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ABSTRACT

In this paper, we derive the Cramér-Rao bound (CRB) for range es-
timation, which does not only exploit the range information in the
time delay, but also in the amplitude of the received signal. This
new bound is lower than the conventional CRB that only makes
use of the range information in the time delay. We investigate the
new bound in an additive white Gaussian noise (AWGN) channel
with attenuation by employing both narrowband (NB) signals and
ultra-wideband (UWB) signals. For NB signals, the new bound can
be 3dB lower than the conventional CRB under certain conditions.
However, there is not much difference between the new bound and
the conventional CRB for UWB signals. Further, shadowing effects
are added into the data model. Several CRB-like bounds for range
estimation are derived to take these shadowing effects into account.

Index Terms— Cramér-Rao bound, ranging, shadowing

1. INTRODUCTION

The Cramér-Rao bound (CRB) is a standard benchmark to evaluate
the performance of an estimator. In this paper, we investigate the
CRB for range (D) estimation (the distance between the transmit-
ter and the receiver), which is an important parameter for localiza-
tion. There are two elementary measurements for range estimation:
the received signal strength (RSS) and the time of arrival (TOA–
τ ) [1]. The existing literature mostly treats them separately to derive
the CRB(D), e.g., see [1][2]. Some of them [3] insert the path-loss
model (indicating the relationship between the RSS and the range)
into the received signal-to-noise ratio (SNR), which is viewed as a
parameter of the CRB(τ ). However, they do not exploit the range
information in the RSS and the TOA jointly. Previous work in [4]
proposes to use both the RSS and the TOA to improve the ranging
accuracy and derives a CRB(D) by simply, yet incorrectly, assuming
that they are uncorrelated. Moreover, it does not provide a method to
combine them. Other joint methods [5] are for location estimation.
They propose to fuse the TOA measurements and the RSS measure-
ments to get a lower bound for localization, meanwhile they assume
the estimation error of the TOA has constant variance regardless of
its distance dependency.

We investigate the relationship among the RSS, the TOA and
the range D, and use both the RSS and the TOA for the CRB(D).
We do not use the RSS explicitly as a parameter, but the amplitude
of the received signal. Single path propagation is assumed, yet the
path-loss model is taken into account in the received signal model
to explore the distance dependency of the amplitude of the received
signal. The amplitude and the TOA are represented as a function of
D explicitly in the received signal model. Thus, we can derive the
CRB(D) directly.
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The rest of the paper is organized as follows. In Section 2,
we derive the true CRB(D) in an additive white Gaussian noise
(AWGN) channel with attenuation. Some results are shown. Fur-
ther, the maximum likelihood estimator (MLE) of D is proposed.
In Section 3, we include shadowing. Due to the difficulty to derive
the true CRB(D) directly in this case, we propose several CRB-like
bounds and suboptimal estimators for D. Numerical results are also
shown in Section 3. We conclude the paper in Section 4.

2. CRB AND ESTIMATOR IN AN AWGN CHANNEL WITH
ATTENUATION

The received signal through an AWGN channel with an attenuation
coefficient is

r(t) = αs(t− τ) + n(t). (1)

where τ is the unknown deterministic time delay, which is related
to the range D as τ = D/c, with c the signal propagation speed.
The channel attenuation coefficient α is related to D following
the distance-power law [6] as α = k0/

√
Dγ0 , with k0 a constant

parameter and γ0 also a constant depending on the environment,
e.g., in free space γ0 = 2. The transmitted waveform is repre-
sented by s(t). We use n(t) to denote AWGN with double-sided
power spectral density N0/2, which is filtered out by an ideal anti-
aliasing filter of bandwidth B. We assume B is larger than the
signal bandwidth. The continuous signal is sampled at the Nyquist
rate 2B = 1/Ts. The received data samples are collected in a
vector r = [r(0), r(Ts), r(2Ts), . . . , r((N − 1)Ts)]

T , which can
be written as

r = k0D
− γ0

2 sD + n. (2)

where sD = [s(−τ), s(Ts − τ), . . . , s((N − 1)Ts − τ)]T and n
contains noise samples with variance σ2 = N0B. In this model, we
find the range information not only in the time delay, but also in the
amplitude of the received signal. Therefore, the CRB(D) based on
the data model (2) is

