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Chapter

Introduction

Astronomy is an ancient science that is still thriving toddgven though the objects
of study are remote it has had a direct influence on the lifeenfpe as it led to the
development of calendars and aided navigation. The disg@fdaws of motion of the
celestial bodies by Copernicus, Kepler and Galilei culn@dan the formulation of the
laws of classical mechanics by Newton. From then on the kedgé of the laws of
nature increased rapidly leading to the technological age.

Apart from its practical consequences, astronomy has gigesn understanding of
our origin and place in the universe. Even today many new aottireg discoveries are
done, ranging from the earliest galaxies at the edge ofleisibiverse, to planets orbiting
stars near us or water on our neighbour planet Mars.

All major discoveries in astronomy followed after a devetmmt in observing tech-
niques. A great example is the invention of the optical des which Galileo Galilei
used to observe Jupiter and discover its moons. Nowadags\@t®ns are not limited
to visible light part of the spectrum. Observations ranganfradio, infrared, X-ray to
gamma radiation. Each frequency band provides a unique arethe universe. Some
of these observations are carried out in space out of négefsi example X-ray and
gamma radiation are blocked by the earth atmosphere. Qikguments, such as the
Hubble space telescope, are located in space because willgoaarth atmosphere a
much higher image quality can be obtained. An alternativeti®m is to use adaptive
optics for earth based optical telescopes, where the siape oeflector is adjusted to
compensate for the atmospheric distortions.

The very first radio astronomical observations by Karl GsBarin 1931 were done
at 20.5 MHz with a single mechanically steerable antenreya8ince then radio astron-
omy has developed tremendously. Nowadays most radiotglesaare interferometers:
they consist of multiple receivers and their signals areatated with each other. Using
a technique calledperture synthesia resolution can be obtained corresponding to that
of a single dish of the diameter of the longest baseline. Hselnes are the separations
between pairs of receivers. In Very Long Baseline Interoyn@ILBI) the signals from
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2 INTRODUCTION 1.1

receivers across continents are combined, and resolufongroarcseconds have been
obtained. The invention of self calibration made it possital make images with a dy-

namic range, i.e. the ratio of the brightest source in thegemand the weakest visible

detail, of 13 [1, page 28].

The observing frequencies currently used are much higlaer ith Jansky’s experi-
ments, ranging from several hundred MHz up to several huh@tdz. A clear advan-
tage of observing at higher frequencies is that the resoludf the images is higher for
a given instrument size. But the most important factor theet lhampered observations
below about 150 MHz is the ionosphere.

The ionosphere is the upper part of the earth atmosphereswhdiation from the
sun is so intense that it partly ionizes the air. The freetedes change the phase of
electromagnetic waves traveling through the ionospheretha frequency goes down
the phase isféected more and more until the plasma frequency is reachethantiave
is completely reflected. Below the plasma frequency eariedabservations are im-
possible. But even long before the plasma frequency is ezhohservations are already
getting increasingly more flicult. Dynamic processes in the ionosphere cause the elec-
tron density to vary both in time and over space. Furtherptbesfield of view of a radio
telescope scales with the wavelength, so at low frequettogefield of view is larger for
a fixed diameter of the receivers. And at low frequencies|beeseneed to be longer
to achieve the same resolution. These thieces, larger ionospheric phase changes,
larger field of view and larger baselines, taken togethesedhbe ionospheric phase to
vary from antenna to antenna, over the field of view and owee tiThis explains why
ionospheric calibration is so much mordfiult at low frequencies and hence why it is
difficult to make high dynamic range images.

This problem has kept astronomers away from observing afrleguencies for a long
time. However a lot of interesting science can be done iretkearcely studied frequency
bands. For example the telltale signature of the formatioth® first stars starting the
Epoch of Reionizaton (EOR) is believed to be found in thisthdarhe increase in process-
ing capacity of digital hardware makes it nowadays possiterercome the ionospheric
calibration problem. A number off@rts are currently underway to build instruments
that observe at low frequencies in the range of about 30Mb(VIHz. However just
an increase of processing capacity is ndfisient to solve the ionospheric calibration
problem. The algorithms still need to be developed. Theldgwment of an ionospheric
calibration algorithm is the subject of this thesis.

1.1 Current developments

Because of scientific interest in low frequency observasind the increased process-
ing capabilities that make these observations possiblengauof instruments for this
frequency range has been developed in recent years or entlyrbeing developed. Ex-
isting instruments with low frequency capability include

e MERLIN Multielement Radio-linked Interferometer Network, GrBaitain. This
network of 6 radio telescopes is operational since 1980 Idwest frequency band
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is at 151 Mhz.

¢ GMRT Giant Metrewave Radio Telescope, India. This telescopgéaiional
since 1999. The lowest available frequency band is at 151 .MAZ0 MHz
extension is being designed.

e VLA Very Large Array in New Mexico, U.S.A. - Since 1998 all 27 amtas of the
VLA are equiped with a 74 MHz system

o WSRT Westerbork Synthesis Radio Telescope in The Netherlaridse 3004 the
Low Frequency Front Ends (LFFE) are operational. Thesdvexsecan be tuned
in the frequency range 115 MHz - 180 MHz.

Instruments currently under development or constructiciude

e LOFAR Low Frequency Array, 20MHz - 250MHz, The Netherlands. Cutlse
under construction,

e MWA Murchison Widefield Array 80MHz-300MHz, 500 (tiles) x 16 @uolar-
ization dipoles)= 8000 dual-polarization dipole antennas placed in the aktbé
Western Australia,

e LWA Long Wavelength Array, South West U.S.A. 10-88 MHz,
e Pasy21CMA China. An array specifically designed to search for the EQRadi

1.2 lonospheric Calibration

The technique of aperture synthesis makes it possible &irothte resolution correspond-
ing to an instrument of the size of the largest baseline. Vhéhesized aperture is only
sampled and not completely filled as would be the case fortaddithe size of the array.
This results in a point spread function (PSF) that has a higdabe level. This limits
the dynamic range of the so called dirty image. Much bettagies can be made by de-
convolving the dirty image. This can be done because the ®&kown, at least as long
as the array is well calibrated. Successful deconvolugguires an accurate calibration.

In the early days of radio astronomy calibration was doneiisy fiointing the array
at a bright calibrator source, observe it for some time armah ghoint the array to the
field of interest. The accuracy of this method is limited by thct that the correction in
the direction of the calibrator can befidirent from the correction needed for the target
field. In the early 1980s self calibration methods have besldped [2, 3]. The idea
is to use the observations of the target for calibrationc&imaging can be considered
as estimating the value of all the pixels in the image, thersibn of this problem by
estimating one additional complex gain per antenna adds aféw extra degrees of
freedom. Self calibration turned out to be enormously ss&itg, increasing the dynamic
range by two orders of magnitude, from a few thousand to @eeféw hundred thousand
to one.
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The field of view of the LOFAR stations is relatively large. €l'ain is direction
dependent and varies rapidly over time. This complicates#iibration problem con-
siderably. In extreme cases the problem becomes untractabl

1.3 Problem Statement and Research Objectives

To satisfy the scientific goals for LOFAR it is essential thagh dynamic range images
can be made. A limiting factor for the dynamic range are tlséodiions of the signals by
the ionosphere. This thesis is concerned about the follpwirestiortHow to calibrate
the ionospheric phase for LOFAR and other low frequencyunsénts to obtain high
dynamic range imagesflere the scope will be limited to calibration at central leve.
a station will be treated as a single directional receivilegnent. Calibration on station
level, where the gains of the antennas need to be deternisntb@, topic of the thesis by
Stefan Wijnholds, which will be published concurrentlywvihis work.

The approach to solve this question is to apply techniqued inssignal processing.
The usual approach in solving a signal processing problensists of several steps.
These include:

e Making a data model describing the available data in a matibeddorm;

e Formulating an optimality criterion that describes the lgyaf the estimates of
the parameters of interest;

¢ Finding the best theoretically obtainable performanceating to the optimal-
ity criterion defined in the previous step. This is the benathmor lower bound
against which algorithms are evaluated;

¢ Deriving an algorithm that attains the lower bound. Usudlig not possible to
find an algorithm that exactly reaches the bound or the coatipnal costs are
excessive. Using approximations one searches for an #igothat performes
close to the bound at an acceptable computational cost;

e Application of the algorithm on simulated data. An analgtiproof of the éec-
tiveness of an algorithm can seldom be given. Thereforeltweithm is tested via
Monte Carlo runs on simulated data;

e Application of the algorithm on observed data. Since resd d@ver exactly fol-
lows the data model the only real proof of th@eetiveness of the algorithm can
only be obtained by an application to real observed data.

This procedure leads to the following research objectives.

¢ Find a model for the ionospheric phase fluctuations, det@feugh to model the
phases accurately, simple enough to allow the derivatioanoéstimation algo-
rithm;
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e Derive an estimation algorithm for the ionospheric phase tptimizes the dy-
namic range of the final image;

e Demonstrate the algorithm on simulated data;

e Demonstrate the algorithm on observed data.

1.4 Contributions

The main contribution of this work to the field of ionosphez@dibration is the introduc-
tion of a statistical model of the ionosphere, not only tograte simulation data, but also
to actually derive optimal algorithms to estimate the igiaic phase.

This thesis describes a Bayesian method of estimating tiusfgheric phase fluctua-
tions based on a statistical model of the ionosphere. Oagens supporting this model
are presented. The method is shown to outperform an existeétgod based on Zernike
polynomials, both on simulated data and observed datah&umbre it is shown that the
method can be extended to more complicated models in alsti@iggard manner.

1.5 Context

This work was carried out for the VICI-SPCOM project "Sigmabcessing for future
wireless communications® within the Circuits and Systems group of the faculty of
Electrical Engineering, Mathematics and Computer Scieridde Delft University of
Technology.

Although radio astronomers share the spectrum with comecation applications,
the domains of radio astronomy and communication are ysoafisidered as two sep-
arate worlds. However, previous cooperation between @&end Systems group and
Astron, the Netherland Institute for Astronomy in the STV@jpct "Nulling obstructing
electromagnetic interferers (NOEMI3"has shown that the signal processing algorithms
used for communications can be applied to radio astrondmwisgervations as well.

1.6 List of publications

The following publications were prepared in the contextis thesis.

Journal papers

e S.van der Tol and A.-J. van der Veen. Performance analysipaifal filtering of
RF interference in radio astronom8ignal Processing, IEEE Transactions, &3
(3):896-910, March 2005. ISSN 1053-587X. doi: 10.1/I®P.2004.842177.

1Supported by STW under contract number DTC.5893
2Supported by STW under contract number DEL77-476
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e S.vander Tol, B.D. J&s, and A.-J.. van der Veen. Self-Calibration for the LOFAR
Radio Astronomical ArraySignal Processing, IEEE Transactions &5(9):4497—
4510, Sept. 2007. ISSN 1053-587X. doi: 10.1/05P.2007.896243.

e C.vander Tol, S. van der Tol, A. Verhoef, B. Su, J. Timmerm&hdouldcroft,
and A. Gieske. A Bayesian approach to estimate sensibleatert heat over veg-
etation. Hydrology and Earth System Sciences Discussi6r&337—2365, March
2009.

e H. T. Intema, S. van der Tol, W. D. Cotton, A. S. Cohen, |. M. Bemmel, and
H. J. A. Rottgering. lonospheric Calibration of Low FreqagmRadio Interfero-
metric Observations using the Peeling Scheme: |. Methoatie®mn and First
Results.ArXiv e-prints April 2009.

e S.vanderTol, R. Sridharan, A.J. van der Veen, H.J.A. Ridittgy, and A. S. Cohen.
VIss paper. 2009. In preparation.

Conferences

e A.J.Boonstra, S. J. Wijnholds, S. van der Tol and BisleCalibration, Sensitivity
and RFI Mitigation Requirements for LOFAR. IEEE International Conference
on Acoustics, Speech and Signal Processing (ICAS%&h 2005.

e A.J.Boonstraand S. van der Tol. Spatial Filtering of Ireeirig Signals at the Ini-
tial Low Frequency Array (LOFAR) Phased Array Test StatibnRadio Science
volume 40, 2005.

e S. van der Tol and A.J. van der Veen. Application of RobustdbaBeamform-
ing to radio astronomical imaging. Proc. IEEE ICASSPpages IV-1089-1092,
Philadelphia (PA), March 2005. IEEE.

e S. van der Tol, B. J&, and A.J. van der Veen. Calibration of a large distributed
low frequency radio astronomical array (LOFAR). EUSIPCQ Antalya (T), sep
2005. Eurasip.

e B. Jdfs, S. vander Tol, and A.J. van der Veen. Direction depenadfirtalibration
of large distributed sensor arrays.|EEE ICASSPToulouse (FR), May 2006.

e S. van der Tol and S.J. Wijnholds. CRB Analysis of the Imp&ctUnknown
Receiver Noise on Phased Array Calibration. pages 185-18%,2006. doi:
10.1109SAM.2006.1706118.

e S. van der Tol and A.-J. van der Veen. lonospheric Calibnaftts the LOFAR
Radio Telescope. volume 2, pages 1-4, lasi, Romania, J@y.280i: 10.1109
ISSCS.2007.4292761.
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1.7 Thesis Outline

Most chapters in this thesis were originally written as -selfitained papers. If appli-
cable a reference to the paper and its status (in preparattmepted or published) is
given at the beginning of a chapter. Only minor modificatibmse been made to in-
clude the papers in this thesis, so some overlap betweenhtqgers is still present.
Chapter 2 gives an overview of the LOFAR instrument, the gph@re and calibration
in radio astronomy. Chapter 3 describes the “peeling” atlgor which is a sequential
least squares estimation algorithm and the current leachingidate algorithm for cal-
ibration of LOFAR. The performance of this algorithm is aysald. Depending on the
choice for the underlying model for the ionosphere “peélican reach satisfactory re-
sults. Chapter 4 presents a stochastic model of the ionaspftease fluctuations and
some measurements to validate the model and estimate ifsakayneters. In Chapter 5
the optimal Bayesian estimator for this model is derived applied to simulated data.
Chapter 6 presents a test setup where peeling is combinbdheitBayesian estimator
to be applied to 74MHz data of the VLA. Chapter 7 presentsipii¢ies to extend the
estimator to a 3D model and a temporal model of the ionospl@rapter 8 contains the
conclusions and recommendations.
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Chapter

Preliminaries

This chapter introduces a number of key concepts relatduketodlibration problem con-
sidered in this thesis. First we describe the LOFAR instmim&hen we describe the
ionosphere and itsfiect on radio astronomical observations. Self calibratemmhiques
are described and “Peeling”, a sequential self calibratiethod for direction dependent
calibration is introduced.

2.1 The LOFAR radio telescope

LOFAR is a low frequency radio astronomical array currentigler developmentin The
Netherlands by a consortium led by ASTRON. Constructioxgeeted to be finished in
2010. Itis designed to produce synthesis images of the nigisind (and thus youngest)
celestial objects yet observed. LOFAR will observe at uallglow frequencies (15-240
MHz). The LOFAR design calls for an instrument consistingieérly 13,000 relatively
wide field of view small antennas mounted at ground level. sEhare grouped into
stations consisting of 96 dual polarization low band anésr{i5-90MHz) and 48 tiles of
16 dual polarization high band antennas (110-240MHz). &@heéll be 18 core stations,
18 remote stations and 8 international stations The cotiestgpacked into a 2-3km area.
The remote stations are distributed over the Netherlanis farthest remote station will
be located at aproximately 80km from the core. The inteomati stations are located in
Germany (5), Sweden (1), France (1), Great Brittain (1). flaximum distance from
the core to the international stations is about 800km

The antennas in each station are used as a phased array amdrdnieed in such a
way that a beam is formed into a desired look direction. Tiselteng output of each
beamformer is similar to the output of a telescope dish pajrinto the same direction,
but is obtained without the use of any moving parts. The beamér outputs of each
station are transported over optical fibers to a centratioecawhere (similar to existing
synthesis telescopes [4-7]) they are correlated to theutsuityf the other stations, and

9



10 PRELIMINARIES 2.2
processed into an image.

2.2 The lonosphere

The ionosphere is the outer layer of the earth’s atmospRa@iation from the sun partly
ionizes the atmosphere and the resulting free electromstgon electromagnetic waves
propagating through the ionosphere. This additional pyapan delay is proportional to
the wavelength squared, hence the corresponding phasesgiribportional to the wave-
length. At lower frequencies thdfects of the ionosphere are more severe. Turbulence in
the ionosphere causes the electron density to fluctuateovetttime (order 10 seconds)
and space (order 10 kilometers).

2.2.1 Electron density and refractive index

The refractive index of a plasma at frequerfcig given by [see 8, chap. 8]
f
f

wherefp is the plasma frequency. The plasma frequency squared f@gional to the
electron densit\Ne

°N

n=4/1- (2.1)

N

, N
fy = ypr—— (2.2)
wheree is the electron chargen. is the mass of an electron alglthe permittivity of
vacuum. When the plasma frequency is much smaller than ¢lggiéncy of the electro-
magnetic wave then the deviation of the refractive inderiftmity can be approximated
by
fo
Anzn—lz—ﬁocNe. (2.3)
Thus whenf, < f the refractive index can assumed to be proportional to thetreln
density. The change in refractive index causes a propagadiay which leads to a phase

rotation given by

ot &
o= 20 [ -ds= 55— [ N9 2.4)

where the integral is along the linge of sight anid the speed of light in vacuum. The
ionospheric phase is approximately proportional to thegrdated electron density and
inversely proportional to the frequency. The integral idjds usually refered to as the
Total Electron Content (TEC), defined as

TEC= f Ne(9)ds (2.5)

when the integral is along the vertical axis. For other diocgrs the integral is refered to
as the Slant TEC or STEC.
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Figure 2.1: Regime 4. The problem of LOFAR calibration through ionosighefraction. Un-
known complex gains through the ionosphere ayfedint for each source at each station (after

C. Lonsdale [9)).



12 PRELIMINARIES 2.3

2.2.2 lonospheric Regimes

The dfect of the ionosphere on interferometric observations dépen the relative size
of three diferent measures:

1. the distance between the antennas, or stations in the R@BAe,
2. the size of the field of view projected onto the ionosphlayer,

3. the scale size of ionospheric fluctuations, that is theadee over which the iono-
sphere changes significantly.

Based on these three parameters, Lonsdale [9] distingufsbie diferent regimes. For
regime 1, see Figure 2.1(a), both the size of the array andizieeof the beam at the
ionospheric layer are much smaller than the scale of thesjpimeric irregularities. All
antennas see the same ionosphere. The ionosphere adds arcphmse to all antennes,
for all sources. As an interferometer only measure phaerdnces, this is invisible
to an interferometer. In regime 2, see Figure 2.1(b), theiagebetween the antennas
is larger than the ionospheric scale, but the beam size ilesm&ach antenna sees a
different ionosphere. Over the field of view however the ionogplphase is constant,
leading to one unknown phase correction per antenna. Imeegj see Figure 2.1(c), the
beam size is larger than the ionospheric scale, but the matgracing is much smaller.
The ionospheric phase varies over the field of view, but thi@spheric phase cancels
in the correlator. Figure 2.1(d) illustrates how ionosphiphase and gain perturbations
affect LOFAR calibration. The ionospheric irregularity scalsmaller than both the full
array aperture and individual station beam field of viewsggery station and source
direction requires a unique calibration solution. Thishis tegime studied in this thesis.

2.3 Self Calibration Methods

In the radio astronomy literature, “self calibration” (cglal) refers to the calibration of
a telescope array using existing sky signals as referencee®[4, 6]. It is assumed that
these sources have known position and are relatively brijie parameters to estimate
are the direction-independent electronic gains and phasebkniques for this have been
proposed and are widely used for higher frequency syntlesigs [2, 10-12], and the
estimation statistics are well understood [13]. As a refieetnSelfcal is often combined
with the well-known CLEAN algorithm for deconvolution [145], i.e., a technique to
iteratively estimate the location of the sources and theivgrs.

In the array signal processing literature, “self calitati(or auto-calibration) refers
to a much wider class of algorithms, namely calibration gsinn-cooperative sources.
Typically, the location of the sources is considered unkm@ef. Direction of Arrival
[DOA] estimation). The additional parameters which neetiécestimated can include
the direction-independent complex antenna gains or recafllannel mismatch (and
more generally the antenna coupling), e.g., [16, 17]. Mwds Istudied are direction-
dependent gains, which may include the individual anteespanse, beamshape, and
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angle-dependent propagatioffiexts [18]. The latter case quickly leads to general mod-
els, e.g., to consider the array response matrix to have kigaws and unknown phases

[19, 20].

Arelated area of study (notimmediately relevant for LOFARp considers estimat-
ing or updating the antenna locations along with the otheapaters. Many calibration
techniques essentially assume the presence of only a silifdeation source, or even re-
quire a set of calibration sources which can be switched ceparately selected at will.
This gives access to the individual uncalibrated arrayarse vectors. Self calibration is
an extension whereby DOA estimation (and hence sourcea@paris alternated with
estimating the nuisance parameters. A problem rarely derssil in array processing is
to assume that many sources are simultaneously preserhdbuibe source covariance
matrix is known [21, 22]. This is a relevant assumption inieabtronomy, and LOFAR

in particular.

2.4 Notation

Throughout this thesis the following notation will be used.

0, 0|,|_:
1.

diag():

vec():

L-

arbitrary size and. x L identity matrices respectively.
arbitrary and x L matrix of zeros respectively.

L x 1 vector of ones.

-}: expected value.

. real and imaginary parts, respectively.

. (i, j)-th element of a matrix.

. an estimated quantity.

. transpose and Hermitian transpose respectively.
. generalized inverse.

. complex conjugate.

. Kronecker matrix product, Khatri-Rao (column-wise Kroker) prod-

uct.
extract diagonal, or build diagonal matrix.

Column scan a matrix to form a vector.

. element-wise absolute value and phase angle.

Il-1lF:

Frobenius matrix norm.



14

PRELIMINARIES

2.4



Chapter

Analysis of the LOFAR calibration
problem *

This chapter presents a formal study of the parameter g&imaroblem for LOFAR
calibration. A data model is proposed, and a Cramer-Raorlbaend (CRB) analysis is
developed with a new general formulation to easily incoap®a variety of constraining
signal models. It is shown that although the unconstrainexttion dependent calibra-
tion problem is ambiguous, physically justifiable consitaican be applied in LOFAR to
yield viable solutions. Use of a “compact core” of closelaspd array elements as part
of the larger array is shown to significantly improve fullarrdirection dependent cali-
bration performance. Candidate algorithms are proposeéd¢ampared with the CRB.

This chapter is organized as follows. Section 3.1 introducgroblem of calibrating
LOFAR. Section 3.2 gives the data model and problem statengerction 3.3 derives
the relevant CRBs. Section 3.4 proposes calibration alyos, under various model
assumptions and parameter constraints. Section 3.5 shimutaton results. Section
3.6 presents the conclusions of this chapter.

3.1 Introduction

In this chapter, we study the calibration of a large distelusensor array. The problem
can be phrased as direction-dependent calibration witerfesference sources than array
elements combined with hierarchical beamforming suchribgall antenna crosscorrela-
tions are available at a central location. The referencecssiare signals of opportunity
that are all simultaneously present. Without further agstions, the array can not be

“The contents of this chapter have been publishelEEE Transactions on Signal Processingder the
title "Self-Calibration for the LOFAR Radio Astronomicalrfay” by S. van der Tol, B.D. J&s, A.-J. van der
Veen [23]. Prior conference publications providing pantésults are [24, 25].

15
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calibrated.

At the station level, each station is expected to form a wefined beam into a de-
sired direction—this requires accurate estimation of th@mex gains of each antenna
element in the station array. Available for this is the olaedrcovariance matrix at each
station, based on 1-second observations, and a table ofitftedst sources in the sky,
with known powers and locations. It is further assumed thatantenna elements have
known locations and orientations, and “known” antennagpatt (as predicted by EM
modeling). We estimate that each complex gain will have a@cy of only 25 dB
(relative to estimation error) [21], and this limits the kvledge and accuracy of the
beamshape, in particular at the side lobes.

As with station calibration, bright point-like sky sourcegth known positions are
used as “calibrator” references for ionospheric phase airdestimation.

The initial station calibration should ensure that, wittire mainlobe, the beam-
former response of each station igfstiently well known. lonospheric variation across
the field of view is gradual enough to permit a low order spatiaoothing model to fit
observed perturbations to the known calibrator levels. Kifeavn beam response can aid
direction dependent calibration and can be factored oubsospheric gain and phase
terms can be isolated.

However, in most observing scenarios there are multipibiEbrs outside the main-
lobe which are brighter than any source in the beam mainklen after accounting for
beamformer attenuation. Furthermore, sidelobe gain aadghesponses vary rapidly
with arrival angle and depend strongly on electronic insnat calibration variations.
Sidelobe response to calibrators must thus be treated askarown random quantity
which contributes to the direction dependefieet. The array must be accurately cali-
brated to these bright sources before their corruptingadéggoan be removed from the
imaging array covariance data. This means that a LOFARredidn algorithm must be
capable of joint estimation of independent complex gaimgefor every array element
(station) and calibrator source combination. Moreoveleast for the first stages of cal-
ibration (used to remove bright sidelobe sources) this mestccomplished without the
luxury of a known beam response. The algorithms and angbysisented here address
this general case, where known beampatterns are not eeghloit

At this stage in the LOFAR development there is significargartainty about how
self calibration algorithms will perform. The radio astoony community has a wealth
of experience in successful synthesis array self calimadi higher frequencies [4] [5]
[6] [13]. But neither the theoretical or practical boundsaatibration accuracy are well
understood for arrays with thousands of antennas sprea@dwedred kilometers in the
presence of strong ionospheric perturbation. It is notraldeether extensions of existing
algorithms will be adequate, and it is likely that new apjgiass and algorithms will be
required [26]. For some observing conditions #isiently accurate calibration may be
beyond fundamental limits of parameter estimation unggsta\WWe propose to answer
some of these questions with a thorough Cramer-Rao lowend¢@RB) analysis to
determine limiting estimation error variance levels undiious model assumptions.

In summary, compared to existing telescopes, LOFAR cdlimménas the following
complications:
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e The station beamshapes have significant side lobes; stooimges in the side lobes
can dominate weak sources in the main lobe.

e Existing telescopes can calibrate assuming there is ongpadew bright sources
in the field of view. For LOFAR, each omnidirectional anteicaa see the full sky.

e Each station observes each source througlffardnt patch of the ionosphere. It is
easy to see from this that, without further assumptionsattegy is not calibratable.

3.2 Data Model and Problem Definition

3.2.1 Signal Model

Each LOFAR station forms steered beams in 1 kHz wide subbahith track selected
deep space objects while their apparent positions shiftolli&arth rotation. A station
beam is treated as a single directional element in the fuFAR array for processing

at the central location; there is no access to the individleahents. Assume all station
beams in all subbands for the= 72 stations are steered to the same point in the ce-
lestial sphere and that the observed signal is dominate@ kgown, bright calibrator
point sources. Thd x 1 observed array sample vector for théh subband centered at
frequencyfy is

Q
XM = > aalMsa(n) + mn) (3.1)
g=1

wheresq(n) is the signal from the-th calibrator source at time sampl@nd frequency
fi, akq(n) is the array response vector for this source, gg@) is the noise sample
vector. s.q(n) andn,(n) are baseband complex envelope representations of zeno mea
wide sense stationary white Gaussian random processedeshatpthe Nyquist rate.
Elements ofy,(n) are statistically independent, as are signals fronQfseurces.

For simplicity of presentation all wave propagation is ased to be non-polarized.
In practice however antennas are grouped into orthogarediipolarization pairs so full
Stokes parameter outputs are available to enable obsqueiagzation-specific scien-
tific phenomena. Additionally, calibration parameter msiies must track theffect of
ionospheric Faraday rotation. The non-polarized resulisgnted in this paper are in-
structive, and extension to a more realistic model is stéégward using Jones matrix
notation (cf. [27]), a dual-polarized vector in placesf,(n), and extending each array
response vectai q(n) to be a two column matrix.

