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Abstract—The fidelity of radio astronomical images is gener-
ally assessed by practical experience, i.e., using rules of thumb,
although some aspects and cases have been treated rigorously.
In this paper, we present a mathematical framework capable of
describing the fundamental limits of radio astronomical imaging
problems. Although the data model assumes a single snapshot ob-
servation, i.e., variations in time and frequency are not considered,
this framework is sufficiently general to allow extension to syn-
thesis observations. Using tools from statistical signal processing
and linear algebra, we discuss the tractability of the imaging and
deconvolution problem, the redistribution of noise in the map
by the imaging and deconvolution process, the covariance of the
image values due to propagation of calibration errors and thermal
noise and the upper limit on the number of sources tractable by
self calibration. The combination of covariance of the image values
and the number of tractable sources determines the effective noise
floor achievable in the imaging process. The effective noise pro-
vides a better figure of merit than dynamic range since it includes
the spatial variations of the noise. Our results provide handles for
improving the imaging performance by design of the array.

Index Terms—Deconvolution, dynamic range, imaging, noise,
radio astronomy.

I. INTRODUCTION

T HE radio astronomical community is currently building
or developing a number of new instruments such as the

low-frequency array (LOFAR) [1], the square kilometer array
(SKA) [2] and the Mileura wide field array (MWA) [3]. Imaging
and self calibration of these radio telescopes will be computa-
tionally demanding tasks due to the large number of array el-
ements. Much research is therefore focused on finding clever
short-cuts to reduce the amount of processing required, such as

-projection [4] or facet imaging [5] and different variants of
CLEAN [6]. The validity and quality of these methods is gener-
ally assessed by practical experience. Attempts to do a rigorous
analysis are done for some aspects and cases [7]–[10], but most
of the time rules of thumb are used. This paper presents the first
comprehensive mathematical framework capable of describing
the fundamental limits of radio astronomical imaging problems.
The data model used in this paper applies to snapshot observa-

Manuscript received February 01, 2008; revised July 11, 2008. Current ver-
sion published December 10, 2008. The associate editor coordinating the review
of this manuscript and approving it for publication was Dr. Amir Leshem.

S. J. Wijnholds is with the Netherlands Institute for Radio Astronomy (AS-
TRON), Dwingeloo, The Netherlands (e-mail: wijnholds@astron.nl).

A. -J. Van der Veen is with the Delft University of Technology, Delft, The
Netherlands (e-mail: a.j.vanderveen@tudelft.nl).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTSP.2008.2004216

tions, i.e., variations in time and frequency are not considered.
However, using a multimeasurement data model such as those
in [11]–[13] it is straightforward to extend the data model to
synthesis observation and still apply the framework described
herein.

The resolution of the final image (or map) is normally deter-
mined by the size and configuration of the array and the spa-
tial taper function. Under the assumption that the sky is mainly
empty, i.e., that the image contains only a few sources, maps
with higher resolution than predicted by the array configuration
(superresolution) can be made using CLEAN. The Maximum
Entropy Method (MEM) [14] imposes a similar constraint by
aiming for a solution that is as featureless as possible. In the
array processing literature, superresolution is achieved by high-
resolution direction of arrival (DOA) estimation techniques such
as MUSIC [15] and weighted subspace fitting [16], [17]. In all
these approaches, the goal is to disentangle the spatial response
of the array and the source structure, a process called decon-
volution. In Section III, we formulate imaging as an estimation
problem, an approach called model based imaging, and obtain
an analytic expression for its least squares solution that allows
us to formulate the deconvolution problem as a matrix inversion
problem. This provides a powerful tool to assess the tractability
of the deconvolution problem and to demonstrate the impact on
the array configuration of the deconvolution problem and the re-
distribution of noise in the imaging and deconvolution process.

The dynamic range of an image is generally defined as the
power ratio between the strongest and the weakest meaningful
features in the map. In practice, the limitations of an instrument
are more conveniently described by the achievable noise floor
in an imaging observation since the dynamic range strongly de-
pends on the strength of the strongest source within the field-of-
view and because the noise varies over the map. This noise floor
is a combination of calibration errors, thermal noise and confu-
sion noise. In this paper, the term “effective noise” refers to the
net result of these constituents in the image plane. In Section IV,
analytical expressions are derived that describe the components
of the effective noise in terms of the covariance of the image
values, a concept which we will refer to as image covariance.
The consequences of these expressions are illustrated with a few
examples in Section V. These examples suggest that the contri-
bution of propagated calibration errors to the image covariance
is considerably smaller than the contribution of thermal noise
even if the calibration is done on data with similar SNR. They
also indicate that self calibration causes higher covariance be-
tween source power estimates than pure imaging does.