CRB(D) =

{
Er

[
− ∂2

∂D2
ln(p(r; D))

]}−1

. (3)

with p(r; D) following a Gaussian distribution [7]. Assuming the
observation window includes the whole waveform, it leads to

CRB(D) =
c2Dγ0+2

2k2
0
E
N0

(
γ2
0c2

4
+ D2F 2 + γ0cDF ′2

) . (4)

where E =
∫ To

0
s2(t)dt is the transmitted signal energy, F 2 =∫∞

−∞(2πF )2|S(F )|2dF
/ ∫∞

−∞ |S(F )|2dF is the mean square

bandwidth of the signal, with S(F ) the Fourier transform of s(t),

and F ′2 =
∫ To

0
s(t) ds(t)

dt
dt
/ ∫ To

0
s2(t)dt = s2(t)

2

∣∣∣To

0

/
E . Since
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s(t) is smooth in [0, To), we may assume s(0) = s(To). As a result,

F ′2 = 0. Therefore, the CRB(D) in (4) can be simplified as

CRB(D) =
c2Dγ0+2

2k2
0
E
N0

(
γ2
0c2

4
+ D2F 2

) . (5)

We now compare CRB(D) in (5) with the results in [3]. We first
apply the method in [3] to derive the CRB(τ ), and then obtain the
CRB(D) as a transformation of the CRB(τ ). It results into

CRBref (D) =
c2Dγ0

2k2
0
E
N0

F 2
. (6)

Though the method in [3] takes the path-loss model into account, it
only exploits the range information in the time delay. The CRB(D)
in (5) has one more positive term γ2

0c2/4 in the denominator, as
a result of additionally investigating the range information in the
amplitude of the received signal. Setting γ2

0c2/4 = D2F 2, we

can obtain a critical distance Dc = γ0c/(2
√

F 2), which is de-
termined by the environment, the signal propagation speed and the
mean square bandwidth of the transmitted signal. When D � Dc,
CRB(D) ≈ CRBref (D). On the other hand, when D ≈ Dc, we can
gain about 3dB by taking the additional information into account.

Now, we will give some examples. It is known that E =∫ To

0
s2(t)dt = To

∫∞
−∞ Φ(F )dF , where Φ(F ) is the power

spectral density of the signal. Assuming Φ(F ) is uniformly dis-
tributed over the bandwidth (W = fH − fL) of the signal, we

get F 2 = 4π2(W2

3
+ fHfL). A larger bandwidth and a higher

central frequency result in a larger F 2 and a lower CRB. Using
k0 = 1, γ0 = 2, c = 3 · 108m/s and the whole bandwidth
(W = 10.6GHz − 3.1GHz) of the ultra-wide band (UWB) signals,
Dc is approximately 6.6mm, which is quite small. Hence, for an
indoor environment, where D is in the range of a few meters, we do
not need the new method and consider the range information in both
the amplitude and the delay. This is due to the large bandwidth and
the high central frequency of the UWB signals. However, if we only
use a narrowband (NB) signal, for example, with a bandwidth from
0 to 5MHz, Dc would be 16.5m under those circumstances. We can
then benefit from the new method for an indoor environment.

The left half of Table 1 shows the CRB(D) (5) in an AWGN
channel with attenuation employing UWB signals with different
bandwidths. The transmitted power spectral density of the signal
Φ(F ) is restricted below the FCC mask (−41.3 dBm/MHz). Fur-
ther, k0 = 1, γ0 = 2, c = 3 · 108m/s, N0 = 2 · 10−20w/Hz,
and To = 100ns. Clearly, increasing the bandwidth and central
frequency, we obtain a more accurate range estimation. Meanwhile,
the right half of Table 1 compares the new CRB(D) (5) with the
conventional CRBref (D) (6) employing NB signals. The NB sig-
nals have a frequency range from 0 to 5MHz. The observation time
To is 1μs. Other parameters are kept the same. We can see the new
method is much more accurate than the conventional method for the
NB signals in the relevant range. The new CRB(D) (5) is almost
3dB lower than the conventional CRBref (D) (6).

The MLE of D is derived, which can asymptotically attain the
bound in (5). We would like to find the D that maximizes p(r; D)
or ln p(r; D), leading to

D̂ = argmin
0<D<cTo

{
k0D

−γ0E − 2D−
γ0
2 Ers(D)

}
. (7)

where Ers(D) is a function of D: Ers(D) =
∫ To

0
r(t)s(t−D/c)dt.

