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In radio telescope arrays, the complex receiver gains and sensor noise powers are initially unknown and have to be cali-
brated. Thiscan be done by observing astrong astronomical point source. Here we extend the calibration algorithmsto the
case of dual polarized arrays. The algorithms are based on factor analysis and eigenval ue decompositions. We show that a
single observation does not provide a unique solution. With two observations of two point sources with known brightness
matrices, the gains can be estimated up to two unknown phases, and with three observations the ambiguity reducesto a
single unknown phase.

1. INTRODUCTION

In interferometric radio astronomy, the telescope array complex receiver gains and sensor noise powers are initially un-
known and have to be calibrated. Gain calibration techniques for radio telescope systems have existed already for along
time[1][2]. However, with the advent of new generations of radio telescopes (the Low Frequency Array or LOFAR, and
the Square Kilometer Array radio telescope or SKA), phased array beamforming issues receive renewed interest. Phased
array beamforming and RFI suppression using spatial filtering techniques can benefit from accurate gain calibration of the
telescope array.

For unpolarized telescope arrays, the standard calibration procedure is to point the tel escopes to a strong astronomical
source, and to estimate a covariance matrix R, containing all correlation products between the telescope output signals.
Asymptotically, R convergesto its expected value R which has the model R = go2g + D. Here, 62 is the known source
flux, g is avector containing the complex gainsto be estimated, and D is a diagonal matrix containing the unknown noise
powers per antenna element (it is assumed that the noise power is uncorrelated from one antenna to another). Thisis es-
sentially the model considered by [1][2]. Improved estimation algorithms using iterative and closed form least squares
techniques have recently been derived [3]: by incorporating proper weighting, these methods are proved to be asymptoti-
cally statistically efficient [4].

For dual polarized telescope arrays, much lessis known. In 1995, Hamaker et al. [5][6] developed a matrix formalismin
which the polarization properties of the astronomical signals and their propagation through the ionosphere and the astro-
nomical receiving instrument are efficiently incorporated. Aniterative procedure similar to SelfCal is used to estimate the
polarization gain coefficients, but it is not known to what solution it will converge.

In this paper we extend the scalar gain calibration methods of [3] [4] for the case of polarized arrays. Again, theideaisto
point at a strong known polarized sky source, and to estimate the dual polarization complex gain factors aswell as and the
system noi se powers from an observed covariance matrix, assuming that the astronomical source flux isknown from tables
for al polarization components. We will show that the solution is not unique: there is aremaining unknown 2 x 2 unitary
factor. To reduce the non-uniqueness, a second observation of aknown sky source with adifferent polarization is needed.
This reduces the non-uniqueness to two unknown phases that scale the columns of the gain matrix. It may be possible to
further reduce thisto a single unknown phase by observing athird source, and thisis the best that can be expected.

Notation M isthe complex conjugate (Hermitian) transpose, ! the matrix transpose, overbar ~ the complex conjugate, and
T the matrix pseudo inverse (Moore-Penrose inverse). £{} is the expectation operator. | is the identity matrix.
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2. DATA MODEL
2.1. Coherency

In aperture synthesis radio astronomy, the output of the interferometers is the correlation of the field strengths at the dif-
ferent telescopes, also known as coherencies[7]. The electric field at the location of an antenna element can be described
by two linear polarization components, stacked in a2x 1 vector: g = [ey, ay]t. The correlation between two different
telescopesi and j isa2x 2 interferometer coherency matrix Ejj = £{ & eJ-H} . If there are p telescopes, each with two polar-

izations, then the 2p observed electric fields can similarly be stacked in onevector: e= (€}, -- -,etp)t. The2px2p Hermitian
coherency matrix E is defined by E = £{ee"'} which can be written in terms of interferometer coherency matrices E;; as
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E is dependent on frequency and time, but for our analysis we assume that we work in a narrow subband and estimate the
coherencies at sufficiently short time scales.

2.2. Observed covariance matrix

Instead of the field strengths, each tel escope measures a voltage vector v;. Their relationis given by v; = Jig, where J; is
a2x2 matrix called the Jones matrix. It aso incorporates the various ionospheric and atmospheric distortions, gain phase
rotations and antenna feed polarization leakage. Hence, the J; are unknown and have to be estimated.