Notation: Overbar denotes complex conjugation. The
transpose operator is denoted by , the complex conjugate
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(Hermitian) transpose by and the Moore-Penrose pseudo-in-
verse by . The expectation operator is denoted by , is
the element-wise matrix multiplication (Hadamard product),

is used to denote the element-wise matrix exponent with
exponent , denotes the Kronecker product and is used to
denote the Khatri-Rao or column-wise Kronecker product of
two matrices. converts a vector to a diagonal matrix
with the elements of the vector placed on the main diagonal,

converts a matrix to a vector by stacking the columns
of the matrix and converts the main diagonal of
its argument to a column vector. creates a square
circulant matrix by circularly shifting the entries of its vector
argument to form its columns. will be used to denote cir-
cular convolution of two vectors, i.e., for vectors of length ,

.
For matrices and vectors of compatible dimensions, we will

frequently use the following properties:

(1)

(2)

(3)

(4)

II. DATA MODEL

Consider a phased array consisting of sensors (an-
tennas). Denote the baseband output signal of the th
array element as and define the array signal vector

. We assume the presence
of source signals impinging on the array. These are
assumed to be mutually independent i.i.d. Gaussian signals,
and are stacked in a vector . Likewise the sensor
noise signals are assumed to be mutually independent
Gaussian signals and are stacked in a vector . We
assume that the narrowband condition holds [18]. We can then
describe, for the th source signal, the phase delay differences
over the receiving elements due to the propagation geometry
by a -dimensional spatial signature vector . The spatial
signature vectors are assumed to be known (known source
locations and array geometry).

The sensors are assumed to have the same direction depen-
dent gain behavior which is described by gain factors to-
wards the source signals received by the array. These can be
collected in a matrix . The di-
rection independent gains and phases can be described as

and , respectively,
with corresponding diagonal matrix forms and

. With these definitions, the array signal vector
can be described as

(5)
where (size ) and . The signal
is sampled with period and sample vectors are stacked into

a data matrix . The covariance
matrix of is and is estimated by

. The number of samples in a snapshot observation
is equal to the product of bandwidth and integration time and
typically ranges from (1 s, 1 kHz) to (10 s, 100 kHz)
in radio astronomical applications. Likewise, the source signal
covariance where
and the noise covariance matrix is where

. Then the model for the covariance matrix
for a snapshot observation based on (5) is

(6)

If the directional response of the antennas is known, can
be absorbed in . If and are both unknown, we can
introduce

(7)

with real-valued elements . We may then
restate (6) as

(8)

The th element of the sensor array is located at
. These positions can be stacked in a ma-

trix (size ). The position of the th
source can be denoted by the unit vector . The
source positions can be stacked in a matrix
(size ). The spatial signature matrix can thus be de-
scribed by

(9)

where the exponential function is applied element-wise to its
argument. In the remainder of this paper we will specialize to a
planar array having for convenience of presentation but
without loss of generality.

III. IMAGING AND DECONVOLUTION

A. Beamforming Versus Model Based Imaging

The imaging process transforms the covariances of the
received signals (called visibilities in radio astronomy) to an
image of the source structure within the field-of-view of the
receivers. In array processing terms, it can be described as
follows [11]. To determine the power of a signal received from
a particular direction , a weight vector

(10)
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is assigned to the array signal vector . The operation
is generally called beamforming and can be regarded

as a spatially matched filter. Equation (10) represents the most
basic beamformer that assumes the presence of only a single
source and only corrects the signal delays due to the array geom-
etry. These weights can be adapted to correct the complex gain
differences between the receiving elements derived from cal-
ibration measurements [19], nulling of interfering sources [12],
and spatial tapering of the array [20].