A grid search is then executed to look for D. The variance of this
estimator approaches (5) as long as the data record is large enough.

3. CRBS AND ESTIMATORS IN AN AWGN CHANNEL
WITH ATTENUATION AND SHADOWING

When we include shadowing effects, which represent a more realis-
tic environment, the received signal is

r(t) = α̃Xs(t− τ) + n(t). (8)

where X is a random variable modeling the shadowing effects and
following a lognormal distribution 20log10X ∼ N (0, σ2

x), and α̃

still follows a distance-power law as α̃ = k̃0
2
/
√

Dγ0 . In order
to get a fair comparison, we normalize the average channel energy,

resulting in α̃2E[X2] = α2. Therefore, k̃0
2

= k2
0/E[X2]. The

normalization excludes the influence of the shadowing coefficient to
the average received energy. The definitions for other parameters
remain the same as in the last section. The received signal vector is

r = k̃0D
− γ0

2 XsD + n. (9)

Since X is independent of D, it can be viewed as a nuisance param-
eter. The MLE for D tries to find the D that maximizes p(r; D). It
is known that p(r; D) =

∫
p(r|X; D)p(X)dX . By integration, we

can get rid of X leading to a closed form of p(r; D), which is not
only needed for the MLE, but also for the CRB(D). However, the
integration is very difficult to derive in closed form.

Due to the difficulties to obtain the closed form of p(r; D), we
will derive the CRB for θ = [D, X]T . Since we have prior knowl-
edge of X , the Bayesian information matrix (BIM) [7] for θ is em-
ployed

IB(θ) = Eθ [ID(θ)] + IP (θ), (10)

[ID(θ)]ij = −E
r|θ

[
∂2

∂θi∂θj
lnp(r|θ)

]
, (11)

[IP (θ)]ij = −Eθ

[
∂2

∂θi∂θj
lnp(θ)

]
. (12)

where ID(θ) represents information obtained from the data, IP (θ)
indicates the prior information and p(r|θ) follows a Gaussian distri-
bution. Hence, we obtain

ID(θ) =
2k̃0

2

Dγ0

E
N0

⎡⎢⎢⎣ X2
( γ2

0

4D2
+

F 2

c2
+

γ0F ′2

cD

) −X
( γ0

2D
+

F ′2

c

)
−X

( γ0

2D
+

F ′2

c

)
1

⎤⎥⎥⎦ ,

IP (θ) =

[
0 0
0 Xc

]
, where Xc = EX

[
−∂2lnp(X)

∂X2

]
.

We now have all the ingredients to derive several bounds. The
first bound is the Hybrid CRB (HCRB) [8], which is HCRB(D) =[
I−1

B (θ)
]
11

as shown in (13), with M2 = E[X2] and M1 = E[X].
It covers the case where the desired deterministic parameter and ran-
dom nuisance parameters are jointly estimated, and it is a bound for
the estimators that take the prior knowledge of X into account.

The second bound is the Modified CRB (MCRB) [9]: MCRB(D)
= 1/[IB(θ)]11, which is

MCRB(D) =
c2Dγ0+2

E[X2]2k̃0
2 E
N0

(
γ2
0c2

4
+ D2F 2 + γ0cDF ′2

) . (14)
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UWB signals σD(m) NB signals, 0MHz ∼ 5MHz

D(m) 3.1GHz ∼ 10.6GHz 7.316GHz ∼ 8.684GHz 3.658GHz ∼ 4.342GHz D(m) σD(m) σDref (m)

1 9.0786 · 10−8 1.9066 · 10−7 5.3924 · 10−7 10 1.4317 · 10−2 2.7671 · 10−2

3 2.7236 · 10−7 5.7199 · 10−7 1.6178 · 10−6 15 2.7884 · 10−2 4.1507 · 10−2

10 9.0788 · 10−7 1.9066 · 10−6 5.3927 · 10−6 20 4.2648 · 10−2 5.5343 · 10−2

Table 1. Theoretical ranging accuracy for an AWGN channel with attenuation, σD =
√

CRB(D)

