NLOS channel. The oversampling rate P is 3,
which results in Tsam = 10 ns. We define Ep/N0 as the
received aggregate pulse energy to noise ratio with Ep =∫ |h(t)|2dt, where h(t) represents the composite channel
impulse response including pulse shaping and antenna
effects as we have explained before (see Section 2.1). The
system sampling rate is 50 GHz for Matlab simulations.

The test statistics T(x) in (37) and T′1(x) in (39) are
assessed in both a theoretical way by using the results in
Table 1 and an experimental way by running Monte Carlo
simulations. Figure 7 shows the probability of detection PD,1

for the test statistics. The theoretical PD,1 of T(x) with P =
3 is evaluated in a quasianalytical method. We generate

100 IEEE CM3 channel realizations, and for each channel
realization, we use Table 1 to evaluate its PD,1 performance
and average the obtained PD,1’s. In the experimental way, we
still employ 100 IEEE CM3 channel realizations. For each
realization, we generate 1000 test statistics to compare with
the threshold and count the probability of detection. In order
to evaluate the detection performance, we divide the SNR
into three ranges. For example, when PFA = 0.1, the low
SNR range is below 0 dB, the medium range is from 0 dB
to 6 dB, and the high SNR range is above 6 dB. According
to Figure 7, the PD,1 of T(x) with P = 3 (solid line with
∗ markers) and the PD,1 of T′1(x) (dash-dotted line with ∗
markers) are similar in the low and high SNR ranges. But
in the medium range, T(x) with P = 3 outperforms T′1(x)
for about 5% ∼ 10%. For PFA= 10−3 and PFA= 10−5, the
performance differences for these test statistics are large in
the SNR range from 2 dB to 8 dB. T(x) (solid lines with ◦ or
♦ markers) can have a detection probability as high as 20%
more than T′1(x) (dash-dotted lines with ◦ or ♦ markers)
under H1. However, when the test statistic T(x) is employed,
we have to estimate the channel energy profile first. On the
other hand, if we use the test statistic T′1(x), we only have to
sum up the samples, which is easy to implement. But these
results are only the detection probabilities under H1, which
are used as boundaries for the overall performance under real
circumstances.

As we have mentioned before, PD,1 and PD,1 + (1 −
PD,1)PD,1 can be used as a lower boundary and an upper
boundary for the overall PDo , respectively. We run Monte
Carlo simulations to evaluate the PDo under real circum-
stances. For each run, the timing offset is randomly generated
following a uniform distribution in the range ofM1 symbols,
meanwhile the channel realization remains the same in order
to exclude the channel influence in the multihypotheses case.
In the detection procedure, once the first detection fails, we
jump into the next observation window. When the second
detection fails again, we declare a missed detection. The
simulation results are shown in Figure 8. The PDo ’s of T(x)
with P = 3 (solid lines) lie between two boundaries: the
upper boundaries (dashed lines) and the lower boundaries
(dotted lines), and these boundaries are getting tighter as
the PFA’s are getting smaller. The PDo ’s of T′1(x) (dash-dotted
lines) are a bit higher than the PDo ’s of T(x). Especially for
PFA= 10−3, around SNR = 6 dB, the PDo of T′1(x) (dash-
dotted line with ◦markers) is 5% larger than the PDo of T(x)
(solid line with ◦ markers). That is because T(x) weights
each sample only based on two hypotheses H0 and H1. The
weighting coefficients are not optimal for other hypotheses.
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Figure 8: Experimental PDo for T(x) with P = 3 and T ′1(x).