The image value at is equal to the expected output
power of the beamformer when pointed into that direction, and
can be computed directly from the array covariance matrix as

(11)

For weights defined as in (10), this is known as direct Fourier
transform imaging. To create an image, is scanned over all
relevant . The required weights can be stacked into a
single matrix . Since , we can
stack all image values in a single vector and write

(12)

If we only want to image at the source locations, we have
. A typical model assumption is that there is a source present

at every pixel location, in which case

(13)

This is the classical dirty image. Let us assume momentarily that
and . Inserting the data model (6), or

, into (13) gives

(14)

This shows that the dirty image is not equal to the true source
structure. To understand the physical meaning of this term, con-
sider the product , where the indices and refer to the
respective columns of . Using (9) this can be written explic-
itly as

(15)

The physical interpretation of the inner product between the two
spatial signature vectors is that it measures the sensitivity of
the array to signals coming from direction while the array
is steered towards . The product thus describes the
array sensitivity for all directions of interest stacked in when

Fig. 1. (a) Image obtained by normal imaging without deconvolution as in (11),
showing the sources and their side lobe patterns. (b) Image obtained by model
based imaging as in (22), which estimates the power at every pixel simultane-
ously, resulting in a deconvolved image showing only the sources without the
array response.

pointed to . It therefore provides the array voltage response or
array voltage beam pattern centered around

(16)

With defined as in (9), this shows that the voltage beam pat-
tern is just the Fourier transform of the spatial weighting func-
tion resulting from the array configuration and the weighting of
the array elements. The corresponding power beam pattern can
be calculated as

(17)

The factor in (14) can thus be interpreted as a
convolution by the Fourier transform of the spatial distribution
of baseline vectors, which is known as the array beam pattern
or dirty beam [21].

This effect is illustrated in Fig. 1(a). This image is the re-
sult of a simulated observation with an 8 8 half wavelength
spaced (i.e., spatially Nyquist sampled) 2-D uniform rectangular
array (URA). The grid of image values on the sky is taken such
that the first Nyquist zone is appropriately sampled. The under-
lying source model contains four sources at grid points ( ,

, 0.73), ( , , 0.77), (0.6, , 0.77) and (0.87,
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0.2, 0.46), respectively, and . This source
and array configuration will be used throughout this paper un-
less stated otherwise. The map in Fig. 1(a) clearly shows these
four (or three, if one regards the two sources on neighboring
grid points as a single extended source) being convolved with
the array beam pattern.

Following a model based approach, the deconvolution
problem can be formulated as a maximum likelihood (ML)
estimation problem, that should provide a statistically efficient
estimate of the parameters. Since all signals are assumed to be
i.i.d. Gaussian signals, the derivation is standard and the ML
estimates are obtained by minimizing the negative log-likeli-
hood function [22]

(18)

It does not seem possible to solve this minimization problem is
closed form, but a weighted least squares covariance matching
approach is known to lead to estimates that are, for a large
number of samples, equivalent to ML estimates and therefore
asymptotically efficient [22]. The problem can thus be reformu-
lated as

(19)

The solution is given by

(20)
Optimal weighting is provided by . Since radio
astronomical sources are generally very weak with the strongest
source in the field having an instantaneous SNR in the order of
0.01, we can introduce the approximation for an array
of identical elements for convenience of notation. This reduces
(20) to

(21)

One may argue that this requires one to know where the
sources are before doing the imaging. This is generally solved
by simultaneously estimating the source locations and source
powers. Although the CLEAN algorithm has not yet been fully
analyzed, it can be regarded as an iterative procedure to do
this [11]. It is instructive, however, to use (21) for imaging
by estimating the power on every image point (pixel), i.e., by
assuming a data model with a source present at every pixel. We

can simplify (21) by replacing the Moore-Penrose pseudo-in-
verse by the left pseudo-inverse, to obtain the image vector

(22)

The first factor in this equation represents the deconvolution
operation. It is therefore convenient to introduce the deconvo-

lution matrix . This
provides a powerful check on the sampling of the image plane.
If the image plane is oversampled, i.e., if too many image points
are defined, this matrix will be singular. This property demon-
strates that high-resolution imaging is only possible if a lim-
ited number of sources is present, i.e., if the number of sources
is much smaller than the number of resolution elements in the
field-of-view. The condition number of the deconvolution ma-
trix, which provides a measure on the magnification of mea-
surement noise, is discussed in more detail in Section III-C.
This mostly empty field-of-view is commonly assumed in as-
tronomical imaging and this assumption is one of the reasons
why CLEAN and MEM work in practice. Fig. 1 ( ) shows the
image obtained by applying (22) to the 8 8 URA. Comparison
with the image obtained using (13) clearly shows the effective-
ness of the model based imaging approach in suppressing the
array beam pattern.

