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Abstract—A discrete-time equivalent system model is derived
for differential and transmitted reference (TR) ultra-wideband
(UWB) impulse radio (IR) systems, operating under heavy in-
tersymbol-interference (ISI) caused by multipath propagation.
In the systems discussed, data is transmitted using differential
modulation on a frame-level, i.e., among UWB pulses. Multiple
pulses (frames) are used to convey a single bit. Time hopping and
amplitude codes are applied for multi user communications, em-
ploying a receiver front-end that consists of a bank of pulse-pair
correlators.

It is shown that these UWB systems are accurately modeled by
second-order discrete-time Volterra systems. This proposed non-
linear equivalent system model is the basis for developing optimal
and suboptimal receivers for differential UWB communications
systems under ISI. As an example, we describe a maximum like-
lihood sequence detector with decision feedback, to be applied at
the output of the receiver front-end sampled at symbol rate, and
an adaptive inverse modeling equalizer. Both methods significantly
increase the robustness in presence of multipath interference at
tractable complexity.

Index Terms—Differential receivers, equalization, impulse radio
(IR), transmitted reference, ultra-wideband (UWB) communica-
tions, Volterra systems.

I. INTRODUCTION

I N autocorrelation receiver (AcR) front-ends for impulse
radio (IR) ultra-wideband (UWB) communications systems,

the received signal consisting of a train of pulses is delayed and
correlated with itself. The basic idea is to use the delayed signal
as a template in the demodulation block, without requiring any
kind of channel estimation. Thus, one pulse is used to “sound”
the channel and another one is used to convey data. Data can be
applied, for instance, by differentially modulating the polarity of
the “data” pulse with respect to the “reference” pulse. The delay
line in an AcR front-end, or “pulse-pair” correlator, is matched
to the lag between the reference and the data pulses. The overall
system is often called a transmitted reference (TR) AcR [1]–[13].
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AcRs have the big advantage of capturing energy from all
multipath components at low implementation complexity, com-
pared with coherent receivers. Unfortunately the reference pulse
is corrupted by noise and interference, which is an inherent dis-
advantage. If the data rate of such systems is increased, inter-
ference among multiple pulses becomes one of the most funda-
mental deteriorating effects, due to the multipath propagation.
This effect is termed interframe-interference (IFI), if interfer-
ence between multiple pulses of one data symbol is referred to,
and intersymbol-interference (ISI) for the interference among
consecutive data symbols. The characterization, modeling, and
suppression of IFI and ISI is still a young topic of research. A
few important basic results are found, e.g., in [2], [4], and [14].
However, most of them are limited to rather simple cases, for ex-
ample considering IFI among a pair of reference and data pulses
only [2], [4]. A more sophisticated model has been presented in
[12], where both IFI and ISI are taken into consideration. Based
on this work, linear weighting of an oversampled AcR output
is suggested in [13] to improve the receiver performance. Most
other previous works assume pulse spacings sufficiently long
such that IFI is completely avoided, which ultimately limits the
transmission rates [5]–[11].

In this paper, we derive an equivalent system model for AcR-
based UWB systems, describing the IFI and ISI in a multipath
channel. That is, high-rate differential transmission schemes are
studied. The system model accurately relates the transmitted
data bits to the test statistics at the decision device . A
nonlinear second-order Volterra model [15] is found to describe
the data dependency, whereby the nonlinearity is caused by the
multiplication in the pulse-pair correlators. The data model can
be written as

(1)

Besides a linear finite impulse response (FIR) component
specified by the coefficients , it comprises an additive bias
term and product terms of the transmitted data symbols,
weighted by the second-order coefficients . The memory
depth is expressed by , which is determined by the ratio of the
maximum channel excess delay and the symbol duration. Ad-
ditive noise samples are denoted by , whose second-order
moments are studied in this paper. We will demonstrate the suit-
ability of this model for the differential UWB scheme described
in [14]. This scheme achieves higher efficiency and potentially
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Fig. 1. Illustration of the (a) transmitted and (b) received signals in the studied differential UWB system. In (b), the correlation lag D and integration interval
T is shown for the correlation of the reference pulse l = 2 and the data pulse l = 3.

supports higher data rates by differentially modulating each
pulse with respect to the previous one—so each pulse is used
as a reference and as a data pulse.

