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Beamformers to Cancel Interfering
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Abstract—In multiuser multiantenna communication receivers,
the use of high resolution ADCs is costly. In the presence of (strong)
interference, more bits are used than would be necessary for quan-
tizing only the signal of interest. Thus, if it is possible to cancel
the interference in the analog domain, considerable savings can be
realized. In this paper, we exploit the fact that a multiantenna re-
ceiver consists of a bank of ADCs and propose a new architecture,
wherein a feedback beamformer (FBB) takes a linear combination
of the ADC outputs and feeds back the result to be subtracted at
the input. This ADC architecture is especially compatible with ex-
isting ���� ADCs, that already consist of a digital-to-analog con-
verter (DAC) in the feedback loop and enables sophisticated source
separation algorithms designed in the digital baseband to cancel
the interfering users in the analog domain. Subsequently, the ����
ADCs digitize only the desired user signals and achieve consider-
able savings in power consumption. Using a mean squared error
criterion and assuming that a training sequence is available, we
present an algorithm to design the weights of the FBB. The inter-
ference suppression and power savings of the proposed approach
are demonstrated via simulation results.

Index Terms—Linear prediction, multiantenna/MIMO systems,
oversampling �� ADCs, predictive quantization, source separa-
tion.

I. INTRODUCTION

A. Interference Cancellation at the ADC

A NTENNA arrays in multiantenna receivers exploit spa-
tial diversity to achieve reliable communications at low

signal energies and in the presence of interferers [3]. However,
multiple receive antennas lead to multiple RF and ADC chains,
which increases the circuit area and the power consumption. Al-
ready, the power consumption per ADC operation is comparable
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to that of hundred thousands of digital logic gates [4] and the im-
provements in ADC technology evolve at a much slower pace
when compared to Moore’s law [5].

Consider a multiuser cellular/WLAN scenario, where the
ADC input signals contain contributions from the desired user,
noise and the interfering users. Although advanced beam-
forming techniques mentioned in [3] can achieve interference
cancellation in the digital baseband, the presence of strong
interferers forces the ADCs to spend a significant part of their
dynamic range and resolution on digitizing the unwanted com-
ponents. If we are able to cancel most of the interference before
it reaches the ADC, we can use lower resolution ADCs, which
directly translates into reduced power consumption [5].

One well known suboptimal approach to reduce the number
of ADC chains, thereby reducing the ADC power consump-
tion, is to select the antennas with the largest signal energies
and only quantize these [6]. However, such techniques do not
fully exploit the advantages of multiantenna systems, cannot
track for variations in the wireless channel and fail in the pres-
ence of interferers. Instead of antenna selection, if we can cancel
the interference a priori in the analog domain, then consider-
able power savings can be achieved. For example, the paper [7]
shows a single channel feedforward cancellation architecture
that attempts to reconstruct the interfering signal and subtract
it in the analog domain prior to the ADC. It is also possible to
integrate analog phase shifters within the RF architecture [8], so
that we obtain a set of analog beamformers to cancel interferers.
In [9], we detailed one such approach. We discussed algorithms
for estimating the channel and designing the beamforming co-
efficients to minimize the mean squared error (MSE) between
the desired user and its estimate at receiver.

The present paper introduces an alternative approach. Here
we consider a bank of ADCs connected to the antenna array. A
space-time digital beamformer operates on the ADC outputs to
identify the interferer signals. These interferer estimates are fed
back via a digital to analog converter (DAC) to cancel the inter-
fering user signals before the quantization operation. For a given
ADC resolution, interference cancellation would allow a more
faithful digital representation of the desired user signals; alter-
natively, we can quantize with fewer bits to achieve the same
performance1. The space-time beamformer coefficients are de-
signed using a training sequence from the desired user signal.

One subclass of ADCs, especially compatible with the above
DAC feedback architecture, is the family of ADCs. These
have been extensively studied in the literature [11], [12]. Typ-

1This is a generally known idea also employed e.g., in differential quantiza-
tion or predictive coding techniques [10].
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ically, ADCs sample at a frequency much higher than the
Nyquist frequency and obtain coarsely quantized signals (say
1-bit), which are subsequently integrated to obtain a high res-
olution signal in the digital baseband. Further improvements
in signal prediction and reconstruction, exploiting the bandlim-
ited (BL) nature of the input, have been studied previously in
[13]–[15].