HCRB(D) =
c2Dγ0+2

2k̃0
2 E

N0

{(
M2 − M2

1 +
M2

1

1 +
2k̃0

2

XcDγ
0

E
N0

)( γ2
0c2

4
+ γ0cDF ′2

)
+ M2D2F 2 − M2

1

(
1 − 1

1 +
2k̃0

2

XcDγ
0

E
N0

)
D2(F ′2)2

} , (13)

It is a loose bound to cope with nuisance parameters, when it is dif-
ficult to get the true CRB. The MCRB(D) (14) depends on the aver-

age received energy. Taking k̃0
2

= k2
0/E[X2] into (14), we find it is

equal to the CRB(D) (4). Due to the normalization, the average re-
ceived energy in an AWGN channel with attenuation and shadowing
is the same as the received energy in an AWGN channel only with
attenuation.

The third bound is the Miller-Chang bound (MCB) proposed
in [10]: MCB(D) = EX {1/[ID(θ)]11}, which is

MCB(D) = EX

[
1

X2

]
c2Dγ0+2

2k̃0
2 E
N0

(
γ2
0c2

4
+ D2F 2 + γ0cDF ′2

) . (15)

It covers the estimator that is locally unbiased for all the values of the
nuisance parameter X . This kind of estimator may not be achieved,
since for extremely low signal strengths, the receiver can not detect
the signal any more [10]. The term 1/[ID(θ)]11 in MCB(D) is the
bound for the estimator with perfect knowledge of X .

The fourth bound is the extended MCB (EMCB) [8]: EMCB(D)
= EX

{[
I−1

D (θ)
]
11

}
, which is

EMCB(D) = EX

[
1

X2

]
c2Dγ0

2k̃0
2 E
N0

{
F 2 − (F ′2)2

} . (16)

It is the average over X of the joint estimation bound, which assumes
X is an unknown deterministic parameter.

All the above bounds are related to each other as follows

CRB(D) ≥ HCRB(D) ≥ MCRB(D), (17)

EMCB(D) ≥ MCB(D) ≥ MCRB(D). (18)

The order (17) has already been proved in [11][12]. The first in-
equality indicates that the CRB(D) (the true CRB for an AWGN
channel with attenuation and shadowing) applied directly to D using
a marginal probability density function is tighter than the HCRB(D).
There is no performance improvement when estimating more param-

eters in the given system. When we have F ′2 = 0, for UWB signals,
in the relevant ranges, we would observe HCRB(D) ≈ MCRB(D),

since γ2
0c2/4 � D2F 2. For NB signals, we expect to see that

the MCRB(D) is looser than the HCRB(D). The order (18) is
also verified in [8]. The inequality [I−1

D (θ)]11 ≥ 1/[ID(θ)]11 al-
ways holds, which confirms the inequality EMCB(D) ≥ MCB(D).

Again relying on F ′2 = 0, for UWB signals, we would have
MCB(D) ≈ EMCB(D). For NB signals, differences will be
obvious.

Table 2 collects the ranging accuracy obtained by different
bounds for UWB signals and NB signals. The parameters are
set the same values as in the last section. The upper part of
Table 2 is for UWB signals, while the lower part is for NB
signals. The MCRB(D) is independent of the shadowing ef-
fects, due to the channel energy normalization. It is equal to
the CRB in an AWGN channel only with attenuation. The order
EMCB(D) ≥ MCB(D) ≥ HCRB(D) ≥ MCRB(D) is established
from Table 2 for UWB signals in the relevant ranges, which indicates
that the prior knowledge of X helps range estimation. As the shad-
owing effects increase, the estimators perform worse regardless of
the prior knowledge of shadowing. For NB signals, the differences
between the HCRB(D) and the MCRB(D), as well as between the
MCB(D) and the EMCB(D) are obvious for the relevant ranges.
The order EMCB(D) > HCRB(D) still holds. The HCRB(D)
benefits from the prior knowledge of X . When σx = 3dB, the
HCRB(D) is larger than the MCB(D) around the critical distance.
However, this relationship does not retain, when σx = 6dB. As
the shadowing effects become more serious, the MCB(D) becomes
larger even if we know the exact value of X as assumed by the
bound MCB(D). This is due to the fact that it bounds the average
performance of a kind of estimator, which relies on the instantaneous
received energy. Its performance is unfavorable, when the instan-
taneous received energy is low. On the other hand, the HCRB(D)
is smaller when the shadowing is more severe under the condition
that the channel energy is normalized. The prior knowledge of X
helps out when the instantaneous received energy is very low. In
summary, it is important to take the prior knowledge into account to
handle the shadowing effects.

