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In radio telescope arrays, the complex receiver gains and sensor noise powers are initially unknown and have to be cali-
brated. This can be done by observing a strong astronomical point source. Here we extend the calibration algorithms to the
case of dual polarized arrays. The algorithms are based on factor analysis and eigenvalue decompositions. We show that a
single observation does not provide a unique solution. With two observations of two point sources with known brightness
matrices, the gains can be estimated up to two unknown phases, and with three observations the ambiguity reduces to a
single unknown phase.

1. INTRODUCTION

In interferometric radio astronomy, the telescope array complex receiver gains and sensor noise powers are initially un-
known and have to be calibrated. Gain calibration techniques for radio telescope systems have existed already for a long
time [1][2]. However, with the advent of new generations of radio telescopes (the Low Frequency Array or LOFAR, and
the Square Kilometer Array radio telescope or SKA), phased array beamforming issues receive renewed interest. Phased
array beamforming and RFI suppression using spatial filtering techniques can benefit from accurate gain calibration of the
telescope array.

For unpolarized telescope arrays, the standard calibration procedure is to point the telescopes to a strong astronomical
source, and to estimate a covariance matrix R̂, containing all correlation products between the telescope output signals.
Asymptotically, R̂ converges to its expected value R which has the model R � gσ2

s gH � D. Here, σ2
s is the known source

flux, g is a vector containing the complex gains to be estimated, and D is a diagonal matrix containing the unknown noise
powers per antenna element (it is assumed that the noise power is uncorrelated from one antenna to another). This is es-
sentially the model considered by [1][2]. Improved estimation algorithms using iterative and closed form least squares
techniques have recently been derived [3]: by incorporating proper weighting, these methods are proved to be asymptoti-
cally statistically efficient [4].

For dual polarized telescope arrays, much less is known. In 1995, Hamaker et al. [5][6] developed a matrix formalism in
which the polarization properties of the astronomical signals and their propagation through the ionosphere and the astro-
nomical receiving instrument are efficiently incorporated. An iterative procedure similar to SelfCal is used to estimate the
polarization gain coefficients, but it is not known to what solution it will converge.

In this paper we extend the scalar gain calibration methods of [3] [4] for the case of polarized arrays. Again, the idea is to
point at a strong known polarized sky source, and to estimate the dual polarization complex gain factors as well as and the
system noise powers from an observed covariance matrix, assuming that the astronomical source flux is known from tables
for all polarization components. We will show that the solution is not unique: there is a remaining unknown 2 × 2 unitary
factor. To reduce the non-uniqueness, a second observation of a known sky source with a different polarization is needed.
This reduces the non-uniqueness to two unknown phases that scale the columns of the gain matrix. It may be possible to
further reduce this to a single unknown phase by observing a third source, and this is the best that can be expected.

Notation H is the complex conjugate (Hermitian) transpose, t the matrix transpose, overbar − the complex conjugate, and
† the matrix pseudo inverse (Moore-Penrose inverse). � {·} is the expectation operator. I is the identity matrix.
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2. DATA MODEL
2.1. Coherency

In aperture synthesis radio astronomy, the output of the interferometers is the correlation of the field strengths at the dif-
ferent telescopes, also known as coherencies [7]. The electric field at the location of an antenna element can be described
by two linear polarization components, stacked in a 2 × 1 vector: ei ��� eix � eiy � t . The correlation between two different
telescopes i and j is a 2 × 2 interferometer coherency matrix Ei j �	� {eieH

j }. If there are p telescopes, each with two polar-

izations, then the 2p observed electric fields can similarly be stacked in one vector: e ��
 et
1 � · · · � et

p � t . The 2p×2p Hermitian
coherency matrix E is defined by E �
� {eeH} which can be written in terms of interferometer coherency matrices Ei j as

Ei � j ��� {eieH
j } ��� � {eixe jx} � {eixe jy}� {eiye jx} � {eiye jy} � � E ��� {eeH} �������

E11 E12 · · · E1p

E21 E22 · · · E2p
...

...
. . .