The DAC feedback included in the architecture offers
possibilities to suppress BL interferers and to improve dynamic
range. Philips et al. [16] perform interference cancellation with
a high pass filter in the DAC feedback loop of a second order
modulator. This is a single-channel and nonadaptive solution.
More generally, ADCs with feedback DAC to improve dynamic
range in the context of cognitive radios have been proposed re-
cently in [17]. These papers focus on the implementation and
not on the design of beamformer weights to cancel interferers.
Interference cancellation with feedback ADCs utilizing the spa-
tial diversity offered by multiantenna receivers has not been ad-
dressed yet. However [16], [17] offer a starting point for the re-
alization of such architectures in silicon.

B. Setup and Objectives

We consider a narrowband (NB) multiuser setup, where the
desired user (band limited by frequency ) and interfering users
transmit over a shared wireless channel as in Fig. 1(a). These
signals are received by an array of antennas, downconverted
to baseband, sampled (at sampling frequency ) and coarsely
quantized using an oversampled ADC. In Fig. 1(a), the dig-
ital postprocessor does beamforming to suppress the interfering
signal. Alternatively, in Fig. 1(b) the multiple ADC outputs are
fed back via a digital beamformer to cancel the interferers. We
will refer to this architecture as a multichannel (MC) ADC
with a feedback beamformer (FBB). Note that the ADC is
just one relevant architecture to cancel the interferers; this could
be generalized to other types of oversampled ADCs.

With the objective to cancel the interferer before the ADC op-
eration, our aim in this paper is to design the FBB coefficients. If
done successfully, this will lead to reduced power consumption.
Even a partial cancellation of the interfering user energy would
lower the requirements on the dynamic range of the ADC and
lead to an overall power reduction in the ADC units. As will be
shown using simulation results in Section VI, introducing the
FBB may lead to a reduction in power consumption by a factor
of four.

In the signal processing literature, several types of equalizers
have been designed where the equalizer output is fed back to
cancel the incoming signals [18]. One related context is the clas-
sical least mean squares (LMS) technique [19]. Feedback equal-
ization techniques in the context of blind channel estimation
have been proposed in [20], [21]. In these methods, a feedback
beamformer operating on the equalizer outputs estimates and
cancels the redundancy in the incoming signals. Our aim is to in-
tegrate such techniques within the ADC architecture. Somewhat
similar work on designing a quantizer with a single channel FBB
in the context of subband coding is given by [13]. In this work
the authors specify the ADC output as an interpolation of ban-
dlimited signals and design the quantizer (as an oversampled
frame) to cancel the redundancy in the incoming signals. More
recently, in [22] FBBs are designed in the context of a compres-
sive sensing framework.

Fig. 1. (a) Antenna array configuration with desired and interfering user signals
quantized by oversampled ADCs (operating at� times the Nyquist rate of �� �

� � ��� ) followed by baseband combining to estimate the desired user (b)
Proposed multichannel (MC) ADC architecture with a feedback beamformer
(FBB) to identify and cancel interfering user signals.

The above mentioned approaches aim to perform noise
shaping or to cancel redundancy in the incoming signals. In
contrast, our aim is to design the quantizer output to cancel the
interferers and to reconstruct the signal of interest. This signal
is identified via a training sequence.

C. Outline and Contributions

We progressively address the different design issues of an
FBB arrangement used with a ADC. In Section II, we
specify the oversampled ADC setup and provide gen-
eral background on higher-order ADCs that provide a
filter in the feedback loop. In Section III, we then consider
a single-channel ADC operating on the incoming band
limited signals. We formulate a mean squared error (MSE) cost
function on the difference between the desired user training
signal and its estimate at the output of the ADC. Solving this
cost function is not directly feasible, but it can be modified into
a prediction error cost function that can be solved in closed
form. The original cost function can then be solved iteratively
using the previous solution as a starting point. In Section IV,
we consider a bank of ADCs receiving contributions from the
desired and the interfering users and derive an extension of
the single channel FBB design to a multichannel FBB design.
Again, the FBB can be designed in a closed form for a predic-
tion error cost function and the minimum MSE solution can be
obtained iteratively. All designs depend on the availability of a
training signal, i.e., the output of the ADCs in the absence of
interferers and noise. In Section V, we consider some aspects
of this. Finally, in Section VI, we show simulations to indicate
the performance of the proposed algorithms. It is seen that in
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Fig. 2. (a) First-order continuous time �� modulator with 1-bit output. (b) Discrete time equivalent model where the sampling frequency � � ��� .

many cases an interference suppression of over 20–25 dB can
be achieved, leading to comparable power savings.