Due to earth rotation the geometrical delay componea gfin) changes slowly with
time, which is a critical feature exploited in synthesis gimg. Calibrator locations

1The subband processing in the actual instrument is slightiye subtle than presented here. The stations
use 200 kHz subbands. At the central location these signalsnae-shifted to compensate for the geometric
delays in the look direction, and subsequently split intdHE bins. As a result the narrowband model (3.1)
holds for sources in the look direction, but may not quitedtfol sources far outside the field of view. These
sources will experience some phase smearing. Tiféstds not considered in the data model.
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and intensities are known accurately from catalogues dechpi previous sky surveys.
During calibration all other space signals are neglectezltduheir relative weakness,
but of course their presence can bias the calibration soluti

Let N be the number of time samples in a short term integration)(BTdrval. We
assume thay4(n) is (relatively) constant over such an interval, so that, the m-th
interval, xx(n) is wide sense stationary oven- 1)N < n < mN - 1. A single STI
autocovariance is defined as

Ricm = Efxi(n) x((N)} = AxmZiA) m + Ak (3.2)

whereRy m has sizel x J,

Akm = [akal(m=1)N), -, aco((m- LN)]
I = diad[og,, -, opgl)
A = Elpmnn)} = diag[az,. - .22}

Here,a-ﬁq is the variance of the-th calibrator source. Noise is assumed to be inde-

pendent but not identically distributed across the arrag, the noise variance’r{. are
unknown. In the radio astronomy literature, element®gf, are called “visibilities” [4].
Each visibility represents the interferometric corraatalong the baseline vector be-
tween the two corresponding array elements. The correspgstiort term integration
sample covariance estimate is

~ mN-1
Rem=2 >0 xnx(n).
n=(m-1)N

The array response maty , can be factored into the product of a phase madiix,
due entirely to the propagation delays associated withrtiag and source geometry, and
a complex calibration gain matri®x ,» which includes both source direction dependent
ionospheric perturbations and electronic instrumentegein errors,

Ak,m = Gk,mQ Kk,m (3-3)

In the astronomical literature, the columnskof,, denoted b)kﬂm (g=1,---,Q), are
often called the “Fourier kernel” and are given by

2nfy_q
kE,m = exp{JTkZ Pma}

z = [paynal Dozl

wherec is the speed of light,X;, y;, z] is the position vector for th¢-th array element
(station beam) anplmq is a unit length vector pointing in the direction of soucpguring

STl snapshatn. SinceZ, pmg, and the source power levels are all known to high accuracy
for tabulated calibration sourcdsy m andXy are treated as known quantities.
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3.2.2 Direction Dependent Calibration Formulation

The problem at hand is to estimaB m given Iik,m over a range ok andm. Gypm is
in general a x Q full matrix of independent unknown complex gain parametgisse
elements must be estimated to calibrate the array for ingagh (2JQ + J) x 1 real
parameter vector containing all unknown terms is defined as

Om = [ved|Gyml)', ved /Gym) ', diag Ax)]"
= [hm) s ) W)+ WD 4] (3.4)

whereyﬂ,m is theg-th column of gain matrixX" = |Gy, wE’m is theg-th column of phase
matrix¥ = /Gy m, and = diagAx}. In contrast to LOFAR, the conventional synthesis
imaging calibration problem at higher frequencies doessndér from direction depen-
dentionospheric perturbations so in this c@se g1' has the same gain vecigfor each
source, and (3.3) becomés= diag{g}K [13]. In either casel is a nuisance parameter
which must be jointly estimated witB.

Self calibration can be viewed as a covariance fitting probl8ubstituting (3.3) into
(3.2) and explicitly showing dependenceyields the visibility measurement equation
(ME) [28]

ME(Bkm) = (G(8icm) © Kicm) Zk (Kie i © G (Bicm)) + A(Bicr)-

For a single STI and subband [ore )] the least squares calibration solution follows
immediately as

On = arg rr;innF‘eKm — ME(8)|I2. (3.5)

Direct solution of (3.5) is not computationally practiceurthermore it will be shown
that without further constrain# ., is not identifiable through a singl%k,m. The esti-
mation problem is ill posed and (3.5) yields ambiguous sohstdue to source direction
dependence. Fortunately the physics of LOFAR permit imqmpstructural constraints
on individualGy , snapshots aridr across a range of time-frequency bins to regularize
the problem, as will be shown in sections to follow.

It should also be mentioned that a maximum likelihood (MLjnfalation of the
LOFAR calibration problem is also easily expressed alowrdittes of the result in [13].
But, as is often the case, the ML approach does not yield a atatipnally tractable
algorithm for this problem.

3.3 A Framework for Cramer-Rao Lower Bound Analysis

This section presents a general framework for CRB analydiseosource direction de-
pendent calibration gain estimation problem. The appr@adlolws for simple adaptation
to a wide range of physically justifiable model assumptigasameterizations, and sig-
nal constraints.
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3.3.1 CRB for Unconstrained Calibration Parameters

Consider a set of array sampldssfations) observed over a time-frequency domain span-
ning 1 < k < K frequency bins and ¥ m < M non-overlappindN sample STI time
windows. Stack these samples intokaklJ x N data matrix

x(0) - xu(N-1)
x(M—DN) - xq(MN - 1)

X = : :
x((M-DN) - x(mN- 1)
| Xk (M= DN) - xc(MN = 1) |

Initially we consider the unstructured case where paranvetorsfy ,, from each time-
frequency bin are distinct with no functional relationslaipd must all be estimated.
These are stacked into a large parameter vector

J= [011’... ’OTK,l"" ,glM’...gTK’M]T_ (3.6)

The corresponding stacked sample covarianééq’sﬁxx”. The underlying data model

is given in (3.1). Due to Nyquist sampling of narrow passtsaselected from the under-
lying continuous time broadband random signals, =gtn) andn,(n) are statistically
independent with respect to bin indideandm. All non zero correlations are spatial (i.e.
with respect to station indep) and are due to phase delay across the narrowband array.

Thus the true covariand® = E{R} has block diagonal form

Ri1

Rik,m

andR depends o through (3.2), (3.3), and (3.4).
Consider an estimate dfbased on an observatioh The Cramer-Rao lower bound
on the error variance for any unbiased estimator is givembyltagonal elements of

_l,
C—NM

evaluated at the true value df Here, M is the Fisher information matrix, which for
Gaussian data can be expressed as [29]

M=T"R eRLHT (3.7)
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where the Jacobiaff is defined as

_ ovecR)
I=

The matrix @4@‘/%‘1) is usually very large. However the sparse block diagomattire
for R in turn makes7 sparse and simplifies evaluation of (3.7). Thushas the same
block diagonal structure &8, with

1
M = J;,m(Rk,m ® R;}n)Jk,m,
and

ovec(Rkm)

J =
“r 6r

6-6.;

With no assumed structure relating parameters across tifnequency, the subblocks of
M are uncoupled and the CRB for soiig, can be computed froml ,, independently
from the other parameters. The entrég, are evaluated as follows.

3.3.2 Closed Form for General Fisher Information

Using the parameter ordering from (3.4) e&th,, can be partitioned into block form as

VMvm"’Mvwo Mntﬁl"’Mwﬁo Mn/l—
MVQM"'MVQVQ MVQ%"'MVQ!PQ MJ’Q/‘

Mim=| Myyy - -Mypyg My, - -Myyg - My |- (38)

M¢Q71"'M¢Q7Q M¢Q¢1"'M¢Q¢Q MLPQ/‘
Miy Mg  May, Mg My |

The closed form representation for these submatrices isrshothe Appendix to be
—=1— _ =1_ _
My, = 2o—f,o—§Re{(q>},R B)(@iRta) + (®[R By)(@R 1<1>q)} (3.9)
—_1— _ —1_ —1
My, = zagagRe{(EpR Eq)@Ray) - (E,R 'a)(aR Eq)} (3.10)

My = R oR*? (3.11)
My g, = zagaglm{(@Lﬁ‘lﬁq)(a;R-laq)+(@Lﬁ‘laqxagR-lEq)} (3.12)

My = 20ZRe(®R "oaiR? (3.13)

My = -208m{ER "o iR} (3.14)
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where all terms have implield m subscripts and

Eq = diag(vq©@kq)
®, = diag(¢q0kq)
bq = exp(igy).

SinceM%A andM., » are nonzerogd is coupled with the parameters of interest and
should be jointly estimated.

As will be shown later, in the general case considered Wgyg is singular. Without
introducing constraints on the parameters, the array isalidiratable.

3.3.3 CRB for Constrained Parameters

The following sections discuss some scenarios where thedsgf freedom inf can be
reduced by physically justifiable constraining models. Séhienpose structure iR which

is key to solving the calibration problem. At this stage inFAR development there is
much activity in identifying appropriate models of ionospie perturbationects which
can be incorporated into self calibration algorithms (despter 4). For example, when
the ionosphere is relatively time stabbg,, may vary smoothly ovek andm according
to some low order interpolation function. In such cases afatimensional parameter
vectorp can represent all the required degrees of freedom over tire elomain ofk
andm.

Letd = f(p) wheref(:) is some functional relationship describing a constramt o
¥ corresponding to an appropriate physical model. It is assliiat? is an overdeter-
mined parameterization and that the underlying distrdsufor xi(n) is fully determined
by p. Under these conditions the Fisher information computeg fgelds the CRB.

Define the constrained Fisher information matrix as

M, = j;(ﬁ’lmz-l)jp (3.15)

where

T, = ovec(R)  ovecR) df(p) .
P Y U
which follows by the chain rule sina# = f(p). # can be partitioned as

JF (3.16)

.
F = [Fll ’FTK,l"" ’FLM"" ’FTK,M]

where
(3.17)

p is common to all time-frequency bins and is not indexed oy m. Specifying ther
establishes the required structural constraints. Equésid.5) can now be written as

My =7 |7 (R e R 7|7 = Fm7,
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and sinceM is block diagonal

K M
My =" FlaMinFin. (3.18)

k=1 m=1

With (3.18) one may compute a CRB for the constrained pamnvetctorp using the
unconstrained general form Fisher matrices given by ($18)@nstraint Jacobians from
(3.17).

As an illustrative example consider the simplest time-fiestcy smoothing function
where calibration parameters are constant dyer. In this case we can chooge=
011 = 6m Y (k,m), andFyn = |. To avoid a singulaM,, an intrinsic bulk phase
ambiguity must be resolved with an additional constraintc& due to its Hermitian
product formRy r, is undfected by multiplying any column d&y, by a unit modulus
scalar,.Gym can only be known to within one arbitrary phase factor peugwi. The
excess degrees of freedomép, can be removed by eliminating the first element of
each phase vectmﬂm in 6 m. This constraint is imposed by setting

p=%011=F0m Vkm

whereL = (2Q + 1)J is the number of cd&cients infym, and the selection matrix
SE is formed by deleting the columns fromp with indicesb = [by,--- ,bQ]T, by =
(- 1+ Q)J + 1. This eliminates fronp the stationj = 1 phase parameter for each of
the Q calibrator sources, forcing the first row Gfto be real. It follows that

Fom = S0 (3.19)

The resulting bounds are evaluated in Section 3.5, alonky thé¢ performance of the
estimation algorithms presented next.

3.4 Calibration Methods
3.4.1 Single Snapshot Calibration

Above approximately 400 MHz it is possible for conventioaatronomical synthesis
imaging arrays to estimate calibration gains from a singleapshot” STI sample co-
variance realizatiorlﬁk,m [13] [4]. This is useful for start-up of a tracking calibratti
algorithm or to make quick look snapshot images. In gendiialis not possible for
LOFAR due to directionally dependent ionospheric perttidos.

To illustrate this fact note that for ar x Q unitary matrixU, equation (3.2) can be
rewritten as

R =AZIUU'ZIA" + A
= AZIUZ ZE(Z 2)"U'LIA" + A
=AZA" + A, (3.20)
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Full LOFAR array geometry for 72 stations Closeup of central core of 32 statio
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Figure 3.1: Possible geometry for the full LOFAR array (left) and the paet central core (right).
Each circle or star represents a LOFAR station which acts asngle beamformed directional
sensor element in the full array. Plans in 2004 were for fivgoeentially spaced spiral arms of
eight exterior stations each and a compact core of 32 station

whereA = AXzUX "z, SinceUU" = I, it is not visible inR. However (3.20) has the
same structure as (3.2) but with dfdrent dfective array responsé, Thus each choice
of U leads to a dferent calibration solutiofs, namely (usingA = Go K),
G = (AXZUT 7)o KoL (3.21)

where ()°! denotes element-wise inverse. This shows that, witholhgdubnstraints,
A is not identifiable from a singlék,m. (This problem is not present in the classical
direction-independent calibration problem, whé&re- g1', or A = diagig}K [13].)

In the next subsection, we introduce a physically justiat®nstraint based on the
unigue LOFAR array geometry which resolves this ambiguitthat with sdificient SNR
a calibration can be computed already from a single sna;l?ﬁj]@tSubsequently, in Sec-
tion 3.4.3, we consider multiple snapshots and make assomspin the time evolution
of the ionosphere.

3.4.2 Exploiting the Compact Core LOFAR Geometry

The unknown calibration gaifghases can be attributed to perturbations dua)ahe
propagation through the ionosphere, abjithe receiver electronics. The ionosphere
mostly introduces propagation delays, i.e. it can be mablatea random phase sheet,
with gains that are approximately direction independeet avstation main beam. Simi-
larly, the electronic gains and phases are independenedlitections to the calibration
sources, but do dier from station to station.

The planned geometry for LOFAR as shown in Fig. 3.1 includesrdral core ofl,
closely packed stations. As shown in Fig. 3.2, the core safpas operating in a regime
3 (see section 2.2.2) where the station beam fields of viewlagy®n the ionosphere
(approximately 300 km above the array). These beam mairifologorints” are much
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Figure 3.2: Calibration scenario for closely spaced LOFAR central cstations. Due to beam
overlap at ionospheric altitude, each station sees the sdineetion dependence. (After C. Lons-
dale)

larger than, and the total subarray aperture is much sntaberthe ionospheric irregu-

larity scale [9]. Thus each core station observes a givasstial source through the same
patch of ionosphere and sees a common gain-phase pertuwbati, the core subarray
sees a coherent scene without direction dependence.

Because they are common, the ionospheric phases canceheata@mputing the
correlationRy , for the core subarray. What remains is the direction-indépat iono-
spheric gains, and the gajpbases of the receiver electronics. The corresponding core
gain matrixG, can be modeled &, = g.1". This leads to a calibration problem compa-
rable to the typical synthesis imaging situation at highegfiencies (or similar to station
calibration).

For the rest of the array, i.e., for tllg = J — J; stations exterior to the core, both the
field of view and all inter-element baselines are greatar tha ionospheric irregularity
scale, as shown in Fig. 2.1(d). For these stations the gmnekng gain matriGe is best
modeled as a full matrix.

Under these assumptions, equation (3.3) becomes

GcOKe ]_[ | diaggciK }

T | [dtokd gk

A=GoK = [ GO Ko

(the implied k, m) indices are omitted). To bring all calibration gain vesttw be esti-
mated into a single indexing scheme,det O refer to the central core, and define

~ { gec, forgq=0,

%=\gl, fori<q<Q
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p=1%. .18 28+ . £80. 41" (3.22)
Here, §, corresponding to the single core subarray gain vector gthel, while theg,
are lengthJe.
The following constraint Jacobian expresses the relatiprisetweernp in (3.22) and
Omin (3.4). It also constrains the bulk phase ambiguity as ¢849®), by omitting the
phase on the first external station.

3. 0;..3.
woli Lot o o
Fem = I 03,31 (3.23)
’ 0 0 ®|~° lo® | 0
lQ |:0‘]e"JC:| Q |:Sge :|
0 0 0 0 Im

whereb = [1]. Using (3.23) in (3.18) for a single snapshkitrf) givesM, = F My mFkm,

and yields a closed form CRB for a LOFAR array with a centraécd his has been used
to evaluate the CRB for a wide range of scenarios, and leatfetfollowing observa-

tions:

1. M, is typically singular wherd; < Q — 1.

2. WhenJ. > Q-1the full array, including the fully direction dependemaspheric
gains in the exterior stations can be reliably calibratetth wisingle snapshot sam-
ple covariance.

Currently, the number of central compact core stationsasmtd asl. = 32. Thus,
single snapshot calibration exploiting the core configarais suitable ifQ represents a
small number of bright calibrator sources, i.e., for ilitiaarse calibration.

3.43 Exploiting Frequency-Time Diversity

We will now consider the use of multiple snapshots. The iphesic parameters are
approximately constant over a block & n) values covering 10 seconds and 500 kHz.
Due to Earth rotation and frequency dependeKag, varies stficiently over this block
so that, even if the individua¥ , are singular, the sum in (3.18) produces a full rank
M, and arelatively low CRB.

For regions larger than a 105500 kHz block,Gxm generally varies smoothly. It
is therefore unnecessary to compute independent estirfeaiteachéy . A low order
smoothing function can describe the significant variatiotith fewer parameters and
thus lower estimation error variance. For example, we caraunatrix polynomial inf,

t and codficient vectorp for the phase matri¥f as

T(p, f,t) = T1+T2f +T3t+T4ft+T5f2

which consists 0D = 5 terms, using powers fdras{xy, - -- ,«s} = {0,1,0,1, 2} and for
tas{us, - ,us} =1{0,0,1,1,0}, and with theT 4 phase coficient matrices of sizd x Q.
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More generally, we can model the magnitude and phase matB% kfrequency-time
bin (k, m) as

Gunlp) = [Tlp, 1,8 0 expl¥(p, 1, 1) (3.24)
f="fi,t=tx
D D
T(p, f,t):ZYdf"dt"d, Y(p, f,t) = ZTdedt”d
d=1 d=1
p=VeCI.Yl,"'YD’T1""TD’/l]' (325)

Y ¢ andTq are theJxQ gain and phase cfiicient matrices, to be estimated by calibration.
The dual (gain and phase) polynomial model combined witlbtliephase ambiguity
resolution used in (3.19) results in the following consttdiacobian:

fagar. . feger,. 0 - 0 0
Fm = 0o - 0 fagaB ... fot°B 0 | (3.26)
0 0 0 0 5

whereL = JQandB = 1o ® S*J’ b = [1]. Itis straightforward to combine this with the
assumption of a central core geometry (Section 3.4.2).ignddse Fy m is given by the
product of equations (3.23) and (3.26), but using QJe + J. andB = | g,-1)+J.-

A least squares solution farcan be expressed as

K-1M-1 .
p = argmin IRkm — MExm(p)II2 (3.27)
P k=0 m=0
where
MEim(p) = (Gikm(p) © Kicm) Zc (Kit iy © Gim(p)”) + Ax(p).- (3.28)

Although the polynomial model dramatically reduces par@meegrees of freedom and
(3.26) yields a low CRB, a direct implementation of (3.27¢@mputationally imprac-
tical. An iterative search algorithm is required but its eergence performance is poor.
The continuous phase polynomM(p, f,t) is ambiguous to integer multiples ofr &t
every evaluation point, i.e. for every combination of &atj, sourceg, fx, andty,. This
introduces many local minima so that a good initial estinfatg is required. The fol-
lowing two sections present algorithms which address thesiglems.

3.44 The Peeling Algorithm

The current leading candidate algorithm for LOFAR calilmatwas introduced in [26]
and has been dubbed “Peeling” due its sequential approasicogssively calibrating
on one bright source at a time followed by removing (peelthg} source’s contribution
from the observed sample covariandégm. Peeling is based on three basic simplifying
assumptions:
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e Joint estimation for parameters of )l calibrators sources can be approximated
with a series of single source calibration problems, in deding order of source
brightness.

e Calibration gains vary slowly and smoothly over time andjérency. Conse-
qguently, over some span &%, frequency bins andil, time bins called a “block,”
Gk mis approximately constant. This block indexed kyi) includes all frequency-
time (STI) bins in the set

B = {(k,m) 1 kKp < k < (k+ 1)Kp — 1, MM, < m < (M+ 1)Mp — 1)

The evolution of the ionospheric gains over several bloek$dpmain”) is de-
scribed by a polynomial model as in (3.25).

e Within a block, the variations iy, (also known as fringe rotations) due to Earth
rotation and frequency change are large. Source pom@sare constant ovet
within a block.

Peeling in [26] does not use the central core geometry agsump
Let p be a minimal parameterization for the calibration paramseteefingo, as the sub-
vector ofp corresponding to the parameters for sougcee., corresponding to thgth
columns fromYq,---,Yp andTy,---, Tp in the polynomial model (3.25). The corre-
sponding gain vector for STI birk(m) is given by the vector polynomig[j’m = Gkm(Pg),
which is also obtained by by retaining only tgeh columns fronT'(p, f,t) and¥(p, f, 1)
in (3.24). No superscrigtis used irgk m(p,) since all column-wise polynomials are iden-
tical except for the source dependenti@@eents in eaclp,. Similarly, kg,m denotes the
g-th column ofKym, and contains the geometric phase delays of sogrdénally, o,
will denote the current parameter vector estimate for alsisgurcep.

Assuming theQ sources are ordered in descending brightnesd, pass peeling
algorithm based on [26] is given by

1. Initialize: source indexg = 1, pass index = 1, and parameter vectpy, = 0 for
1<p<Q

2. Update the residuals (peel)Over all &, m) covering all blocks in the domain,
subtract from each sample covariance the current bestatssnibased opy; 1 <
p < Q, p # q) of contributions from all except thg-th source:

Q
Vima = Rkm= >~ (Gm(Pp) @ kP )0 (Ghm(Pp) © K™
p=1

p#q

Vk,mq is an estimate of the visibility (covariance) matrix cobtrion tolik,m from
sourceg. The term under the summation is a single source version.28)3The
noise covariancg is neglected.
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3. Phase center and averagEor each?;< mg» cancel the phase rotation due to the ge-
ometric delay terrrkq in the visibility contribution from sourcg. Then average
over k, m) inside a blocldikm to attenuate the other, non-centered, sources,

~ 1 .= o~ .
T = diagk, .}V diagk? 1. 3.29
Vimg KoM %ﬂ:)e‘%;:m lagky mVimg diagky .} ( )

4. Estimate polynomial cggcients: With some abuse of notation, let the subscript
(k m) ong% s, denote selecting thé(m) frequency-time bin in the center of block
(k, ), and likewise foro: Then assume a single-source model and estimate the

polynomial codficients for source as

ﬁq = argmmzz HLQ (Vkm,q qugkm(pq) gkm(pq) H
(km)

L is a masking matrix of ones below the diagonal and zeros &ksewvhich is
used to avoid fitting to diagonal terms from. This problem is solved using a
general least squares solver.

5. Iterateforgq=1,---, Qand do this fol passes.

We have found that using multiple passes (e.g. I2< 5) reduces bias ip, which arises
when the averaging over a block in step 3 producesfiitsent attenuation of the non
centered sources. Contamination in the single source ften4 occurs becausk
has contributions from more than the centered source. Tkieseetion presents a more
direct method of reducing this bias.

3.45 Demixing Calibrator Cross Contamination

The purpose of steps 2 and 3 is to form a single-source appatidn of the problem.
Ideallyff/kmq is equal to the true single source phase centered visifdility  for sample
(k, m) at the center of blockk( ). Assuming the gaingkm(pg) and source powercsﬁ,q
are constant within the block gives

H
Ving = 0eq@%m(Pa) (Gmlpg) - V(km) € Bgy. (3.30)

(the additive noise is ignored). Initially, when estimatithe parameters for source
there are no available estimates for sourgesl to Q, so their contribution cannot be
subtracted in step 2. Averaging in step 3 is then néii@ant to reduce bias down to the
noise level and multiple iterations are necessary.

In this section we develop an unbiased estimaﬁqmq, so that even on the first

passE{(f/qu} ~ Vimg The algorithm works on a per block basis, so for notational

simplicity the block indicesk, i) will be dropped, and we take the randes 1, - - - , Ky,
m=1,---, My (a single block).
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Consider estimating, during the first peeling pass. Estimajgsfor 1 < p < q
will have been previously computed, and we assume that ttresponding sources are
peeled without bias in step 2. We now seek an estinpgtetiich is unbiased by the
presence of sourcep+ 1 to Q in Iik,m. These sources have not yet been peeled since at
this stagep, = Ofor p =g+ 1,---,Q. The expected value of entryj from \7k,m,q in
step 2 can then be expressed asi(fp=1,---, J)

Q
E{Vimgli, 1] = > kPl il i1 vouy (3.31)
pP=q
vpii = o2gplilG,li]

wheregq = gkm(pg) and(ré = aﬁq are constant within a block. The summation can be
written as

E [Vl 11} = [kl KL, - kol Kl 1| )
vip = [vaiie - v - (3.32)

This gives us one equation pég (n) pair in the blockBy, ;.. To stack these into a matrix,
let

o — . L—Q .
KOGkl o k[T kgl
Kij = : . :
_— . .. —Q .
K 1K w11 - K, [T Kig, wy L]

(sizeKpMp x Q —q+ 1) and
ij = [Vardlis il Vimalis 1] -

then (3.31) becomes{V;;} = %Kijvij. If %; is a “tall” matrix, which requires (fog = 1)
KpoMp > Q, then it will be left-invertible. Applying the left invers® both sides of the
equation, we obtain

E{ (K3 56) G 035 = wis (3.33)
The least squares estimator igr givenv;; is

Wij = (K KG) K ) (3.34)

which is shown by (3.33) to be unbiased. Comparing (3.3() {8t31)—(3.32) reveals
that the first element of;; is the estimator we seek fovj s ([i, j]. Equation (3.34) is

separately computed for eadhj() to yield full matrix(f/g,ﬁlq for use in Peeling step 4.
A closer look at (3.34) reveals that it is directly relatecthe original peeling ap-
proach of phase centering and averaging. First define

Cij = Kbe(q(i?(](ij)_l-
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Table 3.1: Ten brightest calibrator sources

| Source| Catalog Name| RA° | DEC’ | SNRdB |
1 3C461 350.8| 58.8 -20.7
2 3C405 299.9| 40.7 -21.0
3 3C86 51.8| 55.3 -30.0
4 3C144 83.6| 22.0 -31.6
5 3C274 187.7| 124 -31.6
6 3C123 69.3| 29.7 -31.9
7 4C+53.06 52.5| 53.6 -37.2
8 4C+53.07 54.1 53.6 -37.2
9 3C33 17.2 13.3 -38.7
10 4C+55.07 53.1 55.9 -39.1

Now we can write

N 1 N
vij = Cij [—KbeKHJVij

Comparing this matrix equation with the summation of (3.28)eals that the first ele-
ment of the term in brackets is equal to thigj)(" element 0fVimq from (3.29). The
remaining elements correspond to evaluating (3.29) forcasg + 1 to Q. Thus com-
puting ﬁ‘}(ﬁ\?i,— performs an element-wise version of the Peeling phase riegtend
averaging step on not just but for all sourceg to Q. The multiplication by inver-
sion matrixC;j; “demixes” the contributions of the sources into separatglsisource
problems.

The estimatep, in step 4 are based on all samples in the domain. The demixing
algorithm works only on a single block. Therefore demixisgnbisier than removing
a source by conventional Peeling subtraction. The noisdificagion depends on the
condition ofC;j. Because of the third assumption of Section 3.4.4 (larggérotations
within a block)C;; will be well conditioned. For large blocks;; will converge to the
identity matrix.

3.5 Simulation Results

3.5.1 CRB for Constant Calibration Gains and Phases

We first consider estimating calibration parameters ovanallsfrequency-time block
where they can be assumed constant. Fig. 3.3 illustrate€Ri for a realistic self
calibration scenario with the full LOFAR geometry of Figl3Station beams are pointed
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10°

—+— 8 station core, 1 STI: gains
—+— 8 station core, 1 STI: phases
104 —+ —¢—- 32 station core, 1 STI: gains
—— 32 station core, 1 STI: phases
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Figure 3.3: Calibration CRB levels for constant parameters over smatdiency-time span.
Curves are CRB values averaged across array elementsqs&tio provide a representative error
level per source. Vertical bars show the range of phase eramross the 72 stations. Phase error
is in radians while gain error is unitless. “Source 0” corfeends to the compact subarray which
does not have source dependent calibration. Bottom haiakearves are given as a reference for
the case where calibration parameters are not source doaaependent.