...
E p1 E p2 · · · E pp

��������
E is dependent on frequency and time, but for our analysis we assume that we work in a narrow subband and estimate the
coherencies at sufficiently short time scales.

2.2. Observed covariance matrix

Instead of the field strengths, each telescope measures a voltage vector vi. Their relation is given by vi � Jiei, where Ji is
a 2 × 2 matrix called the Jones matrix. It also incorporates the various ionospheric and atmospheric distortions, gain phase
rotations and antenna feed polarization leakage. Hence, the Ji are unknown and have to be estimated.

The observed voltages of the dual polarization output signals of the telescopes i and j are cross-correlated into covariance
matrices Ri j , for which Ri j : �
� {vivH

j } � JiEi jJH
j . Stacking the telescope output voltages vi into a 2p-dimensional vector

v ��� vt
1 � · · · � vt

p � t , and defining

J � ��� J1 0
. . .

0 Jp

� �� � R �
� {eeH} � �����
R11 R12 · · · R1p

R21 R22 · · · R2p
...

...
. . .

...
Rp1 Rp2 · · · Rpp

� ���� �
it follows that the 2p × 2p covariance matrix R is given by R � JEJH .

In practice the observations are corrupted by noise. The system noise signals of each of the two polarization channels,
ni ��� nix � niy � t are stacked into a vector: n � 
 nt

1 � · · · � nt
p � t . The noise signals are uncorrelated between the telescopes, and

up to a certain level also uncorrelated between the two polarizations of a telescope. In our analysis we assume that this
is the case. Then the noise matrix D ��� {nnH} is diagonal: D � diag � σ2

1x � σ2
1y � · · · � σ2

px � σ2
py  . The system noise can be

considered additive, so that the covariance matrix of the received data can be written as R � JEJH � D.

2.3. Point source model

Under certain conditions, the electric field can be modeled as the contributions of a finite number of point sources:

R � ∑J ! E ! JH! � D

where " is the source direction and E ! is the coherency due to a single source from direction " . Suppose that the source has
sky brightness B ! (a 2×2 matrix determined by the source flux polarization components or Stokes parameters). The relation
of B ! to E ! can be written as Ei j � ! � wi j � ! B ! where wi j � ! is the phase shift due to the geometric delay in an interferometer
pair i- j [7]. Let ri be the location in space of the i-th telescope, and write the baseline ri j � ri − r j, then

wi j � ! � e−ırt
i j
! λ−1 � e−ı

�
rt

i
! −rt

j
! � λ−1 � e−ırt

i
! λ−1

eırt
j
! λ−1 � wi � ! w j � !

where λ is the wavelength at the selected frequency, and wi � ! � e−ırt
i
! λ−1

is the phase shift at a single telescope. Note that it
is the same for the x and the y polarization of this telescope. Thus define

W i � ! � � wi � ! 0
0 wi � ! � � W ! ���Wt

1 � ! � · · · � W t
p � ! � t �

then Ei j � ! � W i � ! B ! WH
j � ! , and E ! � W ! B ! WH! . The overall observed point source model thus becomes

R � ∑! J ! W ! B ! WH! JH! � D � (1)



3. GAIN CALIBRATION OBSERVATIONS

During a calibration observation, the telescopes are pointed at a single dominant point source in the sky, with known sky
brightness. The sum in equation (1) is reduced to a single term. Because the geometry of the telescope array is known, the
delay matrix W ! is known as well. We thus obtain the observation model

R � GBGH � D

where we defined the 2p × 2 gain matrix G by G � JW. Our objective is to estimate G and D, assuming that an estimate
of R and B are available. Since W ! is known, J is easily determined from G. Alternatively, R can be corrected in advance
for W ! , after which we can assume without loss of generality that W ! � I and that G � J is direction-independent.

