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Abstract: In this paper, we propose a novel approach to the identification of multiple-input
multiple-output (MIMO) wave propagation models having a common-denominator pole-zero
parametrization. We show how the traditional, purely data-based identification approach can be
improved by incorporating a physical wave propagation model, in the form of a spatiotemporally
discretized version of the wave equation. If the wave equation is discretized by means of the
finite element method (FEM), a high-dimensional yet highly sparse linear set of equations is
obtained that can be imposed at those frequencies where a high-resolution model estimate is
desired. The proposed identification approach then consists in sequentially solving two large-
scale convex optimization problems: a sparse approximation problem for estimating the point
source positions required in the FEM, and an equality-constrained quadratic program (QP) for
estimating the common-denominator pole-zero model parameters. A simulation example for the
case of indoor acoustic wave propagation is provided to illustrate the benefits of the proposed
approach.

Keywords: Multivariable System Identification; Hybrid and Distributed System Identification;
Vibration and Modal Analysis

1. INTRODUCTION

We consider wave propagation in a three-dimensional
(3-D) enclosure with partially reflective boundaries as
governed by the wave equation

∇2u(r, t)−
1

c2
∂2

∂t2
u(r, t) = s(r, t) (1)

with appropriate boundary conditions in the spatiotem-
poral domain Ω × T . Here, r = [x, y, z] ∈ Ω and t ∈ T
denote the spatial and temporal coordinates, respectively,
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s(r, t) represents the driving source function that initiates
the wave propagation, u(r, t) represents the resulting wave
field, and c is the wave propagation speed determined by
the propagation mechanism and medium. If we consider
the driving source function to be generated by M point
sources at positions rm, m = 1, . . . ,M , then the wave field
can be expressed as a superposition of M contributions
corresponding to the temporal convolution of the point
source signals sm(t) with the Green’s function h(r, rm, t),

u(r, t) =

M∑

m=1

(∫
∞

−∞

sm(τ)h(r, rm, t− τ)dτ

)

. (2)

If we observe the wave field at a discrete number of
positions r̄j , j = 1, . . . , J , it follows from (2) that the wave
propagation can be modeled as a multiple-input multiple-
output (MIMO) linear time-invariant (LTI) system. If we
assume the source signals sm(t) to be bandlimited, then
the Green’s function can be sampled in time and the
MIMO-LTI system can be represented by a discrete-time
transfer function matrix

H(z) =

∞∑

n=0

Hnz
−n (3)

=

∞∑

n=0






h(r̄1, r1, n) . . . h(r̄1, rM , n)
...

. . .
...

h(r̄J , r1, n) . . . h(r̄J , rM , n)




 z−n (4)
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where n = t/Ts denotes the discrete time index, with Ts

the sampling period. It is particularly relevant to represent
the transfer function matrix by means of a pole-zero model
with a common denominator, i.e.,

H(z) =

∑Q
n=0 Bnz

−n

∑P
n=0 anz

−n
(5)

with

Bn =






bn(r̄1, r1) . . . bn(r̄1, rM )
...

. . .
...

bn(r̄J , r1) . . . bn(r̄J , rM )




 . (6)

Indeed, it was shown in Gustafsson et al. (2000) that
such a parametrization is related to the “assumed modes
solution” of the wave equation, in which the source and
wave field are expanded on the eigenfunction basis of the
enclosure, see also Kuttruff (2009). Here, the common
denominator is related to the resonant modes of the
enclosure which can be understood to be independent of
the source and observer positions, see Gustafsson et al.
(2000), Kuttruff (2009) and Haneda et al. (1994).

A parametric model of the wave propagation is particu-
larly useful for the prediction, simulation, and deconvolu-
tion (i.e., source recovery) of the wave field, in case a fixed
set of source and observer positions is considered. Even
though these operations may also be performed through
direct use of (a numerical approximation of) the wave
equation in (1), the availability of a parametric model will
typically result in significantly less computations. Because
of the tight connection between the pole-zero model and
the assumed modes solution of the wave equation, it may
be appealing to use a grey-box model, by parametrizing
the numerator and denominator in (5) explicitly as a func-
tion of the resonance frequencies and damping factors, see
Gustafsson et al. (2000). However, this parametrization is
highly nonlinear and so the parameter estimation requires
the solution of a non-convex optimization problem. There-
fore, we prefer to use a linear-in-the-parameters black-box
pole-zero model.

