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ABSTRACT
We propose a NALM technique by exploiting the compres-
sive sampling and sparse reconstruction framework. We
estimate the contribution of the individual appliances by
measuring the current of the total load. We further assume
to know the steady-state current waveform of each appli-
ance. We exploit the sparsity of the current signal to com-
press the measurement via random sampling, which lowers
significantly the processing complexity, the storage and the
communication burden. Using the proposed sparse recon-
struction approach, we can still identify the on/off status of
each appliance from the compressed measurement as if the
original non-compressed measurement is used.
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1 Introduction

Energy consumption monitoring is a key aspect in achiev-
ing sustainable development. Advanced monitoring tech-
niques are desired to obtain fine-grained (e.g., down to in-
dividual electrical appliance in a home), real-time and re-
liable energy consumption information. Such information
can provide insights to impact the consumers positively on
energy conservation, and can also enable utility companies
to offer advanced services like dynamic electricity pricing.
The non-intrusive appliance load monitoring (NALM) [1]
is a convenient approach to determine the energy consump-
tion of individual appliances. The NALM employs only
a single point of measurement, e.g., at the main electrical
service entry point of the home, which does not require in-
stalling meters on each individual appliance. The NALM
monitors the voltage and current of the total load and de-
rives the activity of the individual appliances which con-
stitute the load. Each appliance has electrical features that
can be used as a unique ’signature’ to recognize its contri-
bution in the overall consumption. The most well devel-
oped NALM technique utilizes the signature given by the
real and reactive power of the appliance during its steady-
state operation (i.e., excluding a short duration of the off-
to-on transient state) [1]. To resolve the ambiguity when
two appliances have the same power signatures, more ad-
vanced techniques are proposed which exploit other signa-

tures, including the steady-state current waveform [5], the
transient-state current waveform [3], etc.

The current signature based approaches rely on the
high frequency components to make the appliance more
unique/distinguishable, which typically require a higher
sampling rate (e.g., 40 kHz in [3]) than the power signa-
ture based approaches (e.g., 2-10 Hz in [1]). Compressive
sampling (CS) is a method of acquiring and reconstructing
sparse signals [2]. One particular CS application of interest
here is the analog-to-information convertor (AIC) [4] that
can sample below the Nyquist-rate required by the conven-
tional analog-to-digital convertor (ADC).

In this paper, we will propose a steady-state current
signature based NALM method that utilizes compressive
sampling and sparse reconstruction techniques. By exploit-
ing the sparsity in terms of the on/off status of the appli-
ances, we can compress the measured current signal with
AIC sampling, while still achieving reliable appliance iden-
tification from the compressed measurements. The rest of
this paper is organized as follows. In Section 2 we present
the signal model and propose the measurement methods
and the disaggregation algorithms for recognizing the indi-
vidual appliance usage. We conducted experiments to ver-
ify the proposed NALM solution as discussed in Section 3.
The performance is evaluated by simulations in Section 4.
Conclusions are drawn in Section 5.

2 Our Approach
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Figure 1. Electrical circuit model of a household.

The electrical circuit model of a household is depicted
in Figure 1, where multiple appliances are connected as Nd
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Figure 2. An example: one period of the steady-state cur-
rent drawn by an LED light bulb.

parallel loads that switch on and off independently. We
place a voltage meter and a current meter at a central mon-
itoring point, e.g., the main electric panel of a home. The
voltage meter measures the source voltage delivered by the
utility, which is a sinusoidal wave of 50 Hz (in Europe).
When the d-th (d = 1, 2, . . . , Nd) appliance load is turned
on, it draws the current signal denoted as ĩd during steady
state. The steady-state current waveform has several prop-
erties: 1) repeatable with the fundamental period of 1/50
s, 2) unique so that it can be used as the load’s signature,
and 3) additive if multiple loads are ’on’. The current me-
ter measures ĩraw, i.e., the current signal drawn by the total
load, which is the sum of the ĩd’s of the ’on’ loads.

