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Effects of Parametric Constraints on the CRLB in
Gain and Phase Estimation Problems
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Abstract—The problem of estimating the direction-indepen-
dent gain and phase characteristics of sensor arrays requires a
boundary condition to solve the phase ambiguity of the solution. It
has become common practice to use the constraint that the phase
of the first element of the array is zero. By Cramér-Rao lower
bound (CRLB) analysis, we show analytically for calibration on
a single point source of an array of identical elements that the
variance of the phase estimates decreases by a factor 2p/(p — 1)
under the boundary condition that the sum of all phases equals
zero, where p is the number of elements in the array. We also show
that this constraint is the one that among all possible constraints
minimizes the total variance on all estimated parameters. Our
analysis suggests that this conclusion also holds for arbitrary
source models and arrays of nonidentical elements. This state-
ment is confirmed by repeating the CRLB analysis in simulation,
showing that the CRLB under this constraint coincides within the
numerical accuracy with the minimal CRLB.

Index Terms—Calibration, Cramér—Rao lower bound (CRLB),
gain estimation, phase estimation, sensor arrays.

I. INTRODUCTION

HE problem of estimating the direction-independent

gain and phase characteristics of sensor arrays requires a
boundary condition to obtain a unique solution. The physical
reason for this is that the phase of an element within the array
can only be determined with respect to the phase at some
reference point. As a result, the unconstrained solution to this
estimation problem will produce a phase solution that correctly
predicts the phase differences between the elements but has an
arbitrary phase offset.

It has become common practice to impose the constraint that
the first element of the array has zero phase, as illustrated in
[1]-[6]. In mathematical derivations, this choice can be made
without loss of generality, and in some practical cases, such a
choice is required due to the necessity of a well-defined phase
reference.

In this letter, analytic expressions will be derived for the
Cramér-Rao lower bound (CRLB) for the gain and phase
estimation problem when calibrating an array of identical
elements on a single point source under the constraint that the
first element has zero phase and under the constraint that the
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average phase of all elements is zero. We will show that under
the latter constraint, the CRLB for the phase estimate decreases
by a factor 2p/(p — 1) as compared to the first constraint,
where p is the number of elements in the array. It will then be
shown that the proposed constraint does not only give a lower
CRLB but is actually the constraint that minimizes the CRLB.
We subsequently show that this constraint is also optimal in the
case of an arbitrary source model and arrays of nonidentical
elements. Finally, we will confirm our analysis by a simulation
focusing on the calibration problem of a phased array radio
telescope.

Notation: The transpose operator is denoted by (-)T,
the complex conjugate (Hermitian) transpose by ()%, the
pseudo-inverse by (-)', and complex conjugation by -. An
estimated value is denoted by ~ and an expected value by
E{-}. ® is the element-wise matrix multiplication (Hadamard
product) and diag(-) converts a vector to a diagonal matrix with
the vector placed on the main diagonal or converts the main
diagonal of a square matrix to a column vector.

II. DATA MODEL

Let the output signal of the ¢th element be denoted
by x;(t), and define the array signal vector x(t) =
[#1(t), z2(t),- -, 7, (t)]T. We assume the presence of ¢ mutu-
ally independent i.i.d. Gaussian signals sy (¢) with variance o,
impinging on the array, which are stacked in a ¢ X 1 vector s(t).
Likewise, the sensor noise signals 7;(t) are assumed to be mu-
tually independent i.i.d. Gaussian signals with variance o, and
are stacked in a p x 1 vector n(t). If the narrow band condition
holds, we can define the ¢ spatial signature vectors a, which
include the phase delays due to the geometry and the directional
response of the antennas. They are assumed to be known. The
direction-independent element gains and phases that have to
be calibrated can be described as ¥ = [y1,72,- -7, and
¢ = [el?1 ei?2 ... e ]T respectively, with corresponding
diagonal matrix forms I' = diag(y) and ® = diag(¢). With
these definitions, the array signal vector can be described as

x(t) =T® | Y arse(t) | +n(t) =T®As(t) +n(t) (1)
k=1

where A = [a;,---,a,] (size p X g).