The noise samples may be mistakenly weighted heavily under
real circumstances. On the other hand, T′1(x) accumulates
all the frame samples in the observation window, which is
equivalent to equally weighting. According to these results,
we can employ T′1(x) because of its simplicity and similar
performance as T(x).
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lengths.
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500 Monte Carlo runs are used to evaluate the mean
squared error (MSE) of ĥδ versus SNR. In each run, the
timing offset and the channel are randomly generated.
The results for the symbol-long estimates and the Lw-long
estimates assuming perfect timing are shown in Figure 9.
The MF curves (dotted lines) always have the highest noise
floor, since the MF output is the convolution of the chan-
nel energy vector with the code autocorrelation function.
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The performance gap for symbol-long estimates between
the LS/LMMSE (dashed lines/solid lines) estimator and the
MF is large. When we concentrate on the channel estimates
in a limited range, such as 30 ns (lines with ◦ markers)
and 90 ns (lines with ♦ markers), the gap between the MF
and the LS/LMMSE estimator is smaller. The normalized

MSE E[|(δ̂ − δ)/Ls|
2
] for δ estimation is also assessed with

different values of Lw based on different channel estimators.
From Figure 10, we see that the δ estimates based on
MF (dotted lines), LS (dashed lines), and LMMSE (solid
lines) channel estimates with the same Lw have similar
performance, and Lw = 30 ns is the best choice among all.
The MSE for δ with Lw = 30 ns (lines with ◦ markers) is
saturated after the SNR reaches 10 dB. This is because we
use NLOS channels, where the first path may not be the
strongest and there is always remaining a fractional timing
offset ε. Meanwhile the differences of the MSE for channel
estimation with a 90-nanosecond range based on different
methods (lines with ♦ markers) are quite small around
10 dB in Figure 9, which will be employed to construct the
equalizer. As a result, we choose the MF as the channel
estimator.

Furthermore, combinations of the MF channel estima-
tor with different equalizers are investigated. We employ
Lw = 30 ns for synchronization. Figure 11 shows the BER
performance. The BER performance for the MF equalizer
(lines with ◦ markers) approaches 0 after 12 dB, while the
performances for the ZF (lines with ∗ markers) and the
LMMSE equalizers (lines with � markers) approach 0 after
10 dB. Hence, the MF equalizer is 2 dB worse than the ZF
and the LMMSE equalizer, and all of them employ 90 ns
long channel estimates. The curves of the ZF equalizer and
the LMMSE equalizer overlay each other. The bias does
not have much impact on them. They have almost the

same performance. As a result, the optimal combination
considering cost and performance would be an MF channel
estimator with a ZF equalizer. According to the results
above, we can remark that the IFI after the integrate-and-
dump is not so serious in our simulation setup, since
the channel energy attenuates exponentially and one frame
contains most of the energy. The performance differences
of different equalizers are not so obvious. However, the
LMMSE estimator has the potential to handle more serious
IFI and ISI. The effects of the bias on the BER performance
can be ignored, but they have to be taken into account for
the channel estimation (done implicitly, see Section 4.1).
When we want to shorten the frame length to achieve
a higher data rate, more interference will be generated.
We then need a more accurate data model to handle this
interference.

6. Conclusions

We have proposed a complete solution for signal detection,
channel estimation, synchronization, and equalization in a
TR-UWB system. The scheme is based on a data model,
which takes IPI, IFI, and ISI into account and releases the
frame time requirements to allow for higher data rate com-
munications. Several detectors based on a specific training
scheme are derived and assessed. We find that the simple
detector, which sums up all the samples in the observation
window and compares the result with a threshold, gives a
good balance between performance and cost. Moreover, the
joint channel and timing estimation is achieved in three
different ways. The property of the circulant matrix in
the data model is exploited to reduce the complexity of
the algorithms. Then a two-stage synchronization strategy
is proposed to first achieve sample-level synchronization
and later to achieve symbol-level synchronization. Last
but not least, three kinds of equalizers are derived. We
evaluate different combinations of channel estimation and
equalization schemes using the IEEE UWB channel model
CM3, which shows that the TR-UWB system can be
implemented with low cost and achieves moderate data rate
communications.

Appendices

A. Noise Analysis

The noise autocorrelation term n0[n] is

n0[n] =
∫ nTsam

(n−1)Tsam

n(t)n(t +D)dt, (A.1)

where n(t) is band limited AWGN, and its autocorrelation
function is Rn(τ) = E[n(t)n(t − τ)] = N0Bsinc(2Bτ).
Therefore, n0[n] has approximately zero mean, as a result of
Rn(D) ≈ 0 based on the assumption D � 1/B. According to



14 EURASIP Journal on Wireless Communications and Networking

the Gaussian joint variable theorem [28, 29], its variance can
be derived as

var
(
n0[n]

)

≈ E
[
n2

0[n]
]

≈
∫ nTsam

(n−1)Tsam

∫ nTsam

(n−1)Tsam

[
R2
n(t − u)+Rn(t − u−D)

× Rn(t +D − u)
]
dt du.