3.5 SIMULATION RESULTS 33

at right ascension (RA) 5@ and declination (DEC) 55%°.2 An accurate model based
on the existing LOFAR initial test station [30] was used foe station beam directional
response, including sidelobe fine structure. For this 40 MHgervation, the-3 dB
beamwidth is approximately’swith sidelobe peak levels typically atl3 dB below the
mainlobe.

TheQ = 10 brightest radio sources after beamforming are includéud simulation.
Table 3.1 lists their locations, taken from the standard 8€4C radio survey catalogues
[31], and apparent SNRs computed from tabulated flux valBesrces 3, 7, 8, and 10 are
seen within the beam mainlobe. Random “true” calibratiorapeeters were generated
using Gaussian gain magnitudes with a mean of 1.0 and sthdearation of 0.3, and
phases uniformly distributed in the ranger] x).

The curves marked with a diamond in Fig. 3.3 show the CRB astifom of source
index for calibration on a single STI snapshot, using theére¢nore configurationd; =
32 central core stations). The CRB is computed using equéBd 8), with constraint
JacobiarFy , from (3.23). The ‘asterisk’ curves show the same Kok 11 frequency
bins andM = 10 time snapshots, covering 110 STI snapshots on a samglevighi one
second by 50 kHz spacing. (As with all results in Section 3ebassume narrowband
array operation with frequency binsfiaiently narrow that no phase smearing occurs
in visibility estimates. The 50 kHz bin spacing exceeds taeowband limit, so we
assume individual bins are more narrow, but selected atlyvgdparated frequencies to
reduce computational burden.) The resulting region of 19 59 kHz is considered to
be the maximum span that can be assumed to have constamatafiparameters. In
both the single snapshot and 1& $00 khz cases, the use of the direction independent
calibration model for the central core leads to low calilm@error bounds for the first
few sources. The error increases with the source index,easabirce SNR decreases,
and after the sixth source (third for middle single STI cajwenacceptable phase errors
of more than one radian are encountered. Useful calibrétiothe remaining sources
requires a region larger than 10 s by 500 kHz.

The top curves show the bounds fr= 8 central core stations, modeling the other
24 core stations as external stations. Since this is sntalderQ — 1, the calibration
error becomes extremely large. The horizontal curves abditeom are provided as a
reference, and represent CRB values for the same 10 sowsedutiwhere calibration
parameters daotdepend on source direction, i.e. only one complex paramatst be
estimated for each station. This represents the conveaignthesis imaging problem at
higher frequencies where ionospheric interaction is rrongf or the aperture is smaller.
The comparison illustrates the relativefdiulty of direction dependent calibration, par-
ticularly for weaker sources.

°RA and DEC are astronomical polar coordinates for fixed looat in the celestial sphere
used to locate deep space objects; the celestial equivaéniatitude and longitude. See e.g.
httpy/lifto ff. msfc.nasa.ggacademyuniversg¢radec.html.
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3.5.2 CRB for Polynomial Calibration Variation

Large STl regions are needed to improve the CRB performaithalivection dependent
callibration. The parameters are not constant over sudbnedput vary smoothly, and
the polynomial calibration models discussed in Sectior33mll be used. To reduce the
sizable computational and memory requirements, a “thihb@FAR array is used in all
simulations to follow. Every second element from Fig. 3.1svirecluded, with) = 36
stations covering the 100 km aperture and with a central@bdg = 16 stations.

In the first experiment, shown in Fig. 3.4, a basic setup watleentral core assump-
tion is used, so an independent frequency-time polynoraiapplied for each source-
station combination. A first order in both time and frequeRdy polynomial model was
usedI'(p, f,t) = Y1+ Y2 f +Ygtand¥(p, f,t) = T1+ Tof + T3t, with randomly selected
“true” polynomial codficient matricesyy andT4. The same 10 calibrator sources and
beam steering direction as in the previous section wereingbd simulation. CRB val-
ues were computed using (3.18), now with the frequency-tiorestraint JacobiaRy m
from (3.26).

Fig. 3.4 presents CRB results for four linear in frequendy gad phase cdicients,
i.e., entries oY, andT, corresponding to source 3 and core station 2, resp. out@rsta
35. An important feature is that the CRBs are unacceptalgly binless the estimation
domain covers several seconds amé few hundred kilohertz. This is becauséisient
frequency-time diversity due to fringe rotationkn m is needed to overcome the multiple
source ambiguity discussed in Section 3.4.1.

The scenario of Fig. 3.4 was repeated for Fig. 3.5 with thiefdhg changes: 1) the
central core direction independent modelsapplied, by combining (3.23) and (3.26), 2)
the scene contained only the first five sources from TableaBd 3) the 2-D frequency-
time polynomial was first order in frequency, and zero ordeime: I'(p, f,t) = Y1 +
Yof, (o, f,t) = T1 + Tof. This scenario will be used without change in all following
experiments to exploit the central core and to reduce coatipn@al burden in simulations
which involve many Monte Carlo random trials.

Comparing Figures 3.5 and 3a(it is apparent that the central core model signifi-
cantly reduces estimation error variance and the needrige lime domain span. Other
experiments (not shown) indicate that the reduction frontalfive sources and use of
a zero-order-in-time polynomial model were minor factaershis CRB reduction. This
suggests that a self calibration algorithm should explatdentral core model if array
geometry and ionospheric structure support it.

3.5.3 Peeling Calibration Performance

A full implementation of the peeling algorithm was run ussymthesized array receiver
data to compare its performance with the corresponding GRigen fully operational,
LOFAR will be calibrated in real time using a super compukéowever, given existing
computational resources and the need to run many Monte @eals the thinned array
five-source scenario of Fig. 3.5 was used here.

A first order in frequency, zero order in time, 2-D polynomials applied both for
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Figure 3.4: Normalized CRB for polynomial cgieients as a function of total frequency-time span.
The direction independent compact core model matsused. Decibel level is normalized to the
single source CRB over the same frequency-time span. SPlesampacing is 1.0 second by 2.0
kHz, beginning at 40 MHz(a) Normalized CRB for the gair()Y;)[2, 3], and phase(T,)[2, 3],
cogficients from the linear-in-frequency polynomial term foatgin 2 (in the central core) and
source g= 3. Curve families cover CRB dependence on time domain sizelfrm 10 seconds in
1 second increments. The 1 second gain curvgfithe plot scale abovelb) CRB for(Y;)[35, 3]
and(T,)[35, 3], at station35in an outer array arm.
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Figure 3.6: Peeling algorithm performance comparison with the CRBinkation domain size
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source direction. The horizontal axis parameter index feneents op is ordered as in (3.25).
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generating the simulated array datgn), and in the peeling algorithm parameter model.
The “true” parameter matrices were randomly generated. fldgpiency-time STI bin
size is 2 kHz by 1 s, with, = 50, M, = 10 the Peeling block size is 100 kHz by 10 s,
and with 1< k < 10, = 1, the total domain covers 4bto 410 MHz and 10 s. Peeling
usedl =5 iterations.

The generated array data had a central cdge=(16), and the CRB analysis takes
this into account. Thus the CRB evaluation uses the produ¢3.23) and (3.26) as
the constraint Jacobiafym. However, the current version of Peeling does not include
specific provision to exploit the central core model, so nemtes distinct calibrations
for each source—station combination, even though theylghmmudirection-independent
and thus identical for all sources for each central cordostatAs final estimate for
the core array calibration parameters, only the paramdeziged from the the brightest
(q=1) source are used.

Fig. 3.6 shows the CRB and Peeling estimation error sampianee averaged over
100 Monte Carlo trials. It is seen that Peeling closely apphes the CRB performance
bound for the central core arrag € 0) and the two brightest sources£ 1, 2). Peeling
error variance is somewhat higher than the CRB for the thesker sources|(= 3, 4, 5).
This suggests that there is value in continued researchv@ajeimproved calibration
algorithms. The plotted results are encouraging, but neée tverified on the full array
and with a larger number of sources.

3.5.4 Peeling with Demixing

Performance of the combined Peeling with Demixing procedvas evaluated by com-
puter simulation with the same models and parameter sstdsgused in Fig. 3.5 and
Section 3.5.3. Fig. 3.7 compares the average bias erroritndgrfor single pass con-
ventional Peeling with the bias from Peeling with Demixirigstimation error variance
(not shown) was acceptably low and at the same level with atibut demixing. The
figure shows that demixing significantly reduced bias error.

Without demixing, Peeling requirds= 3 passes to produce bias levels comparable
to one pass of Demixed Peeling. This demonstrates the tiedreorrectness of the
approach described in Section 3.4.5. However, its prdatititty is somewhat ques-
tionable: With our current implementation in MATLAB it tage8.31 times as long to
complete a single demix pass as to complete three passes tdéghlar peeling algo-
rithm. Since both performance and complexity depend on timeber of source® and
other system parameters and assumptions, it is hard tocpremliv this works out in the
actual LOFAR system.

3.6 Conclusions

Calibration algorithm development for LOFAR is ongoing asdritically important if
the system is to achieve its ambitious scientific goals oéolisg the very weak signals
generated during the early evolution of the universe. &uon with the ionosphere
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Figure 3.7: Comparison of bias error in estimating polynomial paramegtg, 0 < q < 5 for
Peeling alone, and Peeling with Demixing. One peeling paas performed in each case. The
plot illustrates the lower bias error performance of the deing algorithm. Without demixing (not
shown in this plot) three to four passes of Peeling were méédechieve the bias levels of the
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at low frequencies makes this self calibration problem ificamtly different and more
difficult than what has been encountered in existing radio sgigtimaging instruments.
It also leads to new challenges in array signal processing.

The main point of the paper was to derive and present the maghfor answering
fundamental questions about calibratability for LOFARdam particular to assess the
previously open issue of whether it is even theoreticallggilde to achieve self cali-
bration. The most significant finding is that without makirgg@mptions on the iono-
spheric structure, LOFAR cannot be calibrated, but with sonodeling assumptions
(e.g. frequency-time polynomial smoothing) anéisient frequency-time diversity from
large estimation domains, direction dependent calibnasgossible. CRB analysis re-
vealed no “show stopping” theoretical limitations on thdigbto calibrate LOFAR. A
central core configuration gives a significant reductiomariumber of unknown param-
eters and thus greatly enhances the calibration perforenanc

The Peeling calibration algorithm was implemented and cmexb to the CRB us-
ing simulated data. The results indicate that at least ftithited scenarios evaluated,
Peeling appears to be a viable candidate. Further algod#valopment to reduce com-
putational complexity and estimation bias due to multimearses is warranted. Next
steps will also include algorithm development to directtpleit the central core direc-
tion independent calibration model in Peeling, study of meathods to achieve more
effectively reduced cross-source interference bias at thea§t®eeling, and evaluation
of ionospheric data and physical models to determine apjatepsmoothing functions
over time, frequency and space with a reduced number of peesisa To complete the
picture, further studies also need to point dijttlle accuracy of these models (model
mismatch, which translates into bias), afidl the consequences of parameter variance
on the dynamic range of the image.

3.A Appendix

Here we derive the closed form expressionshiy, in (3.8) which are shown in (3.9)—
(3.14). Subscriptk andm are dropped for notational simplicity.

Define the Jacobians

ovecR) _ ovecR) _ ovecR)
vy T oy YT T

erq =

The following expressions are useful in computing the paderivatives:

Q
0 0 .
vecR) = qZ: aq ® aq +vec(A), 6'?% = @, 62 = jEq
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whereEq = diag(yq © kq), ®q = diag(¢, © kg). The Jacobians can then be evaluated as

Q —
0 _ 0aq _  0yq
Jyv = —|) c2(a,®ap)+vecA)|=oi— ®ag+ 028, ®
Yq 673 ; p ( P p) q a,ya aq Claq a,ya
Q —
0 _ 0gq _  0Oaq
Jye. = —=| > o2(a, ®ay)+vecA)|= 02— ®ag+ 028 ®
ovecA)
J = = | 0] |
! ax

An expression is derived here fM»\/pwq as given in (3.12), the other blocks are
derived similarly.

Mgy = 35 R @RIy,
= (Ppodl+a,@ @) (R @R (-j®® 8+ ® Dy
= 202~ j(@}R Eg) @ (@R "ag) + i(®HR '3g) ® (@R 'Eq)
~j(ay®R 'Ep)® (@R &) + @R 2 ® ()R E))

= 20%021m {(@},ﬁ’lﬁq)(a;R-laq) + (@},ﬁ’lsq)(a;R-lEq)} .



Chapter

lonospheric Modeling *

As we have seen in the previous chapter the performance dibaateon algorithm de-
pends critically on the model for the ionospheric fluctuasioThe analysis in the previ-
ous chapter only included estimation error due to noise. artadysis ignored modeling
error. The variance of the estimation usually gets smalleemfewer parameters need
to be estimated. On the other hand a model with more parasnedermore accurately
match physical reality, resulting in a smaller bias. Theropt calibration method should
make a trade-d between modeling error and estimation error such that tfad¢eoror is
minimal.

However, a detailed model of the physical processes in thesjghere would be im-
practical for the purpose of calibration. The derivatioranfoptimal estimator would be
difficult and the computational complexity of the resulting aitdpon would be too high
for practical implementation. Furthermore, the currenbwledge of the ionospheric
processes at the scale relevant to the calibration probildrarad is incomplete. Most
research on ionospheric processes deals with features tothie scale of a hundred
kilometers. The smallest scale relevant for calibraticenfiew kilometers.

Thus we need a model that is at the same time detailed enouwgtptore the small
scale fluctuations of the ionosphere and simple enough tevate derivation of an
algorithm of low complexity.

The usual method of describing complicated processes imeis®way is to resort
to a stochastic description. For example noise is the sumaofyraomplicated physical
processes. Instead of describing these processes in deiag is usually described as a
random (Gaussian) process.

We will use the same approach for ionospheric processeteam®f describing the
ionospheric fluctuations in full detail we will assume thia¢ fluctuations are the result

*A paper entitled "Fitting a turbulence model to VLA Low-Fregncy Sky Survey data. |. Derivations and
examples” by S. van der Tol, R. Sridharan, A.-J. van der VEeh A Rottgering and A. S. Cohen on the results
on VLSS data presented in section 4.4 is in preparation
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of a random process. The power spectral density is assumbd &ther known, or
described by a model with only a few unknown parameters.

In this chapter we will present a theoretical motivationted thosen model from lit-
erature on turbulent flow. The choice of this model is furggsported by measurements
from both GPS satellites and the VLA radio telescope.

4.1 Introduction

We will adopt the framework introduced by Tatarski [32] béie# Kolmogorov turbu-
lence. This framework is extensively used in (adaptivejospihere turbulence is used
as a model for the refractive index fluctuations in the néw@taosphere see Roddier
[33]. Hewish [34] identified turbulence in the ionospheritalyer as one of the possible
mechanisms that could cause the small scale irregularMés and Thomas [35] out-
lined how turbulence could be a possible mechanism capélkebgxtaining the observed
irregularities but quickly excluded it owing to the largan&matic viscosity, and hence
a low Reynolds number (see below). Later, Yerg [36], with adified approach to the
kinetic theory, showed that the kinematic viscosity is derahan the values known till
then by several orders of magnitude and approaches zere impiher ionosphere. This
indicates that the Reynolds number could indeed be highgméa cause turbulence.
Thompson et al. [4] mention that the use of the power law facdbing the phase er-
rors induced by the ionosphere is more realistic, and usiagsame exponent as used
in Kolmogorov spectrum that describes the tropospherisufence is consistent with
observations. Thus, there exist some theoretical and wdits@nal evidences for the tur-
bulence in terrestrial ionosphere and it would seem apfatEpto use the tropospheric
turbulence theory to describe the plasma turbulence irothesiphere.

4.2 Kolmogorov Turbulence

The mechanics of fluids are described by the Navier-Stokeat&m,

WD e yvyue. ) = —PEY L gauey (4.1)
ot Jol
whereu(r, t)is the fluid velocity,p(r, t) is the pressure is the densityy is the kinematic
viscosity,r andt are the spatial and time coordinates. The Navier-Stokeatiuuis
non-linear because of the teron((, t)V)u(r, t). The termyV2u(r, t) describes the friction
between neighboring parcels of fluid. The friction causestt energy to be dissipated
as heat. For a stationary solution there needs to be a congtamof energy.

Let the size of the phenomenon we want to describe be olsiaad let the velocity
difference be of the ordéf. The non-linear term is approximately?/L. The viscous
term isyU/L?. The ratio between the two is known as the Reynolds nunitest, UL /v.
ForRe < 1 the Navier-Stokes equation is linear and closed form mwistcan be found
in many cases. The resulting flow is laminar.
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For Re> 1 stationary solutions do not exist. The non-linearity esuhe solutions
to be chaotic and the flow is turbulent. Consider a stablerlanflow for whichRe < 1.
Now start to increase the flow velocity. The Reynolds numberdases also and at a
certain moment the flow becomes unstable and breaks up idiesedThe eddies are
smaller than the flow as a whole and they have lower Reynhatdbeus. When we
further increase the velocity the eddies themselves géablesand break up into smaller
eddies. For very high Reynolds numbers there exist eddissaviange of sizes from
the outer scalé to the smallest scalevhere viscous dissipation is dominant and kinetic
energy is converted to heat. The Navier-Stokes equatiotufbulent flows can only be
solved numerically. A complete solution takes a lot of timdaile for our purposes it
is suficient to know the statistical properties of the flow. Kolmomwintroduced some
simplifying assumptions which enabled him to derive théistiaal properties.

It is assumed that eddies only lose energy to eddies of snimitecomparable sizes.
There is no direct flow of energy from the largest eddies tsthallest. This process has
come the be known as the "Kolmogorov cascade”.

In the stationary case energy can not build up at intermedéels. Eddies of a
certain size must loose the same amount of energy to theesmealilies as they receive
from larger eddies. Therefore the flow of energy can be clariaed by a single number
€, the energy per unit time per unit mass.

It is assumed that there exists an "inertial range” betwberouter scale of energy
input and the inner scale where energy is dissipated. Eddibssizes away from both
the outer scale and the inner scale are not influenced by saeje €ects or small scale
effects. The energy contained in eddies in the inertial ranfyedapends oe. Therefore
the power spectral density of the velocity variations, deddy ®,(q), whereq is the
wavelength, must satify an equation of the form

(@u(@[m’/SD* ~ (e[m?/S])(alm 1)) (4.2)

To match the the units of time (s) on both sides we need to &wes3 andy = 2. The
last exponenzis used to match the units of length (m) by setting izte —5. This leads
to

Dy(q) ~ q*° (4.3)
Likewise for the three dimensional spectrum we find

Dy(a) ~ gl Y3 (4.4)

This relationship has become known as Kolmogorov’s law anehlid only within the
inertial rangel_al < g < I71, wherel is the outer scale at which energy is fed into the
system andp is the inner scale where the energy is dissipated by visaiet®h into
heat.

4.2.1 Passive Conservative Additive

In [32] it is shown that the spectrum of density fluctuatioha passive and conservative
additive also follows Kolmogorov’'s law. An additive is a sidnce added to the turbulent
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flow. An additive is passive when it does ndfext the dynamics of the flow and con-
servative when it is not created nor destroyed in the flow,the density only changes
due to mixing by the turbulent flow. Strictly speaking thesfedectrons in the ionosphere
violate both conditions. They are not passive because theitements are influenced
by the earth magnetic field, and not conservative becausedi@ion and recombination
change the electron density. The resultifiget could be magnetic anisotropic density
fluctuations and at times when many new electron are gemgffateexample at sunrise
or meteor strike, a departure from the powerlaw. In our aiglye do not include these
effects and assume the power spectrum of the electron densitydtions is given by

D, (G, Gy» Gz) ~ llgl . (4.5)

The refractive index is approximately proportional to thec&ron density so we assume
its power spectrum is given by the same power law

®n(Qx, Gy, d) ~ llgll ™. (4.6)

4.2.2 Structure function

Power law spectra can befliicult to work with since the power goes to infinity when the
frequency goes to zero. At large scales a pure power law eamnlglnot be a valid de-
scription of a physical process. The introduction of an pstale keeps the description
in the physical domain. However, if we are not interestechim large scale structures
the problem can be avoided altogether by describing onll Idiferences. The fluctua-
tions of the refractive inder as function of positiom can then described by a structure
function which is defined as

Da(r = lIr1 = r2ll) = E[(n(ra) = n(r2))?] (4.7)

where E[] denotes the expected value. The relationship betweenutoea@relation
function and the structure function is given by

Dn(r) E[(n(r1) - n(r2))’]

E[n(r1)? + n(r2)* - 2n(r)n(r2)]
E[n(r1)?] + E[N(r2)?] — 2«(r1,12)

wherex(r, r2) is the autocorrelation function

k(ra,r2) = E[n(ro)n(r2)]. (4.8)
The autocorrelation function can be written as
k(r1,12) = 1/2(E[n(r1)?] + E[N(r2)?] - Da(r1 - r2)). (4.9)

The refractive index fluctuation follow a power law the sture function can be
written, in the notation used by Prokhorov et al. [37], as

Dn(r) = C2rF1 (4.10)
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whereC2 is a measure of the strength of the turbulence gnd 5/3 for Komogorov
turbulence. The corresponding power spectrum is given by

®n(q) = AB)CAa* 2, (4.11)
whereq is the spatial frequency and
A(B) =T (B + 1) sin[(8 — 1)r/2]/4x>, (4.12)

wherel(-) is the gamma function.

4.2.3 Thin Layer Approximation
The phase change induced by a thin layer of thickaass given by

H+Az/2
p(xy) =k f dzn(x,y. 2), (4.13)
H-Az/2
wherek = 21/ is the wave number. The two dimensional power spectrum sngdy
O(qy, gy) = 27k Az (0 0y, 9z = 0) (4.14)
The corresponding structure function is

I'(1-p/2)
g2
(r/so)’ (4.16)
whereT = 27k?AzA(B)C2 ands, is the field coherence scale which is definediyso) =
1.

Dy(r) (4.15)

4.2.4 Propagation

After passing a turbulent layer at heigttthe electromagnetic wave propagates to the
antennas at the ground. As long as the radius of the first Eregsmers = +H/k is
smaller than the field coherence scale the phase screeasaatithe ground essentially
unaltered. FoH = 200km andil = 4m, r; = 357m. For the datasets presented in
this chapter we have found the largest valuespfo be 13157m and the smallest value
1645m. This is well above the Fresnel scale, so the use of geimmptics to propagate
the field to the ground layer is justified.

4.2.5 Previous Measurements of Power Spectra

Measurements with the Palomar Testbed Interferometer ifjeld et al. [38] show that
the power-law slop@ for the neutral atmosphere was betwee#0land 150 on most
nights.

An overview article by Yeh and Liu [39] contains a number dérences in support
of power-law structure of the ionospheric fluctuations.

Velthoven [40] obtained power-law slopes above the Kolntogwealue, in the range
1.8 to 2, for wavelengths between 100km and 1000km.
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4.3 GPS observations

Measurements of the signals of GPS satellites can providab information on iono-
spheric properties. The signals from GPS satellites trdwrelugh the ionosphere and
experience an ionospheric delay just like astronomicalagdo. GPS satellites are ac-
tively monitored worldwide by networks of receivers. Sonfithese networks make their
observations publicly available on the internet. In thigties we describe how this data
can be used to estimate the ionospheric delay by the dualdrexy method and how the
structure function can be estimated. The results show ggeEbeent with a powerlaw.
The slope can take a range of values, although the most findlguaecurring slope is
close to Kolmogorov's value.

4.3.1 Data Set

The data used in this analysis comes from the Dutch Perm&@¢86 Array (DPGA).
GNSS stands for Global Navigation Satellite System. The RBE&rmanently observes
the GPS and GLONASS satellites. Data files can be downloadeuHttp://gnss1.
1r.tudelft.nl/dpga/. The highest available time resolution is one sample pesrakc
Each hour of observation is stored in a separate file. In betiee hourly measurements
there are gaps of missing data of approximately 9 minutesh&Ve chosen for the mea-
surements from the month January in 2006 at Cabauw, The Naatls by the receiver
identified as CAB2Kttp://gnss1.1r.tudelft.nl/dpga/station/Cabauw.html#CAB2).
The data published by the DPGA is in the compact RINEX fornighe RINEX file
format is the international standard for the exchange of @&surement data. RINEX
stands for The Receiver Independent Exchange Format. THEXRformat allows users
to use the same set of software to process data fréi@reint receivers. A description
of the file format can be found aftttp://www.ngs.noaa.gov/CORS/Rinex2.html. TO
save disk space RINEX files are often compressed into the @oniRINEX format.
A utility to convert Compact RINEX files to standard RINEX flean be found at
ftp://garner.ucsd.edu/pub/software/rnxcmp/source/crx2rnx.c. The RINEX files
contain among others information on the location of the ikerethe orbital parame-
ters of the satellites and the measured carrier phase oivthedrrier frequencies of the
satellite.

4.3.2 Dual Frequency Method

In principle it is possible to measure the absolute TEC fratslte to receiver by mea-
suring the time delay of a transmitted signal. In practide th difficult because the
clocks of satellite and receiver need to be synchronizedransdatellite-receiver distance
needs to be known up to millimeter accuracy. Furthermoréemwapor in the lower
atmosphere causes an additional delay which is usually tangér than the ionospheric
delay. Thus the water vapor content needs to be known too.

The problem of unknown satellite receiver distance and ankrdelay in the neutral
atmosphere can be overcome by using two carrier frequetwciistinguish between the
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frequency dependent ionospheric delay and the other délagsunsynchronized clocks
are not a problem for estimating changes in TEC over timeerattan absolute TEC.

The dual frequency method works as follows. GPS satellisa® ttwo carrier fre-
quencies| 1 = 157542 MHz andL2 = 122760 MHz. GPS receivers track the phases
of the two carriers. Because the receiver locks to an arpitngcle and because the os-
cillators of the satellite and the receiver are not synclzexsh the measured phases will
have an unknownftset. As long as the receiver maintains locked tffsat will not
change. At low SNR so called "cycle-slip” can occur. The ieeeloses lock which re-
sults in a change of thefiset by an integer number of cycles, or equivalently a mtipl
of 2n radians. It is possible to correct for an occasional cytife-Erom here on we will
assume the cycle-slips have been corrected for. Let theuraghphase (in cycles) be
given byy = ¢rue + @otfset ThisS number can be converted to a propagation distance by
multiplication with the wavelength,, wheren is the carrier number,

d(t, An) = Sﬂn(t)/ln = dtrue(t, /ln) + doffsetn~ (4-17)

The measured propagation distance consists of the true,dimd frequency dependent
partdyue(t, An), and the unknownfésetd, ¢ tsen Which is diferent for each carrier. The
true propagation distance is the sum of the geometric oripalydistance and a tropo-
spheric and an ionospheric component,

Chrue(t, An) = @n()An = dgeor’r(t) + dtrop(t) + dion(t, An). (4.18)

Of these, only the ionospheric component is frequency digren Converting equation
(2.4) for the ionospheric phaggn to propagation distanad,, leads to

A
dion(ta /l) = Z(ﬁionT EC(t) = AZC (4-19)
where
& 447 (4.20)
8m2meegC? ’ ’

The frequency independent components cancel by subtnaaftiovo different measure-
ments at two dferent frequencies,

Ad(t) d(t, 21) — d(t, 12)
= dion(t’ /ll) - dion(t’ /12) + dof fsetl — dof fset2
T EC('[)(/I% - l%)C + ot fset1 — dof fset2-

The unknown €sets are still part of the equation. Thisets are constant over time so
they can be canceled by subtracting two measurementfatedit time instants,

Ad(ts, t2) = Ad(tr) - Ad(to) = (TEC(ts) - TECQ(to))(15 — 3)C.  (4.21)

From this equation an expression for the TE@eatence over timeAT EC(ty,tp) =
TEC(t;) — TEC(tp), can be derived :
Ad(ts, t2)

ATEC(ty, 1) =
(2-2)C

= 9.55[TECU nYAd(ty, to)[m] (4.22)
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Figure 4.1: (a) Schematic view of GPS satellite orbit, the ionospherigle layer model and the
receiver. (b) Plot of the trace of the piercepoint as the G&S8lite passes over

where the numerical value was found by substituting the \eanegh of the two GPS
carriers L1 and L2.