The observed voltages of the dual polarization output signals of the telescopesi and j are cross-correlated into covariance
matrices Rij, for which Rj := &{ viv*j*} =J EijJ'J-". Stacking the tel escope output voltages v; into a2p-dimensional vector
v =[vi,--, V], and defining
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it follows that the 2p x 2p covariance matrix R isgiven by R = JEJ" .

In practice the observations are corrupted by noise. The system noise signals of each of the two polarization channels,
n; = [nix, Niy]' are stacked into avector: n = (n}, -,ntp)t. The noise signals are uncorrel ated between the tel escopes, and
up to a certain level also uncorrelated between the two polarizations of a telescope. In our analysis we assume that this
is the case. Then the noise matrix D = £{nn"'} is diagonal: D = diag(0%,,0%, -+, 0%, 0%,). The system noise can be
considered additive, so that the covariance matrix of the received data can be written asR = JEJ™ +D.

2.3. Point source model
Under certain conditions, the electric field can be modeled as the contributions of a finite number of point sources:
R=YJ)E B +D

where £ isthe source direction and E; is the coherency due to asingle source from direction £. Suppose that the source has
sky brightness B, (a2x 2 matrix determined by the source flux polarization components or Stokes parameters). Therelation
of B, to E, can be written as Ejj , = wij » B, where wij , isthe phase shift due to the geometric delay in an interferometer
pair i-j [7]. Letr; bethelocation in space of the i-th telescope, and write the baseline rij = ri—rj, then

I e Ot _ et gt

Wij¢=¢€ = Wi ¢Wj¢

where A isthe wavelength at the selected frequency, and w; , = e isthe phase shift at asingle telescope. Notethat it
isthe same for the x and the y polarization of this telescope. Thus define

Wi ¢ 0
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then Eij , = Wi, By W', and E; = W, B, W}'. The overall observed point source model thus becomes

Wi, =

El

R = ngwngW';J*; + D. (1)



3. GAIN CALIBRATION OBSERVATIONS

During a calibration observation, the telescopes are pointed at a single dominant point source in the sky, with known sky
brightness. The sum in equation (1) isreduced to asingle term. Because the geometry of the telescope array isknown, the
delay matrix W/, is known aswell. We thus obtain the observation model

R=GBGH+D

where we defined the 2px 2 gain matrix G by G = JW. Our objectiveisto estimate G and D, assuming that an estimate
of R and B areavailable. Since W, isknown, J is easily determined from G. Alternatively, R can be corrected in advance
for W, after which we can assume without loss of generality that W, = | and that G = J is direction-independent.

R isestimated by an observation covariance matrix R, obtained by cross-correlation of N samplesx, of thetelescope output
signal vector, R= ﬁ zﬁzlxnxﬁ. Morein general, we will show that we need to consider at least two observations R1, R»
of two sources By, B, with different polarizations, and model R; = GB1G" + D, Ry = GB,G" + D. A solution for G
and D can be found by solving the following Least Squares minimization problem,

{G,D} = argmin ||Ry-(GB1G" + D) |2 + ||R2-(GB2G" + D) |2
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4. ALGORITHMSFOR FACTOR ANALYSIS

As afirst step, we consider a single covariance matrix R, and algorithms to find the factors A and D from amodel R =
AAH 4+ D, where D is diagonal and the number of columns of A is equal to two. Thisis arank-2 factor model as studied
in statistics [9]. We present two computationally efficient techniques.

4.1. Alternating L east Squares

A straightforward technique to try to optimize a cost function over many parameters is to alternatingly minimize over a
subset, keeping the remaining parameters fixed. In our case, assume at the k-th iteration that we have an estimate D[K].
The next step isto minimize the LS cost function with respect to the gain vector only:

Al = argrin | R-AAY-BIq @

Theminimum isfound from the eigenval ue decomposition R—D[K] = UAUM, wherethematrix U = [ug,, -++, Upp] contains
the eigenvectors u;, and A is a diagonal matrix containing the eigenvalues A;, sorting in descending order. The factor
minimizing (2) isgivenby A[K] = [ul)\i/z uz)\;/z] . The second step isminimizing with respect to the system noise matrix
D, keeping the gain vector fixed:
Dlk+1] = argmin ||R-A[KA[K" -D|2 ©)
D

where D is constrained to be diagonal with nonnegative entries. The minimum is obtained by subtracting A[KJA[K]" from
R and discarding all off-diagonal elements: D[k+ 1] = diag(R—A[KJA[K]"™) . The condition that the diagonal elements of
If)[k+ 1] should be positive can beimplemented by subsequently setting the negative entriesat zero. Thetwo minimizations
steps (2) and (3) are repeated until the model error converges. Since each of the minimizing steps in the iteration loop
reduces the model error, we obtain monotonic convergenceto alocal minimum. Although the iteration is very simple to
implement, simulations indicate that convergence can be very slow, especially in the absence of areasonable initial point.