Using the measured voltage and current of the total
load in a steady state, we perform a disaggregation algo-
rithm to obtain the individual appliance usage information.
The steady-state current waveform of each appliance can
be measured individually off-line, which constitutes a sig-
nature database for on-line appliance identification. An ex-
ample of the steady-state current drawn by an LED light
bulb is given in Figure 2, where (a) is the time domain
waveform of one period, and (b) is the frequency domain
spectrum (i.e., the Fourier transform of the time domain
waveform). Let Fs denote the Nyquist-rate of the current
signal, which is defined as the bandwidth of the spectral
components satisfying a threshold, e.g., < 30 dB below the
peak spectrum. Then the spectrum in (b) suggests that the
Nyquist-rate of the current signal is Fs = 10 kHz.

One period (T = 1/50 s) of the current signal con-
tains N = TFs Nyquist-rate samples. The current signal
of the d-th appliance is expressed by an N × 1 vector (for
one period),

ĩd = Adid, (1)

where id is normalized s.t. iHd id = 1 and Ad is the ampli-
tude. The Nyquist-rate digital signal representation of (1)
is conceptually viewed as the raw analog current signal.

2.1 Pre-filtering

Before analog-to-digital conversion, we apply pre-filtering
to improve the signal condition for later processing. The

filtered version of (1) is

ũd = W {̃id} = Bdud, (2)

where W{·} represents the pre-filter (without changing the
length of ĩd), ud is normalized s.t. uH

d ud = 1, and Bd

is the amplitude. Generally, W{·} can be any filter or
transform designed to enhance the signal dynamic range
for ADC sampling, and/or to reduce the signal correlations
for disaggregation. In the remainder of this paper, we use
(2) as a general expression for the current signal, which in-
cludes (1) as a special case, i.e., when W{ĩd} = IN ĩd (IN
is an N ×N identity matrix), ud = id and Bd = Ad.

We define a basis matrix of size N ×Nd as

Ψ = [u1 u2 · · · uNd
]. (3)

Ignoring the additive noise term, the measured current is

ĩ = W {̃iraw} = W{
Nd∑

d=1

ĩdsd} =

Nd∑

d=1

ũdsd = ΨBs, (4)

where B = diag[B1 B2 · · · BNd
] is a diagonal matrix,

and s is an Nd × 1 status signal vector, with elements sd
equal to 0 or 1 indicating the on or off status of the d-th
appliance. Note that (4) represents conceptually the analog
current signal before the ADC, with a bandwidth of Fs Hz.

2.2 Sparsity of the Status Signal

We say that the status signal s is K0-sparse if it contains
only K0 (K0 � Nd) non-zero entries, by assuming that
at a steady state, only a small number of appliances are
simultaneously ’on’. If s is not sparse, a new sparse signal
can be introduced based on the switch continuity principle
(SCP) [1], i.e., in a short time interval only a small number
of appliances are expected to change their status. Denoting
τ as the time instant when (4) is observed, we can write

ĩτ = ΨBsτ , (5)

where sτ is the status signal at the time instant τ . Let τ1,
τ2 be two time instants respectively before and after cer-
tain status changes of appliances, and τ2 − τ1 be a small
time interval within which only K0 (K0 � Nd) appliances
change their status. We obtain the difference signal as

ĩ′ = ĩτ2 − ĩτ1 = ΨBs′, (6)

where s′ = sτ2 − sτ1 contains the change-of-status infor-
mation of the Nd appliances. The element of s′ can take
one of the three values, 0 (no status change), 1 (off to on),
and −1 (on to off). Even if none of sτ1 or sτ2 is sparse, s′

is K0-sparse given the SCP.

2.3 Compressed Measurements/Samples

We define a measurement/sampling matrix Φ of size M ×
N (M ≤ N ), which converts the analog signal ĩ to the
digital signal im,

im = Φĩ = ΨmBs. (7)



A new basis matrix Ψm is given by

Ψm = ΦΨ = [m1 m2 · · ·mNd
], (8)

where md = Φud is the basis vector of the mea-
sured/sampled signal. The matrix Φ can represent both
the conventional ADC sampling and the compressive AIC
sampling, i.e.,

1. Non-compressed: If M = N and Φ = IN , then
Φ represents the conventional sampling with an ADC
running at Fs Hz.

2. Compressed: If M < N and Φ contains elements
drawn randomly from a distribution (e.g. Gaussian),
then Φ represents compressive sampling with an AIC
running at (M/N)Fs Hz. Knowing that s (or s′) is
K0-sparse as discussed in Section 2.2, we can use
a random and non-adaptive matrix Φ to compress ĩ

(or ĩ′) to only M = O(K0 lnNd) samples [2], from
which a reliable estimation of s (or s′) can still be
achieved.
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Figure 3. The measurement process.