The derived equivalent system model is a powerful tool for
developing optimal and suboptimal detection algorithms (equal-
izers) for high-rate differential UWB schemes suffering from
ISI. Its structure holds under various modifications and system
imperfections, like fractional sampling, separate processing of
multiple AcR channels, mismatching transmitter and receiver
parameters, synchronization and delay errors, and others. It can
be extended to a multiuser model. It is also useful in the per-
formance evaluation and optimization under ISI conditions, as
demonstrated in this paper and in [16].

As an example for the model’s applicability, we demonstrate
the equalization of the differential IR system, using a maximum-
likelihood (ML) sequence detector with decision feedback and
an adaptive inverse modeling approach. These algorithms are
implemented in the back-end of the receiver, processing the
output signal of the analog front-end, which is uniformly sam-
pled at the symbol rate. Significantly increased data rates (at a
given channel delay spread) or, equivalently, higher robustness
against multipath interference (at fixed data rates) are potentially
obtainable, if accurate synchronization and channel estimation
could be achieved.

We do not investigate the problems of channel estimation and
synchronization in this paper, which are crucial for practical im-
plementations. However, through the use of the proposed equiv-
alent system model, we are able to convert the channel impulse
response into a set of “low-rate” channel parameters, which can
be estimated from the front-end output . Similarly, the syn-
chronization problem is simplified because shifted from the pulse
level (subnanosecond scale) to the symbol level (phase synchro-
nization of a symbol clock). Most critically, the performance of
the investigated schemes will be affected by the delay-line accu-

racy, comparable to the required accuracy of the local oscillator
in a conventional bandpass system. This is considered to be the
major implementation challenge for UWB AcRs.

This paper is organized as follows. The differential receiver
concept and its signal model are presented in Section II. In
Section III, the equivalent system model is derived, first, ne-
glecting noise, which is then introduced in Section IV. Valida-
tion results and their discussion can be found in Section V, along
with performance results of a conventional threshold detector.
In Section VI, we demonstrate the equalization of the proposed
receiver, followed by conclusions in Section VII.

II. MATHEMATICAL MODELING

A. Transmitted Signal

In this section, the signal model is given for the differen-
tial IR-UWB schemes under investigation. Each data symbol

, being the symbol index, is trans-
mitted via consecutive pulses. This data symbol sequence is
spread by a pseudorandom amplitude code sequence ,
where . The resulting chip sequence is
then differentially modulated on the time-hopped pulses, using
pulse-polarities , , and

, see Fig. 1(a). The transmitted signal
is written as

(2)

where is the transmitter pulse shape including the influence
of the transmitter and receiver antennae. The time instants of the
pulses are defined as , where is the constant
symbol duration and are the relative pulse timings (in sec-
onds) within a symbol, representing the time hopping code and
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Fig. 2. Receiver front-end for a multiuser differential IR-UWB system.

the (average) spacing between pulses. Note that every second
pulse of a symbol is not modulated by data, since . We
distinguish unmodulated reference pulses and modulated data
pulses.

In this paper, we assume that the code sequences and
do not change from symbol to symbol. This is a condition

for the proposed discrete-time equivalent system model to be
time-invariant. Moreover, the pulse with index must be a
reference pulse.

Throughout this paper, we will study the so-called “frame-
differential” IR scheme [14], which is illustrated in Fig. 1(a).
Note that this scheme is a modification of the TR technique pro-
posed in [1], where “isolated” doublets of reference and data
pulses have been considered. However, by increasing the data
rate these doublets move close together, thus, at a certain point,
it makes sense using each pulse as a reference for demodulating
the following one. Multiple access will be supported by the am-
plitude code and by the delay hopping code , defined
by , , and

.
In general, these codes and the data are specific for a

certain user. As the single-user case is studied in this paper, we
do not indicate this dependency explicitly in order to simplify
the notation.

B. Receiver Front-End

The block diagram of a receiver front-end for such signals
is shown in Fig. 2. A bank of pulse-pair correlators—also
called AcR channels—is present at its input, comprising the de-
lays , which are matched to the delay hopping code

, the multipliers, and the integrate-and-dump (I&D)

blocks. The integrators are triggered by a common symbol clock
through delay elements corresponding to the pulse positions
within the symbol interval. Therefore, phase-synchronization of
the symbol clock is the only time-synchronization required in
this receiver, assuming that the delay hopping code is known.
Integration is performed over a time interval , which can be
selected to optimize the signal-to-noise ratio (SNR) of the AcR
outputs [8], [10], [13]. In this paper, we only assume that this
interval does not exceed the symbol interval .