Notation: , , and denote conjugation, trans-
pose, Hermitian transpose and pseudo-inverse operations. de-
notes the Kronecker product, a vectorization operator
(stacking all columns of its argument into a vector) and de-
notes the Frobenius norm. Vectors and matrices are represented
in lower and upper case bold letters and we use an underscore to
denote some multichannel vectors and matrices (for distinction
with the single-channel case). denotes the identity matrix of
size , and are vectors of ones and zeros,
respectively.

II. PREDICTIVE QUANTIZATION WITH ADCS

In this section, we review the ADC architecture and in
particular extensions with a higher-order feedback loop. We de-
rive a transfer function model and formulate the design problem
to be solved in subsequent sections.

A. Signal Sampling and Reconstruction

Consider an ADC operating on a continuous time input signal
. We will assume that is band limited by the highest fre-

quency of operation and time-limited to a given observation
interval , where would correspond to the duration
of a transmission packet. Outside this interval, the signal is sup-
posed to be zero.

If is uniformly sampled times in the interval, then its
samples are denoted as , for
and they are stacked in an vector

.
Let correspond to the number of samples of , ob-

tained when sampled at the Nyquist rate of in , i.e.,
. If sampled at this rate, the input signal is uniquely

represented by its samples and can be reconstructed as

(1)

This reconstruction can be implemented via a lowpass filter.
If the input signal has variance and the ADC quantizes the
signal at bits, the quantization noise is modeled to be
uniformly distributed and independent of with a variance

, where is a constant [23]2.

2We assume that the ADC unit includes an automatic gain control (AGC)
which scales the input signal to match the range of the ADC without overload.
The design and the analysis of the AGC is left out of the considerations in this
paper.

In oversampling ADCs, the sampling frequency is much
greater than the Nyquist rate. Let be an integral multiple of

and define the oversampling ratio (OSR)

Typically, we could have . If sampled at
this rate, the input signal is redundantly specified by its sam-
ples. Indeed, given the Nyquist sample vector , the
oversampled sample vector of size is given by in-
serting in (1), leading to the interpolation formula
(ignoring quantization noise)

where is a tall matrix with entries

(2)

Conversely, given , the Nyquist sample vector can be ob-
tained by premultiplying by any left inverse of , leading to
an infinite number of possible reconstructions that differ in the
way that the quantization noise is processed. One straightfor-
ward reconstruction of the Nyquist samples can be implemented
via a lowpass filter followed by a downsampler.

In this case, the quantization noise on the samples in
has variance , whereas after reconstruction
the samples of have quantization noise variance

. This is a factor lower.
However, it is possible to do much better. Since the input

signal is bandlimited, it is possible to predict the current input
sample from previous samples . By
subtracting this prediction from the input signal and quantizing
only the prediction error , the required dynamic range at the
input of the quantizer is much smaller and so will be the quan-
tization error. This is the principle of differential quantization,
or predictive ADCs [13], [23]. A special case is the ADC,
reviewed in the next subsection.

B. Oversampled ADCs

Consider a first-order ADC operating at a sampling fre-
quency as in Fig. 2(a). Its discrete-time equivalent is
shown in Fig. 2(b). We assume an idealistic model of the ADC
and the DAC, i.e.,

• ADC operation is instantaneous (no sample and hold de-
lays);

• DAC linear with infinite precision (although in simulations
we ultimately use 1-bit precision).
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In this setup, the prediction error is integrated and the
quantizer digitizes the integrator output to obtain

. The quantizer output is fed back with a
one-sample delay and subtracted from the input through a DAC
to obtain a prediction of . As before, Nyquist-rate samples
are obtained after low-pass filtering and decimation by a factor

. For modeling purposes, we replace the quantizer operator
by an i.i.d. additive noise source as in Fig. 2(b), such

that . For details, see [12].
As indicated in the figure, is the prediction of

and is the prediction error. The discrete-
time integrator operating on has output , satisfying the
difference equation

(3)

We assume, for simplicity throughout the paper, that the initial
states are and . The ADC output can
be rewritten from (3), utilizing , as

(4)

Stack the modulator output for as
a vector and likewise for the
input vector and the quantization
noise vector . From (4), the relation
between and can be written as

(5)

where is an lower triangular matrix whose nonzero ele-
ments are equal to 1; it corresponds to the integration operation.