The measurement process is summarized in Figure 3. In
practice the AIC sampling described by (7) is implemented
using analog circuits, where the multiplication of Φ and ĩ

is performed using mixers and integrators [4]. The com-
pressed measurement im is used for further digital signal
processing, e.g., performing a disaggregation algorithm to
derive the individual appliance usage information. The im
can be either processed by a local microprocessor attached
to the meter or sent to a remote PC if the meter is equipped
with a wireless communication module. The compression
lowers both the processing complexity and the communi-
cation burden.

2.4 Disaggregation Algorithm

Given Ψm and B as the known appliance signature, we
want to estimate the status signal s based on the measured
signal im. Rewrite (7) as

im = Ψmz, (9)

where z = Bs is the status signal weighted by the ampli-
tudes. One straightforward solution of z can be obtained
via the least-squares (LS) estimate,

ẑ = Ψ†
mim, (10)

where † denotes the Moore-Penrose pseudoinverse of a ma-
trix. The LS minimizes the l2-norm and suffers from over-
estimation when the solution is sparse. As discussed in

Section 2.2, z is sparse (or using the difference signal for-
mulation of (6), z′ = Bs′ is sparse). It is better to employ
the l1-norm minimization approach, i.e.,

ẑ = argmin
z

‖z‖1 s.t. im = Ψmz. (11)

The optimization problem of (11) can be solved by greedy
pursuit algorithms such as orthogonal matching pursuit
(OMP) [6]. We will present two algorithms, the appliance
matching pursuit (A-MP) in Table 1 and the appliance or-
thogonal matching pursuit (A-OMP) in Table 2, by adapt-
ing the original OMP algorithm to our settings for appli-
ance identification. Notation: Ω = {1, 2, . . . , Nd} is the
index set of all the appliances. ΩK = {d1, d2, . . . , dK} ⊆
Ω is the index set of the ’on’ appliances selected by the
algorithms.

A-MP has less computational complexity than A-
OMP, since A-OMP performs matrix multiplication in the
orthogonalization step of each iteration and also needs
more iterations to converge. A-OMP is more robust than
A-MP when the appliance signature waveforms are very
correlated.

Given ΩK , we obtain a mutilated basis matrix
Ψm,K = [md1

md2
· · · mdK

], and a mutilated coeffi-
cient vector zK = [zd1

zd2
· · · zdK

]T , such that (9) can
be rewritten as im = Ψm,KzK . Then zK is estimated by

ẑK = Ψ
†
m,Kim. (12)

Similarly, a mutilated status signal vector is defined as
sK = [sd1

sd2
· · · sdK

]T . Knowing the amplitudes, we
estimate sK and obtain a refined index set as

ŝdk
= ẑdk

/Bdk
, dk ∈ ΩK , (13)

ΩK∗ = {dk : ŝdk
> 0.5}, (14)

where the threshold is set to be 0.5, given that the status
signal is either 0 or 1 with equal probability.

3 Experiments
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Figure 4. Experimental set-up.

We built an experimental set-up as shown in Figure 4
to emulate an NALM system with some household appli-
ances including different types of lamps, vacuum cleaner,



Table 1. A-MP algorithm

Input: im, Ψm, B, and thresholds α, ε.
Initialize: the residual r0 = im, the index set Ω0 = ∅.
Iterate: the k-th iteration, k = 1, 2, . . .

1. Select some candidate appliances

ρd = rHk−1md/‖md‖,
C = {d : ρd ≥ αmax ρd}, d ∈ Ω \Ωk−1.

2. From the candidate set C, select the one appliance
that minimizes the residual power

dk = argmin
d∈C

‖rk−1 −Bdmd‖,

Ωk = Ωk−1 ∪ {dk}.

