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This paper presents a signal processing model for the
delay-hopped transmit-reference ultra wideband communi-
cations system introduced by Hoctor and Tomlinson. In that
paper, a single-user receiver based on a bank of correlators
and a sliding window integrator was proposed. However,
the radio propagation channel also introduces correlations,
which have a significant effect not taken into account by the
Hoctor-Tomlinson receiver. Here we propose an accurate
signal processing model for the transmit-reference system,
including the effect of the propagation channel, as well as
an algorithm to estimate the resulting effective channel co-
efficients.

1. INTRODUCTION

Ultra Wideband (UWB) or Impulse Radio (IR) is gaining
increased popularity as a prospective transmission scheme
for short-range high data rate multiple access wireless com-
munications. Topics for additional research in signal pro-
cessing are acquisition and synchronization, and the design
of a feasible receiver, as high data rates and dense multi-
path propagation environments put significant demands on
the analog processing part of the receiver. Many systems
proposed in the scientific literature today can be considered
unrealistic and unpractical for deployment in a near future
for consumer devices (e.g., sampling and processing at GHz
rates, RAKE receivers with up to 50 fingers, absence of a
propagation channel, or assumption of a perfectly known
channel).

A system which can be considered practical for an ad-
hoc communications scheme was proposed by Hoctor and
Tomlinson [1, 2], and called delay-hopped (DH) transmit-
ted reference (TR) system. Pulses are transmitted in pairs
(as doublets), where the first is fixed and considered a ‘car-
rier’ and the second is modulated by the data. The first pulse
is used as a template to detect the second pulse. The distance
between the pulses can be varied, which serves as an addi-
tional spreading code. The receiver correlates the received
data with several shifts of it using a bank of correlation lags,
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integrates, samples and digitally combines the outputs of the
bank.

In their paper, Hoctor and Tomlinson propose a simple
receiver structure based on a matched filter. However, they
did not take the effect of the propagation channel into ac-
count. The delay spread of measured channels can be up to
about

�����
ns [3], much longer than the time interval between

two pulses in a doublet. This introduces additional correla-
tions which have a detrimental effect on the detection.

Herein, we propose an accurate signal processing data
model for the TR UWB system. The model takes the prop-
agation channel into account, and maps it into a specific set
of ‘effective channel coefficients’ (actually correlation co-
efficients). We also show how these coefficients can be es-
timated from the received data of a single symbol. With a
more accurate data model, it is easy to design improved re-
ceivers, and we give an example of a matched filter receiver.

2. TRANSMIT-REFERENCE DATA MODEL

We describe a model for the single-user DH TR system as
proposed in [1, 2], and focus on the received data of a single
transmitted symbol.

2.1. Analog received signal model

In a transmit reference system, two narrow pulses ���	��
 are
transmitted in sequence, with a varying time interval of �� ,
to form a doublet ������
 . The first pulse is fixed, the second
has a modulated polarity, thus

���	��
���������
�������������� �  
�!

where � is the chip value, �#"%$��'&(!)�*&�+ . ,.- identical dou-
blets (same polarities and same delays), spaced /0- , form a
chip of duration /213�4,'-5/�- . Care is taken that /�- is larger
than the channel impulse response. , 1 chips, defined by a
certain code, form a symbol of duration /267�8, 1 / 1 . See
Fig. 1.

Let 9;:<����
 be the radio propagation channel, and define
the convolution between a monopulse and the channel as
90����
=��������
2>�9?:@����
 . The received signal from a single chip



Fig. 1. Structure of a transmitted symbol.

Fig. 2. Analog receiver structure—integration is over a slid-
ing window of duration /21 , the output is sampled at�

times the chiprate.

can be expressed as� ����
�� �������	
��� 90�������;/�- 
������)92�	� ���;/�-��%�  
��
At reception, as shown in Fig. 2, the signal is correlated

in a bank of � correlators with a delayed version of itself
at lags ��� , or � ��� �����#
 , such that at the � -th correlator
output we have� �.����
�� � �	��
 � ����� ���#

����� � � ���
��� 92�	�����;/ - 
�� ���)90��� ���;/ - �%�  
��
����� ������� �� 92�	���"! /�-��%� � 
2��� � 90�����#! /�-3�%� �� � � 
��$�
To simplify this expression, let /&% be the duration of 90����
 ,
and assume /'%)( /�-*���. �+*-,/. � � . While the length
of the channel 9 : �	��
 is very long when compared with a
monopulse duration, it is exponentially decaying, and most
energy is concentrated in the first paths (effectively / % (�(�

ns). We can then write � �.����
 as� � �	��
�� �������	
��� 90��� ���?/�- 
�90��� ���;/�-��%� � 