Our aim is then to estimate the model parameters as
accurately as possible, given a data set consisting of
source and observed signal samples. A variety of estimation
algorithms for identifying common-denominator pole-zero
models has been proposed earlier in literature, see, e.g.,
Gustafsson et al. (2000), Haneda et al. (1994), Rolain et al.
(1998), Stoica and Jansson (2000), Verboven et al. (2004),
and Hikichi and Miyoshi (2004). A common property
of these algorithms is that they rely exclusively on the
available data set. Instead, we propose an approach in
which not only the data set, but also the structure of the
underlying wave equation is exploited in the estimation of
the pole-zero model parameters. By enforcing the model
parameters to obey a linear relationship derived from a
finite element approximation of the wave equation, we can
include physical arguments in the black-box identification
while avoiding the non-convexity issues encountered with
a grey-box approach. This allows to achieve a higher
estimation accuracy as compared to the purely data-based
algorithms in literature, or to achieve a similar accuracy
with a smaller data set. The latter property is particularly
appealing if the estimation of the common-denominator
coefficients is of primary interest. The inclusion of the wave

equation structure in the black-box identification problem
can then result in a reduction of the number of observation
positions required to achieve a given accuracy, which
may significantly reduce the cost of the identification
experiment.

The paper is organized as follows. In Section 2 we for-
mulate the problem statement and review the existing
data-based approach to the identification of common-
denomimator pole-zero models. In Section 3, we show how
the finite element method (FEM) can be used to derive a
set of linear equations in the pole-zero model parameters,
that are valid if the MIMO-LTI system is indeed governed
by the wave equation in (1). This set of equations is
then used in Section 4 to formulate a large-scale convex
optimization problem that allows to identify the common-
denominator pole-zero model by relying on both the data
set and the wave equation structure. Finally, a simulation
example is provided in Section 5.

2. PROBLEM STATEMENT & STATE OF THE ART

2.1 Problem Statement

The problem considered in this paper can be formulated
as follows. We are given a data set consisting of N samples
of the source signals and observed signals,

ZN = {sm(n), yj(n)}
N
n=1, m = 1, . . . ,M, j = 1, . . . , J,

(7)
where the observed signals obey the measurement model

yj(n) = u(r̄j , n) + vj(n), j = 1, . . . , J. (8)

Here, the noise-free observations u(r̄j , n), j = 1, . . . , J
result from a spatiotemporal sampling of the wave field
u(r, t), as generated by the wave equation (1), and
vj(n), j = 1, . . . , J , represents measurement noise. For
the sake of simplicity, and without loss of generality, we
will assume that the measurement noise signals vj(n) are
realizations of zero-mean and mutually uncorrelated white
noise processes with equal variance σ2

v . Our aim is then to
obtain the best possible estimate of the parameter vector

θ =
[

b
T
1 b

T
2 . . . bT

M a
T
]T

(9)

containing the coefficients of the common-denominator
pole-zero model in (5), with

bm=[b0(r̄1,rm). . .bQ(r̄1,rm). . .b0(r̄J,rm). . .bQ(r̄J,rm)]
T

(10)
for m = 1, . . . ,M and

a = [a0 . . . aP ]
T
. (11)

Note that the first coefficient in the denominator parame-
ter vector is usually fixed to a0 = 1. We include it here in
the parameter vector for notational convenience.

2.2 State-of-the-Art Data-Based Identification Approach

Different algorithms for the estimation of the parameter
vector θ using the data model (5)-(8) have been proposed,
see Gustafsson et al. (2000), Haneda et al. (1994), Rolain
et al. (1998), Stoica and Jansson (2000), Verboven et al.
(2004), and Hikichi and Miyoshi (2004). In these algo-
rithms, however, the knowledge that the noise-free obser-
vations u(r̄j , n), j = 1, . . . , J , are samples of the wave field
generated by (1) is not exploited, and hence the structure
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Φ(ω) =





(
S
∗(ω)ST (ω)

)
⊗
(
IJ ⊗

(
zQ(ω)z

H
Q (ω)

))
vec
(
Y(ω)SH(ω)

)
⊗
(
zQ(ω)z

H
P (ω)

)

vec
(
Y(ω)SH(ω)