The TEC diferences are rather small. To ease the interpretation ofethéts the
TEC values have been converted to a phase shift in radianfoatea frequency. This
frequency is set to 74 MHz so that a direct comparison to thdH4 Very Large Array
(VLA) observations, presented later in this chapter, issjime.

4.3.3 GPS tracks

GPS satellites broadcast their orbital parameters whichbeaised to calculate the satel-
lite positions. The parameters are stored in RINEX navigefiles. These have been
used to calculate the positions of the satellites. The pipoint is the intersection of the
line of sight and the ionospheric layer. The ionospherietay assumed to be a plane,
not following the curvature of the earth. The height of thgelais chosen somewhat
arbitrarily to be 300km, which is approximately the heightmaximum electron den-
sity. Figure 4.1(a) illustrates the model. The positionte piercepoints is given by an
(x,y) coordinate pair in this plane. At low elevations thevaiure of the earth can not
be ignored anymore therefore an 30°elevation mask has lpgdie@d The pierce point
changes over time and traces out a track in the ionosphenieplAn example of such
a track is shown in figure 4.1(b). The measured ionosphersghtogether form an
ionospheric phase profile.
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Figure 4.2: Approximately to scale figure of the GPS orbit with a 30°diievamask, the turbulent
layer and parallel lines of sight from two antennas at 400kemfeach other.

4.3.4 Detrending

The bulk ionosphere above the turbulent F-layer and the agsnéfect (see below in
section 4.3.5) of the mean electron density in the F-laydrathrge scale trend to the
ionospheric phase profile. This trend is not visible in reaitronomical observations for
two reasons: 1) the lines of sight frontigirent antennas to the same source intersects the
turbulent layer at the same angle (ignoring earth curvt@jehe width of the region of
the upper ionosphere covered by the lines of sight is regtismall (not wider than the
largest baseline). Figure 4.3.4 shows the GPS orbit andrtes f sight from a baseline
of 400km approximately to scale. It shows th&elience between probing the turbu-
lent layer by observing the same source dfedent receiver locations (radio telescope)
and observing a moving source from one location (GPS). Theribation of the bulk
ionosphere can be approximated by a second order polynofoiakparate the turbulent
fluctuations from the trend we "detrend” the data by subtngca least squares fit of a
second order polynomial. The detrending introduces sonoe especially at large scales
because it includes part of the large scale random fluctumtiothe trend and removes
them. Empirically we have found that if the distance betwiberstart and end point of a
track is more than 400 km then there is only minor influence wetdlations on the scale
of 100 km and smaller. Tracks shorter than 400 km are notdszun the data set.
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4.3.5 Airmass Correction

After detrending the profile still needs a correction for themass défect. At lower
elevations the line of sight is not perpendicular to the wiebt layer. This increases the
ionospheric delay by a factor/ tosd, whered is the zenith angle. To correct this we
multiply the delays by co& To calculate the zenith angle the position of the satsllite
needs to be known.

4.3.6 Estimation of the structure function slope

This section describes how the power law slope can be estihfisdm a GPS track. The
model for ionospheric phase is a model over space. The dxsphases are measured at
different times and locations. The method described below dutefistinguish between
the behavior over time and over space. We assume that thepbare is frozen i.e.
changes over space orfly

A track consists o\ samples. Each sample consists of a pligsad a piercepoint
location ;,Y;), wherei is the sample number. There a}BJ(N — 1) different pairs of
samples. For each pair we calculate the piercepoint distanc

Fij = 306 = )2 + (i = ;)2 (4.23)

The data is binned according to piercepoint distance. Taiolan even distribution of
bins over the logarithm of the distance the bin sizes inereaponentially. The bin edges
are given by

dmax K
&=(32)" dun (a.24)
min

wheredni, is the minimum distancel,ax is the maximum distance arkis the number
of bins. These parameters were chosen as follalyg; = 1km, dnax = 100 km and
K = 20. For distances below 1 km the phasatence is small relative to the receiver
noise. For distances above 100 km detrending causes anestideation of the phase
difference.

The bin mean valub, is the average of the phasefdrences squared for all samples
for which the piercepoint distances fall within the bin,

1
b= D, @i-9)> (4.25)
N {i, jlen-1<rij<en)

whereM, is the number of pairs in bin. In some cases, when the ionosphere is quiet,
the mean value of the lower bins is below 1%aBor these low values the measurement

1This assumption is probably not completely realistic. kuliethe pierce point typically moves with a speed
of 40— 120 ny's through the ionospheric plane. This is in the same orderagfiitude as the wind speed at the
altitude of the ionospheric layer. The typical speed of €liag lonospheric Disturbances (TIDs) can be several
hundred meters per second. Hence we suspect that therrgsthiicture function will include variations over
both time and space. This problem can be overcome if one haxyaense network of GPS receivers available
and a method of eliminating theftBrent dfsets of each receiver. This is outside the scope of this sisaly
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noise is significant, so these bins are discarded. The birageeh, are plotted against
the bin centers, = (e,-1 + €n)/2 in a double logarithmic plot, see Figure 4.3(d)

The ionospheric phase fluctuations are expected to folloamseplaw (4.16). When
the bins are dticiently small the bin mean valuég are expected to be given by

B
by = D(Cn) = (%) . (4.26)
Taking the logarithm of this equation yields a linear equatti
log(bn) = log(cn)B — log(so)- (4.27)

After stacking the mean bin valudg and the bin centers, into the vectord andc
respectively (4.27) can be written in matrix form:

logb = Ap, (4.28)
where
A=[1 logc | (4.29)
and I
_| 109%
p= [ B } (4.30)

The least squares solution to (4.28) is given by
p=(A"A) " A"logb, (4.31)

The estimated power spectrum slopg@isthe last entry op. A measure of the goodness
of fit is the residual modeling error, given by

res= H(I _A (ATA)’lAT) log b” . (4.32)

4.3.7 The procedure

The complete procedure to find the powerlaw slope from medsBPS data is summa-
rized below.

1. Read the phases of carriers L1 and L2 from the RINEX file,
If necessary, correct for cycle slips,

Use the dual frequency method to find the ionospheric delay
Detrend the ionospheric delay,

Calculate satellite and piercepoint positions,

Correct for the airmass term,

Estimate the structure function,

© N o g A~ w D

Fit a straight line in a double logarithmic plot.
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4.3.8 \Variability of the lonosphere

The ionosphere is continuously changing. The most promiieature on the short term
is the variation over the day. During daytime radiation frima sun creates many free
electrons. At night time the number of free electrons dr@ps.larger time scales there
are seasonal flerences and the eleven year solar cycle. Our data spansod péone
month, so only the variation over the day can be seen.

4.3.9 GPS Data Results and Conclusions

From the data of the month January 2006 1059 satellite tdaaks been extracted. Of
these 973 were longer than 400 km. For one of these track8ngtat 18:35:46 January
3, 2006 of satellite number 24 the results of several stepieiestimation procedure are
shown in figure 4.3.

Plot 4.3(a) shows the measured ionospheric phase shiftitz4 The ionospheric
phase shift is dominated by the contribution of the bulk mpizere, which has been
removed in figure 4.3(b). After detrending an airmass cdioadas been applied, the
result is shown in 4.3(c). The corresponding structure tioncand the linear fit are
shown in figure 4.3(d). This last graph shows a good agreelbenieen the power law
model and observed data for this track.

The histogram of the residual in figure 4.4 shows how well ttheeotracks match
a power law model. The triangle marks the residual of the gtartmack in figure 4.3.
Most tracks have residuals similar to the example track. vk tfacks match poorly as
can be seen from the tail in the histogram. Tracks for whiehrésidual is more than
the, somewhat arbitrarily chosen, threshold dffare rejected. This removes 8% of the
tracks.

The remaining 896 tracks provides a set of samples of theesdbphe power law.
A histogram of the slopes is shown in figure 4.5(a). TI8 Slope predicted by Kol-
mogorov’s law is indicated by a dashed line. The peak of thtogram is close to the
theoretical value, but there is a considerable spread péslover the range from 1 to 2.
The average slope is not constant over the day as can be degmr@v.5(b). A clear dis-
tinction between day and night time conditions is visibléeTindividual samples show
that although there is a trend over the day, at any time ddhieglay there still is a large
spread over a range of slopes.

From these GPS measurements it can be concluded that mbsttohe a power law
model is in agreement with the observed data. The most fralydfleund slope is close
to theoretical value of B, but there is is considerable spread over a range of slopes.
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Figure 4.3: (a) lonospheric phase as measured by the GPS receiver. fospheric phase after

detrending. (c) lonospheric phase after airmass correcti@) Estimated structure function and
linear fit.
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Figure 4.4: Histogram of the residuals after fitting a power law to thealafThe dashed line
indicates the cut @ threshold which removes 8% of the data. The triangle mar&gekidual of
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slope for the Kolmogorov spectrum. (b) Slope of the strecfunction over the day. The cross
markers show the individual samples, the solid line witlewarr markers show the hourly aver-
ages.
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4.4 VLA observations

In this section we will analyze data obtained from the VLA L-&iequency Sky Survey
(VLSS) by Cohen et al. [41]. The Very Large Array (VLA) is a iadelescope in New
Mexico, U.S. wich has moveable 25 meter dishes that can bim pliferent configura-
tions. The 74 MHz VLSS data has been obtained in VLA B and Bnéfigoirations and
processed using the Field Based Calibration (FBC) methedldeed by Cotton et al.
[42]. FBC is an improvement over self-calibration accomatoty a time and direction
dependent phase gradient to capture the ionospheric phaseations. The intricate
details of the calibration procedure and the fidelity of tesulting maps can be found
in [41]. Here we present a brief high level description of taa, and the calibration
process that generates the intermediate data relevamefantestigations carried out in
this section. This data has been analyzed before by CoheRattgering [43]. They
however did not fit the data to an actual model of the ionosphsrase fluctuations.
Here we will fit the data to the power law model described eaiti this chapter.

4.41 Description of the Data

The original survey data in the VLA B configuration include&33distinct pointing di-
rections in the sky. In each pointing direction, a field ofwief approximately 10°is
observed in three scans, each spanning approximately A&esiduration, separated by
one or two hours. In each scan, the correlation data is iatedifor 10 seconds in each
baseline and stored. While processing the data, a map ofetldedfi view is obtained
in every two minutes in each scan. If the coherence time ofidhesphere is larger
than 2 minutes, these maps can be considered analogousghdtesxposure images
obtained with ground based filled aperture telescopes. diness in diferent directions
within the field of view will be sharp, but will exhibit a randodisplacement from their
true position or will be blurred and will exhibit a speckledensity structure depending
upon whether the ionosphere behaves like a refractive offtactive medium at those
directions at a given time interval. The positions of all thetected sources are com-
pared to their corresponding positions in the GHz map (NV&8&log) and any observed
differences in the positions are attributed to the random tllaiéed by the ionosphere
(ionospheric phase gradient) in the direction of the saiplas an unknown position
shift due to a residual instrumental phase. A table of thedesl position fisets of the
detected sources as a function of time forms the basic dathdopresent study. Fig-
ure 4.6 shows a schematic representation of the data. Theerushdetected sources
varies with time depending on the ionospheric conditiofig source is bright enough
to get detected all the time, there will be a maximum of 13 timsioffset values (in RA
and Dec) foritin a scan.

4.4.2 Experimental Setup and Data Model

The observational setup is illustrated in figure 4.7. A fielda@urces is observed by an
antenna array through the ionosphere. The ionospheraimasido be an infinitesimally
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Figure 4.6: Position shift of the sources with respect to the catalogueetion of time due to
ionospheric aberrations and residual instrumental phase

thin layer at height above the surface of the earth.
The array consists d¥l telescopes. The position of an antenna is given by the posi-

T
tion vectorr = [ Xy ] . The antenna positions are collected iMax 2) matrix

R=| : (4.33)
M

The intersection of the path from source to antenna and tiusjgheric layer is called
a piercepoint. The location of the piercepoint is denotethigyiength 2 vector’. Here
we adopt the convention that whenever there are similartdiesnin the ground plane
and the ionospheric plane we use the same symbol, wherertbsgberic quantity gets
a prime (). Figure 4.8 shows the two sets of piercepoints for two seaird he distance
between the two sets is the piercepoint separation and é&rkpon both the angular
distance between the sources and the height of the ionadséngzr.

For rays perpendicular to the ionospheric layer the ionespliphase shift is given by
(4.13) and will here be denoted B¥(r’). For paths not perpendicular to the ionospheric
layer the phase shift is scaled by the airmass term, whialesepts the longer distance
traveled through the ionosphere. The airmass term depentigeozenith angle at the
piercepoint’ and is given by se¢(). The ionospheric phase shift seen by the instrument
is given by
_ ()
~ cosf)

P (4.34)
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Figure 4.7: Geometry of the setup

Note that the zenith angle at the piercepoitit,is not equal to the zenith angle at the
antenna arrayy, due to the curvature of the earth. The two are related by

siny’ = R siny (4.35)

+H

whereR is the radius of the earth.

4.4.3 Method

The method consist of fitting the observed position shiftie power law model of the
ionospheric phase fluctuations. The observed data con$jstsition shifts including an
unknown residual instrumentaffect, while the model is for the ionospheric phase. The
following processing steps are needed to do the fitting,

1. derive the dierential phase gradients over the array from the observsitigqo
offsets, see Section 4.4.4,

2. derive the dierential phase gradients over the array from the ionospipbrase
screen, see Section 4.4.5

3. derive the statistical properties of thefdiential phase gradient over the array
from the parameterized model for the ionospheric phasesceee Section 4.4.6,
as verification we compare the results to previous resuitadan literature, see
Section 4.4.7,

4. fit the results of step 3 to the results of step 1 to obtaindhespheric parameters,
using the method described in Section 4.4.8.
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Figure 4.8: Plot of two sets of piercepoints for two sources separategidrgepoint distancér’.
The distance depends both on the position of the sourceshartteight H of the layer

4.44 From Position Shifts to Phase Gradients over the Array

The field based calibration method provides a set of posditsetsARA, Adec as illus-
trated in figure 4.6. An observed position shift is caused plgase screen over the array.

We will convert the position fisets to phase shifts. The first step is convert the position
offset to a change of the wave veckgri.e.

Ak = ARAKga + AdecKgeo (4.36)

The vectorkra andkgec are orthogonal to the wave vector and point in the direction o
increasing right ascension and declination respectiv@ier the course of the observa-
tion they slowly rotate with respect to the array. Thendy component of vectatk can

be interpreted as the phase gradient over the array. The ghadient can be written
as

V= |2><3Ak (437)
wherel o3 is the matrix
1 0O
oz = 010 ] (4.38)

which selects the first two entries of a length 3 vector. Foivargphase gradien the
phases at the antennas are given by

¢ =Rv (4.39)

Due to the residual instrumental phase the observed gitadientain an unknownitset.

This ofset is assumed to be the same for all sources. The observed gradient for
source is given by

Vi = Vion,i + Voffset (4.40)
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By taking diferences between the gradients of two sour@sl j, this unknown set
cancels and we get a quantity that is determined by the idrevsnly,

AVi j = Vi = Vj = Vionj — Vion,j- (4.41)

4.45 From lonospheric Phases to a Gradient over the Array

In this section we will derive the phase gradient over thayaes function of the iono-
spheric phases at the piercepoints. It is convenient t& st@cionospheric phases into a
vector. For a set of pierce poinls, ,,} a vector of phases can be defined as

¢(X3. Y1)
@' = : , (4.42)
¢(X;\/|5y’M)
wherex',y" are the coordinates of the pierce points in the ionosphéaivep The iono-
spheric phases are assumed to be described by a gradientru€henospheric phase
does not follow that model so we will fit a gradient to the ioplosric phases. The gra-

dient description and the ionospheric phase shift as se¢mebgrray are approximately
equal to each other,

PRVion ~

Pg’ 4.43
cosy P (4.43)

Both sides of the equation are multiplied by the projecticatn® P which removes the
mean phase, where the mean is taken over all antennas. Tarsvakie is invisible to
the interferometer and does not cause a position shift. Téjeqtion matrix is given by

1.
P=l- 11 (4.44)

The least squares solution of (4.43) is given by
1

A PR)'P®’ = Fo’ 4.45
Vion COS)/’( )'Po ?, ( )
where 1
_ f
F= cosy (PR)'P. (4.46)

The diference between two gradierits; ; can be written in the same compact notation
when the phase vectors of the both sources are stacked iateector

[ ' (X Y1)

¢|/ :| — (p/(x;\/l,i’y’M,i) (447)

¢'(X - Y1)

| ¢'(x;v,,j,)/M,j) |
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and the following matrix is defined

L (PR)'P

I:i,j = [ cosy, COSy (PR) P ] (4-48)
The diferential phase gradient can now be expressed as
AVi,j = Fi,qui,,j (4.49)

From the linear expressions for the gradient (4.45) andignadifference (4.49) in terms
of the phases, the statistics\gfandAv; ; can be easily derived as will be shown in the
next section.

4.4.6 Gradient Statistics

In this section we will derive the statistics of theffdrential) phase gradients in the form
of the covariance matricesqs_/ andC A of vi andAv; j respectively. The covariance
i ij

matrix of the gradient; is defined as
Cy = E[wvi]. (4.50)
Substituting (4.45) into the equation above leads to
= E[Figio'F|| = FiE[¢¢'| F| = FiCF, (4.51)
wherecqbir is defined as
Cg = E|oi¢'] (4.52)
Likewise, the covariance matrix @fv; ;, defined as
Cav, = E[AvijAv]]. (4.53)
and substitution of (4.49) into this definition leads to
Cav, = E[FijAd{ A 'Fi|| = Fi E[Ad] ;A0 T| FI = FiiCags Fl,.  (454)
whereCAqb/ is defined by
Cug, = E[Ad];06/] (4.55)

Now we need to find the expression @55 andC N from the power law (4.16).

We assume the statistics of the ionospheric fluctuationbeatescribed by the structure
function given in equation (4.16). We further assume thagtkpected value of the phase
is zero and that its variance is the constaijt From these assumption it follows that the
covariance of’(r,) andg’(r)) is

Elo' e D] =% -5 LDyl -l (4.56)
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Let us now define a distance matiixof which the elements are the distances between
the piercepoints given by

At = Iri = r{ll (4.57)
The covariance matrix af can be written as
1
= E[¢{¢f'] = - —5D" + 01T (4.58)

24

whereD; is the distance matrix for the piercepoints of sou'r,dafﬁ is D; taken element
wise to the powes, 1is a vector of all ones, and the produdf is a matrix of all ones.
Likewise we find for the covariance matrix nf;s; '

Cay, = E|Ag jag];'| = - —Deﬁ + 0211 (4.59)

2

whereD; j is the 2Vl x 2M distance matrix for the piercepoints of sourcesdj.
Now we can substitute (4.58) into (4.51) leading to

1 o
Cy = SgD +0211 (4.60)

The term(ri,lf will be projected out by multiplication witk so the equation simplifies
to

1
Cy =-— gFiD?ﬁF{ (4.61)
Likewise forCyy,; we find
1
Cav, = — —FiiD{F; (4.62)

o MM

Equations (4.61) and (4.62) are our main results which wé aginpare in the next
section to their equivalents in literature on optical astnmy. Equation (4.62) is the
model which we will fit to the data.

4.4.7 Comparison to Previous Results in Literature

The expression found by Fried [44, 45] for the variance ofrtham of the position shift
for a circular aperture of diamet@ris given by

E[lI61%] = 0.357.4%r,**B ™2, (4.63)

whered is the position shift vector in radians. To compare equat{d61) and (4.63) de-
fine the diameteB of a radio telescope as the length of the longest baselinmtmduce
the normalized matrices

D/B (4.64)
= FB (4.65)

T Ot
Il
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Figure 4.9: Decomposition of the position shifts in parallel and ortbogl components with re-
spect to the source separation

The phase gradient can be converted to a position shift by

5:[51

o =ik (4.66)

The variance of the norm of the position shifts is given by
E[lI61%] = E[676] = k*tr (Cy) (4.67)

SubstitutingF, D ands in equation (4.61) by the appropriately scaled equivalenfs
andrg leads to

.51 (8 Pz
E[I161°] = 428 ?r? 53 (Er(zw)) tr(FDFT) (4.68)
For the VLA B configuration ang = 5/3 this becomes
_ 1.06 Q0
2 _ 2p-1/3,-5/3
E[I6IP] = 2B, O.l74tr[ 0.0 106} (4.69)
= 0.3681°B 3, (4.70)

The 3% diference is due to the fact that equation (4.63) is based onwaicompletely
filled aperture, while (4.70) uses the exact antenna cordigur of the VLA. Interest-
ingly the matrix in (4.69) is a diagonal matrix with identieatries (up to the numerical
accuracy). By taking the trace no information is lost. Theariraariant we have found
provides not more information then Fried’s scalar variahis is only true for arrays
that exhibit a large degree of symmetry, like the VLA.

Also for the diferential position fiset an expression has been found previously by
Fried [46]. His expression is for the mean norm of thediential position isetAd as
function of the angular separatiarof the sources, assuming a completely filled circular
aperture. A typographical error was corrected in [47] alofod

16

E[IAd]?] = 2.91(—) B3 f ) C2(h) f,(h)dh, (4.71)
n 0
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Figure 4.10: Variance of position shift split into a parallel and a orthmgal component with
respect to the source separation. The mean of the two comn&tches with the expression
found by Fried. The orientation of the array was changed iml§isteps which caused a slight
broadening of the lines.

where
fo(h) =
ol
f f u[arccos() — (3u — 2u®)(1 — u?)¥?]
o Jo

x{0.5[u? + 2uscos) + $7]°/®
+0.5[u? — 2uscos) + $1%/°
—u°? — &3)dudw, (4.72)

wheres = ha/B. For the single layer modé?(h) = C25(h — H), wheres(-) is Dirac’s
delta function, equation (4.71) reduces to

E[I1Ad]2] = 2.91(1ﬂ—6) B~3C2f,(H) (4.73)
We would like to compare this result to our result (4.62).ehastingly the numerical
evaluation of (4.62) is not a diagonal matrix. This means the diferential position
shift is non-isotropic i.e. the shift is not equally largedih directions, but depends on
the orientation with respect to the array and source sdparaf his anisotropy is not
reflected by the equation found by Fried because it is an exjme for the norm of the
position shift only.

The VLA configuration exhibits a large degree of symmetrystthe orientation of
the position shift with respect to the array is of minor inflae. The relative orientation

of the source separation and the position shift however hagpareciable fect. This
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Figure 4.11: Standard deviation of gerential position gfsets for configuration B for gierents

effect can be shown by decomposing the position shift in two corepts, one parallel,
one orthogonal to the source separation as is illustratédune 4.9. The transformation
of Ad to the vector\d in the source separation oriented coordinate system camitierw

as a matrix multiplication

Ad = U'AS, (4.74)

whereU is a 2x 2 matrix of which the columns are the unit vectagsandu,, which are
parallel and orthogonal respectively to the source separal he correlation matrix of
Aé is given by

C,5 = U'CysU. (4.75)

For the VLA in A or B configuration this matrix is practicallyiabonal, i.e. the trans-
formationU diagonalize<C,s. This can be expected for an array with a large degree
of symmetry and no preferred direction. The only speciatation in the setup is the
source separation. If there is any anisotropy in thedéntial position shift it will be
aligned along this special direction. The results are gobbdifferent for arrays with

a configuration with a preferred direction such as an Easit\Weay or the VLA BnA
configuration for which the northern arm is longer than the bther arms.

Figure 4.10 shows the two components together with the neeahthe expression
found by Fried. Our results for the VLA match closely with tlesults by Fried for a
completely filled circular aperture. The calculation hasrbeepeated for many fierent
orientations of the source separations with respect tortiag.al' he results are very close
to each other as can be seen in the figure where they are aéigptogether, resulting in
only a slight broadening of the lines.
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4.4.8 Fitting Method

As we saw in the previous section the covariance of tffeidintial phase gradients given
in (4.62) depends on the height of the ionospheric ldyethe exponent in the power
law 8 and the coherency lengty. These unknowns will be estimated from the observed
phase gradients.

An asymptotically optimal method of estimating the pararets Maximum Like-
lihood (ML) estimation. In this section an algorithm will Ipgesented to find the ML
estimate.

Given a set of observatioxswith normal distribution with meap and varianceé.

The variancex = 3(p) is a function of parameter vectpr The goal is to estimatp.
The ML estimator is given by the following maximization ptein

L 1 -1 S
p - arg n?)aX(Zﬂ')N/2|E|1/2 eXp( 2 (X iu’) 2 (X H’)) (476)

Taking the logarithm, discarding the independent termsramdrsing the sign leads to
the following minimization problem

p = arg rrgin[log detS: + (x - ) 7 (x - p)] (4.77)

If the covariance would be known and the mean valugould be the unknown then the
problem above would immediately be reduce to a least sqtittheg problem. However
in our case the mean is assumed to be zero and the covaridheaiisknown parameter.
This type of problems is known as covariance matching [48] it&rative algorithm can
easily be derived as is shown below.

Taking the derivative of the expression to be minimized i {4 and setting it to zero
leads to .

%vec(z’l (Z] - xxT) 2’1) =0 (4.78)

This problem is not easily solved but there exists a Leasa&p (L S) problem that gives
a result similar to (4.78). Indeed, consider

p = arg rrginHWl/ZxxTWl/Z - W¥2nwh?2, (4.79)

Taking the derivative with respect ppand equating it to zero leads to

ovec®@)’ vec

5 (W(Z-xx)wW) =0, (4.80)

Now if the weighting matrix\W? would have be equal t& 1, then the problems (4.80)
and (4.78) are equivalent. This leads to the following tigeamethod:

1. Initialize the weight®V =1,

2. Solve equation (4.79),
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3. If W - =71 > e then seW = =t and go to step 2.

Heree is the convergence criterion. When this iteration convergee stationary point
satisfies (4.78). If the solution of the initial least squliewas close enough to the ML
solution then the stationary point equals the ML solution.

Now as we have discussed before we expect sofffieudty in estimatingH andg
simultaneously, because these parameters have a siifidat en the covariance. The
likelihood function might not have a single peak but a ranfjgatues ofH andg for
which the function is close to maximum. To be able to detestphoblem we will scan
over a range oH andg, and estimate onlg, by the algorithm derived above. This way
we can plot the likelihood function as functionldfandg.

A technicality that needs to be dealt with are the outlierfie Pposition shifts are
determined by a search for sources in an image. Detectionsdgad to huge position
errors that will dominate the fit when they are not removede fidmoval of the outliers
is a two step process. First allfffirential position error that exceed a fixed threshold of
200 arcsec are removed. After an initial fit th&eliential position shifts that exceed 3
are rejected.

The method described above should lead to statisticaliynapfits. In practice there
were a few issues which limited the number of datasets fochvigiood fits could be
obtained:

e The Maximum Likelihood estimator is optimal in the case tthegt only sources
of error are statistical fluctuations. In this case modeamsrare another source of
significant error. The model is fairly crude; it is assumest tihe ionosphere con-
sists of a single layer of turbulence that follows a power. [&ve real ionosphere
is distributed over a considerable height and its behagionére complex than a
simple powerlaw.

e The sampling of the piercepoints separations depends odistences between
the available calibrator sources. The most notable featutee model for the co-
variance is the dierence between piercepoint separations smaller and lgnaer
the array size. A sampling that is distributed more or lesnBvover both cate-
gories results in a well conditioned fitting problem. Manyadzts lack a gficient
number of samples especially for the smaller piercepojpdisgions.