It is thus seen that

where is a lower bi-diagonal matrix with and on the
main diagonal and off diagonal positions, respectively. One can
interpret as a high pass filter, suppressing the low frequency
quantization noise terms. For this reason, ADCs are com-
monly referred to as noise shaping ADCs. The remaining high
frequency quantization noise terms will be canceled by a LPF
with cut-off frequency prior to the decimation of the output

. It is well known that this makes the quantization noise power
drop off with a factor , rather than as we had with a
straightforward oversampling ADC [24]. Since the power con-
sumption of an ADC can be approximated as ,
we see that it is advantageous to maximize and use a 1-bit
converter.

C. Generalized Higher Order ADC

The discrete time equivalent model specified by Fig. 2 can
be generalized to a higher order ADC [12, Ch.6]. Consider
Fig. 3, explaining a order ADC. In this case, the pre-
dictor of is formed by the output of a order FIR filter
with coefficients , which we will stack in a
vector . The prediction of is

, where .
Similar to the first order case, the prediction error

is integrated and subsequently quantized,

Fig. 3. Discrete time equivalent model of a��� order��ADC with weighted
feedback, represented by � � �� � � � � � � � .

represented by the additive quantization noise . The output
thus becomes

Similar to (4), the ADC output can be written as

(6)

Stack the left-hand side (LHS) and right-hand side (RHS) terms
of (6) for and assume that for .
It follows that the ADC output vector satisfies

(7)

where is an matrix whose elements are made of (as
specified in detail in the next section) and is an matrix
as defined in (5). As an example, a first-order
ADC with leads to described by

...
. . .

. . .

For the special case where , is equal to and (7)
reduces to (5).

Following (7), we see that is given by

The main question with this generalized architecture is how to
design . E.g., we can select the objective to minimize the low-
frequency components of the quantization noise terms ,
i.e., noise shaping. Alternatively, we can design such that
is an estimate of a target signal .

D. Problem Formulation

The recurring theme in this paper is to design the feedback
weights specified by , focusing on the cancellation of un-
wanted interfering signals. This reduces the required dynamic
range at the quantizer, leading to lower requirements on the
oversampling ratio or ADC resolution and consequently min-
imizes the power consumption.

The measured signal contains contributions from the
desired user (including channel impairments), interferers and
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noise terms. The measured signal vector can be expressed as
a sum of vectors in noise

where is a vector denoting the thermal noise terms.
corresponds to the contributions of the desired user and

correspond to that of the interfering users.
For the design of , it is clear that the receiver needs a way to

distinguish interfering signals from the desired signal. To sim-
plify the design procedure, we make the following assumptions
throughout the paper:

• There is a training phase, namely one entire transmis-
sion packet during which the receiver has knowledge of
a training signal corresponding to the desired user and
specified by a vector .

• The desired user signal is narrowband, limited by the
frequency of operation , whereas the interferers can be
wide-band signals with operating frequencies up to .

• To enable interference cancellation, the samples of
are assumed to be uncorrelated with the samples of

.
This enables us to design that minimizes the mean squared

error (MSE)3 between the desired and observed signal at the
output of the quantizer, i.e., such that the ADC quantizes mostly
the desired signal. After this, the FBB is kept fixed and is used
for subsequent transmission packets assuming stationarity of the
interference.

We approach the design problem in the following order:
• We initially consider a single channel ADC. Can we design

to minimize the MSE?
• Subsequently, we extend the single channel setup to a mul-

tichannel scenario. Each channel has an ADC and can use
the feedback from the other ADCs as well. How is the feed-
back beamformer designed?

• Finally, we consider the application of this multichannel
ADC in a multiuser communication scenario and discuss
how a suitable training sequence is obtained.

III. SINGLE-CHANNEL FEEDBACK BEAMFORMER DESIGN

We consider the single channel feedback setup in Fig. 3. Our
aim will be to derive an estimation algorithm for the feedback
weights . To start, we will first rederive the data model (7) in
more details.

A. Data Model

Let and denote the -transformations of the se-
quence and (denoted by vectors) respectively,
i.e., and .
Similarly, let represent the -transform of :

. The transfer function in Fig. 3 of the setup is
represented in the -domain as

(8)

3Similarly, we could design � to maximize SINR or to minimize BER, but
minimizing MSE seems more straightforward.

where

is the transfer function of the integrator and

is the transfer function of the feedback arrangement. Define
(with some abuse of notation, since as written here the matrix
is not invertible)

. . .
. . .

. . .
. . .

We can then make the correspondence

...
...

. . .

where . Similarly,

...
. . .

. . .
. . .

. . .
. . .

where . The transfer
function (8) can thus be written in matrix form as

(9)

which corresponds to our earlier model (7), setting
.

Since is a linear function of the entries of , we can
write this alternatively as a matrix multiplied by . Specifically

...
. . .