R is estimated by an observation covariance matrix #R, obtained by cross-correlation of N samples xn of the telescope output
signal vector, #R � 1

N ∑N
n $ 1 xnxH

n . More in general, we will show that we need to consider at least two observations R1, R2

of two sources B1, B2 with different polarizations, and model R1 � GB1GH � D � R2 � GB2GH � D � A solution for G
and D can be found by solving the following Least Squares minimization problem,

{G � D} � argmin
G �D % #R1 − � GB1GH � D  % 2F � % #R2 − � GB2GH � D  % 2F

4. ALGORITHMS FOR FACTOR ANALYSIS

As a first step, we consider a single covariance matrix R, and algorithms to find the factors A and D from a model R �
AAH � D, where D is diagonal and the number of columns of A is equal to two. This is a rank-2 factor model as studied
in statistics [9]. We present two computationally efficient techniques.

4.1. Alternating Least Squares

A straightforward technique to try to optimize a cost function over many parameters is to alternatingly minimize over a
subset, keeping the remaining parameters fixed. In our case, assume at the k-th iteration that we have an estimate D̂ � k � .
The next step is to minimize the LS cost function with respect to the gain vector only:

Â � k � � argmin
A % R̂ − AAH − D̂ � k � % 2F (2)

The minimum is found from the eigenvalue decomposition R̂−D̂ � k � � U & UH , where the matrix U �'� u1 � · · · � u2p � contains
the eigenvectors ui, and & is a diagonal matrix containing the eigenvalues λi, sorting in descending order. The factor

minimizing (2) is given by Â � k � �(� u1λ1 ) 2
1 u2λ1 ) 2

2 � � The second step is minimizing with respect to the system noise matrix
D, keeping the gain vector fixed:

D̂ � k � 1 � � argmin
D % R̂ − Â � k � Â � k � H − D % 2F (3)

where D is constrained to be diagonal with nonnegative entries. The minimum is obtained by subtracting Â � k � Â � k � H from
R̂ and discarding all off-diagonal elements: D̂ � k � 1 � � diag � R̂ − Â � k � Â � k � H  � The condition that the diagonal elements of
D̂ � k � 1 � should be positive can be implemented by subsequently setting the negative entries at zero. The two minimizations
steps (2) and (3) are repeated until the model error converges. Since each of the minimizing steps in the iteration loop
reduces the model error, we obtain monotonic convergence to a local minimum. Although the iteration is very simple to
implement, simulations indicate that convergence can be very slow, especially in the absence of a reasonable initial point.

4.2. Closed form approximation

We now set out to find a closed form estimate of A, which recovers A exactly when applied to R (hence asymptotically for
R̂). The crux of this method is the observation that the off-diagonal entries of AAH are equal to those of R, and known,
so that we only need to reconstruct the diagonal entries of AAH . We further note that AAH is rank 2, so any submatrix
of R that does not contain elements from the main diagonal is also rank 2. This property can be used to estimate the ratio
between any triplet of columns of R away from the diagonal, and subsequently to estimate how the main diagonal of R has
to be changed so that the resulting R * is rank 2, or R *+� AAH . The gain factor A can then be extracted by an eigenvalue
decomposition.

To illustrate the idea, let � i � j � k  be a triplet of column indices, and let M be a submatrix of R consisting of columns � i � j � k  ,
and all rows with indices unequal to i � j � k. Then M has 3 columns, and rank 2, so that there exists a vector v �,� v1 � v2 � v3 � t
such that Mv � 0. The vector can be found from an SVD of M. It follows that � r *ii � ri j � rik � v � 0, so that r̂ *ii � − � ri jv2

�
rikv3  .- v1. This estimate can be improved by considering all possible triplets containing i, and combining the ratios. After
filling in all diagonal entries of R * in this way, a rank-2 factorization of R */� AAH provides an estimate for the factor A.
An estimate for D is subsequently found from R − AAH.



5. ALGORITHMS FOR POLARIZATION GAIN ESTIMATION
5.1. One reference source

Consider a single source, R � GBGH � D, where R has been estimated and B is known from sky tables. Using factor
analysis, we can find D and a factor A such that R � AAH � D. However, A is not unique: for any 2 × 2 unitary matrix
Q, we have AAH ��� AQ  � QHAH  . Hence, we can estimate A only up to a unitary factor. It follows that G � AQB−1 ) 2,
where Q is unknown. It is not possible to estimate G in more detail using only a single reference source.