(A.2)

The second term is the product of two sinc functions offset
by 2D, which is approximately zero by using the property
of sinc functions saying that sinc(2Bτ)sinc(2B(τ + Δ)) ≈
sinc2(2Bτ)δ(Δ), where δ(Δ) is the Kronecker delta. Recalling
Rn(D) ≈ 0 and Tsam � 1/B and applying Parseval’s theorem,
we derive the variance of n0[n] as (also see [30])

var(n0[n]) ≈ N2
0

4

∫ nTsam

(n−1)Tsam

∫ nTsam

(n−1)Tsam

× [
4B2sinc2(2B(t − u))

]
dt du

≈ N2
0

4

∫ nTsam

(n−1)Tsam

[∫ B

−B
1df

]
dt

= N2
0BTsam

2
.

(A.3)

In summary, n0[n] is approximately zero mean and white
with variance N2

0BTsam/2. These noise autocorrelation sam-
ples are uncorrelated with each other, due to the assumption
Tsam � 1/B.

Furthermore, the aggregate noise term n1[n] is

n1[n] = n0[n] + sic j

∫ nTsam

(n−1)Tsam

[h(t − τ)n(t)

+ h(t −D − τ)n(t +D)]dt

+
∫ nTsam

(n−1)Tsam

[h(t − τ)n(t +D)

+ h(t +D − τ)n(t)]dt.

(A.4)

Defining

γ′[n]

= sic j

∫ nTsam

(n−1)Tsam

[h(t − τ)n(t) + h(t −D − τ)n(t +D)]dt,

(A.5)

γ′′[n]

=
∫ nTsam

(n−1)Tsam

[h(t − τ)n(t +D) + h(t +D − τ)n(t)]dt,

(A.6)

we obtain

n1[n] = γ′[n] + γ′′[n] + n0[n], (A.7)

where γ′[n] and γ′′[n] are random variables, resulting
from the cross-correlation between the signal and the
noise.

Now we will derive the statistical properties of these two
random variables. Both γ′[n] and γ′′[n] have zero mean. The
variance of γ′[n] is calculated as follows:

var
(
γ′[n]

)

= E
[∣∣γ′[n]

∣∣2
]

=
∫ nTsam

(n−1)Tsam

∫ nTsam

(n−1)Tsam

[
h(t − τ)h(u− τ)Rn(t − u)

+ h(t −D − τ)h(u−D − τ)

× Rn(t − u)
]
dt du.

(A.8)

Let us insert Rn(τ) into the first term (also see [30]) as
follows:

∫ nTsam

(n−1)Tsam

∫ nTsam

(n−1)Tsam

h(t − τ)h(u− τ)Rn(t − u)dt du

=
∫ nTsam

(n−1)Tsam

∫ nTsam

(n−1)Tsam

h(t − τ)h(u− τ)

×N0B sinc(2B(t − u))dt du

= N0

2

∫ nTsam

(n−1)Tsam

∫ nTsam

(n−1)Tsam

h(t − τ)

× h(u− τ)
∫ B

−B
e j2π f (t−u)df dt du

= N0

2

∫ nTsam

(n−1)Tsam

h(t − τ)
∫ B

−B
e j2π f (t−τ)df dt

×
∫ nTsam−τ

(n−1)Tsam−τ
h(u− τ)e− j2π f (u−τ)d(u− τ)

= N0

2

∫ nTsam

(n−1)Tsam

h(t − τ)

(∫ B

−B
H( f )e j2π f (t−τ)df

)
dt,

(A.9)
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where H( f ) is the Fourier transform of h(u − τ), u ∈ [(n −
1)Tsam, nTsam], which is a segment of the aggregate channel.
Since the bandwidth B of n(t) is assumed much larger
than the bandwidth of h(u − τ), u ∈ [(n − 1)Tsam, nTsam],
we obtain