. . .

...

...

. . .
...

. . .
...

...
...

...

It follows that

Starting from (7), an alternative model formulation is thus

(10)
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B. Estimation of

To estimate , we assume that a desired output (training)
sequence is given, along with measured input data . Ideally,
we would aim to minimize the expected mean squared error at
the output, i.e., minimize

(11)

where is given by the model (9), written as

and the expectation is with respect to the quantization noise
( is considered deterministic here). A complication with this
formulation is that enters the model via the denominator,

, i.e., in a nonlinear way. The same complication occurs in
autoregressive moving-average (ARMA) model identification
[25], where the direct Least Squares problem is considered not
attractive. More practical is to formulate, as in the Prony method
[25], a prediction error problem, i.e., to premultiply (10) by
and move the denominator to the other side and minimize

(12)

Write as a function of , i.e., ,
where is obtained using the delayed samples of . We
obtain

This is a Least Squares cost function. Minimization of to
leads to the closed-form solution

(13)

Note that the quantization noise is a zero mean random process
independent of the signal terms and the expectation is computed
with respect to .

A unique solution exists if has a left inverse, i.e., if
this matrix has full column rank. Since and commute,
we can write . The matrix is square and
invertible and does not change the column rank of . The
matrix introduces a zero row on top of and drops the
last row. We thus require that the Toeplitz matrix

. . .
...

. . .
...

...
...

is full column rank. This requires at least that . Under
this condition, it is sufficient that, e.g., . More gener-
ally, it is sufficient that one of
is not zero.

C. Iterative Refinement

As in the Prony method, we can go back to solve the original
cost function (13) in an iterative fashion. This relates to the it-

Fig. 4. Interference cancellation with a FBB� operating on a first-order mul-
tichannel �� ADC.

erative prefiltering technique by Steiglitz and McBride [25] and
is also known as Iterative Weighted Least Squares. The conver-
gence of such techniques is shown in [26].

Thus, given the solution in (11), form and
. Due to its structure (lower triangular with main di-

agonal equal to ), the matrix is always invertible. Define
. Then

We now freeze and solve the resulting Weighted Least
Squares problem for present in

If necessary, this process is repeated until convergence (From
simulations, it appears that one iteration is sufficient). In this
manner, we obtain a good approximation to the solution of the
original cost function (11).

IV. MULTICHANNEL FEEDBACK BEAMFORMER DESIGN

A. Data Model

We now consider an extension of the FBB design to a mul-
tichannel (MC) setup, where a bank of ADCs is used
to quantize an vector , as
shown in Fig. 4. The order feedback filter is replaced by
a feedback beamformer (FBB) or space-time filter of size

.
As before, low-resolution quantizers digitize the inte-

grator output as , where
is the quantization noise and these are now vectors.

The ADC outputs are fed back via the FBB matrix . The
prediction of is a vector ,
where is a

vector and is a filtering matrix
with the beam-

forming matrix for the lag, . Similar to
Section III, the prediction error vector is

(14)

and the ADC output satisfies

(15)
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Let be a vector stacking the as
and likewise for and . As before,

the measured signal contains contributions from the desired
user (including channel imperfections), the interferer and the
noise terms. Stacking the LHS and RHS terms of the ADC
output in (15) for and assuming that
for , leads to a MC relation

(16)

where is a lower triangular matrix
and is a lower triangular matrix constructed
from the elements of (see below). and denote the
MC equivalents of and , respectively. For example, when

,

. . .

More specifically, we can generalize (9) to the MC context. In-
deed, using multichannel -transforms, we can write the equa-
tion as follows:

Let , then we can rewrite this as

(17)

where

and

...
. . .

. . .
. . .

. . .
. . .

To generalize (10) to the MC context, we first write in
terms of entries of , as follows:

...

...

where

. . .
...

. . .
...

...
...

...

( has size , whereas has size .) Further-
more

so that

(18)

We can thus write the MC data model (17) as

(19)

Due to the Kronecker structure, we can also rearrange this in a
more compact form as

(20)

where

...

...

...

...

and with a similar definition for .

B. Estimation of

Similar to the single-channel case, we aim to design the FBB
such that approximates a known training sequence

, i.e., we aim to minimize

(21)

where is given by the model (17), i.e.