Now let us investigate some estimators for X and D. There
are two different ways to estimate X and D depending on whether
to employ the prior knowledge of X in the estimation procedure.
Method 1: If both X and D are assumed as unknown deterministic
parameters, then the classic MLEs are derived. Method 2: if X is
assumed as a random variable and p(X) is known, D is assumed as
an unknown deterministic parameter, then the Bayesian estimator is
employed.

Method 1: we would like to find the X and the D that maximize
p(r|X; D),

∂lnp(r|X; D)

∂X
= 0, (19)

∂lnp(r|X; D)

∂D
= 0. (20)

Solving (19), we obtain X̂ =
D

γ0
2 Ers(D)

k̃0E
. Inserting X̂ into (20)
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σHCRB (m) σMCRB (m) σMCB (m) σEMCB (m) σHCRB (m) σMCRB (m) σMCB (m) σEMCB (m)

D(m) Shadowing σx = 3dB, UWB signals, 3.1GHz ∼ 10.6GHz Shadowing σx = 6dB, UWB signals, 3.1GHz ∼ 10.6GHz

1 9.0788 · 10−8 9.0786 · 10−8 1.0089 · 10−7 1.0090 · 10−7 9.0788 · 10−8 9.0786 · 10−8 1.3822 · 10−7 1.3822 · 10−7

3 2.7236 · 10−7 2.7236 · 10−7 3.0269 · 10−7 3.0269 · 10−7 2.7236 · 10−7 2.7236 · 10−7 4.1466 · 10−7 4.1466 · 10−7

10 9.0788 · 10−7 9.0788 · 10−7 1.0090 · 10−6 1.0090 · 10−6 9.0788 · 10−7 9.0788 · 10−7 1.3822 · 10−6 1.3822 · 10−6

D(m) Shadowing σx = 3dB, NB signals, 0MHz ∼ 5MHz Shadowing σx = 6dB, NB signals, 0MHz ∼ 5MHz

10 2.5908 · 10−2 1.4317 · 10−2 1.5910 · 10−2 3.0750 · 10−2 2.2456 · 10−2 1.4317 · 10−2 2.1793 · 10−2 4.2121 · 10−2

15 4.0265 · 10−2 2.7884 · 10−2 3.0986 · 10−2 4.6125 · 10−2 3.7419 · 10−2 2.7884 · 10−2 4.2445 · 10−2 6.3182 · 10−2

20 5.4390 · 10−2 4.2648 · 10−2 4.7393 · 10−2 6.1500 · 10−2 5.2070 · 10−2 4.2648 · 10−2 6.4919 · 10−2 8.4242 · 10−2

Table 2. Theoretical ranging accuracy for an AWGN channel with attenuation and shadowing σ =
√

CRB

says that the estimation of D should satisfy the following equation∫ To

0

r(t)
∂s(t− τ)

∂τ
dt + F ′2Ers(D) = 0. (21)

Define F ′rs
2(D) =

∫ To

0
r(t) ∂s(t−τ)

∂τ
dt
/
Ers(D) conditioned on

Ers(D) �= 0. Then the MLE of D is equivalent to

D̂ = argmin
0<D<cTo

∣∣∣F ′rs
2(D)

∣∣∣ . (22)

In reality, we do not check the condition Ers(D) �= 0, but test
whether Ers(D) is above the noise floor. If it is true, then we con-
clude that Ers(D) �= 0 is satisfied. Otherwise, Ers(D) equals zero
and we have to check other D candidates. The average performance
of this estimator can asymptotically approach EMCB(D).