¢ |deally the variance of the measurement noise should alsecheled as free pa-
rameter in the fitting problem. In many cases this made thadigproblem ill
conditioned and visual inspection of fits showed a bad fit@aflg for the smaller
piercepoint separations.

4.4.9 Results and Discussion

Out of 545 datasets in VLA-B configuration in the VLSS suntbyee where selected to
be included in this chapter. All three datasets have a velgtiarge number of usable
samples and an even distribution over the piercepoint aépar
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Figure 4.12 shows the results of the fits to the thrékedint datasets. The plots on
the left side show the logarithm of the likelihood functioBontours are plotted at the
Ievels‘T“Z. For a linear model in Gaussian noise these contours camesi theno
confidence regions. The plots on the right show the data anohtidel. The samples are
binned according to piercepoint separation and averageel standard deviation within
a bin is indicated by @ error bars. Note that the model includes the exact configurat
not just the piercepoint separation. Because of this antkatamn dfect, i.e. the samples
that are available within a bin of piercepoint separatiensn the model seems somewhat
irregular in the plot.

Figure 4.12(a) shows the results for a relatively quiet gpieere and figure 4.12(b)
for a more active ionosphere. For both conditions there is@ggreement between
model and observed data. That this is not always the caseovensim figure 4.12(c)
where the match is not that good. The data shows a graduekisein while the model
predicts an initial steep increase which levefisfor piercepoint separations larger than
the size of the array.

A possible explanation would be that the electron densitstdlations are not con-
fined to a thin layer. For dierent heights the characteristic turnover would occur at
different angular separations. The summation over many lagstdts in a far more
gradual transition than for a single layer. In principle @maild try to fit a multilayer
model to the data. There is notfBaient data to produce a meaningful result, hence a
validation of the multilayer model using this data is notgibke.

A distribution over heights could also explain the high walaund for3. The values
are very close, but not equal to 2. e 2 the phase screen is a random gradient with
no curvature at all. The fact that theff@irential position shifts are not zero is solely due
to the zenith angle, or airmasfect. The observed position shifts cannot be explained
by the zenith angleféect alone; the fits foB = 2 are bad. However, as can be seen
in figure 4.11 the closes gets to 2 the more gradual the transition becomes, just as we
would expect for a distribution over heights.

Another interesting feature is the local optimum in the lovedt corner in the left
panel of 4.12(c). There are quite a number datasets for vthelglobal optimum oc-
curred at a height below 100km and at Ipw These datasets show a gradual increase
without a transition or leveling fd at larger piercepoint separations. The good match
at low heights can be explained by realizing that a low heligrislates to small pierce
point separations. All data points fall in the region befthre transition. The model will
probably fail for large piercepoint separation, but no dai@vailable there.

It is unlikely that the position shifts are caused by the ®tatdensity fluctuations
below 100km. Measurements of the electron density at theigits [49] and [50] show
a typical electron density dfle = 10%cm™3. An electron density gradient over a baseline
of lengthB = 10km which goes from neutral atmosphere to the typical vaod a layer
of thicknessAz = 10km, leads to a position shift of

fe Az
2f2 B
This is an estimate of the maximum fi@rential) position one could expect if the turbu-

= 1.5arcsec (4.81)
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lence is localized in the lower layers. The upper bound isrderoof magnitude lower
than the observed position shifts.

The heights found for datasets 04E®8 and 2308123.1 confirm the result by [40]
that the strongest fluctuations are found 100km below th& pk=ctron density which
for the location of the VLA is about 300km.

4.410 Conclusions

Our results for the dierential position shift as function of source separaticeds the
scalar result known in literature to a vector expressionis kpression can be decom-
posed in two components, parallel and orthogonal. The gbdatata confirms that the
two components behaveftirently.

Except for obviously wrong fits where the height is below 1Gke estimated height
of the ionosphere confirms earlier results stating that tteegest electron density fluc-
tuations are found 100 km below the peak density.

The estimated values ¢f are higher than the/3 which is expected for pure Kol-
mogorov turbulence.

Both the high value oB and the mismatches might be explained by a multilayer or
a full three dimensional model or by the presence of an inoales More research is
needed to test this hypothesis.
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Figure 4.12: Left: Loglikelihood function including contours correspbing to the - confidence
regions. Right: Observed data, binned includidg error bars and modeled data for the best
fit. The fitted height H and the coherence lengitai® shown and the Fresnel scalefor height

H is shown too. The first two datasets show a good match betdatarand model for gierent
ionospheric conditions. The last data set shows a slightmaish. Even though most points fall
within the error bars the overall trends of data and model digerent.
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Chapter

Optimal Estimation *

One of the challenges in the design of the LOFAR radio telgsds the calibration of
the ionosphere which, at low frequencies, is not uniforme@artdchange within minutes.
The number of unknown parameters quickly approaches thébaunf measurements
and hence, structural assumptions on the ionosphere musade, in time, frequency,
and space. Using general models for the second-ordetisitise propose to use Max-
imum A Posteriori (MAP) estimators combined with Karhurlsseve basis functions.
The resulting estimation algorithm is shown in simulatedH&R data to be superior to
currently considered techniques. A significant advantagdkat it is robust to overesti-
mation of the number of free parameters.

5.1 Introduction

For low frequency observations 800 MHz) the radio astronomical community is cur-
rently developing a number of new instruments, for exammpgeMileura Wide Field Ar-
ray (MWA) [52], the Primeval Structure Telescope (PaST) [@3d the Low Frequency
Array (LOFAR) [54] which we consider in this chapter. LOFABrsists of a large num-
ber (~ 13,000) of dipole antennas, arranged in 72 stations. The aasanreach station
are combined to mimic a single telescope dish, which is elaatally steered into the
desired direction. The outputs of the stations are split ir#rrow frequency bins, corre-
lated, averaged over short intervals, and stored fitine processing.

Calibration of LOFAR is essential[26], and as described28] [has several com-
ponents: calibration of the station beamshapes, and atiborof the refraction in the
ionosphere. At low frequencies th&ect of the ionosphere is stronger than at the higher
frequencies used by most current telescopes, becausedbe ghift caused by the iono-
sphere scales with wavelength. Furthermore the beamwidttise station beams are

*The results contained in this chapter have been presentigk atternational Symposium on Signals,
Circuits and Systems, 2007, lasi, Romaj%ia].
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Objects in field of view
see different ionospheric

phase

>
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field of view

Full array aperture
< >
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Figure 5.1: LOFAR scenario: the ionosphere changes within the statieanb and direction-
dependent calibration is required. Also the ionospherefeeent for dfferent stations.

wider than those of most existing radio telescopes. The h@wajected onto the iono-
sphere is wider than the typical size of fluctuations withia ionosphere (in the order of
a few km), see Fig. 5.1. The ionospheric phase can changé@eoaisly over the beam,
therefore ionospheric calibration is direction dependgftust stations are spaced at least
a few km apart, thus it is also station dependent.

In this chapter we will describe a statistical model for ispberic fluctuations, suf-
ficiently simplified to be suitable for Signal Processing. eTaximum A Posteriori
(MAP) estimator will be used for calibration. Simulatiorfsosv that this approach is
superior to the currently used method of fitting Zernike polyials [55].

5.2 Data model and Problem Statement

5.2.1 Radio Astronomical Interferometer

A radio astronomical interferometer estimates the conaganatrices of antenna outputs
by correlating them. Assume that there Mestations. Each station consists of a number
of antennas, whose signals are beamformed resulting irtiarstgnal, the equivalent
of the output of a ‘virtual’ parabolic dish antenna. The s&dmutput of each station
‘antenna’ is split by a filter bank into narrow frequency biniset x¢[n] be a vector
stacking theM station signals available at frequericgnd timen. After averaging over

N samples, the output of the correlator is given by

N
Ric= 5 > xdrixdnl” CEN
n=1
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For the purpose of ionospheric calibration, we make a nurobassumptions:

e Only a single calibration source is present,

e The station beamformers are pointed towards this sourcéh@geometric delays
are compensated for (the source appears at zenith),

e The instrumental phase errors are zero, and gains towagd®tirce are unity.

These are significant simplifications that with suitableppoeessing hold true, and can
be generalized later on.
The resulting data model fog[n] at thenth output sample of thkth frequency bin
centered afy is
Xe[n] = asd[n] +wi[n], (5.2)

wheres[n] is the astronomical source signal[n] is a noise vector (i.i.d. Gaussian),
anda is the spatial signature of the source given by

ay = expley)

where
¢ =Crf?t (5.3)

is a vector withM entries representing the ionospheric phases at eachnstatfanction
of frequency), andr is a vector containing the Total Electron Content (TEC) segn
each station, which is the integral of the electron denddp@the line of sight towards
the calibration source. The const&ht= 8422 ragMHz/TECU (TECU= TEC unit=
10'6 electrongn?).

Under this model, the expected value of the covariance oegtis

Ry = E[R{] = a@do? + oal

wherec? ando? are respectively the signal and noise power.

5.2.2 lonospheric fluctuations

We model the ionosphere as a thin turbulent layer. The Statisf density fluctuations
in a turbulent medium can be derived from Kolmogorovs thedtyrbulence. Instead of
using autocorrelation functions, the second-order si@iare usually given in the form
of a “structure function”, defined for a variablg€x) which is a function of a distance
parametex as

D, (AX) = E[(p(x) — ¢(x + AX))?].

Structure functions are used because the autocorrelatiwstion is infinite for a pure
Kolmogorov turbulent process, because all the large saatauthtions are included. The
structure function only looks at localftirences which are finite.
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The structure function for ionospheric TEC fluctuationsravdistance has the form

[4] e
Tec(r) —(E) (g) (5.4)

whereg is a reference distance affglis a reference frequency. Translating this into the
structure function of the phase fluctuations, we obtain

_ f() 2 r A
o= (7] (5]
The expression for the structure function has the form ofvagodaw with exponengs.

The scaling is chosen such that for the reference frequéneyd over the reference
distancesp, the structure functio®,(so, fo) = 1.

5.3 Calibration Algorithm
5.3.1 General Data Model

We can translate the problem into more generic terms byzungia general nonlinear
data model of the form

y =f(0) +w (5.5)

wherey is a vector that stacks all observatiofiss a vector stacking the unknown pa-
rameters, andv is a noise vector. In this model, both the unknowns and theenaie
assumed to be the result of Gaussian random processes witmlaovariance matrices
Cy andC,, respectively.

The generic data model is related to our application asvald_et

y =vecRy), f(-)=vecRu) = (& ®a)o + vec)oy,,

where vec{ stacks the columns of a matrix into a vector, @denotes the Kronecker
product. The observation noise VBg(~ Ry) corresponds to the noise vecteiin (5.5).
The observation noise is Wishart, not Gaussian, but forfiacgntly largeN Gaussian
noise is a good approximation.

The unknown parameter vector4s but since we cannot expect to estimate the bulk
delay, we subtract the average valueraind define

1
0=T—M11T7'.

The corresponding covariance matrix tbrs, from (5.4),

Cy = _71 (%)Z (= %115 (%)gﬁ (I - %113 (5.6)
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whereD is a distance matrix containing all distances (baselinesy&en the antennas,
and the superscrigs denotes entrywise raising to the povger

The above translates the data model into the generic modaldmgle frequenci
and time point. It takes only the spatial structure into acto However, the model is
readily generalized; the main issue is to obtain a modeheicbvariance matri,.

5.3.2 MMSE estimator

A desirable estimator is the estimator with the minimum M8guoared Error, the MMSE,
given by [29]
6 = argminE[|6 - 6] .
6

The solution of this minimization problem is given by
0 = E[0)Y]

where the expectationis taken over the a posteriori pdiadgyBayes’ rule the a posteriori
pdfis found to be

p(yl0) p(6) _
[ p(y|6)p(6)de

Both the determination of the a posteriori pdf and takingekpectation require multi-
dimensional integration. In many cases an analytical esiutannot be found and nu-
merical integration is needed. Multi-dimensional numariotegration is a computa-
tionally demanding problem, and for large problems such@BAR calibration this is

simply not feasible.

p(oly) =

5.3.3 MAP estimator

A good alternative is to use the Maximum A Posteriori (MAPjraator [29],

arg rréaxp(0|y) =arg r%ax p(y|0) p(o)

6 __Pylo)p(6)
[ p(yl6)p(6)de

awgpmwmmm.

For the MAP no numerical integration is needed. With a Gausdata model the MAP
reduces to a Least Squares problem, because

p(yI6)- exp|- 50~ FO) Cy - 1(0)

(27)%|Cul? :
0:————7ex—_4044
PO et P2
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so that

s
I

arg r%am(yle) p(0)

-1 _1
arg minliCy*(y ~fO)IF +1IC, 2617 (5.7)

5.3.4 Interpolation

To make an image the ionospheric phase in other directiarsttiat of the calibrators
needs to be estimated. Thus some form of interpolation igred, Optimal interpolation
can be achieved by including the intermediate points in tngeBian estimation problem.
The vector of unknowns

0= [ “

p

now consists of two partg, the phases in the direction of the calibrators, prile rest
of the phases. Now the MAP estimator can be applied to thedetbproblem

A

6=

-1
L1 C C K
= argmin||C,, (x — f ())II? Top e e
gn!;) ICw2 (X = F(L))Il +[ K p ][ Cor. Cop } [ p

The addition of more unknowns complicates the optimizatiomblem. Fortunately the
complete problem including calibration and interpolatiam be separated into a distinct
calibration and an interpolation problem.

Cil + CLCrpSICpCil, ~CiLC,, S

5 . -1 2 T
0 = arg g]’l)nIICW (x=f (=)l +[ K p ][ sic,.CiL g1

[ ) }
P
whereS = C,,, — C,,,C,.1.C,, is the Schur complement.

0 = arg nm/i)nHC\fv% X-fR)P+Kx'ClLr +

K'ClCrpSCoCrilik —K'CLC,,Sp+p'SIC,Cil+p'Sp
The second line of the equation can be made zero by choosing

p=CpuCrkic
The whole procedure can be summarized as follows. The faptistcalibration by
/& =arg n;inHC;V% (x - (k) + £ 'Clk.

The next step is interpolation by
p= CpRC;}c’%-

This interpolation method is known as Kriging interpolat{®6]
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5.3.5 Karhunen-Loéve transformation

In many cases the dimensionalityéfs large. The number of parameters to be estimated
can be reduced by writing vectérin terms of a sum of fewer underlying base vectors
ie.

0 =Ugpp
whereUy is a tall matrix whose columns are regarded as basis veciidrs. reduced
parameter vector ig. The basis vectors i, can be selected in several ways:

e Data independent, e.g., by choosing polynomial functiofesnike polynomials
are often used.

e Data dependent, by computing an eigenvalue decompositibve covariance ma-
trix
Cy = UAU" ~ UpAyU, (5.8)
whereU is a unitary matrix containing the eigenvectafs,s a diagonal matrix
containing the eigenvalues. In the approximation, onlydbeninant eigenvec-
torgeigenvalues are retainedliy andAy.

Inserting this into the MAP estimator, we obtain
1 R 1,
p = argmin|Cy’ (y = FUM)I® + 1A, *PIF . (5.9)
After estimatingd, an estimate ol is obtained a# = Uyp .

5.3.6 Unknown hyperparameters

In the context of Bayesian estimation, the parameters wharameterize the a priori
distribution are called the hyperparameters. In our casénjiperparameters ggeand
%. If they are unknown they need to be estimated too. The MAagtr can easily
be extended to incorporate this by simply extending thecbespace with the extra un-
knowns. However, this makes the problem much harder bedacisgnges from a large
least squares problem, to a large generic non-linear pmab%solution is to alternately
estimated, using least squares, and the other two parameters usingeaigaon-linear
solver:

1. Initialize 8 andsy with some reasonable guess
2. Estimatep using (5.9)

3. Estimate3 ands, using a non-linear solver as

arg exp

1. .
maxX—— -=0 C,~ (B, 50)0}
B (2m)2|Cy(B, S0)I2 2°

4. Check for convergence gfandsy, if necessary go to step 2.
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Figure 5.2: Station configuration used for simulation. Only the selécttations were actually
included in the simulation.

5.4 Simulations

In this section, we demonstrate the applicability of thepmsed method to the LOFAR
calibration problem. Several simplifications were madeltowafor sufficient Monte
Carlo runs. The ionosphere is assumed to be a thin layer ahevarray. The TEC
values of the ionospheric layer are a function of positioheylare assumed to be the
result of a random process with a Kolmogorov spectrum. Th€ T&lues of interest
are the ones at the pierce-points where the line of sightsatés the ionospheric layer.
Ignoring the curvature of the earth, the distance betweerptérce-points equals the
distance between the stations. Figure 5.2 shows a configni@it 72 stations which is
similar to the actual LOFAR configuration. One third of thatiins was selected to be
included in the simulation, so the number of antenhas= 24. Letv; be the vector
describing the position of thigh station. The entries of the distance maare given
by di; = llvi — vjll. From the distance matrix the covariance ma@ixcan be found
using (5.6). The parameters used to generate the data-arg/3, f, = 100 MHz and
S = 3000 m, i.e. a pure Kolmogorov spectrum with an r.m.s phasauition of 1 radian
over a distance of 3000 m at 100 MHz.

The relative TEC values are generated as

6 =C;w,

wherew is zero mean i.i.d. Gaussian noise. The resulfing jointly Gaussian with
covarianceC,. The TEC values are subsequently used to construct thebgigtatures
ax. Data samplesy[n] are generated using Gaussian random sigadly§ and noise
wi[n] according to equation (5.2). The covariance estimatethareobtained from (5.1).
For the simulation we have used 501 frequency bins of 1 kHz geénter frequencies
ranging from 100 Mhz to 106 MHz. The integration time is 1 second so each covariance
estimate is based d4 = 1000 samples. The signal to noise ratf) o2, was—30dB. For
each Monte Carlo run a new set of TEC values and covarianeeniet generated.
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Figure 5.3: Estimation performance as function of model order selecti@) known model pa-
rameters, (b) estimated model parameters. The error isescadlative to the minimum in each
plot.

Based on the simulated data the TEC values are estimateglthsae diferent meth-
ods: Least Squares using Zernike polynomials, Least Sguesiag a Karhunen-Loéve
basis, and the MAP using a Karhunen-Loéve basis. All mettand based on equation

(5.9). When we omit the terrMIA;%f)Il, the method reduces to an ordinary least squares
fit. The basisU, consists either of Zernike polynomials or the Karhunemi@basis
computed from (5.8). When the term is included, the methad (isuncated) MAP. In
each case, the size of the basis, or the model order, can ieel fiaoam 1 toM — 1. The
maximum order is one less than the number of antennas becalyshe relative TEG

is estimable.

From the estimatedg, the ionospheric phases are computed as in (5.3). The error
measure is the r.m.s. phase error at the reference frequigecyO0MHz.

In figure 5.3(a)d) the error is plotted against the selected model order. $een
that increasing the order reduces the model error, but agehree time the estimates get
noisier. Initially incrementing the order will result inaer total error, but at some point
the additional noise outweighs the reduction of the modedimor.

Using the optimal basis (5.8) improves the performance. |@dWwest error of the LS
method using the Karhunen-Loeve basis is below the besbrpeance of the Zernike
polynomials, and is also reached at a lower order. Howeveggch the lowest attainable
error of the Least Squares method one needs to know at what tird optimum is
reached.

The MAP estimator is not only always better than the Leasa®&gimethods, but it
is also guaranteed that the performance will improve witltéasing model order. The
fact that the algorithm is robust to overestimation of thenber of free parameters is a
significant advantage.

The increased performance is the result of exploitingahgiori information. Of
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course, if the assumed prior does not match the actualllisivh, the performance suf-
fers, as can be seen in figure 5.3(b), where the MAP estimaiolone using wrong
settings for the hyperparametefs ). The performance is greatly improved by esti-
mating the hyperparameters iteratively, as proposed itioses.3.6.

In the next chapter the estimation method described in tlapter will be applied to
actual observations from the Very Large Array (VLA).



Chapter

Application of the MAP estimator to
74 MHz VLA Data *

This chapter presents a description and first results of SE8ddrce Peeling and Atmo-
spheric Modeling), a new calibration method that attempitetatively solve and correct
for ionospheric phase errors. SPAM has been developed hylktema at Leiden Ob-
servatory, Leiden University. The method uses a variaefieeling technique, which
we analyzed in Chapter 3. SPAM proved to be ideal to integtaaonspheric model
presented in chapter 4 and the MAP estimator presented ptexhd and test these on
real observed data. In cooperation parts of the technigessritbed in Chaper 5 were
included in SPAM.

To model the ionosphere SPAM uses a time-variant, 2-dinmeasiphase screen at
fixed height above the Earth’s surface. Spatial variatioaslascribed by a truncated set
of discrete Karhunen-Loéve base functions, optimizedafoassumed power-law spec-
tral density of free electrons density fluctuations desatiin Chapter 4, and a given
configuration of calibrator sources and antenna locatidhg model is constrained us-
ing antenna-based gain phases from individual self-Giiims on the available bright
sources in the field-of-view. Application of SPAM on threstteases, a simulated visi-
bility data set and two selected 74 MHz VLA data sets, yielgsificant improvementsin
image background noise (575 percent reduction) and s@eae fluxes (up to 25 per-
cent increase) as compared to the existing self-calibraind field-based calibration

“The contents of this chapter have been accepted for pubficas a paper by H. T. Intema, S. van der
Tol, W. D. Cotton, A. S. Cohen, |. M. van Bemmel and H. J. A.t8éting entitled "lonospheric Calibration of
Low Frequency Radio Interferometric Observations usiegRbeling Scheme: |. Method Description and First
Results” inAstronomy and Astrophysid$e main text of this paper was written almost entirely bgina. To
the paper a brief description of the MAP estimator was addeghaappendix. That part is omitted here since a
more detailed description can be found in chapter 5 of tiesith However, the implementation of the estimator
in software has been done in close cooperation with the aoftthis thesis. Intema has agreed to include the
almost verbatim text of the paper in this thesis.
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methods, which indicates a significant improvement in iphesic phase calibration ac-
curacy.

6.1 Introduction

Radio waves of cosmic origin are influenced by the Earth’soaphere before detection
atground level. At low frequencies (LE; 300 MHz), the dominantféects are refraction,

propagation delay and Faraday rotation caused by the ibeosije.g. 4]. For a ground-
based interferometer (array from here on) observing a Lmaosource, the ionosphere
is the main source of phase errors in the visibilities. Aropgle errors may also arise
under severe ionospheric conditions due térdction or focussing [e.g. 57].

The ionosphere causes propagation deléigdinces between array elements, result-
ing in phase errors in the visibilities. The delay per arrblyreent (antenna from here
on) depends on the line-of-sight (LoS) through the ionosphand therefore on antenna
position and viewing direction. The calibration of LF obs&ions requires phase cor-
rections that vary over the field-of-view (FoV) of each am@nCalibration methods that
determine just one phase correction for the full FoV of eattbrana (like self-calibration;
[e.g. 11]) are therefore inflicient.

lonospheric &ects on LF interferometric observations have usually bgeared for
several reasons: (i) the resolution and sensitivity of ttistiag arrays were generally too
poor to be &ected, (ii) existing calibration algorithms (e.g., sedilibration) appeared
to give reasonable results most of the time, and (iii) a lafckamputing power made
the needed calculations prohibitly expensive. During #st L5 years, two large and
more sensitive LF arrays have become operational: the VLA4aHz [58] and the
GMRT at 153 and 235 MHz [59]. Observations with these array&llemonstrated that
ionospheric phase errors are one of the main limiting fadimr reaching the theoretical
image noise level.

For optimal performance of these and future large arrays lakt capabilities (such
as LOFAR, LWA and SKA), it is crucial to use calibration algbms that can properly
model and remove ionospheric contributions from the Visils. Field-based calibration
[42] is the single existing ionospheric calibration & imagimethod that incorporates
direction-dependent phase calibration. This techniquebeen succesfully applied to
many VLA 74 MHz data sets, but is limited by design for use wilhatively compact
arrays.

In Section 6.2, we discuss ionospheric calibration in matitl In Section 6.3, we
present a detailed description of SPAM, a new ionosphetibresion method that is
applicable to LF observations with relatively large arrdysSection 6.4, we present the
first results of SPAM calibration on simulated and real VLAM#z observations and
compare these with results from self-calibration and fledded calibration. Conclusions
and a discussion are presented in Section 6.5.



6.2 IONOSPHERE AND CALIBRATION 83

6.2 lonosphere and Calibration

In this Section, we describe some physical properties aobth@sphere, the phasé&ects
on radio interferometric observations and requirememt®ftospheric phase calibration.

6.2.1 The lonosphere

The ionosphere is a partially ionised layer of gas betwees0 and 1000 km altitude
over the Earth’s surface [e.g. 60]. It is a dynamic, inhonmagels medium, with elec-
tron density varying as a function of position and time. Ttatesof ionization is mainly
influenced by the Sun through photo-ionization at UV and sKenay wavelengths and
through injection of charged particles from the solar witghization during the day is
balanced by recombination at night. The peak of the fredr@ledensity is located at a
height around 300 km. The free electron column density albhgS through the iono-
sphere is generally referred to msal electron contentor TEC. The TEC unit (TECU)
is 10" m=2 which is a typically observed value at zenith during nighéti

The refraction and propagation delay are caused by a vargfragctive index of the
ionospheric plasma along the wave trajectory. For a coltismnless plasma without
magnetic fieldn is a function of the free electron densityand is defined by [e.qg. 4]

2
2 _ Vp
R=1--2, 6.1)

with v the radio frequency ang, the plasma frequency, given by

e [N,
= — |[— 6.2
P o V em’ (6.2)

with ethe electron chargenthe electron mass, the vacuum permittivity. Typically, for
the ionosphere;, ranges from 1-10 MHz, but may locally rise up+d200 MHz in the
presence of sporadic E-layers (clouds of unusually high électron density). Cosmic
radio waves with frequencies below the plasma frequenciedliected by the ionosphere
and do not reach the Earth’s surface. For higher frequenttiesspatial variations in
electron density cause local refractions of the wave (Snediw) as it travels through
the ionosphere, thereby modifying the wave’s trajectoriie Total propagation delay,
integrated along the LoS, results in a phase rotation giyen b

P = _Z f(n -1)d, (6.3)

Cc

with c the speed of light in vacuum. For frequencies- v, this can be approximated

by
ion 4 241 —
9"~ = fvp dl = 4ﬂ€eomw fnedl. (6.4)
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where the integral oven, on the right is the TEC along the LoS. Note that this integral
depends on the wave’s trajectory, and therefore on locedegdn. Because the refrac-
tive index is frequency-dependent, the wave's trajecttignges with frequency. As a
consequence, the apparent scaling relagi®he v~ from Equation 6.4 is only valid to
first order in frequency.

Although bulk changes in the large scale TEC (e.g., a fadtb® increase during sun-
rise) have the largest amplitudes, the fluctuations onivelgtsmall spatial scales and
short temporal scales are most troublesome for LF interietdc observations. Most
prominent are the traveling ionospheric disturbances §J,/[2 response to acoustic-
gravity waves in the neutral atmosphere [e.g. 40]. Typycatedium-scale TIDs are
observed at heights between 200 and 400 km, have wavelebegtiveen 250 and 400
km, travel with near-horizontal velocities between 300 @00 km ! in any direction
and cause 1-5 percent variations in TEC [4].

The physics behind fluctuations on the shortest spatial @mgparal scales is less
well understood. Temporal and spatial behaviour may beleduprough quasi-frozen
patterns that move over the area of interest with a certdocitg and direction [57].
Typical variations in TEC are on the order of 0.1 percenteoled on spatial scales of
tens of kilometers down to a few km, and time scales of mindtesn to a few tens of
seconds. The statistical behaviour of radio waves paskiogigh this medium suggests
the presence of a turbulent layer with a power-law spectnasiy of free electron density
fluctuationsP, (g) «« q™* [e.g. 4], withq = |q] the magnitude of the 3-dimensional spatial
frequency. P, (q) is defined in units of electron density squared per spatgjfency.
The related 2-dimensional structure function of the phas&tion$ of emerging radio
waves from a turbulent ionospheric layer is given by

Dy = ([#(X) — p(X+ N]?) o 17, (6.5)

whereX andX + I are Earth positions, = |f] is the horizontal distance between these two
points(...) denotes the expected value gnd o« — 2. For pure Kolmogorov turbulence,
a = 11/3, thereforey = 5/3.