The signal is sampled with period 7', and N sample vectors
are stacked in a data matrix X = [x(T),x(2T),---,x(NT)].
The covariance matrix of x(t) is R = £{x(t)x"(t)} and is
estimated by R = N “IXXH Likewise, the source signal co-
variance ¥, = diag(os), where o0, = [04,,0,,, - 0,,]",
and the noise covariance matrix is X,, = diag(o,), where
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an = [Jn170-n27”'
is

anp]T. Then, the model for R based on (1)

R =T®AX AT 1 % . )

In this model, A and X, are assumed to be known from ta-
bles. Algorithms to estimate I', ®, and X,, are, e.g., discussed
in [1]-[5]. Although not all algorithms require this, we will as-
sume here that X,, is known as well.

III. CRAMER-RAO LOWER BOUND

We consider the estimation of a real-valued n x 1 parameter
vector . Stoica and Ng [7] have shown that if the estimate 0 is
subject to k continuously differentiable constraints £(6) = 0,
the CRLB has the form

£ {(5 —9)(0 - o)T} > U(UuTIu)tut. (3)

In (3), J denotes the Fisher information matrix (FIM) for the
unconstrained parameter estimation problem, and U is an n X
(n — k) matrix whose columns form an orthonormal basis for

-~

the null space of the k£ x n gradient matrix of £(0)

6£(0)
FO)=— 7 @
This implies that F()U = 0 while UTU = I. Earlier, Gorman
and Hero [8] have found a similar expression for the CRLB
under parametric constraints using a derivation based on the
Barankin bound.
For our application, the complex gain estimation problem for
sensor arrays can be parameterized in terms of gain amplitudes
and gain phases. This representation gives

7’71)|¢17¢27"'7¢1)]T- 4)

The aim of this analysis is to compare the CRLB under the fol-
lowing two parametric constraints:

0 = [717’727"'

£1(0) =¢1=0 (0)
£(8) = ij $i =0. ™)
=1
The gradient matrices for these constraints are
Fi(8) = [0;]1,0;_,] ®)
F»(0) = [0]1)]. )

where 0, and 1, denote column vectors of size p x 1 filled
with zeros and ones, respectively. Orthonormal bases for the
null spaces of these gradient matrices are

U; = (10
[ 0p_ | 1/p

U2 = Ip—l 0p—1><p (11)
L Opxp—1 | L, - lplpT/P

where I, denotes the p x p identity matrix.
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Let Rg = AX,A¥ and introduce

M, = ((I‘@—m@)f’ﬁ‘l(m—m@) oR1 (12)

M, = (([R¢®)"R ') © (R™/(TOR,B)) . (13)

Following the procedure outlined in [5, Appendix], we find that
the unconstrained FIM can then be expressed as

2R6{M1 + Mg} 2IH1{M2 — Ml}I‘

- [QFIm {Méf — M{{} 2I'Re{M; — M?}I‘:| - U9

IV. SINGLE POINT SOURCE

In this section, we specialize to calibration based on a single
point source; the case ¢ > 1 is considered in Section V. Without
loss of generality, we can assume that the single source is posi-
tioned in the phase center of the array and has unit power. This
simplifies the source covariance model to Ry = 1 plg. Assume
also that the array consists of identical elements, so we may take
I'=14® =1, and £,, = oI, where o is the noise power of a
single element. The covariance matrix model now simplifies to
R=1, 12? + oI, which can be inverted using the relation

B~ 'bb”B-!
B+bbf) =B — _— 15
(B+ ) 1+bHB-1b (15
This yields
1 1
Rl=—-(1-—1,17). 16
0( g+p? p) (10
Using these simplifications, (12) and (13) reduce to
p 1 T
M; = I- 1,1 17
' 0(U+p)< 0+pp”> an
— 1,17 (18)
Fop? T
By inserting these results in (14), one finds
o— T
— 2 |:pI+ a_—_,’_g]-p].p 01))(]) T} (19)
O'(CT +p) Op><p pI — 1P1p

Note (as expected) that J is singular with a one-dimensional null
space, spanned by the vector

1 Op}
Vo= — . (20)
it
Thus, a constraint to avoid this singularity is necessary.
Substitution of (10) and (19) in (3) gives the CRLB under the
constraint ¢; = 0 as

E ((5_ 8)(@ — 0)T> > oo +p)
2p
L, - 521,17 ‘ 0,xp
X ‘ 0 ol L 21
0 b=
prp Op—l Ip—l + 11)—11;1;—1
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This means that

(o +p) o—p
;) = 1- 22
var(7;) o < 20p ) (22)
for all elements and that
var(n) = Z2+P) 23)
p

for all elements except the first. The variance of the phase of the
first element is zero, since ¢; = 0 by definition.