The outputs of the correlators are sampled at the symbol rate.
The most basic receiver coherently combines these samples by
canceling the amplitude code through multiplication by

, . Advanced receivers, as discussed in Section VI,
can apply optimal or suboptimal detection algorithms to the
combined correlator outputs, using a digital signal processor
(DSP). Processing the AcR channels individually and/or frac-
tionally-spaced sampling are other options, but both are not con-
sidered in this paper.

In order to describe the original TR scheme [1] by this model,
the chip-level code can be expressed by the code sequence

. The average frame duration and the delays of

the pulse-pairs can be represented by . In the receiver
front-end, typically, one correlator per chip is used, thus,
would equal the numberofchipsper symbol ,
where is the number of pulse-pairs per chip.

C. Modeling of the Receiver Front-End

Expressed mathematically, the receiver front-end performs
the following operations for calculating the test statistic (deci-
sion variable) for symbol number

(3)

(4)

In this paper, we neither consider time synchronization er-
rors nor correlation lag offsets. That is, we assume a perfect
match of the integration start times and the pulse timings

and . Furthermore, we choose the
combining weights as . Therefore, we will drop the
tilde ( )—introduced above to distinguish parameters of the re-
ceiver—in the rest of this paper for simplicity. We would like
to emphasize that modifying any of these assumptions would
not change the structure and derivation of the equivalent system
model given below.

The received signal in (4) is defined as

(5)

where is the received signal without
noise. (The accent is used to denote signals corrupted by ad-
ditive noise.) is a white Gaussian noise process, is
the impulse response of the front-end filter of our receiver, and

denotes linear convolution. The filtered noise-process
is thus characterized by its autocorrelation function

(6)
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where is the double-sided power spectral density of the
receiver front-end noise.

The channel impulse response in (5) can be an arbitrary
impulse response. It can, for instance, be modeled as a sum of
Dirac delta pulses in order to express a
realization of a simulated channel impulse response, generated
according to the Saleh and Valenzuela channel model [17] or
any of its derivatives for UWB channels [18], [19]. It can also
be a measured channel impulse response. However, we assume
that the time variation of the channel is slow compared with the
symbol duration, for yielding a quasi-static system model.

Using the signal model (5) with (4), we obtain

(7)

(8)

(9)

(10)

(11)

In order to derive the equivalent system model, we first ana-
lyze the receiver in the noise-free case (8), which will lead to a
second-order Volterra system model (Section III). Subsequently,
noise is analyzed in Section IV.

III. EQUIVALENT SYSTEM MODEL WITHOUT NOISE

Using the mathematical definitions from above, the received
signal can be written as

(12)

where is the response
of the channel to one transmitted monocycle at . With (8),
the output of correlator at time step becomes

(13)

where

(14)

This integral, being a time-gated autocorrelation function of the
channel response , can be evaluated numerically if measure-
ments or simulations of are available.

Equation (13) accounts for the interference from all pulses of
previous and one consecutive symbol. We define the memory

length and assume that the channel response
is confined to the interval , i.e., is the

channel’s maximum excess delay. One consecutive symbol
has to be considered if the integration interval extends into
symbol and if .

Fig. 1(b) illustrates the influence of multiple pulses on
the correlation result of the demodulated pulse-pair and

.
In a compact matrix notation, (13) can be written as

(15)

where

(16)

represents the polarities of all pulses. The elements of the
matrix are given by

(17)

for all and
.
This matrix expresses the time-hopping sequence of the trans-

mitted signal, the receiver timing matched to this sequence (i.e.,
the integration intervals and correlation lags), and the channel
response including any linear filtering and pulse-shaping in the
analog hardware. It will be a constant valued matrix, if all these
factors are time-invariant and the channel is assumed (quasi)
static.

The combined decision variable defined in (3) is found as

(18)

where also includes the “tuning” of the
receiver to the amplitude code .