Using diterential Doppler-shift measurements of satellite signals Velthoven [40]
found a power-law relation between spectral amplitude dlsstale ionospheric fluc-
tuations and latitudinal wave-number with exponef = 3/2. Combining with radio
interferometric observations of apparent cosmic sourdéssian Velthoven derived a
mean height for the ionospheric perturbations of 200-250Kmough analysis of dier-
ential apparent movement of pairs of cosmic sources in th®3/ICohen and Rottgering
[43] find typical values fory/2 of 0.50 during nighttime and 0.69 during daytime. Di-
rect measurement of phase structure functions frdferdint GPS satellites (van der Tol,
unpublishefl shows a wide distribution of values forthat peaks at 1.5. On aver-
age, these results indicate the presence of a turbulent tegjew the peak in the free
electron density that has more power in the smaller scaléuitions than in the case
of pure Kolmogorov turbulence. Note that for individual ebgng times and locations,
the behaviour of small-scale ionospheric fluctuations m#gdsignificantly from this
average.
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6.2.2 Image Plane Effects

Interferometry uses the phasdfdirences as measured on baselines to determine the an-
gle of incident waves, and is therefore only sensitive to T&rences. A baseline is
sensitive to TEC fluctuations with linear sizes that are caraple to or smaller than the
baseline length. At 75 MHz, a 0.01 TECUfidirence on a baseline causes d ra-
dian visibility phase error (Equation 6.4). Because theeoled TEC varies with time,
antenna position and viewing direction, visibility phasee distorted by time-varying
differential ionospheric phase rotations.

An instantaneous spatial phase gradient over the arrayeiditiection of a source
causes an apparent position shift in the image plane [e]gbdBno source deformation.
If the spatial phase behaviour deviates from a gradierg il also distort the apparent
shape of the source. Combining visibilities withfdrent time labels while imaging
causes the image planfiects to be time-averaged. A non-zero time average of theephas
gradientresults in a source shift in the final image. Bothra-reean time variable phase
gradient and higher order phas@eets cause smearing and deformation of the source
image, and consequently a reduction of the source peak fex[&5] for an example).
In the latter case, if the combined phase errors behave ldes§lan random variables,
a point source in the resulting image experiences an inerefithe source width and
reduction of the source peak flux, but the total flux (the iraégnder the source shape)
is conserved.

For unresolved sources, tirehl ratiois defined as the ratio of observed peak flux
over true peak flux. In case of Gaussian random phase effnerSitehl ratidR is related
to the RMS phase error,, by [42]

&
R= exp[—7). (6.6)

A larger peak flux is equivalent to a smaller RMS phase errdiis $tatement is more
generally true, because all phase errors cause scattéisogice power into sidelobes.

A change in the apparent source shape due to ionospherie ghes's leads to
an increase in residual sidelobes after deconvolution.oBewution subtracts a time-
averaged source image model from the visibility data afraktstamps. In the presence
of time-variable phase errors, the mean source model ésvfabm the apparent, in-
stantaneous sky emission and subtraction is incomplewd&ad sidelobes increase the
RMS background noise level and, due to its non-Gaussiaractey introduce structure
into the image that mimics real sky emission. In LF obseoratj due to the scaling
relation of the dirty beam with frequency (widthv1), residual sidelobes around bright
sources can be visible at significant distances from thecsour

6.2.3 lonospheric Phase Calibration

Lonsdale [9] discussed fourftierent regimes for (instantaneous) ionospheric phase cal-
ibration, depending on the fiierent linear spatial scales involved. These scales are the
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array sizeA, the scale siz& of ionospheric phase fluctuations and the projected size
V of the field-of-view (FoV) at a typical ionospheric height.eWse the terncompact
array whenA < S andextendedarray whenA > S. Note that these definitions change
with ionospheric conditions, so there is no fixed linear e¢hht defines the flerence
between compact and extended. A schematic overview of tferelit regimes is given

in Figure 6.1.

The combinatiomAV/S? is a measure of the complexity of ionospheric phase cali-
bration. BothS andV depend on the observing frequencyFor a power-law spectral
density of free electron density fluctuations (see Secti@rl§S scales withv , and for
a fixed circular antenna apertuvescales withv=:. Therefore AV/S? scales withy=2,
signalling a rapid increase in calibration problems towgdodv frequencies.

Underisoplanaticconditions ¥ <« S), the ionospheric phase error per antenna does
not vary with viewing direction within the FoV, for both comagt and large arrays (Lons-
dale regimes 1 and 2, respectively). Phase-only self+edidn on short enough time-
scales is sfiicient to remove the ionospheric phase errors from the Vits#isi

Underanisoplanaticconditions ¥ > S), the ionospheric phase error varies over
the FoV of each antenna. A single phase correction per aatisnmo longer sflicient.
Self-calibration may still converge, but the resulting pa&orrection per antenna is a
flux-weighted average of ionospheric phases across the @&/ $ection 6.3.1). Accu-
rate self-calibration and imaging of individual very brigimd relatively compact sources
is therefore possible, even with extended arrays (see @Hrf example). For a compact
array (Lonsdale regime 3), the FoV offidirent antennasfiectively overlap at iono-
spheric height. The LoS of flerent antennas towards one source run close and parallel
through the ionosphere. For an extended array (Lonsdaimee), the FoV of difer-
ent antennas may partially overlap at ionospheric heightnbt necessarily. Individual
LoS from widespread antennas to one source may trace viéeyatit paths through the
ionosphere

In regime 3, ionospheric phases behave as a spatial gradienthe array that varies
with viewing direction. This causes the apparent positifbsonirces to change with time
and viewing direction, but no source deformation takesgldhe 3-dimensional phase
structure of the ionosphere can beetively reduced to a 2-dimensional phase screen,
by integrating the free electron density along the LoS (Eque6.4). Radio waves that
pass the virtual screen experience an instantaneous ioelesphase rotation depending
on thepierce pointposition (where the LoS pierces the phase screen). Whemassa
fixed number of required ionospheric parameters per unét afgphase screen, calibra-
tion of a compact array requires a minimal number of pararadtecause each antenna
illuminates the same part of the phase screen.

In regime 4, the dependence of ionospheric phase on antesitiop and viewing
direction is more complex. This causes source positiorisshiid source shape defor-
mations that both vary with time and viewing direction. A rénsional phase screen
model may still be used, but only when the dominant phaseutiicins originate from
a restricted height rangeh < S in the ionosphere. The concept of a thin layer at a
given height is attractive, because it reduces the contglexithe calibration problem
drastically. When using an airmass function to incorpoeazenith angle dependence,



6.2 IONOSPHERE AND CALIBRATION 87

Figure 6.1: Schematic overview of thefflirent calibration regimes as discussed by Lonsdale
[9]. For clarity, only two spatial dimensions and one caldtion time interval are considered.
In this overview, the array is represented by three anterataground level, looking through the
ionospheric electron density structure (grey bubbleshwvitividual fields-of-view (red, green and
blue areas). Due to the relatively narrow primary beam paisein regimes 1 and 2 (top left
and top right, respectively), each individual antenna Sem approximately constant TEC across
the FoV. The relatively wide primary beam patterns in regirBeand 4 (bottom left and bottom
right, respectively) causes the antennas to 'see’ TEC tiaria across the FoV. For the relatively
compact array configurations in regimes 1 and 3, the TEC vtamivacross the array for a single
viewing direction within the FoV is approximately a gradieifror the relatively extended array
configurations in regimes 2 and 4, the TEC variation acrogsaiiay for a single viewing direction
differs significantly from a gradient. The consequences fobeatiion of the array are discussed
in the text.
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the spatial phase function is iffect reduced to 2 spatial dimensions. Generally, a phase
screen in regime 4 requires a larger number of model parasidian in regime 3, be-
cause the phase screen area illuminated by the total ari@gées.

It is currently unclear under which conditions a 2-dimensigphase screen model
becomes too inaccurate to model the ionosphere in regimerdefy long baselines or
very severe ionospheric conditions, a full 3-dimensiooabispheric phase model may be
required, where ionospheric phase corrections need tondieted by ray-tracing. Such
a model is likely to require many more parameters than canxbaated from radio
observations alone. To first order, it may béfgient to extend the phase screen model
with some form of height-dependence. Examples of such sides are the use of several
phase screens atftérent heights [62] or introducing smoothly varying partiativatives
of TEC or phase as a function of zenith angle [63].

Calibration needs to determine corrections offisiently short time scales to track
the ionospheric phase changes. The phase rate of changeddepethe intrinsic time
variability of the TEC along a given LoS and on the speed oflLtbh& from the array
antennas through the ionosphere while tracking a cosmisod he latter may range
up to~ 100 km 't at 200 km height. The exact requirements on the time resoluti
of the calibration are yet to be determined. In principles time-variable ionospheric
phase distortions needs to be sampled at least at the Nyaagjsency. However, during
phase variations of large amplitude- (1 radian), Z radian phase winding introduces
periodicity on much shorter time scales. To succesfully iapphase winds, at least two
corrections per2radian phase change are required.

6.2.4 Proposed and Existing lonospheric Calibration Schemes

Schwab [64] and Subrahmanya [65] have proposed modifiatmthe self-calibration
algorithm to support direction-dependent phase calibnatiBoth methods discuss the
use of a spatial grid of interpolation nodes (additionat foparameters) to characterize the
spatial variability of the ionospheric phase error. Schwaggests to use aftérent set
of nodes per antenna, while Subrahmanya suggests to cothieise sets by positioning
them in a quasi-physical layer at fixed height above the Easthface (this to reduce the
number of required nodes when the FoVs froifietent antennas overlap at ionospheric
height). Neither of both proposed methods have been impitrde

Designed to operate in Lonsdale regime 3, field-based adililorby Cotton et al. [42]
is the single existing implementation of a direction-degesmt ionospheric phase calibra-
tion algorithm. Typically, for each time interval of 1-2 nuites of VLA 74 MHz data,
the method measures and converts the apparent positiaroEbi#10 detectable bright
sources within the FoV into ionospheric phase gradientstivearray. To predict phase
gradients in arbitrary viewing directions for imaging oktlfull FoV, an independent
phase screen per time interval is fitted to the measured pinadients. The phase screen
is described by a 5 term basis of Zernike polynomials (up tosé order, excluding the
constant zero order).

Field-based calibration has been used to calibrate 74 MH& dthservations, mostly
in B-configuration [41, e.g.] but also several in A-configioa [66, 67, e.g.]. Image
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plane comparison of field-based calibration against s@lbation shows an overall in-
crease of source peak fluxes (in some cases up to a factor phhelaeduction of resid-
ual sidelobes around bright sources, a clear indicatiompfoved phase calibration over
the FoV [55]. The improved overall calibration performasoenetimes compromises the
calibration towards the brightest source.

Zernike polynomials are often used to describe aberrafimmptical systems, be-
cause lower order terms match well with severéiedent types of wavefront distortions,
and the functions are an orthogonal set on the circular dowifathe telescope pupil.
Using Zernike polynomials to describe an ionospheric psasgen may be less suitable,
because they are not orthogonal on the discrete domain afeppints, diverge when
moving away from the field center and have no relation to iphesic image abberations
(except for first order, which can model a large scale TECigrajl Non-orthogonality
leads to interdependence between model parameters, whdagence is clearly non-
physical and leads to undesirable extrapolation propertie

For extended LF arrays or more severe ionospheric condittbe ionospheric phase
behaviour over the array for a given viewing direction is noder a simple gradient.
Under these conditions, performance of field-based cdidrdegrades. For the 74 MHz
VLA Low-frequency Sky Survey (VLSS; [41]), field-based datftion was unable to
calibrate the VLA in B-configuration for about 10-20% of thieserving time due to
severe ionospheric conditions. Observing at 74 MHz with+h8 times larger VLA
A-configuration leads to a relative increase in the failate of field-based calibration.
This is to be expected, as the larger array size results in@eased probability for the
observations to reside in Lonsdale regime 4.

The presence of higher order phase structure over the artag idirection of a cal-
ibrator requires an antenna-based phase calibratiorr édue a source position shift to
measure ionospheric phases. The calibration methods geddiyy Schwab and Subrah-
manya (see above) do allow for higher order phase correctiver the array and could,
in principle, handle more severe ionospheric conditions. akernative approach is to
use thepeelingtechnique [26], which consist of sequential self-calilaas on individ-
ual bright sources in the FoV. This yields per source a setwd-wvariable antenna-based
phase corrections and a source model. Because the peeliegtians are applicable to
a limited set of viewing directions, they need to be integpedl in some intelligent way
to arbitrary viewing directions while imaging the full FoReeling is described in more
detail in Section 6.3.3

Noordam [26] has proposed a ‘generalized’ self-calibrati@ethod for LOFAR [e.g.
68] that includes calibration of higher order ionosphetti@age distortions. Similar to
‘classical’ self-calibration, instrumental and enviroamtal (including ionospheric) pa-
rameters are estimated by calibration against a sky briégstmodel. Sky model and
calibration parameters are iteratively updated to coreréwgsome final result. Unique-
ness of the calibration solution is controlled by puttingtrietions on the time-, space-
and frequency behaviour of the fitted parameters. Teets of the ionosphere are mod-
eled in a Minimum lonospheric Model (MIM; [63]), which is y&i be defined in detail.
The philosophy of the MIM is to use a minimal number of phykassumptions and free
parameters to accurately reproduce the obsertfedts of the ionosphere on the visi-
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bilities for a wide-as-possible range of ionospheric ctinds. The initial MIM is to be
constrained using peeling corrections.

6.3 Method

SPAM, an abbreviation of ‘Source Peeling and Atmospherid®liog’, is the imple-
mentation of a new ionospheric calibration method, conmgjrseveral concepts from
proposed and existing calibration methods. SPAM is desigoeperate in Lonsdale
regime 4 and can therefore also operate in regimes 1 to 3e$tthe calibration phases
from peeling sources in the FoV to constrain an ionosphdrasp screen model. The
phase screen mimics a thin turbulent layer at a fixed heighteathe Earth’s surface, in
concordance with the observations of ionospheric smallesstructure (Section 6.2.1).
The main motivation for this work was to test several aspeti®nospheric calibra-
tion on existing VLA and GMRT data sets on viability and qtggive performance, and
thereby support the development of more advanced caliloratgorithms for future in-
struments such as LOFAR.

Generally, the instantaneous ionosphere can only be $pasesepled, due to the non-
uniform sky distribution of a limited number of suitable ibahtors and an array layout
that is optimized for UV-coverage rather than ionospheaitbcation. To minimize the
error while interpolating to unsampled regions, an optiotadice of base functions for
the description of the phase screen is of great importanasedBon the results in Chapter
5 [see also 51], we use the discrete Karhunen-Loeve (Kbjfoam to determine an op-
timal set of base ‘functions’ to describe our phase screenalgiven pierce point layout
and an assumed power-law slope for the spatial structuiifumof ionospheric phase
fluctuations (see Section 6.2.1), the KL transform yieldstao$ base vectors with sev-
eral important properties: (i) the vectors are orthogomatte pierce point domain, (ii)
truncation of the set (reduction of the model order) gives@inmal loss of information,
(iii) interpolation to arbitrary pierce point locations @s the phase structure function,
and (iv) spatial phase variability scales with pierce pdietsity, i.e., most phase screen
structure is present in the vicinity of pierce points, whileonverges to zero at infinite
distance (more detail on this phase screen model is giveadtidh 6.3.4).

Because the required calibration time resolution is stilbpen issue, and the SPAM
model does not incorporate any restrictions on temporahwiehr, independent phase
screens are determined at the highest possible time resolthich is the visibility
integration time resolution).

SPAM calibration can be separated in a number of functioteglss each of which
is discussed in detail in the sections to follow. The reqlirgut is a spectral-mode
visibility data set that has flux calibration and bandpasibiaion applied, and radio
frequency interference (RFI) excised (see [69] or [41] fetails). The SPAM recipe
consists of the following steps:

1. Obtain and apply instrumental calibration correctiamrgiase (Section 6.3.1).
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. Obtain an initial model of the apparent sky, together withinitial ionospheric

phase calibration (Section 6.3.2).

. Subtract the sky model from the visibility data while appy the phase calibra-

tion. Peel apparently bright sources (Section 6.3.3).

. Fit an ionospheric phase screen model to the peelingsotufSection 6.3.4).

. Apply the model phases on a facet-to-facet basis duriimpaging of the apparent

sky (Section 6.3.5).

Steps 3 to 5 define the SPAM calibration cycle, as the imagéymed in step 5 can serve
as an improved model of the apparent sky in step 3.

The scope of applications for SPAM is limited by a number smsptions that were
made to simplify the current implementation:

The ionospheric inhomogeneities that cause significanselléstortions are lo-
cated in a single, relatively narrow height range.

There exists a finitely small angular patch size, which cambeh smaller than
the FoV of an individual antenna, over which the ionosphphiase contribution
is effectively constant. Moving from one patch to neighbourintghas results in
small phase transitionsq 1 radian).

There exists a finitely small time range, larger than thegiratgon time interval of
an observation, over which the apparent ionospheric phaasege for any of the
array antennas along any line-of-sight is much smaller theadian.

The bandwidth of the observations is small enough to fiecvely monochro-
matic, so that the ionospheric dispersion of waves witha flequency band is
negligible.

Within the given limitations on bandwidth and integrationé, the array is sensi-
tive enough to detect at least a few 5) sources within the target FoV that may
serve as phase calibrators.

The ionospheric conditions during the observing run aré shiat self-calibration
is able to produce a good enough initial calibration and skygehto allow for
peeling of multiple sources. This might not work under veagionospheric con-
ditions, but for the applications presented in this articfgoved to be sfiicient.

After each calibration cycle (steps 3 to 5), the calibratiod sky model are equally
or more accurate than the previous. This implies convergana best achievable
image.

The instrumental amplitude and phase contributions to thigilities, including
the antenna power patterns projected onto the sky towaedtathet source, are
constant over the duration of the observing run.
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SPAM does not attempt to model thexts of ionospheric Faraday rotation on polariza-
tion products, and is therefore only applicable to intgnsieasurements (stokes I).

In our implementation we have focussed on functionalitheatthan processing
speed. Inits current form, SPAM is capable of processintedarge dfine data sets,
but is not suitable for real-time processing as is requiced OFAR calibration. SPAM
relies heavily on functionality available in NRAQO'’s Astromical Image Processing Sys-
tem (AIPS; [e.g. 70]). It consists of a collection of Pythamigts that accesses AIPS
tasks, files and tables using the ParselTongue interfade Tilo main reasons to use
AIPS are its familiarity and proven robustness while seg\adarge group of users over a
30 year lifetime, and the quite natural way by which the igi@sic calibration method
is combined with polyhedronimaging [72, 73]. SPAM uses a hanof 3¢ party Python
libraries, like scipy, numpy and matplotlib for math and mabperations and plot-
ting. For non-linear least squares fitting of ionospheriagghmodels, we have adopted a
Levenberg-Marquardt solver (LM; [e.g. 74]) based on IDL®MT package [75].

6.3.1 Instrumental Phase Calibration

Each antenna in the array adds an instrumental phéset to the recorded signal before
correlation. At low frequencies, changes in the instruraksignal path length (e.g., due
to temperature induced cable lengtlffeliences) are very small compared to the wave-
length, therefore instrumental phasésets are generally stable over long time periods
(hours to days). SPAM requires removal of the instrumertiabe @fsets from the visi-
bilities prior to ionospheric calibration.

Instead of directly measuring the sky intendifly m) as a function of viewing direc-
tion cosinesl( m), an interferometer measures an approximate Fourierfoanf the
sky intensity. For a baseline consisting of anterireasl j, the perfect response to all vis-
ible sky emission for a single time instance and frequengpisn by the measurement
equation (ME) for visibilities [4, e.g.]:

Vij =ffI(I,m)e’z’”[“ii'*Vii””wii‘”’l)]@1, (6.7)

whereJ indicates the imaginary part of a complex numimes, /1 - 12 — n?, u;. andvij

are baseline coordinates in the UV plane (expressed in gagtis) parallel tci) andm,
respectively, andvij is the perpendicular baseline coordinate along the LoSruisvide
chosen celestigihase tracking centeat (I, m) = (0, 0). In practise, these measurements
are modified with predominantly antenna-based complex aitorsa, that may vary
with time, frequency, antenna position and viewing dirttiThis modifies the ME into

G - ffai(l,m)a}(l,m)

27r.][uijl+vijm+wij(n—l)] dldm (6.8)

I(I, me" -

Determination of the gain factors is generally referreddaalibration. When known,
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only gain factors that do not depend on viewing directionlsamemoved from the visi-
bility data prior to image reconstruction by applying théilmation:

Vij = (g a}-)il\’\/ij (6.9)

This operation is generally not possible for gain factoed tto depend on viewing direc-
tion, because these gain factors cannot be moved in frohedhtegral in Equation 6.8.
One may still choose to apply gain corrections for a singeawmg direction (e.g. to
image a particular source), but the accuracy of imaging &uwdilolution of other vis-
ible sources will degrade when moving away from the selegteding direction. A
solution for wide-field imaging and deconvolving in the pese of direction-dependent
gain factors is discussed in Section 6.3.5.

The standard approach for instrumental phase calibratibigher frequencies is to
repeatedly observe a bright (mostly unresolved) sourdaglan observing run. Antenna-
based gain phase correctiogs~ a1 are estimated by minimizing the weightedtdr-
ence sunt between observed V|S|b|I|t|e\9§ and source model V|S|b|I|t|e‘s!m°de' V”
[e.g. 4]; implemented in AIPS task CALIB)

S= ZZ jIvedel— g gi P, (6.10)

i

with W, the visibility weight (reciproke of the uncertainty in thisibility measurement),

g = g™ and p the power of the norm (typically 1 or 2). The source modelbiities
V{ro%lare calculated using Equation 6.7 wih m) = 1™°%*{1, m). The phase corrections

¢fa' consist of an instrumental and an atmospheric part. Thectons are interpolated

in time and applied to the target field visibilities, undee tissumptions that the instru-
mental and atmospheric phadEsets vary slowly in time, and that the atmospheric phase
offsets in the direction of the target are equal to those in tleetion of the calibrator.

At low frequencies, there are two complicating factors foe standard approach:
(i) the FoV around the calibrator source is large and incduth@ny other sources, and
(i) the ionospheric phasdiset per antenna changes significantly with time and viewing
direction. The former can be overcome by choosing a veryhbdglibrator source with
a flux that dominates over the combined flux of all other visixdurces on all baselines
(the gainsg; are a ). For the VLSS [41], the 17,000 Jy of Cygnus A was mora tha
suficient to dominate over the total apparent flux of 4@DO0 Jy in a typical VLSS field.
The latter requires filtering of the phase corrections toaettonly the instrumental part,
which is then applied to the target field visibilities.

For SPAM, we have adopted an instrumental phase calibratiethod that is very
similar to the procedure used for field-based calibratid).[#Antenna-based phase cor-
rections are obtained on the highest possible time resaluty calibration on a very
bright sourcek using the robust L1 norm (Equation 6.10 with= 1; [76]). A phase
correctionq)ﬁf;I for antenna at time intervah consist of several contributions:

G = ST 4 gl — g — g (6.11)
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where the instrumental and ionospheric phase correctiﬂ@iﬁ%andgbggﬂ respectively, are
assumed to be constant resp. vary with time and antennaguositer the observing run.
The other right-hand terms are the phafiseig,, . = ¢;"" + ¢\o" of an arbitrarily chosen

reference antenrae (i}, and the phase ambiguity tef"" = 27N, with integerN,,
that mapss$2 into the [Q 27) domain.

The antenna-based phase corrections are split into instrtaland ionospheric parts
on the basis of their temporal and spatial behaviour. The@barrections are filtered by
iterative estimation of invariantinstrumental phasegétber with the phase ambiguities)
and time- and space-variant ionospheric phases. The inetrtal phases are estimated
by robust averaging{3 o rejection) over all time intervals:

" = ((¢5a — #°") mod 2r) . 6.12)

The phase ambiguity estimates follow from

¢;’:|1(r:big - round([&;nstr + (Zgon _ ¢|Cka:1l] /271_) i (6.13)

where the round() operator rounds a number to the nearegeinvalue. The instrumen-
tal phase fiset of the reference antenna is arbitrarily set to zero. ®hespheric phases
are constrained by fitting a time-varying spatial grad@m to the phases over the ar-
ray. The gradient fit consists of an initial estimate dingétbm the calibration phase
corrections, followed by a refined fit by using the LM solventmimize

do = |- a9 -

2
G (%= %) - (6.14)

B
whereX is the position of antennia The ionospheric phasefeet of the reference an-
tenna is arbitrarily set to zero, which makes it a pivot poir which the phase gradient
rotates. Higher order ionospheridects are assumed to average to zero in Equation 6.12.

6.3.2 Initial Phase Calibration and Initial Sky Model

The instrumental phase calibration method described itic®e6.3.1 assumes that the
time-averaged ionospheric phase gradient over the arrétyeirirection of the bright
phase calibrator is zero. Any non-zero average is absortiedtie instrumental phase
estimates, causing a position shift of the whole target field thereby invalidating the
astrometry. Before entering the calibration cycle (Sexi6.3.3—6.3.5), SPAM requires
restoration of the astrometry and determination of anah#tky model and initial iono-
spheric calibration.

To restore the astrometry, the instrumentally correctegetafield data from Sec-
tion 6.3.1 is phase calibrated against an apparent sky n{édles task CALIB). The
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default is a point source model, using NVSS catalog posit[@id, 78], power-law inter-
polated fluxes from NVSS and WENSSBISH catalogs [79] and a given primary beam
model. To preserve the instrumental phase calibration &sral in Section 6.3.1 dur-
ing further processing, time-variable phase correctiesslting from calibration stepsin
this and the following sections are stored in a table (AIPSt&dNe) rather than applied
directly to the visibility data. The sky model calibratianfollowed by wide-field imag-
ing (AIPS task IMAGR) and several rounds of phase-only selfbration (CALIB and
IMAGR) at the highest possible time resolution, yielding thitial sky model and initial
phase calibration.

For wide-field imaging with non-coplanar arrays, the staddaaging assumptions
that the relevant sky area is approximately flat and the theigkline coordinatevterm
in Equation 6.7) is constant across the FoV are no longed vati overcome this, SPAM
uses the polyhedron method [72, 73] that divides the larg¢ iRt a hexagonal grid
of small, partially overlappindacetsthat individually do satisfy the assumptions above
(AIPS task SETFC). Additional facets are centered on radbtibright sources inside
and outside the primary beam area to reduce image artefaet®gixellation [80-84].

The Cotton-Schwab algorithm [64, 85, 86] is a variant of CINEdeconvolution [14,
87] that allows for simultaneous deconvolution of multifdeets, using a dierent dirty
beam for each faceBoxesare used to restrict CLEANing to real sky emission, making
sure that sources are deconvolved in the nearest facetGhiyAN model components
are stored in facet-based AIPS CC tables). After deconesluthe CLEAN model is
restored to the relevant residual facets (AIPS task CCREBgwa CLEAN beam, and
the facets are combined to form a single image of the full FANPE task FLATN).

6.3.3 Peeling

To construct a model of ionospheric phase rotations inranyiviewing directions within
the FoV, SPAM requires measurements in as many directiopsssble. When no ex-
ternal sources of ionospheric information are availalble target field visibilities them-
selves need to be utilized. (Self-)calibration on indiatisources can supply the required
information, even in the presence of higher order phasetsirel over the array. After
instrumental phaseffsets are removed, phase calibration corrections are diveateea-
sure of ionospheric phase:

G5 = dion — din — B, (6.15)
where we used Equation 6.11 wihts" = ¢S = 0.