4.2. Closed form approximation

We now set out to find a closed form estimate of A, which recovers A exactly when applied to R (hence asymptotically for
R). The crux of this method is the observation that the off-diagonal entries of AAH are equal to those of R, and known,
so that we only need to reconstruct the diagonal entries of AAH. We further note that AAH isrank 2, so any submatrix
of R that does not contain elements from the main diagonal is also rank 2. This property can be used to estimate the ratio
between any triplet of columns of R away from the diagonal, and subsequently to estimate how the main diagonal of R has
to be changed so that the resulting R’ isrank 2, or R” = AAH. The gain factor A can then be extracted by an eigenvalue
decomposition.

Toillustratetheidea, let (i, j, k) beatriplet of columnindices, and let M be asubmatrix of R consisting of columns (i, j, k),
and all rowswith indices unequal toi, j,k. Then M has 3 columns, and rank 2, so that there exists avector v = [vy, V2, va]*
such that Mv = 0. The vector can be found from an SVD of M. It follows that [r};, rij,rik]v = O, so that f; = —(rijv2+
rikvs)/v1. Thisestimate can be improved by considering all possible triplets containing i, and combining the ratios. After
filling in all diagonal entries of R’ in this way, arank-2 factorization of R’ = AAH provides an estimate for the factor A.
An estimate for D is subsequently found from R - AAH.



5. ALGORITHMSFOR POLARIZATION GAIN ESTIMATION
5.1. Onereference source

Consider a single source, R = GBGH + D, where R has been estimated and B is known from sky tables. Using factor
analysis, we can find D and afactor A such that R = AAH + D. However, A isnot unique: for any 2x 2 unitary matrix
Q, we have AA" = (AQ)(Q"AM). Hence, we can estimate A only up to a unitary factor. It follows that G = AQB™Y/2,
where Q isunknown. It is not possible to estimate G in more detail using only a single reference source.

5.2. Two refer ence sour ces

With two reference sources, we have
R1 = GB1G"+D = (A1Q1)(QYAY+ Dy, R = GB,G"+D = (A2Q,)(QYAY) +Ds.

R1 and R, are observed, B; and B, are the known polarization matrices from the reference sources, and A; and A, arethe
estimated factors from factor analysis. Again, they are unique only up to unknown 2 x 2 unitary factors Qy, Qo.

A generalized eigenvalue decomposition of the pair (B1, B,) providesthe factorizationsB; = MA;MY | B, = MA,MM |
where M isasguare invertible matrix and A1, A, are positive diagonal matrices. It is assumed that the generalized eigen-
values are distinct. Inserting thisin the model equations produces two estimates for G:

G = AIQ1A;PM™! = AQuA M

The latter equality relates Q; to Q» asAIAg = Ql(All/zAé/Z)Qg'. This has the form of an SVD, and Q; and Q> can be
computed astheleft and right singular vectors of AIAz. However, these are unique only up to an unknown diagonal phase

matrix ®. Hence we obtain U
G = (A1Q1)®(A;Y’M™Y) = M &My,

where only @ is unknown. Thus, we can estimate G only up to two unknown phases. With some effort, this can be con-
verted to a more convenient normalization: if we define anormalized G to have positive real entries on itsfirst row, then
the normalized G isunique. Thisisthe best that can be expected using two reference sources.

If athird observation of a point sourceis available, then the ambiguity can be further reduced to a single common phase.
Indeed,
Rz = (M1®Mj)Bz(MY®H M) +D - MY(Rs-D)M7! = &(M,BsMH) @M

Only & = diag[@y, @] is unknown, and the (1, 2) element of this expression determines the ratio ¢;@,.
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