∫ B
−BH( f )e j2π f (t−τ)df ≈ h(t − τ), t ∈ [(n −

1)Tsam, nTsam]. As a result, we obtain similar results as in
[24, 25, 30] as follows:

∫ nTsam

(n−1)Tsam

∫ nTsam

(n−1)Tsam

h(t − τ)h(u− τ)Rn(t − u)dt du

≈ N0

2

∫ nTsam

(n−1)Tsam

h(t − τ)h(t − τ)dt

= N0

2
R(0,n− δ).

(A.10)

In a similar way, the other term of var(γ′[n]) can be
deduced. The same method is applied to var(γ′′[n]) and
E[γ′[n]γ′′[n]]. All the derivations are based on the assump-
tion that Rn(D) ≈ 0 and Tsam � 1/B. The results are
summarized as follows:

var
(
γ′[n]

)

≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N0

2

(
R(0,n− δ) + R

(
0,n− δ − D

Tsam

))
,

n = δ + 1, δ + 2, . . . , δ + Ph,

0, elsewhere,
(A.11)

var
(
γ′′[n]

)

= E
[∣∣γ′′[n]

∣∣2]

≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N0

2

(
R(0,n− δ) + R

(
0,n− δ +

D

Tsam

))
,

n = δ + 1, δ + 2, . . . , δ + Ph,

0, elsewhere,
(A.12)

E
[
γ′[n]γ′′[n]

]

≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N0

2
sic j

(
R(D,n− δ) + R

(
D,n− δ +

D

Tsam

))
,

n = δ + 1, δ + 2, . . . , δ + Ph,

0, elsewhere,
(A.13)

E
[
γ′[n]n0[n]

] = E
[
γ′′[n]n0[n]

] = 0. (A.14)

In summary, the stochastic properties of n1[n] are

E
[
n1[n]

] ≈ 0,

var
(
n1[n]

)

≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N0

2

{
2R(0,n− δ) + R

(
0,n− δ − D

Tsam

)

+R

(
0,n− δ +

D

Tsam

)

+sic j

(
2R(D,n−δ)+2R

(
D,n−δ+

D

Tsam

))}

+σ2
0 , n = δ + 1, δ + 2, . . . , δ + Ph,

0, elsewhere,
(A.15)

where σ2
0 = N2

0BTsam/2. These aggregate noise samples are
uncorrelated with each other, recalling that Tsam � 1/B. This
assumption has usually been satisfied by UWB signals (e.g.,
in our case Tsam = 10 ns, B ≈ 2/Tp = 10 GHz, then 2BTsam =
200). Also n0[n] and n1[n] can be assumed as Gaussian
random variables by invoking the sampling theorem and the
central limit theorem [28].

B. Detector Derivation

In summary, the statistics of x in (31) are

H0: x a∼ N
(
0, σ2

0 I
)
, (B.1)

H1: x a∼ N
(

1M1Nf ⊗ z f , diag(λ)
)
. (B.2)

The Neyman-Pearson detector decides H1 if

L(x) = p
(

x; H1
)

p
(

x; H0
) > γ, (B.3)

where γ is found by making the probability of false alarm PFA

to satisfy

PFA = Pr
{
L(x) > γ; H0

} = α. (B.4)

L(x) can be expressed as

L(x) =

P∏
i=1

1

(2π(2N0z f [i] + σ2
0 ))

(M1Nf /2) exp

[
− 1

2(2N0z f [i] + σ2
0 )

∑(k+M1−1)Nf −1

n=(k−1)Nf
(x[nP + i]− z f [i])2

]

1

(2πσ2
0 )

M1Nf P/2
exp

[
− 1

2σ2
0

∑(k+M1−1)Nf P

n=(k−1)Nf P+1
x2[n]

] . (B.5)
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Defining σ2
1 [i] = 2N0z f [i] + σ2

0 , inserting it into ln L(x), and
eliminating the constants leads to

ln L(x)

