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The contamination of radio astronomical measurements by man-made Radio Frequency I nterference (RFI) isbecoming an
increasingly serious problem and therefore the application of interference mitigation techniquesis essential. Most current
techniques addressimpulsive or intermittent interference and are based on time-frequency detection and blanking. Contin-
ually present interferers cannot be cut out in the time-frequency plane and have to be removed using spatial filtering. One
techniqueis based on the estimation of the spatial signature vector of theinterferer from short-term spatial covariance ma-
trices followed by a subspace projection to remove that dimension from the covariance matrix, and by further averaging.
The projectionswill also modify the astronomical data, and hence a correction has to be applied to the long-term average
to compensate for this. In this paper we analyse the performance of this spatial filtering algorithm.

1. INTRODUCTION

Ininterferometric radio astronomy the distribution of theintensity of radiation is measured by cross-correlating the signals
from a number of radio telescopes. Unfortunately, observations are nowadays often corrupted by man-made interfering
signals from sources in the same or adjacent bands, and this situation will get worse in the future. The signal from an
interferer is spatially correlated and will therefore not average out completely. If the interferer is continuously present, it
isnot possible to filter out its contribution by detection and blanking of the contaminated samples[1].

Spatial filtering can null the energy received from the direction of the interferer. The projections will also modify the
astronomical data, and hence a correction hasto be applied to the long-term averageto compensatefor this. Thisalgorithm
was introduced in [2]. In this paper we summarize the a gorithm and analyse its performance.

2. DATA MODEL AND SPATIAL FILTERING ALGORITHM

Assume we have atelescope array with p elements. For theinterference free case the array output vector Xo(t) is modeled
in complex baseband form as Xo(t) = v(t) +n(t) where Xo(t) = [Xo:(t),...,Xo,p(t)]" isthe px 1 vector of output signals
at timet, v(t) isthe received sky signal, assumed a stationary Gaussian vector process with covariance matrix Ry, and
n(t) isthe px 1 noise vector with independent identically distributed Gaussian entries and covariance matrix ¢2l. If an
interferer is present the array output vector is modeled as x(t) = xo(t) + a(t)s(t) , where (t) is the interferer signal with
spatial signature vector a(t) which is assumed stationary only over short time intervals. The astronomer is interested in
R,. We assume that 2 is known from calibration and that R, < ¢2l.

Given observations x, := X(nTs), where T is the sampling period, the objective is to estimate Ro = Ry + o?l. We first

construct short-term covariance estimates Ry, (DM

where M is the number of samples per short-term average. MTs isin the order of 1-100 millisecond. Suppose that the
spatial signature ay of the interferer is known (it can be estimated from Ry using an eigenvalue decomposition). We can
then form a spatia filter P ;=1 - (akak)‘ ak which is such that Pyax = 0. When this spatial filter is applied to the data
covariance matrix, Qy := PcRyPy, al the energy dueto theinterferer will be nulled. We sub%quently averagethe modified
covariance matrices to along-term (say Tine = NMTs = 10 seconds) estimate, Q:= N Zk—l Q. This gives an estimate of



Ro, but it is biased due to the projection. To correct for this we first write the two-sided multiplication by Py asasingle-
sided multiplication, employing the matrix identity vec(ABC) = (C' 0 A)vec(B), where vec(-) denotes the stacking of
the columns of a matrix in avector and O the Kronecker product. This gives

vec(Q) = % %lckvec(fek) where  Cy := (P OPy). (1)

The bias on vec(Q) if the interference is completely removed is
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We can apply a correction C™* to Q to obtain the final estimate R := unvec( C lvec(Q)). Thisisthe estimate of R pro-
duced by the algorithm. If the a, are known and completely projected out then R is an unbiased estimate of Ry, i.e.,
E [ﬁ] = Ro. Two issues are the invertibility of C and the noise enhancement due to C™2. Another issue is the effect of
residual interference due to an estimated spatial signature.
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An experimental result, described in more detail in [2], is shown in figure 1(a). The used data set is a p = 8-channel
recording at the Westerbork Radio Telescope of a 1.25 MHz-wide band at 434 MHz, containing the astronomical source
3C48 contaminated by narrow-band amateur radio broadcasts, which are both intermittent and continuous.

3. PERFORMANCE ANALYSIS

Theresult of the algorithmis R, an estimate of the true covariance matrix Ro. The quality of an estimator is determined by
itscovariance. In thefollowing sectionswewill determinethe covarianceof R inthree cases: (1) interferencefree case, (I1)
the spatial signaturesay are known, and (111) the spatial signaturesay are estimated. We use the following notation. With X
we denote an estimate, with X = E [ ] the expected value of X and with X’ = X - X the estimation error. The covariance
of an estimate is defined as cov{ X} := E [vec(X")vec(X")"], and var{X} :=E X'®X] = unvec(diag(cov{ X} )), where
® denotes entrywise multiplication of two matrices.