SPAM uses the peeling technique [26] to obtain phase cdorecin diterent view-
ing directions. Peeling consists of self-calibration odividual sources, yielding per
source a set of time-variable antenna-based phase congeethd a source model. Af-
ter self-calibration of a source, the source model is sgtachfrom the visibility data
set while temporarily applying the phase corrections (At&sks SPLIT, UVSUB and
CLINV/SPLIT).

For peeling to converge, a source needs to be the dominatnttedgor of flux to the
visibilities on all baselines. Especially at low frequesssithe presence of many other
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sources in the large FoV may add considerable noise to tHanggshase corrections.
To suppress thisfiect, the following steps are performed: (i) The best avéglabodel
of the apparent sky is subtracted from the visibility datalettemporarily applying the
associated phase calibration(s). The initial best aviglaindel and associated phase
calibration is the self-calibration output of Section &.3Individual source models are
added back before peeling. (ii) Sources are peeled in daoge#ux order to suppress
the efect of brighter sources on the peeling of fainter sources) Galibration only
uses visibilities with projected baseline lengths londemt a certain threshold. This
excludes the high ‘noise’ in the visibilities near zerogédmbaselines from the coherent
flux contribution of imperfectly subtracted sources.

The radio sky can be approximated by a discrete number @ftessh|invariant sources
of finite angular extend. Visibilities in the ME (Equatiory§for a single integration time
n can therefore be splitinto a linear combination of contiilms from individual sources

k:
Vim = Zk:Vijknzzk:fflk(l’m)

—ZIrJ[u.

23U+, (- D) ﬂn (6.16)

n

The subtraction of all but the peeling souk¢drom the measured visibilities in step (i)
above can be described as

vijk/n ~ \7ijn - Z(gikn g]fkn)_lvirjr:(%del’ (6'17)
k#k’

with g, = g,(l,. m.t,) = g%ia the best available calibration in the viewing direction of
sourcek, andV/1°%! the visibilities that are derived from the best availabledeid}°%

of sourcek. The peeling itself consists of iterative calibration anthging steps of the
peeling sourcd’. The calibration (Equation 6.10 with = 1) updates the antenna gain
correctionsy, , by minimizing

Sh= Z Z Wijn”Vir}Lc')gel —Oin g-}.n\,\/ijk’n”’ (6.18)

i

while the imaging step updaté$2*® and therefore/7o5°.

In practise, due to incompleteness of the sky model and uracees in the phase
calibration, there will always remain some contaminatiagrse flux in the visibilities
while peeling. Complemented with system noise, sky noesidual RFI and other pos-
sible sources of noise, the noise in the visibilities prapag into the phase corrections
from the peeling process.

Absolute astrometry is not conserved during peeling, bezaalf-calibration allows
antenna-based phase corrections to vary without constriairsubsequent peeling cy-
cles, small non-zero phase gradients in the phase resuftedsalibration can cause the
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source model to wander away from its true position. In SPA$trcametry errors are min-
imized by re-centering the source model to its true (ca)gdogition before calibration in
each self-calibration loop. By default, SPAM re-centeespiieak of the model flux to the
nearest bright point source position in the NVSS catalog T8]. It is recommended to
visually check the final peeling source images for possikilamatches with the catalog
(e.g., in case of double sources or sources with a spatiatlyjing spectral index).

While peeling, SPAM attempts to calibrate sources on thadsgpossible time res-
olution, which is the visibility time grid. The noise in thesulting phase corrections
depends on the signal-to-noise ratio (SNR) of the sourceifldke visibilities. To in-
crease the number of peeling sources and limit the phase moisase of insfiicient
SNR, SPAM is allowed to increase the calibration time indébeyond the visibility in-
tegration time up to an arbitrary limit. Through image plamalysis, SPAM estimates
the required calibration time-interval per source:

S
n=(—1| N, (6.19)
as,

wheren, is the required number of integration times in a calibraiierval, N, is the
total number of integration times within the observatieis the minimum required SNR
per integration time (a tweakable parameter that sets tlnt@between the SNR and
the time resolution of the peeling phase corrections), ndndo are the measured
source peak flux and local background noise level in the im&ge a fixed upper limit

on the calibration time interval, an increasedimesults in a decrease in the number of
peeling sources. Fay, < 1, phase corrections are determined on the visibility time. g
Forn, > 1, a spline is used to resample the phase corrections pemenie time onto
the visibility time grid.

Apart from SNR issues, the number of sources that can begeefandamentally
limited by the available number of independent visibilitgasurements. When peeling
N, sources, self-calibration fitd(N, — 1) phase solutions per calibration time interval to
the visibility data, wheré\, is the number of antennas. For self-calibration to converge
to an unique combination of phase solutions and source mitiehumber needs to be
much smaller than the number of independent visibility meaments. The maximum
of visibilities measurements that is available in one calilon time interval is given by
NNdNL(N, — 1)/2, with N, the number of frequency channels afrg) the average
number of visibility integration times in a calibration@mval. In the ideal case, when we
assume that each visibility is an independent measuretherdetermination of antenna-
based phase corrections for all peeling sources is welltcined if

N, N.(n.)

N, < %t

The applications presented in this article do satisfy thisimmal condition (see Sec-
tion 6.4).

Equation 6.20 is equivalent to stating that the number ofekegof-freedom (DoF;

the diference between the number of independent measurementfi@mdinber of

(6.20)
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model parameters) should remain a large positive numberrefation between visi-
bilities over frequency and time may reduce the number ofjrehdent measurements
drastically, thereby also reducing the number of DoFs. Kaetnumber of DoFs for any
data set is hard to quantify. When this number becomes toatandata is ‘over-fitted’
[e.g. 88], which could result in an artificial reduction oftbohe image background noise
level and source flux that is not represented in the selbion model [12]. Although
we have found no evidence of thifect occuring in the applications presented in this
article, the SPAM user should be cautious not to peel too nsaoyces. In case of a
high number of available peeling sources, one can chooséseswith a sfficiently
dense spatial distribution over the FoV (e.g., one sourcéspelanatic patch; see Sec-
tion 6.3.5).

6.3.4 lonospheric Phase Screen Model

The phase corrections that are obtained by peeling sevaggittsources in the FoV
(Section 6.3.3) are only valid for ionospheric calibratiom limited patch of sky around
each source. To correct for ionospheric phase errors oeduthFoV during wide-field
imaging and deconvolution, SPAM requires a model that pitsdhe phase correction
per antenna in arbitrary viewing directions.

SPAM constructs a quasi-physical phase screen model teatjais to accurately re-
produce and interpolate the measured ionospheric phaesttorst (or more accurately:
the peeling phase corrections). The phase screen is dasdrinidependently for each
visibility time stamp, therefore we drop thesubscript in the description below. Fig-
ure 6.2 is a schematic overview of the geometry of ionosplpdrase modeling in SPAM.
The ionosphere is represented by a curved phase screen atehéiighth above the
Earth’s surface, compliant to the WGS84 standard (NIMA ]8%he total phase rotation
experienced by a ray of radio emission traveling along a ltw8ugh the ionosphere is
represented by an instantaneous phase rotaif(p, £) on passage through the phase
screen that is a function of pierce point positipand zenith angl&. For a thin layer
(Ah < S; see Section 6.2.3), the dependencg®fon ¢ can be represented by a simple
airmass function, so that
¢ion(p>)
cos¢)

SPAM uses an angular local longityl#itude coordinate system to specify rel-
ative to the central pierce point from array center to fieldtee For the applications
presented in this article, the angular distances betwesnegipoints over the relevant
ionospheric domain are all 5 degrees, whichfiectively makes the pierce point vector
p a 2-dimensional cartesian vector.

The 2-dimensional phase scregf'(p) is defined on a set of KL base vectors, gen-
erated from the instantaneous pierce point configurafiphand an assumed power-law
shape for the phase structure function (Section 6.2.1). Kthbase vector generation
and interpolation described in detail in Section 5.3.5. Pphase screen model requires
one free parameter per KL base vector. The initial complete@SKL base vectors is

¢°"(B.0) =

(6.21)
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Figure 6.2: Schematic overview of the SPAM thin ionospheric phase sereelel geometry. For
clarity, only two spatial dimensions and one calibratiomé interval are considered. In this
overview, five ground-based array antennas (labelled 1 wbSgrve three calibrator sources (col-
ored reggreenblue and labelled A to C) within the FoV. The (colored) Lo®sa1the array towards
the sources run parallel for each source and pierce the plsassen at fixed height h (colored cir-
cles). The LoS from antenna i at Earth locati&rtowards a peeling source k at local sky position
§, intersects the phase screen at a single pierce pgjninder a zenith anglg, . For a single LoS
from antenna 1 towards source A, we have indicated how theejmint positiong, = p,, and
zenith angley;, = £, relate to the antenna positios) = a, and the local sky positio8, = s,

of the source. For some LoSs the pierce points may overlapdarly overlap), as is the case
for 1C & 4A and 2C& 5A in our example. The total (integrated) phase rotatiomgl@any LoS
through the ionosphere is modeled by an instantaneous ploéston ¢§E” at the phase screen
height. For example, radio waves traveling along LoSs frooree A towards antennas 1 to 5 ex-
perience an instantaneous phase rotamj‘i = ¢, 10 ¢, respectively, while passing the screen
at their related pierce pointg, = p,, to pg,, respectively. Peeling the three calibrator sources
yields measurements of the ionospheric phaggs relative to a common reference antenna (in
this example antenna 3; encircled).
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Figure 6.3: Plots of the interpolations of the first six KL base vectorsyived for an artifi-
cial but realistic configuration of ionospheric pierce ptin In this example, the pierce points
(black crosses) are calculated for a single time instanaéndua 74 MHz VLA-B observation with
13 available calibrator sources in the 10 degree FoV, adopting a phase screen height200km
and a structure function power-law slope= 5/3. The horizontal and vertical axes represent
angular distances in East-West and North-South directioespectively, as seen from the center
of the Earth, relative to the phase screen’s pierce poinhglthe line-of-sight from array center
to pointing center, with East- and Northwargfgets being positive. At this height, a 0.1 degree
angular gfset represents a physical horizontglset of~ 11.5 km. The direction-dependent phase
for each interpolated KL base vector is color-coded andedab an arbitrary amplitude range.

arbitrarily reduced in order by selecting a subset basedatistical relevance (princi-
ple component analysis). This reduces tie@ of noise in the peeling solutions on the
model accuracy and simultaneously limits the number of rhpdeameters. However,
the subset should still be large enough to accurately repethe peeling phase cor-
rections. Per visibility time stamp, the KL base vectors stoged for later use during
imaging (for this purpose, we mis-use the AIPS OB table). Agxample, the first six
interpolated KL base vectors for a single configuration oispheric pierce points are
plotted in Figure 6.3.

The peeling phase correctioqng’" are interpreted to be relative measurements of the
absolute ionospheric phase screen maee(g, /) which may be determined up to a
constant. The model parameters are determined by minigthia diferences between
the observed and the model phases using the LM non-linesi-dgaares solver, for
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which ay? sum needs to be defined. From Equation 6.15 it follows that

¢icka| = ¢i0n(ﬁik’ i) — ¢ion(ﬁrk’ $n) — ¢ﬁ<mbig- (6.22)

Consequently, the phase correction in the direction ofcakifor a baseline consisting
of antennasandj is

¢ — ¢?€| = [6°"(Bi- &) — ¢ion(ﬁjk’ Gl -
[¢ﬁ<mblg— ¢?l£nb| ) (6.23)

They? sum is defined as:

PN (T
kK 1
2

[6"" (B itd) — ¢Ion(ﬁjk’§jk)]) mod ZT] . (6.24)

This definition has several properties: (i) By remapping gReerms into the [02r)

domain, the phase ambiguity terms do not have to be fittedaithpl (ii) the y? terms

of all calibrator sources are weighted equally, so the malabt biased towards the

brightest source (as is the case for self-calibration), @ndusing y? terms from all

possible antenna pairs prevents a bias towards the reéeasenna.

Using Equation 6.24, the LM solver yields a set of model patans per visibility
time stamp. These are stored for later use during imaginB$%ANI table). The square
root of the average of thg? terms equals the average RMS phase residual between
peeling and model phases. Time intervals that have a baafitlantified and removed
by means of an upper limit-2.5 o~ rejection) on the distribution of RMS phase residuals
over time.

Convergence of the LM solver is troubled by Bhase ambiguities, because these
introduce local minima iy? space. A good initial guess of the model parameters greatly
helps to overcome this problem. To this purpose, SPAM estignidie global phase gra-
dient over all the pierce points directly from the phase wions¢ﬁf' and projects it
onto the KL base vectors before invoking the LM solver.

Figure 6.4 shows an example of an ionospheric phase scraewdls constructed as
described above. The pierce point layout consists of melgijections of the array onto
the phase screen. The low density of calibrators causesimaliaverlap between array
projections. Figure 6.5 shows a comparison between tigaesees of phase corrections
from self-calibration, peeling and model fitting. Because s$elf-calibration corrections
are a flux-weighted average for the full FoV, they are biasetds the brightest source.
They look somewhat similar to the peeling solutions of thightest source, but the
latter contains additional fluctuations that vary on a ireddy short timescale. The model
phases appear similar to the peeling phases, but vary maretkiynn Their values fall
somewhere in between the self-calibration phases and glimg@hases. The fierence
between the peeling phases and model phases are mainiyddausee constraints on
the spatial variability of the phase screen model.
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Figure 6.4: Example of an ionospheric phase screen model fit. The colqr re@resents an
ionospheric phase screen at 200 km height that was fittedegéeling phase solutions of 8
calibrator sources at time-interval & 206 of 10 seconds during a VLSS observing run of the 74
MHz VLA in BnA-configuration (see Section 6.4, the J130062(8 set). The plot layout is similar

to Figure 6.3. The overall phase gradient (depicted in thiédso-left corner) was removed to make
the higher order terms more clearly visible. The collectidpierce points from all array antennas
to all peeling sources are depicted as small circles., Therdn the circle represents the measured
peeling phase (the reference antenna VLA N36 was set to rietgihase screen value). The size
of the circle scales with the magnitude of the estimatedehasidual after model correction. The
overall RMS phase residual ... = 21799 degrees (averaged over all pierce points) was one of

the better fitting results during this particular observing.
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Figure 6.5: Example of phase corrections fromffdrent steps in the ionospheric calibration pro-
cess, resulting from processing a VLSS data set with SPA®/ISsetion 6.4, the real J096898
data set). The antenna under consideration is VLA E28, wiP0 Weing the reference antenna
(an 5.7 km east-west baseline). The plots represent 25 esirftobserving time, using a 10 sec-
ond time resolution. Top: Antenna-based phase correctiesslting from self-calibration on the
whole FoV. Middle: Phase corrections resulting from peglihe brightest (30 Jy) source. Bottom:
Corrections resulting from ionospheric phase modelinghia tirection of the (same) brightest

source.
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6.3.5 Imaging

With an ionospheric phase screen model available for a giggility data set, antenna-
based phase corrections for any direction in the wide FoV lmamalculated (Equa-
tion 6.22). Because each visibility consist of contribogdrom visible sources in fier-
ent viewing directions, there is no simple operation thataees the ionospheric phase
rotations from a visibility data set prior to imaging. Inastk SPAM requires an algorithm
that calculates and applies the appropriate model phasections during imaging and
deconvolving for diferent parts of the FoV.

SPAM works under the assumption that there exists a fixedlanigoplanatic patch
size on the sky, with a projected size at ionospheric heigialler than the scale size of
ionospheric phase fluctuations, over which variations mogpheric phase rotation are
negligible. Each isoplanatic patch requires at least oras@laorrection per antenna per
visibility time interval. For the VLA at 74 MHz, the isoplatia patch size is estimated
to be 2—4 degrees [55].

The facet-based polyhedron method for wide-field imagieg Gection 6.3.2) allows
for a relatively simple implementation of ionospheric plasrrection [64]. By choosing
a facet size smaller than the isoplanatic patch size, a setoofel phase corrections
calculated for the center of a facet are assumed to be aedorathe whole facet area.
lonospheric phase model corrections are calculated anedstAIPS SN tables) for each
facet center in the FoV prior to imaging and deconvolutior fhe additional facets
centered on bright sources (see Section 6.3.2), model muasections are optionally
replaced by peeling phase corrections to allow for optichizalibration towards these
sources.

The SPAM imaging and deconvolution procedure is similarhi procedure used
for the field-based calibration method by Cotton et al. [4#]}jch differs from the stan-
dard Cotton-Schwab algorithm by the temporary applicatbthe facet-based phase
corrections (AIPS tasks SPLIT and CLINSPLIT) to the visibility data for the duration
of major CLEAN cycles on individual facets (AIPS tasks IMAGRd UVSUB). After
deconvolution, facets are combined to form a single imagtefull FoV (AIPS task
FLATN). Because antenna-based phase corrections changétite between adjacent
facets, the complete set of partly overlapping facet imagasbine into a continuous
image of the FoV.

6.4 Applications

To demonstrate the capabilities of SPAM, we have definecettest cases based on
observations with the VLA at 74 MHz [58]. In each test caseAl8Rs used for iono-
spheric phase calibration and imaging of a VLSS visibiligtadset [41], following the
steps described in Section 6.3. In the first test case, SPAMapalied to simulated
data to validate basic functionality in a controlled enmimeent. In the next two test
cases, SPAM was applied to visibility data from real obsgows under varying iono-
spheric conditions. We compare SPAM performance agaitfstakbration (SC) and
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field-based calibration (FBC) by analyzing the resulting@g®s. The setup and results of
these test cases are described in detail in the followintiosec

6.4.1 Data Selection, Preparation and Processing

In this Section we describe how the visibility data sets fa three test cases were se-
lectedconstructed. Furthermore, we present details on how thetsesgts were pro-
cessed by SPAM into calibrated images of the FoV.

Two VLSS observations, at pointing centers JO88®8 and J1300-208, respectively,
have been picked from more than 500 available VLSS obsensibn the following
criteria: (i) both fields contain a relatively large numbé&badght sources that can serve
as calibrators, and (ii) the ionospheric conditions dutimg observations appear to be
relatively good (J0906398) and relatively bad (J1300-208). The presence of maire th
5 bright sources of at least 5 Jy compensates for the relagpaor dficiency of the
VLA 74 MHz receiving system [58]. The ionospheric condittowere derived from
the apparent smearing of point sources in the images, dwesidual phase errors after
applying FBC. From experience, we adopted the qualificatisod’ when the mean
width of apparent point sources was at mdsti&ger than the intrinsic 80resolution,
while for ‘bad’ conditions the mean point source width wagiéa by at least 15 In
terms of Strehl rati®® (Equation 6.6), 'good’ and 'bad’ conditions correspondhai >
0.996 andR < 0.966, respectively. Additionally, candidate fields wereuraiby inspected
for evidence of residual phase errors by the presence oneds# image artefacts near
bright sources, which lead to the final selection of the twinl§ienentioned above.

The diference in observed ionospheric conditions between thedalaata sets may
be the result of the dierence in array size and elevation of the target field. FranvtbA
site at+34 degrees declination, the JO9®8 field was observed in B-configuration (up
to 11 km baselines) at relatively high elevation, while th8QD-208 field was observed in
BnA-configuration (up to 23 km baselines) at relatively Idevation. For the J1300-208
observation, the array observed through the ionosphegrgerl separations and along
longer path lengths than for the JOSG®8 observation, which is expected to result in
both larger and less coherent phase errors over the array.

Because both real data sets have been previously calilzatithaged with FBC, the
data sets were already partly reduced at the start of SPAkEp8ing. Instrumental cal-
ibration was applied (including instrumental phase calilon, similar to Section 6.3.1),
most RFI-contaminated data was flagged and the spectrdutiesowas reduced [see
41] for details), but no FBC has been applied yet. For the kitad data set, which is
based on the real J099898 observations, the measured visibilities were repldged
noiseless model visibilities of an idealized sky, consgtf 91 bright point sources with
peak fluxes (larger than 1 Jy) and positions as measured F08@3-398 FBC image.
For each point source, the corresponding model visibilitgges were corrupted using
the direction-dependent ionospheric phase model that itasned with FBC to correct
the real J0900398 data.

FBC images of the two real data sets were available in the \Ar8&ive. For the sim-
ulated J0900398 data set, an ‘undisturbed’ image was made before agplimiono-
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spheric phase corruptions. All three VLSS data sets have paeessed with SPAM,
yielding both an SC image and an ionosphere-corrected SPAdge. Relevant details
on the processing can be found in Table 6.1. For SC and SPANimgawe adopted
most of the imaging-specific settings from FBC (like unifowrighting). Noticeable
differences are the use of CLEAN boxes, a smaller pixel size amfdesaht facet con-
figuration.

By choosing a minimum SNR per time interval of 15 and a maxinpe®ling time
interval of 4 minutes (see Equation 6.19), SPAM was able & p€l0 sources in each
of the real data sets. Lowering the SNR resulted in a mucletascatter in the peeling
phases over time, or prevented peeling to converge at a#l. pEleling time upper limit
was chosen to roughly match the spatial density of calibstorces used in FBC. Deter-
mining phase corrections on a 4 minute time scale couldtrgsuhdersampling the time
evolution of ionospheric phase errors. Note that this oplglias to the faintest of the
calibrator sources. The limitations on spatial and temipgampling of the ionosphere
are dictated by the given sensitivity of the VLA.

Because of the high SNR, all 91 sources in the simulated J&@@®data set quali-
fied for peeling at the highest time resolution of 10 secoff@smimic a more realistic
scenario for further SPAM processing, the number of caldysavas arbitrarily limited to
10. Generally, for all data sets, the images of peeling ssusbowed larger peak fluxes
and less background structure than their counterparteig@image, although the con-
trast became less apparent for weaker and extended (mosibyes) peeling sources.

As stated in Section 6.3.3, the number of peeling sourcasndadmentally limited
by the requirement for a large positive number of degreefseafdom in the available
visibility data. The minimal requirement is given in Equeti6.20. Typically, for the
VLSS data sets, there were 25 active antennas, 12 frequéacyels and 6 visibility
intervals (of 10 seconds) in an average peeling intervalrofriute. In our test cases, we
typically peel 10 sources, which is much less thaix28x 6/2 = 900, thereby satisfying
the minimal requirement.

Due to the uncertainty in their optimal values, it is left @ tSPAM user to specify
the phase screen model order (the number of KL base vedises)eighth of the phase
screen and the power-law exponegrmf the phase structure function. For the applications
presented here, we usad= 200 km andy = 5/3, which is compliant to the measured
values given in Section 6.2.1 given the uncertainty in thvedees. For the simulated data
set, we chose instedd= 1000 km to better match the corrupting FBC ionospheric phase
model that is attached to the sky plane at infinite height.s€halues gave satisfactory
results for the test applications presented here, but céurtieer optimized. The optimal
model order was found to lie in the range of 15-20 terms, wigch.5-2 times the
number of available peeling sources. Increasing or deicrgdlse model order caused
the model fit to be less accurate or more problematic in tefrosrvergence.

For both the simulated and real JO9(®8 data sets, no improvementin background
noise was observed by adding a second calibration cyclethédirst. This indicates fast
convergence of the SPAM calibration method for quiet iomesjz conditions, where the
initial self-calibration is already close to the best agvhlge calibration of SPAM. For the
real J1300-208 data set, adding up to third calibrationecglid improve over the previous



Field name VLSS J090€B98 (simulated) VLSS J09@(398 (real) VLSS J1300-208 (real)
Pixel sizé 18.9 18.9 11.1
Number of facets 347 243 576
Facet separation °18 r18 062

SPAM calibration cycles 1 1 3

Peeling sources 10 11 9

KL model height 1000 krth 200 km 200 km
Fitted KL model terms 15 15 20
Rejected time intervals 0464 25/ 464 86/ 484
Model fit phase RMS B + 0.8 degrees 2B+ 2.4 degrees 22 + 3.2 degrees
Peeling corrections applied directly no yes yes

@ The pixel size for all field-based calibration images i& 20

b Adding more cycles did not significantly improve the imagealiy.
€ Arbitrarily limited to mimic a more realistic scenario.

d Increased to improve match with FBC phase screen.

€1n this case, 15 terms proved to be ifftient.

Table 6.1: Overview of processing parameters for the three data setsatie handled with SPAM as defined in the test cases.
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cycles.

6.4.2 Phase Calibration Accuracy

For the simulated J09@@98 data set, the absolute accuracy of ionospheric cabbrat
can be determined by a direct comparison between the cargipBC phase screen and
the correcting SPAM phase screen. To this purpose, phaseptions and corrections
were calculated from the models for a hexagonal grid of 34%vivig directions within
the FoV. Per viewing direction, the RMS phase error was ¢aled by diferencing of
the phases from both models and averaging over all time stamgbbaselines. The result
is depicted in Figure 6.6.

For areas near the calibrators and in the center of the fiejgmeral, there is a rel-
atively good match between the input and output model, witical RMS phase errors
< 5 degrees. The absence of calibrator sources south-welse dietd center still re-
sults in relatively accurate predictions by the SPAM modelthe direction of peeling
sources, the measured RMS phase error can be split into@begian from inaccuracies
in the peeling process and a contribution from imperfect ehditting. The latter is ap-
proximately 3 degrees (Table 6.1), therefore the RMS phase iatroduced by peeling
is < 4 degrees. Considering the model setup, the only possiblesof error is con-
tamination from other sources while peeling (which app&arappen despite the initial
subtraction of the SC model).

Overall, the change in model base from the corrupting FBCeh&dZernike polyno-
mials) to the correcting SPAM model (15 KL vectors) has a tamsaccuracy over large
parts of the FoV. Towards some parts of the edge of the fielghtfaese errors are sub-
stantially larger, up to 20-25 degrees at worst. This agrébsthe diferent asymptotic
behaviour towards large radii of the Zernike model (divemjafinity) and the KL model
(converge to zero) in the absence of calibrators. The poeseicalibrator sources near
the edge (like the one on the North-East edge of the fieldsléa@ better local match
between corrupting ionosphere and correcting model.

For the real observations, in the absence of external sewt@formation (e.g.,
GPS measurements), it is not possible to derive the absabaieracy of ionospheric
calibration from the observations themselves. Insteagrékidual RMS phase error of
the model fit to the peeling phases is used as an relativeditadtifor calibration accuracy
over time. For both the real J096898 and J1300-208 data sets, the residual RMS phase
error of ~ 22 degrees is much larger than for the simulated data. Trea@dy excludes
rejected time stamps with exceptionally large RMS valuey. irBpecting model fits
on individual time stamps, we found that there are often ag@xce point phases that
deviate significantly more from the fitted model than mosghbburing points. These
errors do not appear to be antenna-based instrumentas eberause peeling solutions
for the same antenna towards other calibrator sources dien@ite in the same manner.
Typically, these deviating points persist for a few timengps before disappearing. The
ionosphere may be responsible for these very small scaletées. Another possibility
is that the peeling solutions are (sometimes) noisy duertitdtions in source SNR.
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Figure 6.6: The grayscale map represents the residual phase RMS betiveatistorting and
correcting ionospheric phase models across the primaryrbaeea, averaged over baselines and
time. The phase RMS was calculated for a hexagonal grid @fingedirections across the FoV.
Each viewing direction is depicted by a small circular ar€averplotted is a contour map of the
point sources as seen in the SPAM image (which extendslgliggytond the grid of circles). The
10 peeling sources are marked by circles. The corresporedbatween the models is largest near
the calibrator sources and over a large part of the inner mimbeam. The discrepancy is largest
near the South-East and North-West borders, away from tligrators.
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6.4.3 Background Noise

In this and the next sections, we revert to analyzing imagpgnties for an indirect, rela-
tive comparison between thefidirent calibration techniques. In the presence of residual
phase errors, part of the image background noise level sisrefiresidual sidelobes after
CLEANIng. The local sidelobe noise increases with both thSRphase error and the
local source flux. When measured over a large image area,¢ha sidelobe noise de-
pends mainly on RMS phase error. For all relevant output @satile mean image noise
o was determined by fitting a Gaussian to the histogram of inpiged values from the
inner quarter radius of the FoV (AIPS task IMEAN). Note tha¢de images have not
been corrected for primary beam attenuation. The resudtgigen in Table 6.2.