B. Noise Redistribution

If imaging is done without deconvolution by using (13), the
thermal noise adds a constant value to all image values. This can
be illustrated by assuming that , i.e., by assuming
that the image is completely dominated by thermal noise. The
expected value of the image then becomes

(23)

where we used the fact that all elements of have unit am-
plitude. This equation describes an image where all values are
equal to the average thermal noise per baseline.

If the imaging process involves deconvolution, the result is
described by (22). For simplicity, we will assume that we have
an array of identical elements, so that we can set . Further,
to illustrate the effect, we momentarily omit the correction by

in (22). In this case, the expected value of the image is

(24)
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Fig. 2. (a) Imaging with deconvolution using an 8� 8 half wavelength spaced
array for a Nyquist sampled image assuming � � ���� (an empty field with
only thermal noise). (b) Imaging result for a five armed array, each arm being
an eight element half wavelength spaced ULA.

In this case, the homogeneity of the thermal noise distribution

in the map depends on the row sums of being
constant. If this is true, the model based image using (22) is
analogous to the beamformed image based on (13). A special
case is the situation in which the columns of are orthonormal.

Otherwise, the structure is more complicated. This is illus-
trated in Fig. 2 which compares the noise distribution in the
image plane of the 8 8 URA by assuming with
the corresponding image for a five armed array, each arm being
an eight element half wavelength spaced uniform linear array
(ULA). The impact of the redistribution of noise can be reduced
by estimating the receiver noise powers and subtracting these es-
timates from the array covariance matrix as described by (22).
In most astronomical imaging algorithms, the autocorrelations
are generally ignored completely thus effectively introducing a
small negative system noise since the autocorrelations represent
the power sum of the source signals and the noise.

C. Deconvolution Matrix Condition Number

The deconvolution matrix not only causes a redistribu-
tion of noise over the map, but also determines whether the de-
convolution is a well conditioned problem. If the deconvolution

matrix is not invertible, the problem is ill-posed and additional
constraints are required to obtain a unique solution. Different
choices for these constraints or even the rigor with which they
are applied, lead to different imaging results for CLEAN and
MEM based on the same data. In some cases, this may even lead
to different interpretation of the final maps [14]. These problems
arise due to over-interpretation of the data by allowing for more
image points (parameters) than can be justified by the data. In
these situations, the condition number of the deconvolution ma-
trix will be infinitely large. Even if the deconvolution matrix is
invertible, its condition number may be unacceptably high in
view of the SNR of the data: the condition number is a measure
for the magnification of measurement noise [23]. The condition
number thus provides a powerful diagnostic tool to assess the
feasibility of the deconvolution problem at hand.

It is instructive to analyze a half wavelength spaced 1-D ULA
with identical elements, i.e., with , sampling the sky on a
regular grid. In this case represents a Fourier transform map-
ping the spatial frequencies on the sky to the spatial samples
describing the electromagnetic field over the array aperture. As
demonstrated in the previous section, these spatial frequencies
will be convolved in the imaging process with the Fourier trans-
form of the array aperture taper or voltage beam pattern, which
can be easily calculated for

(25)

Here, denotes the Fourier transform, is the total number of
image points, is the number of elements in the array and and

denote vectors containing zeros and ones, respectively.
The corresponding power beam pattern is

(26)

If the columns of are ordered such that they describe the array
response vectors for the regularly spaced DOAs starting with

, it is easily seen that

(27)

i.e., that the deconvolution matrix for a 1D ULA equidistantly
sampling the image plane is a circulant matrix. Since is a cir-
culant matrix, its eigenvalues are given
by the Fourier transform of [24], or

(28)

since for real symmetric functions.
For Hermitian matrices, the condition number is given

by the ratio of the largest and smallest eigenvalue, i.e.,
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Fig. 3. This plot shows the condition number of the deconvolution matrix as
function of the image resolution for the 8� 8 half wavelength spaced array
and the five armed array with each arm being an eight element half wavelength
spaced ULA.