We will next demonstrate that (18) constitutes a discrete-time
Volterra model of order two, having the transmitted data sym-
bols at its input. To express the data dependency, we rewrite
the data (and code) dependent vector in terms of the data
vector

(19)



WITRISAL et al.: EQUIVALENT SYSTEM MODEL AND EQUALIZATION OF DIFFERENTIAL IR-UWB SYSTEMS 1855

where the amplitude code of the transmitted sequence is
expressed by the diagonal matrix

The product yields a length vector con-
taining the data bits at the respective positions to
modulate the pulse polarities of . Therefore,
is a block-diagonal matrix of dimensions
with the length selection vectors at
its main diagonal. denotes the Kronecker product. The length

vector contains ones at the el-
ements of that are not data dependent. and denote an
identity matrix of size and an all-ones vector of length

, respectively.
Using (18) and (19), a second-order Volterra model is

obtained

(20)

The linear system coefficients are expressed by the length
coefficient vector . The coef-

ficients of the product terms can be represented as a tri-
angular matrix with zero-elements on the main diagonal, by
appropriately adding the upper and lower triangular parts of

and by including its diagonal elements in the bias
term . The latter can be done
since .

These expressions suggest that linear model components
relate to the interference between (the channel’s response to)
unmodulated reference and modulated data pulses. Nonlinear
product terms are attributed to interference between differently
modulated pulses of any two different data symbols. They, thus,
appear only if significant ISI is present.1 The bias term is due
to interference among fixed reference pulses (the contribution

) plus interference between equally modulated data
pulses (the component ).

In Section V-A, we will use computer simulations to demon-
strate the equivalence of this system model compared with a
conventional simulation of the continuous-time signals of the
transmission system. But first we will reintroduce noise.

IV. ANALYSIS OF NOISE

For the analysis of noise, we consider the three noise terms in
(7). We encounter two “linear” terms (9) and (10),
which depend on the received signal , and a “product” noise
term (11). This agrees with previous analyses of noise
in transmitted-reference systems, see, e.g., [2], [4], and [20].

1In a multiuser (MU) equivalent system model, nonlinear terms also exist
if data symbols of various users overlap. An equivalent system model can be
derived for the MU-case by including the interfering users’ pulse polarities in the
a[i]-vectors and extending the Y -matrices with all channels’ auto- and cross-
correlation values for any pulse-pairs. The multiuser Volterra model comprises
d[i]-vectors extended by the other users’ data and correspondingly extended
coefficient vectors and matrices.

Following [2] and [20], we assume that all three noise compo-
nents at the output of the correlators are zero-mean Gaussian
noise variables, which requires that the noise process is
zero mean, that , , and that the integration-time
by noise-bandwidth product .

The noise component of the decision variable is defined
by . Using (3) and (7), we obtain

(21)

since is uncorrelated from and , , .
In the Appendix, it is demonstrated that the data-depen-

dent covariance of the linear noise terms can be expressed by
quadratic forms

(22)

for . It is zero for (see the Appendix).
Similarly to (15), the data dependency is contained in the vectors

, while the matrices express the channel impulse
response , the time-hopping code , and the timing of the
receiver front-end. These matrices are time-invariant (like ),
assuming a quasi-static channel.

The covariance of the product noise terms, which are inde-
pendent of channel, code, and data, is

(23)

(24)

where

is the intersection of the integration intervals in (23) after sub-
tracting . We have assumed in (24) that

, . This is justified, since is a wideband process with
bandwidth , . has been substituted,
causing a negligible error with the integration ranges indicated.

Note that the product noise terms of several correlators are un-
correlated with one another, provided that all differential pulse
spacings are unique, i.e., , . (To be precise,

must be given over the support of
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.) They are also uncorrelated if the integration intervals
do not overlap, i.e., if . Then, we get

(25)

where is the Fourier transform of the re-
ceiver front-end filter.

A. Noise Model

The noise model for the decision variable can be calculated
using (21)–(25). Introducing , it
can be expressed by2

where

Using (19), the dependence on the data vector can be
written explicitly, which determines the time-variance of the
noise model. Therefore, following the steps leading to (20), the
time/data dependency is appropriately described by two Volterra
models for ,13

(26)

The coefficients of the Volterra models depend on the parame-
ters of the transmission system and on the channel response .
Note that the product noise term is proportional to the integra-
tion interval and to the system bandwidth expressed
by , making these parameters important for the system
optimization [8], [10], [13].

B. Model Simplifications

From (9) and (10), it can be observed that the time-variance
of the noise model is caused by variations of the received signal

within the integration interval. If there is little such varia-
tion, for example, because there is little IFI and ISI so we always
observe relatively undisturbed realizations of , then the data
dependence will be rather weak. In these cases, the time-vari-
ance can be neglected and the average covariance of the noise

2It has been assumed that the conditions leading to (25) apply. Otherwise,
(23) or (24) have to be evaluated numerically to determine the contribution of
the product noise terms, which can be expressed byN [�] for j�j � 1. In general,
the product noise term increases, if the conditions do not apply.