� 92�	�0���;/ - �%�  
 92�	�����;/ - �%�  �%�0� 

�%� � 90�������;/ - � �  
 92�	� ���;/ - � ��� 

�%� � 90�������;/ - 
�90��� ���;/ - �%�  � ��� 
��

Subsequently, the correlated signal � �'�	��
 is integrated
over a chip period / 1 by a sliding window of width 1 �
/ 132 / % , 4 � ����
 �65�77 ��8 � �.�:9<
��;9<�
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Fig. 3. S �	��
 and T�����
 .

Define the correlation function U2�	��!?V 
 asU0����!WV.
=�X5Y77 ��8 92�C9<
�90�:9 ��V.
��;9 !
then

4 �.�	��
 can be expressed as4 � �	��
�� �������	
��� U2�	�0���;/�-(! � � 

�ZU2�	�0���;/ - �%�  ! �0� 

� ���[U2�	� ���;/ - �%�  ! �0� � �  

� ���[U2�	� ���;/ - ! �  ���0�#
\� (1)

In general, the shape of U0����!WV.
 depends on the correla-
tion properties of the channel. For channels with uncorre-
lated taps, we may assume that] %JU2�	��! � 
 � � %3S �	��
] %JU2�	��!?V 
�� � ! �^V`_� � 
�! (2)

where
] % denotes the expectation operator over the distri-

bution of the channel,
� % �ba 92�C9<
Nc �F9 is the energy in the

impulse response of the channel, and S �	��
 is aproximated by
a ‘brick’ function,

S�����
��edf g &(! /�%0h �ihj1%!� ! �k( � or �il /�% �m1 !
linear slope, elsewhere.

where the integration length 1 � / 1 � , - / - is chosen to
be the same as the chip duration (see Fig. 3). In this case, if
�  � ��� , then the dominant term in

4 � ����
 is the third term
in (1), and we obtain4

 ����
in �o�����	
��� U0�������;/�-3�%�.�! � 
 �pnjq�rT�����
?�4ts
����
Gn � !vuw_�yx�!

where T0�	��
 � �o�����	
r�� S �������?/�- 

has a staircase triangular shape with support on

� h �zh� / 1 , and is data independent (see Fig. 3). It is the effective
channel impulse response. This leads to the data model con-
sidered in [1, 2].
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Two chips (+1, −1), unmatched delay, with channel, no noise
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Fig. 4. Transmission of two chips (spaced wider than in ac-
tual systems): ���;
 with matched delay correlation
and integration; � S 
 after unmatched delay correla-
tion and integration.

In general, however, we cannot assume that a specific
channel satisfies its expected value in (2). A more accurate
expression is obtained if we model

4 � ����
 in (1) as4 � �	��
 ��T�����
 �^q �  ��� � �  
�! (3)

where the gain q �  depends on the correlation U2�	��! � � �
�  
 , and the offset

� �  depends on the correlation U0����! � � 
 .
For matched delays ( � � � �  ), Fig. 4 ���;
 illustrates that the
gain is much greater than the offset, i.e. q �  2 � �  . For
unmatched delays ( � � _� �  ), Fig. 4 �^S5
 shows that the off-
set
� �  , positive, can be comparable or even greater than the

gain q��  , negative in this example. In the proposed receiver
algorithm, the q��  and

� �  will be estimated.

2.2. Matrix formulation

Now, we consider the data model after transmission of , 1
consecutive chips � � � � � �5�5� � ��� ��� for a single symbol� . Suppose we transmit a chip using one of the delays
� � !)�5�)��! �
	 and receive with a bank of receivers with de-
lays � � !5�)�5��! ��	 . The next chip may be transmitted with a
different delay.

Let q  s be the gain coefficient of the effective channelT�����
 for a transmitter delay �
s

and a receiver delay �  , and�  s the corresponding gain offset. We also define matrices� �b� q0 s � ,  ��� �  s � of size ��� � . If a channel does not
have temporal correlations, then

� �jq�� (only a response at
matching delays) and  � � , but in general the matrices can
be arbitrary, although

�
is expected to be diagonally domi-

nant.
To model the transmitter, define a ‘code delay’ matrix� �b���  s ���F��� , 1 , where�� s � � &(! if transmit at delay �  for chip u� ! elsewhere.