)H
⊗
(
zP (ω)z

H
Q (ω)

)
Y

H(ω)Y(ω)zP (ω)z
H
P (ω)



 (12)

of the wave equation is not taken into account. In this
paper, we will adopt the frequency domain identification
algorithm proposed in Verboven et al. (2004) as the state-
of-the-art algorithm. In the frequency domain, the data
model corresponding to (5)-(8) can be written as

Y(ω) =
B(ω)

A(ω)
S(ω) +V(ω) (13)

where ω = 2πfTs denotes radial frequency,

S(ω) = [S1(ω) . . . SM (ω)]
T

(14)

V(ω) = [V1(ω) . . . VJ(ω)]
T

(15)

Y(ω) = [Y1(ω) . . . YJ(ω)]
T

(16)

contain the N -point discrete Fourier transform (DFT)
samples of the source signals, measurement noise, and
observed signals, A(ω) represents the pole-zero model
denominator frequency response, and

B(ω) =






B11(ω) . . . B1M (ω)
...

. . .
...

BJ1(ω) . . . BJM (ω)




 (17)

contains the pole-zero model numerator frequency re-
sponses for the different source-observer combinations.

By defining the equation error vector related to (13) as

E(ω,θ) = B(ω)S(ω)−A(ω)Y(ω) (18)

a least squares (LS) criterion for the estimation of the
parameter vector θ can be obtained as

min
θ

∑

ω

E
H(ω,θ)E(ω,θ) (19)

where the summation is executed over the DFT frequencies
ω = 0, 1/N, . . . , (N − 1)/N , and (·)H denotes the Hermi-
tian transposition operator. The LS criterion (19) can be
rewritten as a quadratic program (QP),

min
θ

θT

(
∑

ω

Φ(ω)

)

θ (20)

s. t. a0 = 1 (21)

with Φ(ω) defined in (12) at the top of the page, where
IJ represents the J × J identity matrix, (·)∗ denotes
the complex conjugation operator, vec(·) is the matrix
vectorization operator, ⊗ denotes the Kronecker product,
and the complex sinusoidal vectors are defined as

zQ(ω) =
[

1 ejω . . . ejQω
]T

(22)

zP (ω) =
[

1 ejω . . . ejPω
]T

. (23)

3. FINITE ELEMENT METHOD FOR
COMMON-DENOMINATOR POLE-ZERO MODELS

We will now derive a set of linear equations in the pole-
zero model parameters, that are valid if the MIMO-LTI
system is indeed governed by the wave equation in (1).
We can eliminate the time variable and the partial time
derivative from the wave equation by taking the discrete
Fourier transform of (1) after temporal sampling, which
results in the Helmholtz equation

∇2U(r, ω) + k2U(r, ω) = S(r, ω) (24)

where k = ω/c represents the wave number. As mentioned
earlier, we consider the source function to consist of M
point source contributions, i.e.,

S(r, ω) =

M∑

m=1

Sm(ω)δ(r− rm). (25)

By substituting (25) in (24) and dividing both sides by
Sm(ω), m = 1, . . . ,M we obtain a set of M equations






∇2H(r, r1, ω) + k2H(r, r1, ω) =

M∑

m=1

Sm(ω)

S1(ω)
δ(r−rm)

...
...

∇2H(r, rM , ω) + k2H(r, rM , ω) =

M∑

m=1

Sm(ω)

SM (ω)
δ(r−rm)

(26)
where the frequency-domain Green’s function H(r, rm, ω),
m = 1, . . . ,M , corresponds to the frequency response
of the discrete-time system defined in (4) for r =
r̄j , j = 1, . . . , J . We can hence substitute the common-
denominator pole-zero model for H(r, rm, ω) in (26), and
bring the common denominator (which is independent of
r) to the right-hand side, i.e.,
{

∇2B(r, rm, ω)+k2B(r, rm, ω)=A(ω)
M∑

l=1

Sl(ω)

Sm(ω)
δ(r−rl),

m = 1, . . . ,M. (27)

where we have used a more compact notation to denote
a set of M equations. Note that we have deliberately not
restricted the observer position r in (27) to the discrete
set of positions r̄j defined earlier. Instead, we consider
the numerator frequency response B(r, rm, ω) to be a
continuous function of r. This function can be approxi-
mated in a finite-dimensional subspace by discretizing the
spatial domain Ω using a 3-D grid defined by the points
r̄k, k = 1, . . . ,K with K ≥ J (and typically K ≫ J),
which includes the observer positions,