3Due to the time-variance expressed by a[i], Efz [i]z [i + 1]g 6=
Efz [i]z [i�1]g= (N =2)a [i]W a[i] = (N =2)a [i�1]W a[i�1].

Fig. 3. Second-order Volterra equivalent system of the differential IR-UWB
system. The second Volterra system models the data dependency of the noise
variance at the receiver front-end’s output.

samples is obtained by averaging (26) over all possible data se-
quences , yielding the bias terms of the Volterra
models, if the data are uncorrelated

(27)
In Section V-C, we will show by bit-error rate (BER) compu-

tations that even in situations of high IFI and ISI no large error
is made when neglecting the noise’s time-variance.

The correlation of consecutive noise samples is caused by
overlapping integration intervals of any two correlators at
consecutive time steps and (see the Appendix). If the
system model parameters are selected such that this overlap
does not occur, the covariance model can be skipped. It can
also be skipped in applications where the covariance of noise
is irrelevant, as for instance in the performance evaluation of
a threshold detector that only considers the current decision
variable (see Section V-C).

Both, the data dependence of the variance and the covariance
of noise samples become negligible when the product noise term
(25) is dominant. First, this term is time-invariant and second,
its samples are uncorrelated under less stringent conditions. In
particular, this may apply in a critical receiver operating point
at low SNR.

An illustration of the equivalent system model is shown in
Fig. 3, where the upper branch with the “Volterra System I”
represents the data model, while the lower branch introduces
the data dependency of the noise variance, described by the
“Volterra System II.” The covariance of noise samples has been
omitted.

In Section V, the equivalent system model is verified by com-
puter simulations. Unequalized performance results are com-
puted. Our discussion concentrates on the evaluation of the sig-
nificance of the various model components, like the impact of
nonlinear terms and noise coloring.

V. MODEL VALIDATION AND DISCUSSION

The following main system parameters have been used
in these simulations. Average symbol duration ns
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Fig. 4. Simulated receiver output compared with the output of the
second-order Volterra equivalent system. (a) Noise-free case. (b) Data
dependency of the noise (co)-variance at E =N = 30 dB.

(125 Mbit/s), pulses per symbol, integration time
ns, a random time-hopping code of length

with unique interpulse delays according to the conditions for
(25), i.e., ns, and a random -code.

A non-line-of-sight channel has been simulated (no dominant
line-of-sight component), with an exponentially decaying delay
profile at RMS delay spreads [17] of ns for the system
validation and ns for BER results [14]. The channel
simulator produces random ray arrival times corresponding to
a Poisson process, with a mean arrival rate of rays per
nanosecond. The ray-amplitudes are Rayleigh distributed with
random signs.4

A second-derivative Gaussian monocycle with
ns has been selected for , i.e.,

. The continuous-time
signals of the receiver were simulated by sampling at

. Higher time-resolutions (ten times) were
used in the channel simulator to appropriately model the
unquantized ray arrival times. Independent Gaussian noise
samples were assumed at the receiver front-end, corresponding
to a noise process with a bandwidth .

A. Equivalent System Model

We first compare the receiver output , simulated by pro-
cessing the received signal according to the elements of the re-
ceiver front-end shown in Fig. 2—so-called “conventional sim-
ulations”—with the output of the second-order Volterra equiv-
alent system, whose parameters have been computed using the
equations derived in Section III.

Fig. 4(a) validates the equivalence of the two simulations in
the noise-free case and illustrates the impact of the nonlinear

4We do not use the standardized IEEE802.15.3a channel model in our sim-
ulations since it is not our goal to evaluate the absolute performance limits of
the investigated transmission schemes and receivers. The applied model has the
advantage of being fully specified by just a few well-known parameters. We ex-
pect to be able to draw the same conclusions from it, concerning the presented
validation of the equivalent system model and comparison of detectors.

coefficients. The sampled output of the conventional simula-
tion is marked by “ .” Plus characters “ ” show the output of
the equivalent system model at these sampling instants. Perfect
agreement between these two demonstrates the suitability of the
proposed equivalent system model.

More instructive is the comparison to the output of a linear
system model, if the product terms of the Volterra system are
neglected (see ). Clearly, this simplified model does not ac-
curately describe the differential UWB receiver front-end. For
reference, the data sequence is shown by “ .”