(4)

The matrix
�

has for each column only one nonzero entry,
corresponding to the transmitted delay index.

In terms of these coefficients, the model of the received
data at the output of the integrator with delay � � becomes4 �.�	��
 � 		

 �&� � �	s �&� T0�	��� u�/ 1 
5�Cq��  �  s � s � � �  �  s 
\� (5)

This data is sampled at instances � � � � �� , where the inte-
ger

�
is the oversampling factor. Define a channel matrix� � � T  s � of size ,���, 1 , where T  s � T0�:x � �� � u�/ 1 
 ,

for x � � !)�5�)��! , � & samples and u�� &(!)�5�5��! ,.1 chips.
The structure of

�
is illustrated in Fig. 5. The sampled data

4 � 
 � 4 � � � � �� 
 has the model4 � 
 � 		
 �&� ���	s �&� T 
 s �Cq � ��  s � s � � � ��  s 
��

Collecting the samples

4 � 
 into a vector, we have

� � � �!"
4 � 

...
4 �$# � ���

%�&'
�
		
 �&� � �	s �&�)( s �^q&�  �  s � s � � �  �  s 


�
� �	s �&�*( s � + ���, s � s �.- ���, s �

�
���	s �&� �/+ �� , s 
�0 � � �21 s 
�� s � �/- �� , s 
�0 � � �21 s 


�
���	s �&� �/+ �� 0 � 
 � , s 031 s 
�� s � �/- �� 0 � 
5� , s 041 s 


���/+ �� 0 � 
 � �65 � ��� 
�� � �/- �� 0 � 
5� �65 � ��� 
87 !
where +9�� and -��� are the � -th rows of

�
and  respec-

tively, ( s and , s are the u -th columns of
�

and
�

respec-
tively, and 1 s is the u -th column of the identity matrix. Here,
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Fig. 5. Structure of the matrix

�
.

we denote by 0 the Kronecker product, and by
5

the Khatri-
Rao product (column-wise Kronecker product).

If we stack the received � , samples in a vector � , we
obtain

� � �!" � �...� 	
%�&' � �!" + � � 0 �...+ � 	 0 �

%�&' � � 5 � ��� 
 � � �!" -�� � 0 �...-��	 0 �
%�&' � � 5 � ��� 
 7 �

This can be written compactly as� � � � 0 � 
 � � 5 � ��� 
�� � �� 0 � 
 � �65 � ��� 
87
� � � � 5 � 
�� � �� � 5 � 
87 �

Taking the symbol value � into account, we have the final
data model for a single symbol� � � � �65 � 
�� � � �/ � 5 � 
 7 � (6)

In this model,
�

,
�

and � are known, while
�

and  are un-
known � � � matrices, and � is the unknown data symbol.
The model is easily extended for a burst of , 6 symbols, we
omit the details.

3. RECEIVER ALGORITHMS

In section 2, we have obtained a matrix representation for the
received signal � , in a multiple symbol transmission. In this
model,

�
and  are unknown � �m� matrices that rep-

resent the channel effects, after correlation and integration
at reception. In this section, we propose a method of esti-
mating

�
and  from a single received symbol, and a cor-

responding matched filter receiver for estimating all trans-
mitted symbols.

3.1. Hoctor-Tomlinson receiver

The receiver proposed by Hoctor and Tomlinson in [2] can
be expressed by (6) if we assume

� � q�� and 8� � . In
that case, we can write the simplified model as� � q=� � 5 � 
 � � �
Based on this model, a matched filter receiver is

�� �b� q � �65 � 
��/� � � �
Subsequently, the symbol is detected as sign � �� 
 . Since qYl�

does not change the result, it does not have to be estimated.

Alternatively, this receiver can be written as (using proper-
ties of Kronecker products)

�� � tr � diag � �5
 � �	� � � !
where tr is the trace operator, matrix � � , �j� is the
restacking of the received samples � .