B(r, rm, ω) ≈

K∑

k=1

B(r̄k, rm, ω)φk(r). (28)

Here, the subspace basis functions are chosen to be piece-
wise linear functions satisfying φi(r̄k) = δ(i − k), i =
1, . . . ,K. In particular, the basis functions are defined on
a 3-D triangulation of the spatial domain Ω, where the
kth basis function is made up of linear (non-zero slope)
segments along the line segments between the point r̄k and
all the points with which point r̄k shares a tetrahedron
edge, and zero-valued segments elsewhere. We can then
rewrite the set of Helmholtz equations in (27) as a set of
linear equations in B(r̄k, rm, ω) by making use of the FEM,
see Brenner and Scott (2008). In a nutshell, the FEM con-
sists in converting the partial differential equation (PDE)
in (27) to its weak formulation, performing integration
by parts to relax the differentiability requirements on
the subspace basis functions, and enforcing the subspace
approximation error induced by (28) to be orthogonal to
this subspace. The set of M PDEs in (27) can then be
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expanded to a set of MK linear equations, also known as
the Galerkin equations,

{

(
K− k2L

)
βm(ω) = −A(ω)

M∑

l=1

Sl(ω)

Sm(ω)
ψl ,

m = 1, . . . ,M. (29)

Here, the K × K matrices K and L denote the FEM
stiffness and mass matrices, defined as

[K]ij =

∫

Ω

∇φj(r) · ∇φi(r)dr (30)

[L]ij =

∫

Ω

φj(r)φi(r)dr (31)

and the K × 1 vector βm(ω) contains the spatial samples
of the function B(r, rm, ω) as defined by (28), i.e.,

βm(ω) = [B(r̄1, rm, ω) . . . B(r̄K , rm, ω)]
T
. (32)

The K × 1 vectors ψl, l = 1, . . . ,M on the right-hand
side of the Galerkin system in (29) contain the barycentric
coordinates of the point sources, obtained by projecting
the spatial unit-impulse functions δ(r−rl) onto the chosen
subspace basis, i.e.,

[ψl]i =

∫

Ω

δ(r− rl)φi(r)dr. (33)

Each vector ψl has only 1, 2, 3, or 4 non-zero elements,
depending on whether the mth point source is located
in a vertex, on an edge, on a face, or in the interior
of a tetrahedron of the FEM mesh. We can write (29)
in a more compact notation by defining M × 1 vectors
χm, m = 1, . . . ,M , containing the source spectrum ratios,

χm(ω) =

[
S1(ω)

Sm(ω)
. . .

SM (ω)

Sm(ω)

]T

, m = 1, . . . ,M (34)

and the K ×M matrix

Ψ = [ψ1 . . . ψM ] (35)

such that
{

(
K− k2L

)
βm(ω) = −A(ω)Ψχm(ω),

m = 1, . . . ,M. (36)

Finally, we can write the Galerkin equations as a function
of the model parameters of the common-denominator pole-
zero model defined in (5) as follows. Define theK(Q+1)×1
numerator parameter vector, for m = 1, . . . ,M ,

bm=[b0(r̄1,rm). . .bQ(r̄1,rm). . .b0(r̄K,rm). . .bQ(r̄K,rm)]
T

(37)
and recall the (P + 1) × 1 denominator parameter vector
definition in (11). Note that only the first J(Q + 1) co-
efficients of the numerator parameter vector (correspond-
ing to the elements of the numerator parameter vector
bm defined in (10)) are of explicit interest, while the
other coefficients have been introduced for constructing
the FEM approximation of the continuous-space func-
tion B(r, rm, ω). By using the above parameter vector
definitions, and recalling the definitions of the complex
sinusoidal vectors in (22)-(23), we can rewrite the Galerkin
system in (36) as follows,
{

(
K− k2L

) (
IK ⊗ z

H
Q (ω)

)
bm = −Ψχm(ω)zHP (ω)a,

m = 1, . . . ,M (38)

or equivalently







M(ω) 0 . . . 0 Ψχ1(ω)z
H
P (ω)

0 M(ω) . . . 0 Ψχ2(ω)z
H
P (ω)

...
...