3. Update the residual

rk = rk−1 −Bdk
mdk

,

ek = (‖rk−1‖2 − ‖rk‖2)/‖rk−1‖2.

Stop criteria: If ek < ε or k = Nd.
Output: ΩK (stop after K iterations).

Table 2. A-OMP algorithm

Input: im, Ψm, and a threshold ε.
Initialize: the residual r0 = im, the index set Ω0 = ∅, the
matrix containing the orthogonalized selected basis vec-
tors Γ0 = [ ].
Iterate: the k-th iteration, k = 1, 2, . . .

1. Select one appliance and add to the index set

ρd = rHk−1md/‖md‖,
dk = arg max

d∈1,...,Nd

ρd, Ωk = Ωk−1 ∪ {dk}.

2. Orthogonalize and normalize the selected basis vec-
tor, and add it to the orthogonalized basis matrix

m̃dk
= mdk

− Γk−1Γ
H
k−1

mdk
,

gk = m̃dk
/‖m̃dk

‖,
Γk = [Γk−1 gk].

3. Update the residual

rk = rk−1 − (rHk−1
gk)gk,

ek = (‖rk−1‖2 − ‖rk‖2)/‖rk−1‖2.

Stop criteria: If ek < ε or k = Nd.
Output: ΩK (stop after K iterations).

TV, DVD player, hair dryer, and kettle. The set-up is fed by
mains power that behaves as a service entry point deliver-

ing electricity to the ’house’. The sensing box is equipped
with a current meter measuring the overall current and a
voltage meter measuring the mains voltage. The current
meter is an Agilent current probe placed around the sin-
gle core of the live or neutral wire. The voltage meter is a
differential voltage probe, which in principle can be put at
any socket in the ’house’. Usually each appliance has one
steady-state current waveform as its unique signature. For
some multi-mode appliances (e.g., standby/cooking for the
kettle, low/high-power for the vacuum cleaner), each op-
eration mode has a unique steady-state current waveform
counted as a signature. In our case, there are 12 appli-
ances with Nd = 14 signatures. The signal from the current
probe is sampled by a 24-bit ADC running at Fs = 10 kHz,
which is the suggested Nyquist rate as discussed in Section
2. Given the high enough ADC sampling rate, the digitized
signal is conceptually viewed as the ’analog’ signal, based
on which we emulate the pre-filter W{·} and the AIC Φ in
digital domain.

3.1 Appliance Signatures

1: CFL 2: CFL5 3: HALO 4: HALOs 5: INCAN

6: LED 7: hairdI,II 8: vacuumL 9: vacuumH 10: TVw

11: kettleS 12: kettleCW 13: lcRH 14: DVDw
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Figure 5. Appliance signatures (raw signal).

The signature database is obtained by measuring the
current waveform of each appliance (or operation mode)
individually. In the future, self-learning algorithms can
be designed to build the signature database automatically
when an un-registered appliance is plugged in. The raw
current signatures (without pre-filtering) are shown in Fig-
ure 5, where (5a) is id describing the current shape, and
(5b) is Ad/

√
N describing the root-mean-square (rms) cur-

rent strength in Amperes. The 14 signatures are named
and numbered according to the appliances in Figure 4. As



shown in (5a), different loads produce different current
shapes, while certain loads with similar circuit characteris-
tics produce very similar current shapes, e.g., the resistive
loads including hair dryer, kettle (cooking mode), halogen
lamp, and incandescent lamp all having a sinusoidal cur-
rent shape. We observe from (5b) that the current strength
ranges from 0.03 A to 9.29 A.

3.2 Effects of Pre-filtering

1: CFL 2: CFL5 3: HALO 4: HALOs 5: INCAN

6: LED 7: hairdI,II 8: vacuumL 9: vacuumH 10: TVw

11: kettleS 12: kettleCW 13: lcRH 14: DVDw

(a) filtered: ud
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Figure 6. Appliance signatures (notch-filtered signal).
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Figure 7. Appliance signature correlations.