[24]. If the image plane is Nyquist sampled,
and

(29)

In this case, the condition number of is

(30)

thus is invertible. The deconvolution problem is therefore
well-posed and has a unique solution.

If the image plane is undersampled with samples,
then

(31)

and . The deconvolution problem in itself is thus
well-posed and has a unique solution. However, from Fourier
theory we know that aliasing effects may occur due to under-
sampling.

If the image plane is oversampled with samples,
then

(32)

and . In this case, the deconvolution problem is ill-posed
and thus not solvable without introducing additional boundary
conditions to constrain the problem.

This analysis shows that, for a 1D ULA, the condition
number slowly increases up to Nyquist sampling of the image
plane and then jumps to infinity. Since a URA is just the 2-D
analog of a 1-D ULA, this behavior is also expected for the
8 8 URA introduced earlier. This conjecture is confirmed in
Fig. 3 which shows the condition number of the deconvolution
matrix as function of image resolution. This figure also shows
the corresponding curve for the five armed array introduced
earlier to demonstrate the impact of less regular and sparser
sampling of the array aperture. Although the array diameter is
nearly twice as large, it does not provide twice the resolution
due to sparser sampling of the aperture plane. This plot also

demonstrates that a less regular array also may have a less
strict cut-off: the transition of the condition number from small
values to infinity is a gradual one. For array processing prob-
lems, this means that the user should decide which value of the
condition number (or noise enhancement) is still acceptable.

Regularization is commonly used to avoid uninvertability of
matrices. In radio astronomical imaging where most sources
have a low SNR, this would lead to imperfect deconvolution
causing the weakest sources in the field to be drowned in the
imperfectly removed array response pattern of the strongest
sources. However, several forms of implicit regularization have
been studied to handle special cases like strong interference
[25].

IV. EFFECTIVE NOISE

Equation (22) shows that calibration and imaging are
strongly coupled. Knowledge of the instrumental parameters is
required to obtain the proper image. People have approached
this problem in two ways. In the first approach calibration and
imaging are treated as separate steps, i.e., the instrumental
parameters are estimated first by a calibration measurement
and consecutively applied to the actual measurement data. The
second approach is self calibration which regards the estimation
of instrumental and image parameters as a single parameter
estimation problem [13], [26]–[28].

In either case, the achievable dynamic range is limited by the
combination of estimation errors, thermal noise and confusion
noise. Together, they determine the effective noise in the image
which need not be homogeneous over the field of interest. In
this section, a number of analytical expressions are derived that
describe these contributions in terms of the data model presented
in Section II. The implications will be discussed in Section V.

A. Noise in Self Calibrated Images

In self calibration, the instrumental and image parameters
are estimated simultaneously. Self calibration based on the data
model presented above can thus be described as simultaneous
estimation of the omni-directional complex gains, the apparent
source powers, the source locations and the receiver noise
powers, i.e., of a parameter vector

In this parameter vector, and are omitted because they are
set to constants for the problem to be identifiable. Indeed, the
restriction is imposed by the fact that and share a
common factor, while the first constraint is required since one
can only measure the gain phases with respect to some refer-
ence, here achieved by setting .1

Similarly to (19), the parameters are obtained by solving

(33)

where , , , and are all functions of and
as argued earlier.

1In [29], it is shown that � � � is the optimal constraint for this
problem. This constraint has the disadvantage that the location of the phase ref-
erence is not well defined. Furthermore, the choice for the constraint used here
simplifies our analysis in combination with the constraints required to uniquely
identify the source locations and the apparent source powers.
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The minimum variance for an unbiased estimator is given by
the Cramèr-Rao Bound (CRB). The CRB on the error variance
for any unbiased estimator states that the covariance matrix
of the parameter vector satisfies [30]

(34)

where is the Fisher information matrix (FIM). For Gaussian
data models can be expressed as (e.g., [31])

(35)

where is the data covariance matrix and is the Jacobian
evaluated at the true values of the parameters, i.e.,

(36)

For the self-calibration scenario, the Jacobian can be partitioned
into six parts following the structure of :

(37)

By substitution of (8) in (36), it follows directly that the first
four components can be expressed as

(38)

(39)

(40)

(41)

where and is a selection matrix of appropriate
size equal to the identity matrix with its first column removed
so that the derivatives with respect to and are omitted.