The horizontal dashed line stands for the bias term, which is
a possible choice for the decision threshold since it represents
a constant offset in the data model. But it will not be the op-
timal choice, because the likelihood functions of the decision
variable conditioned on the desired bit are not symmetric
under ISI, as seen from the product terms of the Volterra model.
Specifically, if the desired is fixed, the coefficients of the
product terms involving are either added (if ) or
subtracted (if ) to the linear model coefficients, see (1)
for . Furthermore, the noise variance is data dependent,
as suggested by the noise model and visualized in Fig. 4(b).

Fig. 4(b) compares the variance of the additive noise
at the same set of observed decision variables, for a

conventional simulation “ ” and for the model (26) “ .” In the
conventional simulation runs, one of 1000 independent noise
processes has been added to the receiver front-end at a time,
while using a constant data sequence and channel realization.
The well matching simulation results indicate that the data-de-
pendence of the noise variance can be very significant. The
noise covariance, illustrated by asterisks “ ,” is insignificant.

A model validation by means of BER results has been given
in [21].

B. Volterra Model Coefficients

In Fig. 5, the RMS magnitudes of the coefficients of the three
Volterra models are visualized, using a gray scale corresponding
to the log-magnitude (base 10). These statistics were derived
from 1000 independent channel and system realizations. In
Fig. 5(a), the data model is analyzed. In Fig. 5(b), the noise
variance model and in Fig. 5(c), the noise covariance model.
The upper triangular parts represent the coefficients of the
product terms, the bottom rows stand for the linear coefficients
(designated “ln”), and the first elements in the second-last rows
are the bias terms (designated “bs”). Symbol index zero denotes
the desired symbol.

The coefficients of the data model have been normalized by
the maximum, the linear coefficient of the desired term .
Note that the bias term is the second largest one. Furthermore,
it is evident that the major coefficients of the product terms are
not much less than the linear ISI terms. Thus, significant impact
of the nonlinear model components is expected under ISI.

The coefficients of both noise models have been normalized
by the same value, the dominating bias term of the noise vari-
ance model [Fig. 5(b)]. This dominant bias term relates to the
average variance of the additive noise samples, as noted in (27).
According to this figure, the maximum data dependency will be
caused by the desired data symbol, quantified through the linear
coefficient at index zero. It is by a factor of about five below
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(a) (b) (c)

Fig. 5. Logarithm (base 10) of the normalized RMS magnitudes of the coefficients of the second-order Volterra equivalent system model. (a) Data model. (b)
Noise variance model. (c) Noise covariance model.

the bias term. The noise covariance model is also dominated by
the bias term [Fig. 5(c)]. It is by a factor of about ten below
the bias of the noise variance model, indicating that the covari-
ance of noise samples can be expected to be rather small. This
is remarkable, since the integration ranges of consecutive sam-
ples overlap significantly in the investigated system, which was
identified as the cause of noise correlation.

For clarity, these analyses have been presented for a channel
with ns. Increasing the RMS delay spread to a more
realistic 10 ns raises the memory length to . But none
of the above observations change and even the numeric results
given remain accurate.

C. BER Results

Before introducing equalization, BER results are shown for
a conventional threshold detector, which compares the decision
variable with the bias term of the data model

Since the variance and mean of are known from (20) and
(26), the error function can be used to compute the error prob-
ability conditioned on . Averaging over all possible data se-
quences, the mean BER is obtained, for a given channel realiza-
tion , as

(28)

Performance results calculated with this equation are de-
picted in Fig. 6. For all BER simulations, the RMS delay
spread has been increased to ns. In order to visu-
alize the high variability of these results for different channel
realizations, we compare the mean, median, and 10% and 90%
quantiles of the BERs obtained analytically for 1000 simu-
lated channels (lines marked by “ ”). These vast variations,
comparable to fast fading in a narrowband system, are caused
by introducing severe IFI and ISI in a TR UWB system. For
comparison, the performance is also analyzed for a system

Fig. 6. Data averaged BER results for N = 1000 independent channel
realizations at � = 10 ns. Transmission scheme: “�” and “+”: 125 Mbit/s,
T = 8 ns; “4”: 10 Mbit/s, T = 100 ns; random codes fb g and fc g;
N = 4, T = 8 ns. Evaluation of simplified noise model at 125 Mbit/s: “�”:
full noise model used; “+”: fixed noise variance assumed.

suffering from very little IFI and ISI (lines marked by “ ”).
Its key parameters are a data rate of 10 Mbit/s ns ,

, ns, and ns,
i.e., essentially, the average pulse separation was raised to
25 ns. Under these conditions, the multipath channel is nicely
resolved by the AcR front-end, evident in steeply descending
and hardly varying BER curves.

