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This paper introduces an analog preprocessing net-
work (APN) operating in radio frequency (RF), to cancel
signals from interferers in an antenna array system. Inter-
ference cancellation facilitates the use of low resolution
ADCs. For a given ADC resolution, we will propose
the optimal beamformer to minimize the overall mean
squared error (MSE) between the desired user and its
received estimate, while maximizing the desired signal
to quantization noise ratio (SQNR). Subsequently, pro-
pose a matching pursuit design technique to represent
the analytical APN transform as a linear combination of
implementable phase shifters.
Keywords: Analog beamforming, RF phase shifters,
ADC power consumption, Matching pursuit.

1. INTRODUCTION

In existing wireless receivers, the power consumed in an
ADC operation is equivalent to that of hundreds and thou-
sands of logic gates [1]. The ADC power can be approxi-
mated as PADC ∝ fs2

2res, where fs is the sampling fre-
quency and res is the ADC bits to quantize desired user
and interferers. In a multi-user scenario with strong in-
terferers, the ADCs sample unwanted interferers, leading
to increased power consumption. RF interference cancel-
lation allows use of low resolution ADCs, reducing the
power consumption.

One well known sub-optimal technique to reduce the
RF and ADC power is to select the antennas with the high-
est energy [2, 3]. Current hardware offers possibilities
using phase shift networks [4]. However these techniques
only select the strongest signal(s). They do not take multi-
user interference into account, do not consider minimiz-
ing the overall MSE, do not factor the ADC quantization,
and do not account for the hardware limitations.
Setup: These factors motivate us to introduce an analog
preprocessing network (APN), operating on the RF sig-
nals, to cancel the interfering users as shown in Fig.1.
This APN can be designed as passive phase shifts simi-
lar to [4] and maps Nr antennas to ND ADCs. Typically
Nr = 4 → ND = 2. In practice, the RF preprocessors
are coarsely quantized [5] and further corrupted by 5−7%
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Fig. 1: Proposed setup with APN transform Nr = 4 → ND =
2

phase errors at 2 − 3 GHz.

Contributions: In this paper, we propose a Nr × ND

preprocessing matrix with focus on interference cancella-
tion. Somewhat similar work in the context of beamspace
array processing was done in [6], where the authors have
proposed a digital preprocessor and a heuristic/iterative
design technique. Though well presented, the approach
fails to express the preprocessor in closed form. In this pa-
per, we derive an analytical APN to minimize the overall
MSE while maximizing SQNR at the receiver. To imple-
ment such architectures in practice, we propose a quan-
tized version of matching pursuit approximation [7]. In
summary, the APN can be seen as a sparse representation
of the desired user and digitally combined to reconstruct
the high resolution desired user signals.

Notation: ∗, (.)T
, (.)H

, (.)† and ‖.‖2 represent convolu-
tion, transpose, Hermitian, pseudo inverse and Frobenius
norm. Continuous time and sampled signals have time
indices represented respectively by (.) and [.].

2. SYSTEM SETUP

2.1. RF data model

Consider an RF signal x(t) received at the antenna and
containing multiple rays from Nt users transmitting over
a narrow-band (NB) channel. For simplicity, let Nt =2

with user 1 being the desired user transmitting s(1)(t) and

user 2 the interferer s(2)(t), both over a carrier frequency
fc. The received signal can be represented as a function of

the antenna gain pattern a(l)(θ) and the channel impulse
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response g(l)(t − τl) as

x(t)= Re {
Nt=2X
l=1

a(l)(θ)g(l)(t−τl)∗
h
s(l)(t)ej2πfct

i
+n(t)}

where n(t) is the noise term independent of s(l)(t).
For NB signals, where the channel bandwidth is much
less than the operating frequencies, we can approximate

g(l)(t − τl) as a constant. The time delayed signal

s(l)(t − τl)e
j2πfct can then be replaced by a phase shift

s(l)(t − τl)e
j2πfct → ej2πfc(t−τl)s(l)(t) and

x(t) = Re {
Nt=2X
l=1

a(l)(θ)ej2πfc(t−τl) s(l)(t) + n(t)}.