Similar to before, this minimization is complicated and we re-
place it by the minimization of a modified cost function

(22)

The closed form solution is given by

(23)
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Using this as a starting point, we can solve (21) iteratively by
setting , defining and writing

(24)

For a fixed , we can rewrite using (18) and solve for
present in

(25)

If necessary, this can be repeated iteratively a number of times.
A few remarks are in order. First of all, (23) is seen to treat

each channel “independently”: each column of depends only
on a corresponding column of the input data and training data

. This is different for the solution of the weighted problem
(25), because the weighting does not have a Kronecker struc-
ture (i.e., it cannot be factored into a Kronecker product of two
matrices). The weighting relates the channels to each other.

Secondly, we can verify the conditions for the existence of a
unique left inverse. For the first solution (23), we require at
least to be tall, i.e., . However, this is a necessary but
not sufficient condition. If each channel has the same training se-
quence, then and it is seen that each column
is times repeated: we can write . Thus, for such
training sequences, the first solution is not unique. However, the
Kronecker structure may also be an advantage, as it will lead to
simpler calculations: we can take as the (nonunique) left inverse

For the second solution (25), the matrix to be left-inverted has
size and it is tall if . If has repeated
columns, then the same will hold for . Thus,
in general also this solution will not be unique and again, the
structure can be exploited to facilitate the computations.

V. CONSTRUCTION OF THE TRAINING SEQUENCE

The FBB designs as discussed in the previous sections all
depend on the critical assumption that a training sequence
(or ) is available. In this section, we discuss a few cases under
which such a training sequence may be obtained.

A. Single-Channel ADC

We consider first the single-channel case. Ideally, we should
have : the training sequence is equal to an interfer-
ence- and noise-free version of the incoming signal. For the
case where the channel is instantaneous and not convolutive,
this measured signal is (up to a complex scaling ) equal to the
transmitted signal, presumably an oversampled version of the
Nyquist-rate symbol sequence of entries (the superscript

denotes the desired user index). In this case, we can set

(26)

where is the interpolation function as defined in (2). If the
channel is convolutive, then this generalizes to

(27)

where the -matrix is the oversampled channel re-
sponse of the desired user. The matrix matrix can be es-
timated using standard channel estimation techniques [27], al-
though the presence of the interference may complicate this. Al-
ternatively, the estimation of or can be integrated in the
MSE estimation of , changing the problem into a more gen-
eral ARMA prediction estimation problem. The details of this
estimation are omitted here and the reader is referred to [25].

Note that the FBB ADC structure consists of a feedback filter
and is capable of doing some equalization. If the channel is con-
volutive but we still use (26) and set , then the FBB
will attempt to do interference cancellation and equalization.
The quality of the result depends on how well the equivalent

order AR filter can equalize the convolutive channel. Pre-
sumably, this would work best for a channel that is FIR of order
less than after oversampling.

B. Multichannel ADC

In principle, the multichannel case is a straightforward gen-
eralization of the single-channel case, although we have some-
what more design freedom. We will assume that all channel out-
puts are to reconstruct the same desired user sequence , up
to complex scalings denoted by for the th channel. In that
case, we obtain for the instantaneous channel case as suitable
training sequence the generalization of (26) as

(28)

where . We can recognize that is the array
response vector (or direction vector) of the desired user.

For a convolutive channel, we obtain as generalization

(29)

where is an matrix, with little structure, that
contains the oversampled channel responses of the desired user
to each of the antennas.

As in the single-channel case, if (or ) is unknown, it
will have to be estimated using a prior channel estimation phase,
or the estimation has to be integrated in the estimation of ,
making this an ARMA estimation problem.

C. Digital Postprocessing

After the ADC outputs have been obtained, typically two
postprocessing steps are applied:

1) The outputs are low-pass filtered and downsampled. This
operation can be represented by a wide rectangular matrix

, e.g., . The downsampled ADC output as shown
in Fig. 4 is a vector .

2) These downsampled signals
are used with a digital beamforming vector

to obtain an estimate of the desired user symbol sequence
as . A

reasonable approach to estimate is to minimize the output
MSE

(30)
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where and is the well known
Wiener beamformer. In this case is known from
training.

Ideally, we should have designed the FBB using a MSE crite-
rion based on the resulting single output and jointly design

and . It can be seen that this leads to a design problem with
(too) many degrees of freedom and no unique solution, unless
additional constraints are taken into account, such as the quan-
tization errors.

For a related design problem, we were able to derive that the
output MSE is minimized if all ADC outputs are nominally
equal to the same signal, up to complex scaling, but with inde-
pendent (quantization) noise [9]. This then motivates the design
of the training as in the previous subsection. In the simplest case,
all ADCs reconstruct the same output signal and the optimal
(Wiener) beamformer in that case becomes a simple average
of the ADC outputs, after correcting for any phase differences.
For convolutive channels, we can model the output as (29) and
base the design of the beamformer on this model.