This receiver can be interpreted as follows. Each column
of � is the output of the integrator for a specific delay. Pre-
multiplication of the data � by

� � constitutes a matched fil-
ter with the pulse shape T�����
 . From the output of this, the u -
th column corresponds to the u -th transmitted chip. For each
transmitted chip, the corresponding delay is selected by

�
,

and the result is multiplied by the corresponding chip value.
The trace operator sums the results. Except for the pulse-
matched filtering, this is precisely the same as the receiver
proposed by Hoctor and Tomlinson [2].

3.2. Estimating
�

and  ; improved TR receiver

An improved TR receiver extends the Hoctor-Tomlinson re-
ceiver to deal with correlation mismatches, i.e.,  has non-
zero entries. We first show how

�
,  can be estimated based

on a limited data set, e.g., the received samples of the first
data symbol.

Consider the model for the first symbol � � , (with some
abuse of notation)� � � � � � 5 � 
�� � � � �/ � 5 � 
 7 �
Restack the received signal � � given by Eq. (6) into a matrix
� � �(, � � , such that vec � � � 
 � � � , then

� � � � diag �/��
 � � � � � � � � � � �� �
� � � diag ����
 � � � ��� � � � �  ���-�

Define 
 � � � diag �/� 
 � � � ��� . It is a known matrix
of size , � � � . If 
 is tall and both its factors (

�
and� diag ����
 � � � ��� ) are tall, then generically it is left invert-

ible: this requires ,�� , 1 and , 1 � � � . The first condi-
tion is always satisfied, the latter requires that the number of
chips per symbol is larger than twice the number of possible
delays.

Let 
� be a left inverse (pseudo-inverse) of 
 , then we
can estimate � � � �  � as���� � � �<��� ��
 �� � 
 � �
Since the diagonal elements of

�
are dominant and posi-

tive (matched delays), we can easily estimate
�

and � � from
�� � � , e.g.,

�� � � sign $ tr ���� � � 
�+ . Once
�

,  are known, it
is straightforward to estimate remaining symbols. From (6),
we can write down a matched filter receiver

�� � sign $;��� � � 5 � 
���
�� � � ���/ � 5 � 
 7;
�+3�
Many other receivers are possible, this just serves as an illus-
tration. Note that

� !  can also be estimated from several
symbols, with less constraints on , 1 .
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Fig. 6. The correspondence of the actually received data to
‘o’ the simple model and ‘+’ the proposed data model
in (6).

4. SIMULATION RESULTS

To demonstrate the accuracy of the data model, we have
simulated a symbol transmission over an exponentiallyi-
decaying channel, with � ��� delay positions, , 1 � & �
chips, , - ��� doublets per chip, and

� ��� times over-
sampling at the output of the integrators. The transmitted
pulse is a first derivative of a Gaussian pulse with duration� � � ns, the two pulses in a doublet are separated by 1, 2, 3
or 4 ns, and the doublets are spaced by /0- ��� � ns. An
important parameter to consider is the channel length. Sim-
ulations were performed with a channel length /&%'��� � ns,
where the channel coefficients were selected randomly, but
piecewise constant over periods of 1 ns, and with amplitude
exponentially tapering down in time. The effective channel
thus has significant cross-correlations for neighboring delay
lags, but most of the transmitted signals energy is concen-
trated in the first arrival paths.

The result of the simulation is shown in Fig. 6. The
solid lines in each panel show the received data

4
 ����
 for

the corresponding correlation lag (1–4 ns). The transmit-
ted chip values and delay lags are shown at the top. It is
clear that, due to the cross-correlations in the channel, the
received chips do not only have a response at the matching
delays, but also at other delays. The simple data model used
by Hoctor-Tomlinson (shown as ‘o’) does not take the effect
of the channel into account, hence assumes a response only
at the matching delay. For the simulated channel, the de-
viations can be significant. The new model (shown as ‘+’)
is almost indistinguishable from the actually received data,
hence provides a very good match. The values of

�
and 

were estimated from the received data as described in the
previous section.

5. CONCLUSIONS AND RESEARCH DIRECTIONS

We have proposed an accurate signal processing model for
the transmit-reference UWB system proposed by Hoctor-
Tomlinson, taking into account the channel and receiver
characteristics. The model considers the channel correla-
tion coefficients, which can be estimated from a single sym-
bol and used in a simple matched filter receiver. Although
we were not able yet to test the effect of the improved data
model on the estimation of the symbols, it is reasonable to
expect that a more accurate model can provide much better
detection results. This will translate in a smaller number of
bit errors in the presence of a large number of users and/or
large noise.
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