Extending this for an array of Nr antennas, the Nr × 1
vector x(t) = [x1(t), · · · , xNr (t)]T is

x(t)= Re {ej2πfct
h
a(1)(θ) a(2)(θ)

i
s(t) + n(t)}, (1)

a(l)(θ) = e−j2πfcτl [a
(l)
1 (θ), · · · , a

(l)
Nr

(θ)]T , s(t) =

[s(1)(t), s(2)(t)]T and n(t) is a Nr × 1 noise vector.
From (1), we see that the received signal is a phase

shift modulation of the transmitted user signals. A Nr ×1
vector w = [ejφ1 , · · · ejφNr ]T can be designed with its
elements of φi ∈ [−π, π], to combine the antenna array
signals and steer towards the desired user. E.g. w =

a(1)(θ)

‖a(1)(θ)‖2 such that ‖wHa(1)(θ)‖2 = 1.

2.2. APN setup

Consider a Nr × ND APN W = [w1, · · · wND ] op-
erating on x(t) as in Fig. 1, with W having fewer out-
puts than inputs (Nr > ND). The APN transforms x(t)
to ND signals z̃i(t) = wH

i x(t) ∀ i ∈ {1, · · · , ND} or

z̃(t) = WHx(t). The RF signal z̃(t) is down-converted

to baseband as z(t) = e−j2πfctz̃(t). For details of APN
implementation using RC circuits, refer [4, 5].

For simplicity, we restrict the representations to
equivalent baseband (BB). The APN output is digitized
into a ND × 1 vector z[k] = Q{WHx(t)}t=kT using
ND ADCs with resolution Ri, i ∈ {1, · · · ND}. Here
Q{.} denotes the sample and quantize operation. These
ND signals outputs are combined digitally a fitting vec-
tor ϑ = [ϑ1, · · · , ϑND ]T to estimate the desired user

ŝ(1)[k] = ϑH
0 z[k] and to minimize overall MSE

ϑ0 = arg min
ϑ

D = arg min
ϑ

E‖s(1)[k] − ϑHz[k]‖2.

(2)

Problem formulation: The main question is to design

z[k] = Q{WHx(t)} using the APN W. Following that,

the design of ϑ to minimize the overall MSE is speci-
fied by the Wiener-Hopf solution of (2): ϑ0 = R−1

z rzs,

where Rz = E{z[k]zH [k]} and rzs = E{z[k]s̄(1)[k]}.
The APN design to minimize D involves the following
constraints:

A1 The APN circuits consist of a limited number of
phase shift combinations (the elements of W can
be selected from a dictionary D of size 4 ∼ 16).

A2 Each ADC performs coarse quantization Q{.}
with a fixed Ri: zi[k] = Q{wH

i x(t)}.

We approach the APN design in the following order:

P1 We initially relax [A1], and assume a continuous
APN. Can we represent the overall MSE D as a
function of Ri and W: D0 = D(W, Ri)?

P2 Given Ri and D0 obtained from [P1], select wi ∈
D, to minimize (2).

The design techniques P1 and P2 are the core of this paper
and are covered respectively in Sec. 3 and 4.

3. PREPROCESSOR DESIGN

This section assumes a continuous APN [P1] and we will

• Proposition 1 - Express D in terms of W and pro-
pose the range of W minimizing D.

• Theorem 1 - Incorporate additional design crite-
rion to maximize the SQNR to compute a unique
W.

The design techniques assume knowledge of a Nr × Nr

covariance matrix Rx = E{x(t)xH(t)} and a Nr × 1

cross covariance vector rxs = E{x(t)s̄(1)(t)}. In [8],
we explain an online technique to estimate Rx and rxs

from a set of 1-bit low resolution beamformers.

3.1. APN design to minimize the MSE

Define the “whitened” correlation matrices

rxs = R−1/2
x rxs , W = R1/2

x W . (3)

Proposition 1: Define the orthogonal projection matrix

PW = W(WHW)−1WH .