5.2. Two reference sources

With two reference sources, we have

R1 � GB1GH � D ��� A1Q1  � QH
1 AH

1  � D1 � R2 � GB2GH � D ��� A2Q2  � QH
2 AH

2  � D2 �
R1 and R2 are observed, B1 and B2 are the known polarization matrices from the reference sources, and A1 and A2 are the
estimated factors from factor analysis. Again, they are unique only up to unknown 2 × 2 unitary factors Q1, Q2.

A generalized eigenvalue decomposition of the pair � B1 � B2  provides the factorizations B1 � M & 1MH � B2 � M & 2MH �
where M is a square invertible matrix and & 1 � & 2 are positive diagonal matrices. It is assumed that the generalized eigen-
values are distinct. Inserting this in the model equations produces two estimates for G:

G � A1Q1 & −1 ) 2
1 M−1 � A2Q2 & −1 ) 2

2 M−1

The latter equality relates Q1 to Q2 as A†
1A2 � Q1 �0& −1 ) 2

1 & 1 ) 2
2  QH

2 . This has the form of an SVD, and Q1 and Q2 can be
computed as the left and right singular vectors of A†

1A2. However, these are unique only up to an unknown diagonal phase
matrix 1 . Hence we obtain

G �2� A1Q1  13�0& −1 ) 2
1 M−1  � : M1 1 M2 �

where only 1 is unknown. Thus, we can estimate G only up to two unknown phases. With some effort, this can be con-
verted to a more convenient normalization: if we define a normalized G to have positive real entries on its first row, then
the normalized G is unique. This is the best that can be expected using two reference sources.

If a third observation of a point source is available, then the ambiguity can be further reduced to a single common phase.
Indeed,

R3 ��� M1 1 M2  B3 � MH
2 1 HMH

1  � D ⇔ M−1
1 � R3 − D  M−1

1 �(14� M2B3MH
2  1 H

Only 1�� diag � φ1 � φ2 � is unknown, and the � 1 � 2  element of this expression determines the ratio φ1φ2.

References
[1] H. van Someren-Greve, “Logarithmic least square gain decomposition algorithm for the WSRT,” 1980. IWOS soft-

ware documentation, ASTRON internal document.
[2] T.J. Cornwell and P.N.Wilkinson, “A new method for making maps with unstable radio interferometers,” Mon. Not.

R. Astron. Soc., vol. 196, pp. 1067–1086, 1981.
[3] A.J.Boonstra and A.J. van der Veen, “Gain decomposition methods for radio telescope arrays,” in IEEE Workshop on

Statistical Signal Processing (SSP), IEEE, August 2001.
[4] A.J. Boonstra and A.J. van der Veen, “Gain calibration methods for radio telescope arrays,” submitted, IEEE Tr. Signal

Processing, Apr. 2002.
[5] J. P. Hamaker, J. D. Bregman, and R. J. Sault, “Understanding radio polarimetry. I. Mathematical foundations.,” Astron.

Astrophys. Suppl. Ser., vol. 117, pp. 137–147, May 1996.
[6] J. P. Hamaker, “Understanding radio polarimetry. IV. The full-coherency analogue of scalar self-calibration: Self-

alignment, dynamic range and polarimetric fidelity,” Astron. Astrophys. Suppl. Ser., vol. 143, pp. 515–534, May 2000.
[7] A.R. Thompson, J.R. Moran, and G.W. Swenson, Interferometry and Synthesis in Radio Astronomy. New York: John

Wiley & Sons, first ed., 1986.
[8] A. Leshem, A.J. van der Veen, and A.J. Boonstra, “Multichannel interference mitigation techniques in radio astron-

omy,” Astrophysical Journal Supplements, vol. 131, pp. 355–374, November 2000.
[9] D.N. Lawley and A.E. Maxwell, Factor Analysis as a Statistical Method. Butterworth & Co, London, 1971.