The CRLB under the constraint ) ~_, ¢; = 0 can be found
in a similar way using (3), (11), and (19) as

7 7 T o(o+p)
_ _ >\ A
E(0-6)@-6")> 5
% [Ip - 27_12))11711? 0pxp ] .4
0pxp I, - 1p1]1; P
This means that
var(v;) = olotp) (| _o-p (25)
! 2p 20p

for all elements. This result is the same as the result obtained
under the constraint ¢; = 0. This outcome was expected since
neither constraint affects the gain estimates. For the variance of
the phase estimates, the result is

var() = 2D (1- 1)

o (26)

which differs from the previous result by a factor 2p/(p — 1). If
p is reasonably large, this factor is approximately equal to 2.

In [9], De Carvalho et al. pose that among all sets of a min-
imal number of independent constraints, the pseudo-inverse of
the unconstrained FIM J' yields the lowest value for the total
variance on all estimated parameters. An eigenvalue decompo-
sition on J will yield ¢ = rank(J) eigenvalues A; # 0 with

corresponding eigenvectors v;. If V. = [vq, v, -+, v,] and
A = diag([A1, A2, -+, Ag]), the pseudo-inverse can be com-
puted as

I =VAIVT = v(VTIV)IvT 27)
which has the same form as (3). Therefore, to achieve the lowest
total variance on all estimated parameters, we need to set U =
V or (more in general) select U such that the column span of
U equals the column span of V. In other words, the constraints
should be selected such that its gradient matrix spans the or-
thogonal complement of V, the range of the FIM. This comple-
ment space is described by the eigenvectors corresponding to
the zero-valued eigenvalues of the FIM.

In the case studied here, one eigenvalue of J in (14) is equal to
zero, with corresponding eigenvector vo = (1/,/p)[0} ;117"
This is precisely the space spanned by the gradient matrix F(0)
in (9). This proves that Y_?_  ¢; = 0 is a constraint that mini-
mizes the total variance on the estimated parameters.
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V. MULTIPLE SOURCES

When studying more complicated source models following
the steps outlined in the previous section, one does not obtain a
pedagogically interesting expression. We will show below, how-
ever, that v still lies in the null space of J in the general case
with an arbitrary source covariance model Ry and arbitrary di-
rection-independent element gains and phases, i.e., for I' # I
and ® # I, suggesting that the constraint y 5_, ¢; = 0 also
minimizes the total variance on all parameters in the more gen-
eral case.

We need to show that Jvy = 0. Since J is a positive semi-
definite matrix, it suffices to prove that v Jvo = 0. Using the
structure of vy, this reduces to prove that, for the (2,2) block of
J,

1 Re {T(M; — M)['} 1, = 0. (28)
As a starting point, we note that
IM.T = ((@ROQ)(FEAF)(@RO@)) ® (TR™'T)
= (ZYZ) oY (29)

where we have introduced the Hermitian matrices Y = TRIT"
and Z = <I>R0<I>H. In a similar way, we find that

I'M,T = (ZY) ® (YZ). (30)

By inserting (29) and (30) in (28), we obtain

1'Re {T(M; — M,)T'} 1,
=1'Re{(ZYZ) 0 Y — (ZY) 0 (YZ)} 1,
— Re {diag (ZYZ)"Y - (Z—Y)TYZ)T} 1,
= Re {trace (ZYZY — (ZYZY)")}

=0 31

which completes the proof.