If the receiver noise powers of all elements are the same,
the expression for given in (41) should be replaced by

(42)

For the last two components of the FIM, derivatives of
with respect to the source position coordinates are re-

quired. Let be the coordinates of the th array element,
and introduce

(43)

(44)

then these components can be conveniently written as

(45)

(46)

These equations show that the entries of the Jacobian related
to derivatives with respect to the - and -coordinates of the
sources are proportional to the - and -coordinates of the array
elements, respectively. The physical interpretation of this rela-
tion is that a plane wave propagating along the coordinate axis

of the coordinate to be estimated provides a more useful test
signal to estimate the source location than a signal propagating
perpendicular to this axis.

The preceding equations allow us to compute . The vari-
ance of the estimated image values, i.e., the noise on the image
values due to estimation inaccuracy, is given by the diagonal of
the sub-block of this matrix, following the partitioning of

. In general, is not a diagonal matrix. The other entries in
this sub-block describe the way in which the noise on the pixels
are correlated among themselves—this is associated with false
structures.

B. Propagation of Calibration Errors

If the instrumental parameters are extracted from sep-
arate calibration data, the minimum variance on these es-
timated values is given by the CRB on the instrumental
parameters in the calibration experiment, , where now

. With this choice
for , the results for , , and derived earlier in
(38)–(41) can be used assuming that the calibration measure-
ment adheres to the same data model. The propagation of the
calibration errors to the image is described by

(47)

We thus need to derive , and . The
derivative of the image values to is defined as

(48)

where and depend on . Applying the formula for the
derivative of an inverted matrix with respect to one of its ele-
ments [24], this can be rewritten as

(49)

where is the elementary matrix with all its entries set to zero
except element which is set to 1. Inserting the vectorized
version of (8) in (49) and removing the Khatri-Rao products, we
obtain

(50)
We have introduced the notation , i.e., has
only zero valued entries except on the th row where the ele-
ments are equal to the corresponding elements of . The goal
of this derivation is to obtain an expression for . We will
thus have to stack the expression for in a single matrix.
This is facilitated by introducing as the th row of and
rewriting (50) as

(51)
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where denotes a vector of ones of appropriate size.
By stacking all vectors in a single matrix, we thus

obtain

(52)
The corresponding result for can be derived in a similar

way, so we only present the main steps

(53)

Removal of the Khatri-Rao products by reducing them to
Hadamard products gives

(54)

Note that this term has the same form as the first term in (50),
so it can be rewritten in a similar way. This gives

(55)

and therefore

(56)

Finally, the partial derivative of the image values with respect
to is given by

(57)

Therefore

(58)

If , this reduces further to

(59)

The partial derivatives as well as the CRB [19] contain terms
involving , often weighted by the gains of the receiving el-
ements. Given the physical interpretation of this factor discussed
in Section III, this suggests that the error patterns introduced in
the image by calibration errors follow the structures in the dirty
image. This is confirmed by the example in Section V. Since
the CRB is inversely proportional with , which is equal to the
product of bandwidth and integration time, the image covari-
ance due to calibration errors decreases proportional to band-
width and integration time.

C. Thermal Noise

In this section, we derive an expression for the covariance of
the image values due to the thermal noise in the data. We will
therefore assume that perfect knowledge of the thermal noise
power is available to avoid confusion between the thermal
noise contribution and the contribution of propagated estima-
tion errors. The covariance of the image values is by definition
given by (60), as shown at the bottom of the page. This shows
that under the assumption that perfect knowledge on in
is available, drops out. Furthermore, can be
moved outside the expectation operator, since it contains no es-
timated values. Therefore

(61)
For Gaussian data models

(62)

and we find that

This can be rewritten using Kronecker and Khatri-Rao product
relations as

(63)

Finally, substituting the data model presented in (8), we get

(64)

(60)
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It is interesting to note that for an array having , a
diagonalization of does not only ensure a homogeneous
noise distribution over the map after the deconvolution opera-
tion as demonstrated in Section III-B, but also diagonalizes the
image covariance due to thermal noise, thus ensuring that the
noise on the pixels is uncorrelated. The Gram matrix de-
scribes the amount of linear independence (or orthogonality) of
the direction of arrival vectors within the field of view of the
array, which can be visualized as the array beam pattern. This
observation therefore suggests that an array with a low side lobe
pattern does not only provide good spatial separation between
source signals, but also gives small covariance between image
values after deconvolution.