The effect of the lowpass filtering should be integrated in
the MSE cost functions (11) and (21), i.e., we do not minimize

but rather filtered versions . The gener-
alization is straightforward and will lead to a projection matrix
based on . It will enter in the equations in a similar way as .

VI. SIMULATION RESULTS

To assess the performance of the proposed algorithms, we
have applied them to a multiantenna setup receiving multiple
user signals and computer generated data. We present results
that incorporate a first order FBB in a bank of first order
ADCs as presented in Section IV.

In the simulations, the input signal-to-noise ratio (SNR) is the
signal to noise power ratio between the desired user signal and
the thermal noise as received at antenna 1; it is the same for all
antennas. The input signal-to-interference ratio (SIR) is defined
as the ratio of the power of the desired user signal to the sum of
powers of all interfering user signals as received at antenna 1; it
is the same for all antennas. All users (desired and interfering)
transmit QPSK signals with zero mean and unit variance and the
interfering users have equal powers. The performance indicators
are

1) The average signal to interference and noise ratio (SINR)
of the prediction error signal in the MC ADC. A
high SINR indicates that less power is spent in quantizing
the interferers for a given ADC resolution.

2) The MSE of , observed after digital postprocessing
as in Section V-C.

All results are obtained by averaging 1000 Monte Carlo runs,
each with instantaneous independent Rayleigh fading channel
realizations and independently generated data signals. Each run
transmits data packages of length 8192 symbols as in a WLAN
transmission, where the first 256 symbols are used for training.
The beamformer design techniques proposed in Section IV are
used to design the FBB weights from the training sequence, fol-
lowed by the digital beamformer . Unless specified otherwise,
we used transmitters and receive antennas.
The SIR at the antennas is and the oversampling
ADCs each have 1-bit resolution. After downsampling the ef-
fective resolution of each ADC at the Nyquist rate would be

Fig. 5. Performance comparison as a function of the resolution of ����� �
����� � ���	. (a) Average SINR at the ADC input. (b) MSE at the re-
ceiver.

, which corresponds to 6 bits for (not taking into
account the increase in resolution due to noise shaping).

A. Effect of Fixed Precision DAC Feedback

Fig. 5 shows the basic performance of the MC FBB ADC re-
ceiver, where we set . We show the SINR at the input
of the ADC, i.e., prediction error and the output MSE as
a function of the input SNR. We further consider that in prac-
tice the feedback loop uses poorly quantized signals: the DAC in
the feedback loop often has only 1 bit. Therefore, we plot several
curves, for varying resolution of .
A 1 bit DAC output has two possible levels i.e., the DAC output
signal takes the possible values depending on the sign of
the elements of . For a 4-bit DAC (assuming uniform quan-
tization), the DAC output is rounded to one of the 16 uniformly
spaced values between and . For a precision greater
than 1 bit, most DAC implementations are not linear, which is
why they are less popular.

For reference, curve 1 in Fig. 5(a) plots the SINR performance
for the case without FBB, i.e., when . Similarly,
curve 1 in Fig. 5(b) plots the MSE performance for the optimal
(Wiener) beamformer acting in the digital domain with full pre-
cision ADCs.
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Fig. 6. Performance comparison as a function of the angular spacing between
the desired user and 2 interferers. (a) Average SINR at the ADC input. (b) MSE
at the receiver output.

Fig. 5(a) compares the average SINR at the input of the ADCs
as a function of transmit SNR for different resolutions of the
DAC. We see that the introduction of the FBB (curves 2, 3) im-
proves the SINR by a factor of 20 to 25 dB, when compared to
a setup without the FBB (curve 1). The introduction of the fixed
precision DAC in the feedback loop introduces a small perfor-
mance loss at the receiver as seen in Fig. 5(b). In this case, curve
1 acts as the reference and curves 2–3 show the MSE perfor-
mance of the MC ADC setup for different DAC precisions.
We conclude that a 1-bit DAC is probably sufficient because
the performance degradation is small and the reduction in com-
plexity is significant.

B. Effect of Source Spacing

Fig. 6(a) and (b) show the SINR and MSE performance as a
function of the angular spacing between two adjacent sources.
The simulations consider a line of sight scenario without mul-
tipath and the results are observed for sources, with
the desired user transmitting from an angle of and re-
ceived by an uniform linear array whose elements are
spaced half-wavelengths apart. The DAC output

is of 4-bit precision and . Two
interferers are located at varying equidistant angles and

. The plots show the SINR and MSE as function of
, where the transmit SNR is 24 dB and the transmit SIR is

Fig. 7. Performance comparison as a function of varying oversampling ratios
with 1-bit DAC (a) Average SINR at the ADC input (b) MSE at the receiver
output.