The W{·} we use is a notch filter removing the ±50
Hz components of the raw signal, with the transfer function
of H(z) = (1− 2 cosω0z

−1 + z−2)/(1− 2r cosω0z
−1 +

r2z−2), where ω0 = 2π50/Fs and r = 0.8 is a parameter
(0 < r < 1) controlling the width of the notch. The sig-
natures of the filtered current are shown in Figure 6. With-

out the 50 Hz components, the higher order harmonics be-
come more dominant and the current shapes become more
fluctuating as shown in (6a). The filtered current strength
ranges from 0.01 A to 0.77 A as shown in (6b), which de-
creases a lot as compared to (5b). We describe the similar-
ity between the two current shapes (indexed by d1 and d2)
by calculating the correlation as Ri(d1, d2) = iHd1

id2
for

the raw signal, and Ru(d1, d2) = uH
d1
ud2

for the filtered
signal. Figure 7 shows the result correlations by color,
where the whiter the more correlated and the darker the
less. The signature correlations decrease significantly after
notch-filtering, which will assist the disaggregation.

3.3 Measurement
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Figure 8. The measured current signal (without compres-
sion). ’On’: [4 6 10 14] at τ1; [1 2 4 6 8 10 13 14] at τ2.

We measure the overall current over 25 s, during
which some appliances are turned on sequentially and some
are turned on simultaneously. Figure 8 shows the measured
current (without compression), where (8a) is the raw signal
and (8b) is the notch-filtered signal. Within the 25 s, there
are two highlighted short segments with a duration of 0.6
s each, denoted by τ1 and τ2 respectively. The segment
τ1 contains the steady-state measurement where the appli-
ances indexed by [4 6 10 14] are ’on’. In between τ1 and τ2,
some appliances ([1 2 8 13]) are turned on simultaneously,
and the segment τ2 contains the steady-state measurement
where the appliances [1 2 4 6 8 10 13 14] are all ’on’. Av-
eraging over the 30 periods (0.6 s) in each segment, we
obtain the waveform of one period (0.02 s), denoted as ĩτ1
and ĩτ2 for the segments τ1 and τ2 respectively. The differ-
ence waveform ĩ′ is given by ĩτ2− ĩτ1. The ĩτ1 , ĩτ2 and ĩ′ of
the notch-filtered signal are shown in (8c), based on which
we will test our disaggregation algorithms.

3.4 The Proposed Algorithms

We test the disaggregation algorithms using the filtered
measurement ĩτ1 , where the ’on’ appliances are [4 6 10 14]
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Figure 9. Appliance identification results. Measurement
ĩτ1 with [4 6 10 14] ’on’.

as mentioned in Section 3.3. The threshold values for the
A-MP and A-OMP are α = 0.9 and ε = 0.05. The ap-
pliance identification results are shown in Figure 9, where
(9a) uses the conventional LS algorithm, and (9b) and (9c)
use the two proposed algorithms. In the figures, the bar
denotes the estimated status signal ŝK , the ∗ denotes the
index set ΩK , and the ◦ denotes the refined index set ΩK∗ .
For LS, ΩK = Ω and ẑK = ẑ of (10). For A-MP and
A-OMP, we also plot the residual signal of each iteration to
illustrate how the iterative procedure converges, where the
number on the y-label is the selected appliance index of that
iteration. As shown in (9a), the LS identifies the ’on’ appli-
ances to be [3 4 6 10 14], where the appliance 3 (HALO)
is wrongly identified to be ’on’, i.e., over-estimated. As
shown in (9b) and (9c), both A-MP and A-OMP correctly
identify the ’on’ appliances to be [4 6 10 14].

3.5 The Effects of Compression

We test compression using the difference waveform ĩ′,
which in effect contains the ’on’ appliances indexed by [1
2 8 13] as mentioned in Section 3.3. The non-compressed
signal ĩ′ is sampled at 10 kHz (the Nyquist-rate) giving
N = 200 samples. The compressed signal i′m is sam-
pled at 1 kHz (1/10 of the Nyquist-rate) giving M = 20
samples. We consider four sampling matrices as shown in
Figure (10a) with Φ’s coefficients displayed as colors: 1)
Nyquist - Nyquist-rate sampling, where Φ = IN ; 2) subs -
conventional sub-sampling, where Φ is obtained by taking
one out of every N/M rows from IN ; 3) randg - random
Gaussian compressive sampling, where Φ contains M×N
elements drawn i.i.d. from a random Gaussian distribution
with zero mean and variance 1/M ; 4) rands - random se-
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Figure 10. The ĩ′ sampled/compressed by different Φ’s.
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(c) i′m 1 kHz, Φ randg
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Figure 11. Appliance identification (A-OMP) with the
compressed signal. Measurement ĩ′ with [1 2 8 13] ’on’.

lection compressive sampling, where Φ is obtained by tak-
ing randomly M rows from IN . Figure (10b) shows the
current signal sampled by the four Φ’s.