In this figure, we also seek to evaluate the impact of the
time-variability of the noise variance for the high-rate system.
All curves indicated by “ ” represent the BERs obtained if a
constant noise variance is considered, as suggested in (27). Even
though there is a large amount of IFI and ISI present, there is
hardly any difference between the BERs for the exact model
( ) and for the simplified model ( ). This is a strong indication
that the error made by assuming the simplified noise model is
limited.

In Section VI, equalization will be applied in order to enhance
the system performance and reduce its variability over multiple
channel realizations.



WITRISAL et al.: EQUIVALENT SYSTEM MODEL AND EQUALIZATION OF DIFFERENTIAL IR-UWB SYSTEMS 1859

VI. EQUALIZATION

As indicated in the introduction, the proposed system model
can be used to develop signal processing algorithms for equal-
ization, which will be illustrated in this section.

To equalize a Volterra system, many methods have been pre-
sented in literature. In [22], a linear equalizer is proposed. How-
ever, such an equalizer requires a large spatial and/or temporal
oversampling factor, which will increase the cost of the receiver
considerably. Equalizing a Volterra system with a Volterra filter
can avoid this problem. To design such a Volterra equalizer, we
refer the interested reader to [23] and [24]. Another approach
is taken in [25] and [26], where the equalization problem is
viewed as a fixed point problem which is solved iteratively. In
[25], the iterations are carried out on a symbol level and the
previous symbols are assumed known, whereas in [26], the it-
erations are carried out on a sequence level and all symbols are
assumed unknown. If the previous symbols are assumed known,
it is also possible to derive a polynomial in the desired symbol
which should be zero in the noiseless case. In the noisy case,
the desired symbol can then be detected by either finding the
symbol that is the closest to the root of the polynomial [27] or
finding the symbol that minimizes the norm of the polynomial
[28]. The latter method does not have to compute the roots of
the polynomial and can be interpreted as an ML detector for the
current symbol based on the current output sample with feed-
back of all previous symbols.

To equalize the Volterra system obtained in this paper, we first
adopt a generalization of [28]. More specifically, we consider an
ML sequence detector (MLSD) with decision feedback (DF),
which assumes perfect knowledge of the Volterra coefficients at
the receiver. The second approach taken includes estimation of
the system parameters, by applying inverse modeling with an
adaptive least mean squares (LMS) algorithm. For both equal-
izer structures, we also study the case where the equalizer only
considers the linear terms to be present in the equivalent system
model.

A. Maximum-Likelihood Sequence Detection (MLSD)

In the presence of noise, the output of the combiner can be
written as

(29)

We have already indicated that the noise can be considered
zero-mean Gaussian. For the sake of simplicity, we will also
assume that is data-independent and white, which are only
approximately true. However, if necessary, they can easily be
incorporated in the proposed algorithm.

To detect the symbol sequence , the conventional
MLSD [29] applies the Viterbi algorithm to a trellis
with states. For this trellis, the branch metric from
state to state

is given by (see also [30] and the
references therein)

where .

Fig. 7. BER comparison between the conventional detector and the MLSD
with DF. Linear and nonlinear metric computations have been applied.

To reduce the complexity of the above MLSD, an MLSD with
DF has been presented in [31]–[33]. This detector applies the
Viterbi algorithm to a reduced-state trellis with only
states . For this reduced-state trellis, the branch
metric from state to state

is given by

where , with
denoting the vector of feedback decisions, which

depends on the state and is determined by the path histo-
ries. For more details, we refer the interested reader to [31]–[33].

In Fig. 7, the performance of the conventional detector and
the proposed MLSD with DF are compared. We also evaluate
an MLSD-DF, where only the linear components of the Volterra
system are considered in the computation of the branch metrics.
For the feedback vector, we choose , leading to a
trellis of only four states. The adopted parameters are the same
as before, for ns and 125 Mbit/s. We clearly observe
that the MLSD with DF appears to be quite robust in a multi-
path environment. Not only the mean but also the variations of
the BER results improve significantly, whereas the complexity
of this receiver is still within operational limits. If the nonlinear
nature of the equivalent system model is neglected (results indi-
cated by “ ”), the achieved performance is clearly worse, par-
ticularly at high SNR. Note that few ill-conditioned channel re-
alizations seem to be responsible for the irreducible error floor
and 10% worst performance results. In these cases, significant
gain is obtained, when we introduce full knowledge of the non-
linear model.