D. Confusion Noise

The contributions to the effective noise from calibration er-
rors and thermal noise scale inversely with the number of sam-
ples , which is equal to the product of bandwidth and inte-
gration time. This implies that, theoretically, these sources of
image noise can be reduced to arbitrarily low levels. In practice,
the radio astronomical array will detect more sources with every
reduction of the noise in the map. At some point, the number
of detected sources becomes larger than the number of resolu-
tion elements in the image, which will turn the map into one
blur of sources. The maximum density of discernable sources is
the classical confusion limit and relates to the resolution of the
image.

In terms of self calibration, to have more detectable sources
requires more source parameters to describe the source model.
At some point, the self calibration problem becomes ill-posed.
We will refer to this as the self calibration confusion limit. Al-
though the exact limit depends on the minutiae of the array
and source configuration, we can easily compute an upper limit
on the tractable number of sources based on the argument that
the number of unknowns should be smaller than the number
of equations. The data model provides a relation between the
parameters and the data. For a -element array, the covariance
matrix contains independent real values, so the data model
can be regarded as independent equations. Solving for the di-
rection independent complex gains requires real valued
parameters, estimation of the receiver element noise powers re-
quires another parameters and the sources are described by

parameters (the apparent source powers relative to the
first source and two coordinates per source). The self-calibra-
tion problem is therefore constrained by

(65)

implying that

(66)

The spatial Nyquist sampling with the 8 8 URA allows an
image grid of image values. This resolution was
confirmed by the condition number analysis presented in Fig. 3.
However, the upper limit based on the analysis above for a 64

element array is 1302. The mismatch between this upper limit
and the actual number of uniquely solvable image values can be
attributed to the redundancy in the array. Due to this redundancy
the cross-correlations of many antenna pairs provide the same
spatial information instead of providing additional information
on the spatial structure of the sky. In terms of the argument
leading to (66), there is linear dependence between the equa-
tions and therefore the number of equations that can be used to
solve parameters is reduced. The 5-armed array performs much
better in this regard. E.g., for the upper limit on the
number of sources given by (66) is 494. Since , we
can thus form an image grid of 22 22 points, thus providing a
resolution of . Fig. 3 shows that the condition number
for this array goes to numerical infinity at , showing
that the 5-armed array approaches its theoretical self calibra-
tion confusion limit. This example illustrates that if processing
power is cheap compared to antenna hardware, a nonredundant
array should be preferred over a redundant array if the confusion
limit should be reached without introducing an ill-posed decon-
volution problem.

In this section, we addressed the classical confusion limit for
pure imaging problems and the self calibration confusion limit
in self calibration problems. This type of confusion is often
called source confusion as opposed to side lobe confusion which
refers to blurring of the image by side lobe leftovers introduced
in the CLEAN process. In the analysis of this paper, side lobe
confusion is part of the deconvolution problem and is thus intrin-
sically included in the analysis of calibration error and thermal
noise propagation, and does not need to be addressed separately.
Source confusion does require a separate treatment because it
involves the source density distribution as function of source
brightness.

V. IMPLICATIONS

A. Thermal Noise vs. Propagated Calibration Errors

We compare the image covariance due to calibration errors to
the image covariance due to the noise on the data in a simula-
tion. The calibration parameters are calculated from a separate
data set with the same data model and integration time. We com-
puted the CRB for the 8 8 URA using the relations presented
in Section IV-A for the simultaneous solution of the omni-direc-
tional complex gains, , and the system noise power, , which
was assumed to be the same for all array elements, assuming a
short term integration over samples. This CRB was
used in (47) to compute the image covariance matrix due to cal-
ibration errors. The magnitudes of the matrix entries are shown
in Fig. 4(a), in a log scale.

The image covariance matrix due to the noise in the measure-
ment was calculated using (64) and is shown in Fig. 4 . This
shows that the covariance of the image values due to the cali-
bration errors is more concentrated at the source locations than
the covariance due to the system noise, but is generally more
than two orders of magnitude lower. These results indicate that
the calibration errors only represent a minor contribution to the
total effective noise, even when the calibration measurements
are done on the same (short) time scales using sources of the
same strength, i.e., when the calibration measurement is similar
to the actual measurement.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on December 15, 2008 at 04:56 from IEEE Xplore.  Restrictions apply.