Figure 11 gives the appliance identification results of
applying A-OMP on the signal sampled/compressed by dif-
ferent Φ’s. As shown in (11a), using the non-compressed
signal we correctly identify the ’on’ appliances to be [1 2 8
13]. As shown in (11c) and (11d), we can still achieve cor-
rect appliance identification using the signal compressed by
random sampling (Φ randg or Φ rands). While in (11b),
using the signal compressed by conventional sub-sampling,
the ’on’ appliance 2 (CFL5) is not identified. The conven-
tional sub-sampling at 1 kHz destroys the high-frequency
components outside the 1 kHz band and causes too much
information loss. The random sampling at 1 kHz maintains



the essential information with high probability and ensures
perfect recovery of s′.

The on-line monitoring can employ a two-step ap-
proach. Let τ1 be an initial time instant when we do not
know the on/off status of any appliances, and τ2 be a time
instant shortly after τ1. In between τ1 and τ2, some (at
most K0) appliances change their status, which triggers a
simple event detector based on the total power variation.
Step 1) Initial detection at τ1: We use Nyquist-rate sam-
pling and estimate sτ1 from ĩτ1 (10 kHz). Step 2) Differ-
ential detection at τ2 (and at any later time instants): We
use compressive sampling and estimate s′ from the com-
pressed difference signal i′m (1 kHz). Then sτ2 is given by
sτ1 + s′. If we estimate sτ2 directly from the compressed
samples at τ2, then sτ2 may not be sparse enough to allow
much compression.

4 Simulation Results

The performance of the appliance identification using com-
pressive sampling is evaluated by Monte Carlo simulation.
We use the 14 signatures as mentioned in Section 3. In
each simulation round, 4 randomly selected appliances are
simultaneously on, and the total current is corrupted by an
additive white Gaussian noise of zero-mean and variance
of 0.01. Given the Nyquist-rate signal of 10 kHz, we con-
sider the compressed signal of 1 kHz and 0.5 kHz using the
three compression methods ’subs’, ’rands’, and ’randg’ as
explained in Section 3.5. The disaggregation algorithm is
A-OMP. For each scenario with a certain compression rate
and a compression method, we perform Nsim = 104 simu-
lation rounds. The error rate of a particular appliance is de-
fined by Nerr/Nsim, where Nerr is the number of times when
the appliance’s on/off status is wrongly identified. We ob-
tain the total error rate by averaging over all the appliances.
The results are shown in the following table.

Table 3. Error rates of different compression methods.

subs rands randg
1 kHz 5.3% 3.6% 1.8%
0.5 kHz 25.7% 16.6% 11%

For the Nyquist-rate signal of 10 kHz, the error rate
is 0. For the compressed signal of 1 kHz, the conventional
sub-sampling ’subs’ gives the highest error rate of 5.3%,
and the two random sampling methods give lower error
rates, where ’randg’ gives the lowest error rate of 1.8%.
Similar conclusion holds for the more heavily compressed
signal of 0.5 kHz.

5 Conclusions

We have proposed a NALM solution to estimate the indi-
vidual appliance’s on/off status from the measured current
of the total load. We exploited the sparsity of the current

signal given by SCP, which allows us to sample and com-
press the measured current without degrading much the ap-
pliance identification performance. The problem of iden-
tifying the on/off status of appliances is formulated as a
sparse reconstruction problem, which can be solved using
the proposed A-MP/A-OMP algorithms. We conducted
experiments using 12 household appliances to verify the
proposed NALM solution. Our simulation results shown
that compression via random sampling achieves lower er-
ror rates than conventional sub-sampling.
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