. . .
...

...
0 0 . . . M(ω) ΨχM (ω)zHP (ω)








︸ ︷︷ ︸

Ξ(ω)









b1
b2
...

bM
a









︸ ︷︷ ︸

θ

= 0.

(39)
Here, M(ω) =

(
K− k2L

) (
IK ⊗ z

H
Q (ω)

)
, and 0 represents

a zero vector or matrix of appropriate dimensions.

A few remarks are in place here. First, the Galerkin
system in (39) is always underdetermined. However, we
can straightforwardly increase the number of equations by
considering (39) for L different radial frequencies ωl, l =
1, . . . , L, without increasing the dimension of the parame-
ter vector. It suffices to choose L ≥ Q+1+(P +1)/(MK)
to obtain a square or overdetermined system of equations.
Second, a well-known and attractive property of the FEM
is that the stiffness and mass matrices K and L, as well as
the point source positioning matrix Ψ, are highly sparse
and structured. Consequently, the system of equations
in (39) can typically be solved with a linear complexity.
Third, we should stress that the accuracy of the FEM
approximation relies heavily on the quality of the mesh,
which is why we cannot just setK = J and define the FEM
mesh using only the observer positions r̄j , j = 1, . . . , J .
In particular, a sufficiently large number of mesh points
is needed to achieve a good spatial resolution and near-
uniformity of the tetrahedra defined in the triangulation.

4. PROPOSED IDENTIFICATION APPROACH

The proposed identification approach is aimed at blending
measured information in the data set with structural
information obtained from the wave equation, and results
from the integration of the Galerkin equations (39) in
the QP (20)-(21). One way to achieve this integration
is to apply the field estimation framework proposed in
van Waterschoot and Leus (2011), where an optimization
problem is defined in which a LS data-based objective
function is minimized subject to the Galerkin equations. If
we apply this framework to the problem considered here,
we end up with a large-scale equality-constrained QP,

min
θ

θTCT

(
∑

ω

Φ(ω)

)

Cθ (40)

s. t.







Ξ(ω1)θ = 0

...
Ξ(ωL)θ = 0

a0 = 1

(41)

Here, the [J(Q+1)+P +1]× [K(Q+1)+P +1] selection
matrix C is defined such that

Cθ = θ. (42)

Compared to the state-of-the-art identification approach
exemplified by the QP in (20)-(21), LMK additional
equality constraints have been included in (41). These
equality constraints allow to impose structural information
at a number of frequencies ω1, . . . , ωL, thus increasing
the model accuracy at these particular frequencies. The
number of frequencies L at which the Galerkin equations
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are imposed in (41) should satisfy that L ≤ Q + (P +
1)/(MK), as otherwise an infeasible QP may be obtained.

Up till now we have assumed that all quantities required in
the computation of the matrices Ξ(ω) and C are available.
More particularly, Ξ(ω) relies on the geometry of the FEM
mesh (through K, L, and Ψ), on the source spectrum
ratios (through χm(ω)), and on the point source positions
(through Ψ), while C depends on the observer positions.
In a typical identification experiment, the source spectrum
ratios and the observer positions are indeed known, while
the FEM mesh is known by construction. However, in
many applications, the point source positions are unknown
and so the point source positioning matrix Ψ cannot be
straightforwardly computed. Nevertheless, we will show
that if a preliminary estimate â of the pole-zero model
denominator parameter vector is available (e.g., by us-
ing the state-of-the-art data-based identification approach
outlined in Section 2.2), the point source positioning ma-
trix Ψ can be estimated by exploiting its particular struc-
ture and sparsity. To this end, we first rewrite (36) as
{

(
K− k2L

)
βm(ω) = −

(

χT
m(ω)⊗ Â(ω)IK

)
ψ

︷ ︸︸ ︷

vec(Ψ),

m = 1, . . . ,M (43)

or equivalently







M(ω) 0 . . . 0 χT
1 (ω)⊗ Â(ω)IK

0 M(ω) . . . 0 χT
2 (ω)⊗ Â(ω)IK

...
...

. . .
...

...

0 0 . . . M(ω) χT
M (ω)⊗ Â(ω)IK








︸ ︷︷ ︸

∆(â,ω)









b1
b2
...

bM
ψ









︸ ︷︷ ︸

ζ

= 0.