Method 2: In this case, we have prior knowledge of X , and
a Bayesian estimator can be employed. The well-known min-
imum mean square error (MMSE) estimator is first employed

X̂ = E(X|r; D) =
∫

Xp(X|r; D)dX, where p(X|r; D) =

p(r|X; D)p(X)
/ ∫

p(r|X; D)p(X)dX . The integration in the

denominator prevents us from finding a closed form. Hence, we
resort to a maximum a posteriori (MAP) estimator, which boils
down to finding the X that maximizes p(X|r; D). It is equivalent
to maximizing p(r|X; D)p(X) or ln (p(r|X; D)p(X)). Then, the
joint estimation of X and D is

[X̂, D̂] = argmax
X,0<D<cTo

{ln(p(r|X; D)p(X))}

= argmin
X,0<D<cTo

{J(X, D)} . (23)

where J(X, D) = g1(X, D) + g2(X),

g1(X, D) =
E
N0

(
k̃0X

D
γ0
2
− Ers(D)

E

)2

− E
2
rs(D)

N0E ,

g2(X) =
200

σ2
xln210

(
lnX +

σ2
xln210

400

)2

− σ2
xln210

800
.

Method 2 is much more complicated than Method 1, since it has
to execute a two-dimensional search compared to a one-dimensional
search in Method 1. The performance limitation of Method 1
and Method 2 for range estimation can be indicated by the bound
EMCB(D) and the bound HCRB(D), respectively.

4. CONCLUSIONS

In this paper, we have investigated the accuracy for range estimation
by a new method, which exploits the range information in both the

amplitude and the time delay of the received signal. Several bounds
are derived not only in an AWGN channel with attenuation , but also
in an AWGN channel with attenuation and shadowing. For UWB
signals, the new method does not show obvious benefits. However, it
indeed improves the ranging accuracy using NB signals. Moreover,
taking the prior knowledge of the shadowing effects into account
lowers the bounds for range estimation. Further work will focus
on range estimation using UWB signals in multipath environments.
Since the first path is the most relevant to the TOA estimation, we
would like to explore the statistical properties of the first path and
take full use of it in ranging.

5. REFERENCES

[1] S. Gezici, Z. Tian, G.B. Giannakis, H. Kobayashi, A.F. Molisch, H.V.
Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a
look at positioning aspects for future sensor networks,” IEEE Signal
Process. Mag., vol. 22, pp. 70–84, July 2005.

[2] J. Zhang, R. A. Kennedy, and T. D. Abhayapala, “Cramér-Rao lower
bounds for the synchronization of UWB signals,” EURASIP J. Appl.
Signal Proc., vol. 3, pp. 426–438, 2005.

[3] R. Cardinali, L. De Nardis, M.-G. Di Benedetto, and P. Lombardo,
“UWB ranging accuracy in high- and low-data-rate applications,” IEEE
Trans. Microw. Theory Tech., vol. 54, pp. 1865–1875, June 2006.

[4] Y. Qi and H. Kobayashi, “On relation among time delay and signal
strength based geolocation methods,” IEEE GLOBECOM ’03., vol. 7,
pp. 4079–4083, Dec. 2003.

[5] A. Catovic and Z. Sahinoglu, “The Cramer-Rao bounds of hybrid
TOA/RSS and TDOA/RSS location estimation schemes,” IEEE Com-
mun. Lett., vol. 8, pp. 626–628, Oct. 2004.

[6] T.S. Rappaport, Wireless communications principles and practice,
Prentice Hall, 1996.

[7] H.L. Van Trees, Detection, estimation, and modulation theory, John
Wiley & Sons, Inc., New York, 1968.

[8] F. Gini and R. Reggiannini, “On the use of Cramer-Rao-like bounds in
the presence of random nuisance parameters,” IEEE Trans. Commun.,
vol. 48, pp. 2120–2126, Dec 2000.

[9] A.N. D’Andrea, U. Mengali, and R. Reggiannini, “The modified
Cramer-Rao bound and its application to synchronization problems,”
IEEE Trans. Commun., vol. 42, no. 234, pp. 1391–1399, Feb/Mar/Apr
1994.

[10] R. Miller and Chow Chang, “A modified Cramér-Rao bound and its
applications,” IEEE Trans. Inf. Theory, vol. 24, pp. 398–400, May
1978.

[11] B. Z. Bobrovsky, E. Mayer-Wolf, and M. Zakai, “Some classes of
global Cramer-Rao bounds,” The Annals of Statistics, vol. 15, no. 4,
pp. 1421–1438, Dec 1987.

[12] I. Reuven and H. Messer, “A Barankin-type lower bound on the esti-
mation error of a hybrid parameter vector,” IEEE Trans. Inf. Theory,
vol. 43, pp. 1084–1093, May 1997.

3304