3.1. Casel: Thevariance of R for theinterferencefree case
LetRg = ﬁ ZE:l ﬁo,k be the long-term average of interference free samples Iio,k. For Gaussian sources, it is known that
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where the approximation follows from Rg = 62| (weak sky signal). Thisis the best performance expected for R.
3.2. Casell: Thevarianceof R for interferencewith known spatial signatures

Suppose the spatia signatures ay of the interferers are known. In that case the algorithm is unbiased by design. The co-
variance of the estimate is

cov{R} := E[vec(R)vec(R)"] = Cteov{Q}(C™H", (4)

where, using (1)

k=11

co{Q} = ElNZ z ZCkvec R)) c|] . (5)

The estimation errors Ry and R are uncorrelated for k # |. Since Cvec(Ry) = Cvec(Ry ),
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IiQk is the covariance matrix of a complex Gaussian signal vector, so cov{ Iio’k} = ﬁRg ORg, and
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where we used that Ro = 0l and Py is a projection. It follows that
- o* o?
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Thevalueof C™* dependson ay, the spatial signatures of theinterferer. Compared to (3), thisindicatesthat C™* determines
the relative performance of the spatia filtering algorithm.

3.3. Caselll: Thevarianceof R for interference with deter ministic spatial signatures

If the spatial signatures are unknown, they need to be estimated, and hence the projection matrices are estimates too. Py,
Cy and C are substituted by their estimates Py, Cxand C. Inthat case equation (2) does not hold because C and Ry are not
independent. The algorithm is not unbiased anymore, but it can be shown that the bias of R is O(M™). This bias can be
neglected because the standard deviation is O(M™1/2).

Recall that cov{ R} = E [vec(R')vec(R")"] . Infirst order approximation, vec(R’) = (C™%)'vec(Q) + Ctvec(Q') , where
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Working this out and using C*vec(Q) = vec(Ro) ultimately leadsto
cov{R} = Ctcov{Q}(C™H", )

where cov{ Q} isasgivenin (5). Equation (7) isequal to (4) so in first order approximation, replacing the true projections
Py by the estimated projections Py does not change the covariance. Also in this case it follows that cov{ R} = %C‘l.

4. THE EXPECTED VALUE OF C™!

C* determines the penalty due to spatial filtering. The main diagonal of C™ contains the factors by which the variance
is multiplied compared to the interference free case. To describe the penalty in a single number we introduce the “ quality
factor” k := max(diag(C™1)), which isthe worst case amplification of the variance. The value of k isafunction of ay. We
will determinethe asymptotic value of k for two cases: (A) ax are normally distributed and (B) ay are the spatial signatures
of astationary interferer.

4.1. Case A: Thevarianceof R for normally distributed spatial signatures

If we choose atemporally i.i.d. statistical model for ax we can determine E[Ci]. When N — o C will convergeto E[Cy],
andC1lto E[Ck]_l. Letay OCAN(O,1) andi.i.d. for differentk, and let u, = ax/||ax|| , then uy isuniformly distributed over
the unit-spherein CP and P = | —uyuy,. It follows that

E[C] = E[PTDP] - E[(I —ud) O (1 —ukuﬂ)] - E[I O1-1 DukuE—(ukuE)TDI+(ukuE)TDukuE] :

where 1 1
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(where 1 isan all-onevector). E.g., if p= 8, thenk = 72/55= 1.3, so the variance of the entries of R increaseswith 30%
in the worst case.
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Figurel. (a) Experimental data: correlation spectrabefore and after the spatial projection agorithm, (b) Quality factor k
for different Nor, (c) Confidence intervalsfor k for random ay.

4.2. Case B: Thevarianceof R for stationary interferers

For matrix C to be invertible the spatia signatures ay need to be sufficiently variable. For stationary interferers (no own
movement, no multi-path) the only source of variability isthe geometric delay compensation (adelay placed between each
telescope and the correlator to correct for the different path lengths of the astronomical signal). The geometric delays de-
pend on the position of the observed field in the sky, and aretime-varying dueto the earth rotation. In narrow subbands, the
delays becometime varying phase-shifts, named fringe corrections. For alinear array of telescopesand an interferer fixed
on earth, the effect of the fringe correction onits spatial signaturea(t) can be modeled as (see[3] for the latter expressions)
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where fg isthe fringe frequency, D, is the longest baseline length in wavelengths, d is the declination of the sourceand h
isthe hour angle of the source, which istime varying and has a period of 24 hours. For a stationary interferer C™ depends
on (i) the fringe rotation per short term sample MTs fg, where T isis the sampling time and M the number of samples per
short-term average, (ii) the number of short-term averages per long-term average N, (iii) the number of antennas p, (iv)

the spatial signature without fringe correction ag.

Thefirst two parameters can be converted to the total fringerotation during integration, ¢1ot = MTs21tfEN = Ti 21TfE, and
the number of samples per fringe cycle, Noir = N/ (Tint fe). Thelowest possible Ny is reached when fp reaches its maxi-
mum value. If we choose MTs = 10ms, D), = 3000m/30cm then the mimimum value for Ny is 135. The results of simu-
lationsin figure 1(b) show that within the range of possible valuesfor Ny the effect on the quality factor K is neglectable.
A transition from poor to reasonably good performance occurs aready after 1 to 2 fringe cycles. Further simulations are
carried out with the parameters Noy = 200 and p = 8. The curvesin figure 1(c) show how the performanceincreases with
increasing fringe rotation, and a minimum ¢ for acceptable performance can be determined. This condition can be for-
mulated as adivision of thethe sky in an “observable” and an “ unobservable” area. The unobservableareaisaband from
the East over the celestial poleto the West. Thewidth of thisbandisgivenby a = 2arcsin[(¢ min - 24 -3600) / (Dy - Tint - 217)] .
E.g., if ®min = 3, Tint = 30s, A = 30cm and D = 3000m then the width of thisband is 16°.
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