622 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 2, NO. 5, OCTOBER 2008

Fig. 4. (a) Logarithm (base 10) of the image covariance matrix due to calibra-
tion errors and (b) due to the measurement noise on the same color scale. The
former is almost everywhere two orders of magnitude lower.

B. Calibration Observations vs. Self Calibration

In the previous section, we discussed the situation in which
the array is calibrated in a separate measurement. This scheme
requires an extremely stable instrument. In most practical appli-
cations, the calibration is therefore done on the same data that
is also used to provide the final image (self calibration). It is in-
teresting to see how these scenarios compare. To this end, we
used the relationships presented in Section IV-A to compute the
CRB for simultaneous estimation of the omni-directional com-
plex gains, the apparent source powers, the source locations and
the system noise power for the 8 8 URA.

Fig. 5 compares the CRBs for these two cases. The expected
covariance of the gains and phases in the self calibration ex-
periment is higher since more parameters have to be estimated
simultaneously. The behavior of the CRB on the phases in the
self calibrated observation (sloped upwards for increasing pa-
rameter index) can be explained by the interaction between the
source parameters and the gain phases combined with the choice
of the phase reference element in the corner of the array.

Table I shows, for each of the two cases, the covariance ma-
trices of the apparent source powers, i.e., the variance of the
image values at the locations of the sources. The scaling factor
ambiguity between and in the self calibration case is re-
solved by putting to constrain the problem, and there-
fore only the covariance values of the other three sources is tab-
ulated. For the case with a separate calibration observation, the
covariance matrix was extracted from the sum of the image co-
variances due to calibration errors and system noise. The results

Fig. 5. CRB for the omni-directional complex gain amplitudes (parameters 1
through 64) and phases (parameters 65 through 127) for a separate calibration
observation and the self calibration approach.

TABLE I
COVARIANCE OF SOURCE POWER ESTIMATES

in the table indicate that the variance of the source power esti-
mates in both cases are comparable, although the source power
estimates are slightly better when gain calibration data is avail-
able from a separate measurement. The covariance values found
for a separate calibration stage are much lower than the cor-
responding values for self calibration. This suggests that pure
imaging is more capable of separating source signals from dif-
ferent directions than self-calibrated imaging.

VI. CONCLUSIONS

In this paper, we presented an analytic solution for snap-
shot imaging including deconvolution based on a data model
(measurement equation) for the antenna signal covariance ma-
trix or visibilities. The presented comprehensive framework is
sufficiently flexible to enable extension of this analysis to syn-
thesis observations, since the data model for a synthesis obser-
vation has the same form [11]–[13]. This framework allowed us
to make the first complete rigorous assessment of the effective
noise floor, which is the combined effect of propagated calibra-
tion errors, thermal noise and source confusion, in the image in
terms of the covariance of the image values. Our simulations for
a 2-D uniform rectangular array indicate that the effect of prop-
agated calibration errors is strongly concentrated at the source
locations but is considerably smaller than the thermal noise at
other image points. The results also suggest that if the instru-
ment is sufficiently stable, a separate calibration step is to be pre-
ferred over a self calibrated image since it allows better source
separation in the imaging process.

The effects of deconvolution can be described by a deconvo-
lution matrix that describes the amount of linear independence
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(orthogonality) of the spatial signature vectors weighted by the
actual gains of the receiving elements. A diagonal deconvolu-
tion matrix not only ensures the best possible spatial separa-
tion between the sources, but also ensures a homogeneous noise
distribution over the map. This poses the question whether this
matrix can be diagonalized by array design or by applying ap-
propriate weights to the array elements. Since this factor is re-
lated to the array beam pattern, the latter is equivalent to finding
weights that suppress the side lobe patterns at least in the direc-
tion of other sources, which suggest that techniques like Robust
Capon Beamforming should provide the requested weighting
[25]. The condition number of the deconvolution matrix can be
used to assess the quality of the solution to the deconvolution
problem.

Compared to a redundant array (ULA, URA), an array
without redundant element spacings provides much better
possibilities to approach the maximum number of solvable
image points for a fixed number of antenna elements, thereby
allowing the system to reach the theoretical self calibration
confusion limit.
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