Assume for the time being, that the quantization noise is
negligible. For any W, and the corresponding optimal
ϑ0, the MMSE solution W0 satisfies

W0 = arg max
W

rH
xsPWrxs (4)

Proof. Given that z[k] = WHx(t)|t=kT + e[k] and

e[k] = 0. We also know that ϑ0 = R−1
z rzs, where
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Rz = WHRxW and rzs = WHrxs.

D = E‖s(1)[k] − rH
zsR

−1
z WHx(t)‖2

= 1 − rH
xsW(WHRxW)−1WHrxs

= 1 − rH
xsW(WHRxW)−1WHrxs

= 1 − rH
xsPWrxs (5)

such that {W0} = arg min
W

D = arg max
W

rH
xsPWrxs

Clearly, this only specifies that rxs ∈ colspan{W}, and
there can be many solutions. To narrow down the set of
the available W, we incorporate the ADC resolution in
(4) and compute W to maximize the received SQNR.

3.2. APN design to maximize the desired user SQNR

For simplicity, assume that ND = 2, i.e. z[k] =
[z1[k], z2[k]]T and e[k] = [e1[k], e2[k]]T . The quan-

tization noise variance at ADC 1, σ2
e1 , depends on

σ2
z1 = E{z1[k]z̄1[k]} and resolution the R1, expressed

using the well known Lloyd-Max equation [9]

σ2
ei

=
σ2

zi
2−2Ri

12
i ∈ {1, 2}

Let R2 = R1 and e1[k] be uncorrelated with z1[k] as well
as e2[k]. The noise covariance matrix can be expressed as

Re =

»
σ2

e1

σ2
e2

–
= Dz

2−2R1

12
, Dz = diag{Rz}.

Given that ϑ operates on z[k] and e[k], the energy due to
contributions of the desired user and quantization noise is
respectively

• E‖ϑHz[k]‖2 = rzs
HR−1

z rzs and

• E‖ϑHe[k]‖2 = rzs
HR−1

z ReRz
−1rzs.

The SQNR at digital baseband then results as

E‖ϑHz[k]‖2

E‖ϑHe[k]‖2
=

rzs
HRz

−1rzs

rzsHRz
−1DzRz

−1rzs
2−2R1

12

(6)

E‖ϑHz[k]‖2 is obtained by projection over PW, and is
independent of W. Without loss of generality, maximiz-
ing SQNR in (6) is equivalent to minimizing E‖ϑHe[k]‖2

W0 = min
ϑ

ϑHDzϑ

= min
W

rzs
HRz

−1DzRz
−1rzs

2−2R1

12
(7)

= min
W

rH
xsW(WHW)−1Dz(W

HW)−1WHrxs

Note that Dz = diag{Rz} = diag{WHW}. For R1

constant, omit the exponential term in the quantization

noise. To solve (7), we first parametrize W such that
W = UVH = u1v

H
1 + u2v

H
2 , where V is a 2 × 2

unitary matrix and u1 = rxs/‖rxs‖.
Theorem 1: Consider the scenario [P1]: the APN is not
quantized, the ADCs are quantized at R bits. Assume
ND = 2. Then the optimal APN that minimizes the MSE
and maximizes the SQNR is obtained if all columns of
W are equal to the MMSE beamformer, specified by the
Wiener-Hopf solution as R−1

x rxs, up to scaling and cer-
tain linear transformations.

Proof. Define p = ‖u2‖ , α = uH
1 u2/p (Note that

|α| ≤ 1.) Then

(WHW)−1 = V
1

p2(1 − |α|2)
»

p2 −αp
−ᾱp 1

–
VH

rH
xs

‖rxs‖
W(WHW)−1 = [1, αp]

1

p2(1 − |α|2)
.

»
p2 −αp
−ᾱp 1

–
VH = vH

1

Dz = diag{WHW}
= diag{v1v

H
1 + p2v2v

H
2 + ᾱpv2v

H
1 + αpv1v

H
2 }.