=
P∑
i=1

{
1

2σ2
0

(k+M1−1)Nf −1∑
n=(k−1)Nf

x2[nP + i]

− 1
2σ2

1 [i]

(k+M1−1)Nf −1∑
n=(k−1)Nf

(
x[nP + i]− z f [i]

)2
}

=
P∑
i=1

{
2z f [i]

2σ2
1 [i]

(k+M1−1)Nf −1∑
n=(k−1)Nf

x[nP + i]

+

(
1

2σ2
0
− 1

2σ2
1 [i]

)(k+M1−1)Nf −1∑
n=(k−1)Nf

x2[nP + i]

}

=
P∑
i=1

{
z f [i]

σ2
1 [i]

(k+M1−1)Nf −1∑
n=(k−1)Nf

x[nP + i]

+
N0z f [i]

σ2
0σ

2
1 [i]

(k+M1−1)Nf −1∑
n=(k−1)Nf

x2[nP + i]

}

=
P∑
i=1

z f [i]

σ2
1 [i]

{(k+M1−1)Nf −1∑
n=(k−1)Nf

x[nP + i]

+
N0

σ2
0

(k+M1−1)Nf −1∑
n=(k−1)Nf

x2[nP + i]

}
.

(B.6)

Then, the test statistic is

T(x) =
P∑
i=1

z f [i]

σ2
1 [i]

{(k+M1−1)Nf −1∑
n=(k−1)Nf

x[nP + i]

+
N0

σ2
0

(k+M1−1)Nf −1∑
n=(k−1)Nf

x2[nP + i]

}
.

(B.7)

C. Statistic of the Detectors

C.1. Detector T1(x). Since x is assumed to be a Gaussian
vector, T1(x) also follows a Gaussian distribution:

H0: T1(x) a∼ N

(
0,M1Nf σ0

2
P∑
i=1

z2
f [i]

σ4
1 [i]

)
,

H1: T1(x) a∼ N

(
M1Nf

P∑
i=1

z2
f [i]

σ2
1 [i]

, M1Nf

P∑
i=1

z2
f [i]

σ2
1 [i]

)
.

(C.1)

Actually, if the condition z f [i]/N0 � BTsam/4 is satisfied,
which means the signal-to-noise ratio (SNR) is low, the term
2N0z f [i] can be ignored in the variance of x under H1, and
then T1(x) can be derived directly.

C.2. Detector T2(x). Since the different entries of x have
different weighting factors in T2(x), we collect the data
samples bearing the same weighting factor into the same
group. Therefore, there are P groups of data samples,
and they are assumed to be uncorrelated. Each group∑(k+M1−1)Nf −1

n=(k−1)Nf
x2[nP + i] follows a Chi-squared distribution.

However, T2(x) is still assumed to be a Gaussian variable, as
it is the sum of the weighted groups. Then, we can obtain

H0 :

(k+M1−1)Nf −1∑
n=(k−1)Nf

x2[nP + i]
σ2

0

a∼ χ2
M1Nf

,

T2(x) a∼ N

(
M1Nf σ0

2
P∑
i=1

z f [i]

σ2
1 [i]

, 2M1Nf σ0
4
P∑
i=1

z2
f [i]

σ4
1 [i]

)
,

H1 :

(k+M1−1)Nf −1∑
n=(k−1)Nf

x2[nP + i]
σ2

1 [i]
a∼ χ2

M1Nf

(
M1Nf E

2
f [i]

σ2
1 [i]

)
,

T2(x) a∼ N

(
M1Nf

P∑
i=1

z f [i]

(
1 +

z2
f [i]

σ2
1 [i]

)
,

2M1Nf

P∑
i=1

z2
f [i]

(
1 +

2z2
f [i]

σ2
1 [i]

))
,

(C.2)

where χ2
ν is the central Chi-squared pdf with ν degrees of

freedom, which has mean ν and variance 2ν. Meanwhile,
χ2

ν (λ) is the noncentral Chi-squared pdf with ν degrees of
freedom and noncentrality parameter λ. Hence, it has mean
ν + λ and variance 2ν + 4λ.
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