(44)
The data term in (40) can also be rewritten as a function of

ζ, by partitioning the matrix (
∑

ω Φ(ω))1/2C , [ΓL|ΓR]
such that
(
∑

ω

Φ(ω)

)1/2

Cθ = ΓL

F
︷ ︸︸ ︷
[
IMK(Q+1) 0

]
ζ + ΓRa. (45)

Again, data information and structural information can
be combined into a single convex optimization problem in
which the point source positioning matrix Ψ is estimated
alongside the pole-zero model numerator coefficients, i.e.,

min
ζ

‖ΓLFζ + ΓRâ‖2 + ‖∆(â, ω)ζ‖2 + λ‖ψ‖1 (46)

s. t.

{
(IM ⊗ 11×K)ψ = 1M×1

ψ ≥ 0
(47)

with 1 a vector of all ones. In this optimization prob-
lem, the sparsity of Ψ is exploited by including an ℓ1-
regularization term in (46), while the non-negativity and
the property of columns summing to one, are enforced in
the (in)equality constraints (47).

5. SIMULATION RESULTS

We provide a simulation example, in which the proposed
identification approach is compared to the state-of-the-art
approach for the case of indoor acoustic wave propagation
(c = 344 m/s). We consider a rectangular room of 8 ×
6 × 4 m, with M = 3 sources and J = 5 sensors
positioned as shown in Fig. 1. The Green’s functions
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Fig. 1. Simulation scenario: rectangular room (8 × 6 × 4
m) with M = 3 sources (blue ∗) and J = 5 sensors
(red o).
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Fig. 2. Frequency magnitude responses of the Green’s
functions related to the different source-observer com-
binations.

related to the source and observer positions have been
simulated using the assumed modes solution to the wave
equation, see Gustafsson et al. (2000), truncated to a
duration of 10 s, sampled at fs = 100 Hz, and low-pass
filtered to suppress the “cavity mode” at DC. The resulting
frequency magnitude responses 20 log10 |H(r̄j , rm, ω)| for
m = 1, . . . ,M , j = 1, . . . , J are plotted in Fig. 3. The
common resonances can be clearly observed.

The data set was generated as follows: the M source
signals were obtained by filtering M Gaussian white noise
signals with M different all-pole filters (first-order low-
pass, second-order band-pass, and first-order high-pass
for m = 1, 2, 3, respectively). The observed signals were
obtained by filtering the source signals with the simulated
Green’s functions and adding Gaussian white noise at a
0 dB signal-to-noise ratio (SNR). The FEM mesh was
generated by performing a 3-D Delaunay triangulation on
a set of 315 regularly spaced grid points separated by 1
m in each dimension. The resulting FEM mesh consists of
1152 elements, and is shown in Fig. 3.
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Fig. 3. Visualization of the tetrahedral FEM mesh.
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Fig. 4. Results with exact source positioning matrix.

We evaluate the capability of the data-based (“DATA”)
and proposed (“HYBRID”) identification approaches to
capture the resonant behavior of the wave propagation,
by inspecting the pole-zero model inverse denominator fre-
quency magnitude response 20 log10 |A

−1(r̄j , rm, ω)|. The
pole-zero model orders are set to Q = P = 12. The
proposed approach is evaluated with the Galerkin equality
constraints imposed at L = 1 frequency and L = 2 fre-
quencies. These frequencies are chosen to correspond to the
4th and 1st resonance frequency of the Green’s functions,
respectively, i.e., ω1 = 2.7018 rad and ω2 = 1.3509 rad.

Fig. 4 shows the results for the case when the point source
positions are exactly known, and hence (40)-(41) can be
directly solved. It is clearly observed that by imposing the
Galerkin equality constraints at a certain frequency, the
resonant behavior at that particular frequency is identified
much more accurately compared to the case when only
measurement information is used.

Finally, Fig. 5 shows the results for the case when the
point source positions are unknown, and the point source
positioning matrix Ψ is estimated using the sparse ap-
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Fig. 5. Results with estimated source positioning matrix.

proximation algorithm (46)-(47) prior to executing the
hybrid identification algorithm (40)-(41). The resulting
identification performance is seen to be comparable to the
case when exact knowledge of the point source positions is
assumed.
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