VI. APPLICATION EXAMPLE

We illustrate the multisource case by an example. The Low
Frequency Array (LOFAR) is a phased array radio telescope
currently under construction in The Netherlands. It will con-
sist of 77 stations, each consisting of 96 dual polarized low-
band antennas operating in the 10-90 MHz frequency range and
96 dual polarized high-band antennas operating in the 110-250
MHz range. By the end of 2003, the Initial Test Station (ITS)
consisting of p = 60 inverted V-shaped dipoles arranged in a
five-armed spiral configuration became operational [10].

For this example, we will use the ITS antenna configuration
and assume a sky model at 30 MHz consisting of the strongest
q = 10 astronomical sources that were visible in the sky above
the ITS on January 26, 2005 at midnight. The source locations
and power ratios were taken from the third Cambridge catalog
of radio sources [11], and the total power of these sources was
assumed to be 1% of the system noise power of the individual
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Fig. 1. This plot shows CRLBs for the multisource complex gain estimation
problem presented in the text under the constraint ¢; = 0, >°F_ ¢; = 0 and
based on de pseudo-inverse of the FIM that should give the lowest total variance
on the estimated parameters. Note that the latter coincides with the CRLB under
the constraint Ef:l ¢; = 0, indicating that this constraint leads to the lowest
possible CRLB.

antennas. An integration time of 4 s was assumed, which corre-
sponds to N = 156 250 samples in a Nyquist sampled 40-kHz
frequency channel.

We will compare the CRLBs (3) using each of the two con-
straints (¢1 = 0 and >.%_, ¢; = 0) and also show the lower
bound given by JT. As parameter values, we take identical an-
tennas, i.e., I' = T and ® = I. The result is shown in Fig. 1. The
horizontal axis is the index of the parameter vector @ in (5). The
vertical axis is the computed bound on the variance.

The plot shows that, as in the single source case, the con-
straints have no impact on the variance on the gain estimates and
that the variance on the phase estimates decreases by approxi-
mately a factor 2. The plot also shows that the variance varies
from one element to another. This is caused by signal-to-noise
ratio differences between the elements.

In the previous section, it was demonstrated that v lies in the
null space of the FIM, suggesting that the constraint ) *_, ¢; =
0 gives the same CRLB as the CRLB based on the pseudo-in-
verse of the FIM that gives the lowest total variance on the esti-
mated parameters. In Fig. 1, we also plotted the latter CRLB for
the multiple source situation outlined above. The CRLB under
the constraint ) »_, ¢; = 0 coincides within the numerical ac-
curacy of the simulation with the CRLB based on the pseudo-in-
verse as expected based on the computations presented above.

VII. CONCLUDING REMARKS

In this letter, the CRLB for gain and phase estimation was
studied under the constraints ¢; = 0 and }_7_, ¢; = 0. It was
found that for calibration on a single point source of an array of
identical elements, the variance on the phase estimates is larger
by a factor 2p/(p — 1) under the first constraint as compared
to the latter, which is in fact the constraint that minimizes the
total variance on the estimated parameters. It was also shown
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that similar conclusions hold for more general cases involving
arbitrary source covariance models and arrays of nonidentical
elements.

We offer the following intuition for this loss by a factor of
almost 2. Suppose that the phase parameter vector is estimated
without a phase constraint. In that case, all phases are shifted
by an arbitrary offset that cannot be identified. An implementa-
tion of the first constraint would set ¢; = O by subtracting ¢
from all other phase estimates. This sets the variance of the es-
timate of ¢; equal to zero but adds it to the phases of all other
elements, thus doubling their variance. The second constraint
would compute the average phase and subtract it from all ele-
ments, which leads to a small variance decrease. This intuition
can be followed in many similar cases as well, e.g., in the con-
text of blind source separation and equalization, where often the
phase is not uniquely identifiable.

It can be shown that if the estimation problem can be reformu-
lated in terms of p — 1 phase differences, the variances of these
p— 1 phase parameters are the same under both constraints. This
indicates that if the system uses only knowledge of the phase dif-
ferences between the elements, the result is not affected by the
choice for either of the two constraints discussed in this letter.
The difference in the variances on the gain phases does matter
if phase stability of the whole system is required. An example is
a nonlinear transformation (e.g., converting the phases to com-
plex beamformer weights), followed by averaging (e.g., as is
done implicitly in an adaptive filter). In that case, it is important
to have a phase reference with lower variance.
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