Introduce a sufficiently general parametrization (θ, Φ1, Φ2)
for V as

V =

»
φ1

φ2

– »
c −s
s c

–
(8)

where φ1 = ejΦ1 , φ2 = ejΦ1 , c = cos(θ) and s =
sin(θ). Here θ, Φ1, Φ2 are in the range (−π, π]. Then

Dz =

»
c2 + p2s2 − 2βpsc 0

0 s2 + p2c2 + 2βpsc

–

where β = Re(α); note that −1 ≤ β ≤ 1. The cost
function (7) reduces to

J(W) = (c4 + 2p2s2c2 + s4) + 2βp(s3c − sc3)

Since −1 ≤ β ≤ 1, minimizing the cost function will
require choosing β at extremes,

β = −sign(s3c − sc3)

Although there are multiple minima, in any case, we will
have |α| = 1: the correlation coefficient between u1 and
u2 has absolute value 1, which implies that u1 and u2 are
equal, up to a scaling and phase rotation.

The above proof drives the following facts:

• In the absence of phase errors and RF imperfec-
tions, the two APN outputs compute the same esti-
mate, upto scaling. These estimates are sampled by
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low resolution ADCs, followed by digital aveaging
to reduce the quantization noise.

• From the quantization noise perspective, the APN
can be seen as a (spatially) oversampled quantizer
of MMSE estimates.

• From the ADC power consumption perspective,
a multi-channel APN with ADC resolution R1

leads to same quantization noise as a single chan-
nel APN with ADC resolution R0 as long as

ND = 2
R0
R1 .

• The multi-channel APN is robust to multi-access
interference, allows a more efficient way to predict
and quantize z[k], especially in the presence of RF
phase errors and discrete phase shifts.

4. DISCRETE PHASE SHIFT IMPLEMENTATION

In the previous section, we did not take the quantization
of the APN coefficients into account. In practice, the ele-
ments of W can only be selected from a discrete alphabet,
usually only from a set of possible phase shifts. The APN
design is now reduced to a problem of choosing ND vec-
tors from {φm}M

m=1 ∈ D as W = [φM1
, · · · , φMND

],

such that the MSE distortion is minimized

min
ϑ,M φm∈D

E‖s(1)[k] − ϑHQ{WHx(t)}‖2
(9)

Here D is a fixed phase shifter containing the set of all
possible Nr×1 phase shift vectors that the columns in W
can take. Typically D = {φm}M

m=1 is overdetermined
i.e. M 
 Nr , where M is the size of the dictionary
D. For a Nr = 2 setup and APN taps indexed by say

RW = 2-bits; M = 2NDRW = 16.
One technique, robust to phase errors and dis-

crete APN, with reduced computation complexity is
through matching pursuit (MP) [7] to successively choose
φm, m ∈ {1, · · · , M}. We start from the cost function
(9), replace W with φM1

and continue as proposition 1.

φM1
= min

φm∈D
E‖s(1)[k] − ϑ̄1Q{φH

mx(t)}‖2

= max
φm∈D

rH
xsφmφH

mrxs. (10)

Due to space constraints, we briefly explain the iterative
phase shift approximation of the APN using Quantized
MP using the following table. For detailed proofs, refer
the more extended version [8].

We also show in [8] using detailed simulation results,
that the APN setup with M = 16, ND = 2andR = 6
lead to equivalent MSE and BER performance when com-
pared to a reference setup of Nr ADCs operating at float

precision.

Objective: Select the discrete phase vectors of APN

Step 1: Given: Input signal x(t) and the training s(1)[k]

• Select φM1
and φm unitary, such that

‖φH
M1

rxs‖2 ≥ ‖φH
mrxs‖2 ∀m ∈ {1, · · · , M}.

• Compute Δ1x(t) = (I − βM1PM1)x(t), where

PM1 = φM1
φH

M1
and βM1 is scaling factor.

– RΔx = E{Δ1x(t)Δ1x
H(t)} and rΔs =

E{Δ1x(t)s̄(1)[k]}
– Select ‖φH

M2
rΔs‖2 ≥ ‖φH

mrΔs‖2.

• Continue till W =
h
φM1

, · · · , φMND

i
.
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