. For reference, curve 1 plots the SINR performance for
the case without FBB and the MSE performance for the optimal
(Wiener) beamformer, for antennas.

Looking at Fig. 6(a) and comparing curves 1 and 2, we see
that for the introduction of the FBB improves the
SINR at the first ADC by a factor 25 dB. The FBB setup cannot
suppress the interferers for angular spacing . Fig. 6(b)
shows the MSE performance after digital postprocessing. It is
sen that the performance of the FBB follows that of the optimal
Wiener beamformer closely, both cannot suppress interferers for
small angular deviations.

C. Effect of the ADC Oversampling Factor

We now keep the DAC precision at 1 bit and vary the over-
sampling ratio for transmit and .
Fig. 7(a) and (b) shows the SINR at the ADC input and the MSE
performance at the receiver for varying (curve 2). For refer-
ence, curve 1 plots the SINR performance for the case without
feedback and the MSE performance for the optimal (Wiener)
float precision beamformer.

In Fig. 7(a), we observe that the introduction of the FBB im-
proves the SINR by a factor of 20 dB (when ). In Fig. 7(b),
we see that MSE saturates for a FBB with due to the
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Fig. 8. Performance comparison illustrating oversampling ratios and ADC res-
olution.

limited resolution of the DAC. Note that although the MSE per-
formance with the 1-bit DAC is considerably worse when com-
pared with the optimal antenna array setup and float precision,
the energy consumption in the proposed setup is considerably
less than that of the reference setup.

D. Extent of ADC Power Savings

We now keep the DAC precision fixed at 1-bit and compare
the MSE performance of our ADC setup with a fixed preci-
sion first order ADC without FBB. The ADC resolution is
kept fixed at 1-bit. In Fig. 8, curves 1, 2 and 4 respectively show
the MSE performance at the receiver for float precision ADCs,

and with no FBB i.e., . Curve 3 cor-
responds to a MC ADC setup with and a FBB
with 1-bit DAC arrangement as in Section IV.

From Fig. 8, we observe that the introduction of the FBB
leads to a 5-bit ADC with MSE performance close
(up to MSE 0.05) to that of an equivalent 7-bit ADC
without FBB. From the power consumption relation

, we can conclude that interference cancellation
with fixed precision ADCs in a dense multiuser setup leads
to quadruple improvement in power consumption at a similar
performance.

VII. CONCLUDING REMARKS

In this paper, we have proposed a multichannel ADC setup,
employing a space-time feedback beamformer that comple-
ments the usual DAC feedback. The prime advantage of this
architecture is that it reduces the interference at the input of the
ADCs, so that less dynamic range and fewer bits are required
to reconstruct the desired user signals. These requirements can
lead to significant power savings in the ADCs.

For this architecture, we designed the optimal feedback
beamformer coefficients that minimize the output MSE com-
pared to a training sequence. Simulations showed that the SINR
at the input of the quantizer can be improved by more than
10–25 dB (depending on the SNR), thus indicating the potential
power savings.

Further research is required along the following directions to
implement the proposed class of ADCs in practice:

• We did not analyze the effect of the coarse quantization of
the ADC. In practice, this setup operates on 1 bit signals

of the ADC output and the simulations indicated that
this is adequate.

• We also did not analyze the effect of the quantization of
the feedback DAC. When the DAC resolution is greater
than 1 bit, the conversion may not be linear in practice,
thus showing a preferred resolution of 1 bit. Simulations
showed that this is sufficient for improving the SINR at the
input of the quantizer, with a small loss in MSE.

• We did not consider the operating limits on the signal am-
plitude, slew rate, AGC, stability and other practical as-
pects. We also assumed an ideal ADC/DAC operation. In
practice, there is a sample and hold circuit in the ADC,
leading to latency in the ADC operation.

• The beamformer estimation employs training signals cor-
responding to the desired user. This is not practical in all
cases. Furthermore, we need to do a forward channel es-
timation (or equivalently, replace the design problem of
the AR feedback channel by an ARMA prediction error
problem). This extension is a topic for future research.

• Initially, we are not synchronized to the desired user and
in a dense setup, interference may overwhelm the ADCs.
This requires a good initialization strategy.
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