Perfect knowledge of the model coefficients has been as-
sumed in this equalization approach. Estimating the coefficients
of the Volterra model is required for applying this method in
a real system, which raises questions about the identifiability
of the model coefficients. We will not discuss the estimation
problem in this paper. To introduce a more practical detector,
we introduce in the following section an adaptive equalization
technique, employing a known training sequence.
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Fig. 8. BER comparison of the conventional detector with an inverse modeling
approach using an adaptive LMS algorithm to adapt the coefficients of a linear
(+) and a second-order Volterra (4) equalization filter.

B. Inverse Modeling

In the inverse modeling approach, the noisy decision vari-
able is fed into an adaptive equalization filter denoted .
The output of this filter is compared with the known training
sequence , yielding an error signal that can be used in an
adaptive LMS algorithm for updating in order to minimize
the error. This approach is well-known for linear equalizers and
can be extended to higher order polynomial filters [34]. In the
second-order case, the input tap vector consists of the decision
variables and their products, written as

Correspondingly, the coefficient vector is composed of linear
and product coefficients

The error signal is then computed as ,
which is used in the coefficient update expressed by

where is the step size of the algorithm that can be chosen
differently for the linear and nonlinear parts.

Simulation results for this algorithm are given in Fig. 8. Sev-
eral hundred training symbols were used in these simulations to
yield good adaptation of the equalization filter. Again, signifi-
cant gains are achieved and the linear method is clearly outper-
formed by the nonlinear version.

VII. CONCLUSION

A discrete-time equivalent system model has been derived for
differential IR-UWB systems under severe ISI. It is applicable
for a class of UWB systems in which data is differentially mod-
ulated between reference and data pulses, commonly known as

TR systems, and modified here to achieve higher efficiency by
reusing each pulse as a reference, as well as a data pulse. The
single-user high-data-rate case has been studied, but the model
can be extended for multiuser scenarios.

It has been shown that a nonlinear second-order Volterra
system appropriately models the ISI due to the multipath
channel. Binary data are applied at the input of this equivalent
system, resulting at its output in an accurate description of the
decision variable. Nonlinear model components arise whenever
pulses of different data symbols interfere with each other, i.e.,
in case of ISI or multiple-access interference. Exact models
have been derived for the variance and covariance of the addi-
tive noise component of the decision variable. These statistical
moments are data dependent and, thus, time-variant, which can
be described again by second-order Volterra systems. Simplifi-
cations of the noise model have been discussed and evaluated.

The equivalent system model has been used to compute the
BER performance conditioned on a channel realization. These
performance results show very large variations when studied
for different channel realizations, indicating that in presence of
heavy ISI, an AcR can no longer resolve the multipath channel.
Interference between multipath components causes BER varia-
tions similarly to fading in narrowband systems.

An accurate description of the equivalent system model is
an important tool for developing optimal and suboptimal re-
ceivers based on the symbol rate output samples of the receiver
front-end, the sampled decision variable. As an example, the
equalization of the Volterra system is demonstrated in this paper,
using an MLSD with nonlinear decision feedback and using a
nonlinear inverse modeling approach based on a known training
sequence and an LMS algorithm for the coefficients update.
Both approaches yield significantly improved performance and
reduced BER variability over multiple channels.

APPENDIX

LINEAR NOISE TERMS

We first derive the covariance of and , which
is determined by the system parameters, the channel response

, and the data vector expressed by . From (9) follows
with (12)

(30)

(31)

exchanging the order of summations, integrations, and the
expectation. is the noise power spectral density, which is
written explicitly in (31), making the vector quadratic form
independent of the noise power, as shown below.

Adopting the compact matrix notation, the matrix
expresses the channel impulse response , the time-hopping
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code , and the timing of the receiver front-end. It is time-in-
variant, assuming a quasi-static channel. Its elements are written
as

for all and
, using the substitution and (6). The integration

interval is
the intersection of the integration intervals in (30) and

.
These expressions can be evaluated numerically if the

channel response is known. The approximation simplifies
the evaluation. It is based on the assumption that the support of

is very short compared with the integration interval ,
due to the large signal bandwidth.

Following similar steps, we obtain
, for , where

for all and
, with

From the integration intervals follows
that for , under the conditions
that and , , which are fulfilled in
practical transmitted-reference UWB systems.
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