Because no noise was added to the simulated JO®@®data set, the resulting image
noise of 30 mJy beam' in the undisturbed image is caused by incomplete UV coverage
and inaccuracies in the imaging process (see Section gligat)ng the dynamic range
to ~ 10*. The local noise is highest near the sources, but significéess near the
brightest 10 sources with dedicated facets centered onpkek position. The SC and
SPAM images from this data set were created using the samaedanfiguration. The
SC image noise of 12 mJy beamtis 3.4 times as high as the undisturbed image noise,
therefore dominated by phase error induced sidelobe ndise.SPAM image noise of
6.7 mJy beam'is a significant improvement over the SC image, but still 1t as
high as in the undisturbed image. The local noise in the SCSPAM images has
increased most apparently near bright sources as compaitbe undisturbed image,
which confirms the presence of residual phase errors afieraon.

For the real J0906398 data set, both the SC and SPAM images have an image noise
of ~ 70 mJy beam' . The SPAM image noise is slightly lower than SC. The locasgoi
in the SC image is higher near bright sources. This is notaise in the SPAM image,
which must be a direct result of an improved calibration aacy near these sources.
The FBC image noise for this data seti®0 percent higher, a combination of a higher
average noise over the FoV and higher local noise near tsalrces.

For the real J1300-208 data set, the SPAM image has the saaye invise as for
the real J0908398 data set, with no apparent increase near bright souktdise same
time, the noise levels in the SC and FBC images have increeite0 and 35 percent,
respectively. The noise in the SC image is highest near tightbsources. The FBC
noise is highest near the brightest source and remains hitjieirest of the image. The
significant increase of the average FBC noise level indscatiependence on ionospheric
conditions, and therefore on calibration accuracy. The Nsf#age noise appears to
have little or no dependence on varying ionospheric camust{Figure 6.7).

6.4.4 Source Properties

The presence of residual phase errors changes the appistahtition of flux of a source
(see Section 6.2.2). In the time-averaged image, sourcesippeear fset from their in-
trinsic position, may sfiier from smearing or deformation, and sidelobes may be nmiside
tified as sources. Comparing the properties of the sameesindiferently calibrated



Field name VLSS J090G€B98 (simulated) VLSS J09@®398 (real) VLSS J1300-208 (real)
Mean background noise [mJy beam?]:

Undisturbed 3.0 - -
SC 10.2 71 92
FBC - 87 118
SPAM 6.7 67 68
Number of sources with a peak flux larger thart 5

Undisturbed 91 - -
SC 91 393 374
FBC - 310 285
SPAM 91 372 392
50 source fraction with an NVSS counterpart within’80

Undisturbed 1. - -
SC 1. 0.83 0.60
FBC - 0.86 0.74
SPAM 1. 0.97 0.97

Table 6.2: Overview of results from calibrating and imaging three teste data sets with no ionosphere (Undis-
turbed), self-calibration (SC), field-based calibratidfBC) and SPAM.
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R
Figure 6.7: Greyscale plots of 8 5x 3.5 square degree area in the VLSS J1300-208 field centered
on the bright (40 Jy) point source 3C 283. All three imageshaontours (black lines) overplotted
at [0.15, 0.48, 0.83, 1.16, 1.50] Jy. Left: Image after swlfibration, middle: image after field-
based calibration, and right: image after SPAM calibration

images allows for a relative comparison of the performaridbe different calibration
techniques.

To allow for comparison of source properties, we appliedsitherce extraction tool
BDSM [90] on all relevantimages. BDSM performed a multipldighensional Gaussian
fit on islands of adjacent pixels with amplitudes above a ifipecthreshold based on
thelocal image noiser, in the image. Multiple overlapping Gaussians were grouped
together into single sources. We applied BDSM to all imagsisg the default extraction
criteria, except for the following: a source detection riegg at least 4 adjacent pixel
values above 3o, with at least one pixel value aboverd.

Source Counts

Due to the non-Gaussian character of the phase-induceldisédeoise, the source cat-
alogs will contain spurious detections. To suppress th@sesemoved sources with a
peak flux smaller than & from the catalogs. The remaining number of catalog entries
are listed in Table 6.2. Additionally, each catalog was srassociated against the NVSS
catalog, which has a slightly higher resolution’(35For an average spectral index of
—0.8, the NVSS detection limit is at least 10 times lower thantfier VLSS. At the risk

of missing an incidental ultra-steep spectrum source, werchined the source fraction
that has an NVSS counterpart within arf’8@dius (one VLSS beamsize), which are also
listed in Table 6.2.

For the simulated J09@(98 data set, all 91 input sources are detected and matched
against NVSS counterparts, regardless of the calibratiethad. Due to the low noise
levels and the lower limit of 1 Jy on the input source cataldbsources areféectively
2 1000 detections. None of the sources had more than one Gaussggartditit, despite
the freedom to do so.
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For the real J0908398 data set, the higher in the FBC image is reflected in a
smaller number of source detections as compared to SC anill SB8 detects slightly
more sources than SPAM, despite the slightly higheHowever, there is a very large
fraction of sources in the SPAM catalog that has an NVSS epatt, significantly
larger than for both the SC and FBC catalogs. This suggestshth SPAM catalog is
much less contaminated by false detections than the SC a@dtRfalogs, resulting in a
larger absolute number of true detections.

This is further strenghtened by the results from the rea01308 data set. For this
test case, the SPAM image has the largest number of souegides. Again, the SPAM
catalog has the largest fraction of associations with th&8¢atalog, the same fraction
as with the J0900398 data set. In contrast, the fraction of NVSS countergartSC
and VLSS have both gone down. This is best explained by araserin (non-Gaussian)
sidelobe noise in the image background due to calibrati@mr®mnwhich corresponds with
the observed increasedn

Source Peak Fluxes

The presence of residual phase errors after calibratiorcaage an unresolved source
shape to deviate from a point source shape. The source fledistributed over a larger
area and the peak flux of the source drops. At 8fsolution, most sources in a VLSS
field are unresolved. Therefore, a mean increase of soudt@svover the point source
width is a direct measure of ionospheric conditions. Thiggiarent was used in the pre-
selection of data sets for our test cases.

For significant source deformations or low SNR sources ragtation of the shape
of individual sources is subject to large uncertaintieg.(&Condon et al. [91]). Because
determination of peak fluxes is much more robust, we use floeseelative comparison
of calibration accuracy. Starting with the original caggdaas produced by BDSM, we
associate sources between the undisturbed, FBC, SC and §&&hMgs that lie within
80" of the same NVSS source and has a peak flux larger tlam 4t least one of the
two catalogs.

For the simulated J09@@98 data set, the true peak fluxes of all 91 sources are
known. A comparison between peak fluxes from the undistuntmedje and the input
catalog identifies a smalk(1 percent) CLEAN bias of 3.6 mJy beahje.g. 77, 78, 92].
Ignoring the image noise dependency of CLEAN bias, we aghé small correction
to the peak fluxes in the undisturbed, SC and SPAM sourceocgtdlefore proceeding.
Figure 6.8 shows a comparison of the measured-to-input fheakatios for sources in
the SC and SPAM images. The mean peak flux ratio for both imag@sproximately
equal and just slightly smaller than one. The larger scattdre SC peak fluxes is con-
sistent with a higheo-. Using Equation 6.6, the random part of the mean RMS phase
error for both SC and SPAM is estimated at 5—6 degrees. This@comparable to the
observed RMS phase error over large parts of the SPAM imagsi(® 6.4.2).

To study the nature of residual RMS phase errors after eatjwic of SPAM, we plot
the RMS phase errors at the source positions from Figure gathst SPAM-to-input
peak flux ratios (Figure 6.9). For Gaussian random phasesertite peak flux ratio
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Figure 6.8: Peak flux ratios of point sources in the simulated JOSREB field. Peak fluxes were
measured in the self-calibration image and the SPAM imageected for a small CLEAN bias and

divided by the input model peak fluxes. The size of each dietssedth the input model peak flux,

ranging from 1.02 to 26.7 Jy. Ideally (without phase errotthle peak flux ratios would be scat-
tered around one (solid lines) due to image noise dependesrsan the peak flux determination.

Instead, the peak flux ratio distributions along the x- anaxis are centered around 0.995 and
0.996, respectively (dotted lines), which is a direct resfithe residual phase errors. The smaller
and larger scatter in distribution of SPAM- and self-caliipn peak flux ratios is consistent with
peak flux determination inaccuracies due image backgrowiskerievels.
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Figure 6.9: Peak flux ratios in the simulated JO90898 field: Left: Peak flux ratios of the 91 ex-
tracted sources from the SPAM image as compared to the inpdehsources, plotted as a function
of the residual RMS phase error after SPAM calibration. @letted is the theoretical Strehl ratio
(solid line) as given in Equation 6.6. For larger RMS phasmes, the measured peak flux ratios
do not follow the theoretical strehl ratio curve. This indies that systematic phase errors domi-
nate the larger RMS phase errors. Right: Same peak flux ratmised as a function of absolute
position gfset between extracted sources in the SPAM image and themuulel (see Figure 6.12).
The presence of a strong correlation indicates that redighlease gradients dominate the larger
RMS phase errors.

is expected to decrease with increased RMS phase error asbaesin Equation 6.6.
However, the discrepancy between the data points and Bquétb indicates that for
larger RMS values the phase errors are predominantly sgsiterather than random.

For the real J0908398 data set, Figure 6.10 shows a comparison of peak fluxes for
associated sources in the SC, FBC and SPAM catalogs. Thargasd match between
peak fluxes measured in the SC and SPAM catalogs. For high 8biRes with a peak
flux above 1 Jy, the SPAM peak fluxes match on average withirrdepé with the SC
peak fluxes. Similarly, SC and SPAM peak fluxes are on aver@gmicent higher than
FBC peak fluxes. The systematic increase of peak fluxes fon8GSBRAM as compared
to FBC for many more than the calibrator sources denotes & axurate calibration
over large parts of the FoV. Towards the low flux end, sourdedadi®ns are slightly
biased towards the image with the highest noise level, wisitiie FBC image.

Figure 6.11 shows the same comparison of peak fluxes for #ie)i800-208 data
set. For high SNR sources with a peak flux above 1 Jy, the SCfheas are by far the
smallest, while FBC and SPAM peak fluxes are on average high#b and 24 percent,
respectively. The relative loss of peak flux in the SC image éear indication of the
break-down of the assumption of isoplanaticity across the. EJnder the conditions
that clearly need direction-dependent corrections, theVBpeak fluxes are on average
7 percent higher than the FBC peak fluxes.
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Figure 6.10: Peak fluxes in the real J09©398 field Left: Peak flux comparison for 367 sources
detected in both the self-calibration and SPAM images. Traght diagonal line represents
equality, the dashed lines represeht deviations (wherer_ is the combined noise level from
both images), and the dotted lines indicate The detection limit. For bright sources (peak fluxes
> 1 Jybeam?'), the average peak flux ratio is 1.00. Middle: Same for 32%asuin the field-
based calibration (VLSS) and SPAM images. The average thpiggk flux ratio of SPAM over
field-based calibration is 1.10. Right: Same for 313 souimeke self-calibration and field-based
calibration (VLSS) images. The average bright peak fluorafiself-calibration over field-based
calibration is 1.10. In all plots, the image noise causes @éa scatter in the peak flux deter-
minations of faint sourcesg(1 Jy beam') and consequently, a selection bias towards positively
enhanced peak fluxes that increases with image noise.
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Figure 6.11: Peak fluxes in the (real) J1300-208 field: Left: Peak flux camspa for 247
sources detected in both the self-calibration and SPAM @sagdror bright sources (peak fluxes
> 1 Jybeam!), the average peak flux ratio of SPAM over SC is 1.24. Middemé&for 278
sources in the field-based calibration (VLSS) and SPAM imagke average bright peak flux ra-
tio of SPAM over field-based calibration is 1.07. Right: Sdan@02 sources in the self-calibration
and field-based calibration (VLSS) images. The averagehbpgak flux ratio of field-based cali-
bration over self-calibration is 1.15.
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Figure 6.12: Position gfsets in the simulated J099398 field: Left: Gfsets between the measured
source positions in the self-calibration image as compacetthe input model. Right: Same for the
SPAM image. In both cases, the distribution around the originon-Gaussian. For the SPAM
image, the tail of points extending roughly northwards aadés the presence of persistent phase
gradients in local parts of the SPAM image. All source positifsets fall well within the size of
the 80 restoring beam (dotted line).

Astrometry

When the time-average of residual phase errors towards r@esgontains a non-zero
spatial gradient, the source will appear to have shiftegdtsition in the final image
(see Section 6.2.2). This gradient may indicate a limitatbbthe calibration model to
reproduce the ionospheric phase corruptions (e.g., intikerece of nearby calibrators),
but may also be introduced by the peeling process. The latteurs when a peeling
source is re-centered to the wrong catalog position (seofe®: 3.3). Because such an
error propagates into the calibration model, many sourtéisa vicinity of the peeling
source may also sier from a systematic astrometric error.

For the simulated data set, the peak positions of sourcestasmined by BDSM
were compared against the positions of counterparts imgh& model. For the real data
sets, we compared against the NVSS catalog instead. Whepacomg against NVSS
positions, apparently large positioffgets may occur due to resolutiorffdrences and
spectral variation across the source. Averaged over a laugaer of sources, these
offsets should have no preferential orientation. In conteatsidual phase gradientin a
certain viewing direction is expected to cause systemdisets for groups of sources in
a certain preferential direction.

For the simulated JO9@@98 data set, Figure 6.12 shows that the positions for both
SC and SPAM are accurate to withinl0”, except for a small tail of 15 SPAM sources
that have somewhat largeffsets. These sources are all positioned near the edge of the
FoV, where the RMS phase error is large (Figure 6.6). Fig®ea&o confirms this by
the clear correlation between RMS phase error and absabsteégn dfsets.

For the real J09068398 data set, the source positioffisets for SC, FBC and SPAM
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Figure 6.13: Position gfsets in the real J090€398 field Left: Gfsets between the measured source
positions in the self-calibration image as compared to théSS catalog. Middle: Same for the
field-based calibration (VLSS) image. Right: Same for theNsnage.

relative to NVSS catalog positions are plotted in Figure36.The larger scatter as com-
pared to the simulated J096898 data set can be the (combined) result of less accurate
position measurements due to higher image noise, resolartid spectral dierences be-
tween the observations and the NVSS catalog or larger r&lsRMS phase errors after
calibration. The observed scatter for SC is centered araypuint that is set from the
origin by ~ 5”, which is either caused by inaccuracies in the initial skyded@r during

the self-calibration process (Section 6.3.2). The scaftéioth FBC and SPAM fisets

is centered close to the origin. The RMS of the scatter artlumdhean positionféset is
10.58’ for both FBC and SPAM (despite the apparently larger scaite8PAM, which is

due to a larger number of data points), both smaller than i1h@ for SC.

For the real J1300-208 data set, the source posititsets for SC, FBC and SPAM
relative to NVSS catalog positions are plotted in Figuret6The position scatter for all
three methods is significantly larger than for the real JO¥8 data set, and all fier
from systematic positionfEsets in varying degrees of severity. The positiffisets in the
SC image have a seriously distorted distribution, whicluides a large tail of points that
extends roughly southwards. This indicates the presengarging systematic source
offsets over the whole FoV. The distribution of positidfsets in the FBC image is more
compact but also asymmetric, and is approximately cent@aahd a point that is 10”
offset in northward direction from the origin. A large numbertlbé SPAM position
offsets are clustered near the origin, similar to the real J8398 data set, but there is
an additional tail of points that runs roughly northwardee RMS of the scatter around
the mean positionféset is 20.7, 16.5” and 14.8 for SC, FBC and SPAM, respectively,
which confirms the apparently strongest clustering of maimthe SPAM position fiset
plot.

Systematic positionftsets in the images can be reduced by distortion and reggddin
of the images. To this purpose, Cohen et al. [41] fit a fourtreoZernike polynomial to
the (time constant) positiorfizets of typically more than 100 sources in the FBC images
of the VLSS. They estimate that, after correction, the fiealdual position error in the
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Figure 6.14: Position gfsets in the real J1300-208 field: Left: ®ets between the measured
source positions in the self-calibration image as compacetthe NVSS catalog. Middle: Same for
the field-based calibration (VLSS) image. Right: Same ®/SBAM image.

full VLSS catalog due to the ionosphereds3” in both RA and DEC.

6.5 Discussion and Conclusions

The SPAM method for ionospheric calibration has been sticligsested on one sim-
ulated and two carefully selected visibility data sets ofMHz observations with the
VLA (taken from the VLSS; Cohen et al. [41]). From the resuitshese test cases, we
draw the following conclusions:

(i) A proof-of-concept is given for severalftierent techniques that were incorporated in
SPAM calibration. The peeling technique [26] was succesfpiroviding relative mea-
surements of ionospheric phase errors in the direction\wraébright sources in the
FoV. The Karhunen-Loéve phase screen (Chapter 5 [see al(@tfixed height was
able to combine these measurements into a consistent medghpe stamp. For rela-
tively bad ionospheric conditions, it was demonstrated the ionospheric calibration
cycle (repeated ionospheric calibration and subsequeagiimy; Noordam [26]) con-
verges within a few iterations to a calibration of similarcacy as under relatively
good ionospheric conditions (for which one iteration waisient).

(i) lonospheric calibration with SPAM is more accuraterthie existing self-calibration
[e.g. 11] and field-based calibration [42] techniques. Efegrelatively compact array
configuration like VLA-B and BnA, significant improvementsimage quality are ob-
tained by allowing for higher-order (i.e., more than a gead) spatial phase corrections
over the array in any viewing direction. In the resulting @ma, we obtained dynamic
range improvements of 5-45% and 70-80% under relativelyl gmal bad ionospheric
conditions, respectively.

(iii) Although the mean astrometric accuracy of source fass in SPAM images is sim-
ilar to or better than for self-calibration and field-basadlration, systematically larger
astrometric errors are present in regions of the output @magf all calibration meth-
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ods. This is caused by a shortage of available calibratdiseise regions and positional
inaccuracies in the reference source catalog used foratth.

The 65 mJy beart noise levels in the SPAM images match the lowest noise l@fels
the more than 500 images that define the VLSS survey. A patertiuction of the aver-
age noise level from 100 mJy beahto 65 mJy beartt for the full VLSS survey would
significantly increase the number of source detections f@i?,000 to about 120,000
(an increase of 75%), but also it would greatly enhance virtually every scegoal.
For example, using the radio luminosity function for highmiinosity radio galaxies from
Jarvis et al. [93], the estimated number of detectable HZR@g VLSS would increase
by 65%, but also the maximum redshift would increase. Fomainous radio galaxy
with luminosity of 2x 10?8 WHz 1 sr! at 74 MHz, the redshift limit would rise from
z = 5.7toz = 6.8. Another example is the detection and study of clusteroradios.
Using available halo population models [94, 95], the aptitéd noise reduction would
roughly double the number of detectable halo systems.

For the VLSS, the estimated theoretical thermal noise let85 mJy beamtis still
a factor of two lower than the average background noise t&vel65 mJy beamt in the
SPAM images. From inspection of the SPAM images we cannatiiyean obvious sin-
gle cause for this. Therefore, similar to Cohen et al. [4H expect the remaining excess
noise to be the combined result of severélatent causes, including residual ionospheric
phase errors after SPAM calibration, but also residual Bbllective sidelobe noise from
many non-deconvolved sources (too faint or outside the FoM) variable source am-
plitude errors (e.g., due to pointing errors and non-cacahtenna beam patterns; see
Bhatnagar et al. [88]).

The SPAM test results indicate that the ionospheric cdiitinaaccuracy may be fur-
ther improved. The typical model fit RMS phase error per amenf~ 20— 30 degrees
for real data sets is much larger than the 3 degrees for ttseless simulated data set.
There are several possible sources of error, either in théngephase corrections or
the ionospheric phase model. Noise in the visibilitiesh@itthermal or non-thermal),
contamination from other sources, inaccuracies in theipgsburce model and under-
sampling of the fastest phase fluctuations are factors #watde the accuracy of peeling.
Also, the ionospheric phase screen model may be a poor sspegion of reality, either
because itis incomplete (e.g., absence of vertical strectur the fixed model parameters
are chosen poorly (e.g., screen height, spectral index aégHuctuations). Several of
these issues will be addressed in future work (Section 6.6).

The potential problems with the peeling technique raisesgiiestion whether one
should use alternative methods. Apart from the precauti@ssribed in Section 6.3.3,
we have found little means to improve the accuracy of theipggirocess for single
sources any further. One unexplored option is to peel ssurcgroups, e.g. identify
isoplanatic patches of sky with a large enough total flux fromdtiple sources. Two
possible alternatives approaches to peeling are: (i) samebus self-calibration towards
multiple sources in the FoV, or (ii) fitting the ionospheredabdirectly to the visibilities
rather than using peeling as an intermediate step. Althtlugge alternative approaches
have not been tested by us in practise, we anticipate littfgavement over our current
accuracy. In Chapter 3 [see also 23] it was shown, by sinorathat iterative peel-
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ing converges to the same solution as simultaneous séiratbn. A direct fit of the
ionosphere model to the visibilities is, similar to selfibeation, biased towards accurate
solving in the direction of the apparently strongest soumdbe FoV. Although not con-
clusive for this approach, tests with SPAM show that usingnex moderate flux-based
weighting into the ionospheric phase model fitting agaieslipng phase corrections in-
troduces a large bias towards the brightest source, whileraaon accuracy towards
other peeled sources degrades severely.

For the existing and future large low-frequency radio ifeemeter arrays like VLA-
A, GMRT, LOFAR, LWA and SKA, the need for a direction-depenti@nospheric cal-
ibration method is evident. Based on the results presentdds paper, it is dficult to
draw quantitative conclusions on the achievable calibragiccuracy for these arrays. If
a SPAM-like calibration algorithm is to be used in a very h#igmnal-to-noise observing
regime under quiet to moderate ionospheric conditionegtrss likely that residual RMS
phase errors in the order of a few degrees could be achievetharable to the SPAM
results on the simulated VLSS data set.

When relying on the array itself to provide the necessarysmesments to constrain
ionospheric correction models, ionospheric calibratiequires an array layout and sen-
sitivity that allows for sampling the ionsphere over theagrat the relevant spatial scales
and time resolution. The spatial sampling is determinedhbyristantaneous pierce point
distribution (or more general, the distribution of linefssight through the ionosphere),
which depends on the array layout and the detectable caditwanstellation. For future
design of low-frequency arrays, it is recommended to onthe array layout not just
for scientific arguments (in general, centrally dense aagdsspoutside for good UV cov-
erage), but also for ionospheric calibrability (in gengbaith uniform and randomized).

6.6 Future Work

To test the robustness and limitations of the method, it cessary to apply SPAM cal-
ibration on a wide variety of data sets affdrent (low) frequencies, obtained with dif-
ferent arrays under fiferent ionospheric conditions. Our highest priority is t&t ®PAM
on observations from the largest existing LF arrays; the \iLA-configuration and the
GMRT. Data for these tests have been obtained and tests lmemttyi in progress. One
important possible limitation is the use of a 2-dimensigifase screen to represent the
ionosphere. We plan to expand the SPAM model by includingipialscreens at dier-
ent heights and compare the resulting image propertiesstghie current single screen
model.

Another limitation of the currentimplementation is the @hse of restrictions on the
time behaviour of the model. Antenna-based peeling phdsesly show a coherent
temporal behaviour, which is likely to exist for physicabsens. This could be used
to reduce the number of required model parameters and sgire noise propagation
from the peeling solutions. We are currently investigatimg possibilities of forcing the
SPAM model to be continuous in time. In chapter 7 we will presefew ideas on how
this can be done without adding much computational comgylexi
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The MAP estimator was not fully implemented in SPAM. The ghscreen was com-
posed of the Karhunen-Loeve basis function, but the tepresenting the a priori infor-
mation was not included in the least squares cost functiome main reason for not
implementing this was that the ionospheric conditions, the slope and scaling of the
powerlaw, were not known in advance. In Chapter 5 is desgritmv these hyperpa-
rameters can be estimated from the data. Once this has beé&mented, the number
of basis functions can be increased without the risk of Igpeformance due to noisier
estimates.

Several of the authors of the article om which this chaptdyaised are currently
involved in setting up a simulation framework in which onesHall control over the
sky emission, ionospheric behaviour and array charatitsriwhen generating artificial
low frequency observations. Like in the test case on siredlaata presented in Sec-
tion 6.4, this allows for direct and quantitative companisg@tween the distorting iono-
sphere model and the recovered ionospheric phase modeldy.S&e plan to use this
setup to further test optimize SPAM calibration for a broadge of ionospheric condi-
tions.



Chapter

Extensions

Bayesian estimation is a generic method with a wide rangepli@ations. In this thesis
we have applied the method to a single layer model of the jgma® with a power law
distribution of the electron density fluctuations. The noethas been proved to be rela-
tively easy to implement, robust and to have a better peidoa than existing methods
based on deterministic models. In this chapter we will expbp few possible applica-
tions of Bayesian estimation to more extended data modelsst i these extensions
have not been tried in practice yet, but based on the sucteggilication of Bayesian
estimation described in the previous chapter we are hogi&tin practice at least some
these extensions will perform better than estimators baseatbterministic models.

7.1 Introduction

The starting point for the extensions will be the MAP estionats described in section
5.3.3. The underlying data model of the observed #aseassumed to be of the form

x =f(6) +w. (7.2)

The functionf describes the relationship between the unknown paramé@tarsl the
expected value of the data. The functibis known as the Measurement Equation in
radio astronomical literature. The parameter ve@toontains all unknowns, such as the
ionopshere induced phase shifts, instrument gain. Thakytbserved data is contami-
nated by noise, modeled as the noise veatofrhe data is the output of the correlator, so
x contains the entries of correlation matrix estimates. Tdreetation matrix estimates
have a Wishart distribution. For simplicity the distrilariof w is assumed to be Gaus-
sian, with covariance matri€,, and zero mean. The covariance of the noise vector can
be estimated from the data by using the well known expredsiothe covariance of
Wishart distributed data [96]

Cy = %F?@ R, (7.2)
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Figure 7.1: Multilayer model
whereR is the expected value of the Wishart distributed data. Theesnofx are es-

timates of the entries dR. By substitingR with the estimate oR, an estimate o€,
can be found. The a priori information is given in the form ofexpected valué and

covariance matrixCy. Again the distribution is assumed to be Gaussian.
The general MAP estimator solves the following minimizatmoblem
(7.3)

6 = arg mir(f(9) - X)"CH(f(0) - x) + (6 - 6)'C, (6 - )

In the next sections we will present a few ideas on how we cbattiCy for iono-
spheric models that go beyond a single layer. We also preseme ideas on how (7.3)
can be solvedféciently when correlations over time are included &gtows very large.

7.2 Multilayer model
Consider the ionospheric model again, where the vegtoontains the unknown iono-

spheric phases. In chapters 5 and 6 this problem was solvesifiy a single layer model
assuming that the electron density fluctuations are confmedhin layer. In reality the
fluctuations are distributed over height. A relatively sieway to capture the distribu-
tion over height is by using multiple independent layersifiedent heights, as shown in
Figure 7.1. Let the ionospheric phase for #tle layer be given by the vectdl. The

total ionospheric phase is the sum of the layers:

K
49:;@,
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whereK is the number of layers. Because the layers are indepentientorrelation
matrix Cg is sum of the correlation matrices for each layer:

K
Co = ) Co,
k=1

The matriceCy, are computed based on a single layer model as given in equéati).
This matrix can then be substituted in the standard MAP équét.3).
The interpolated values for directions other than the caldy sources are also sum-
mations over the layers
K
o= p
k=1

wherep andpy are the ionospheric phases at the interpolation point.ersely for
the total line of sight and the individual layers. The estisaare given according to
Kriging’s interpolation equation (see section 5.3.4)

p =C,eCy0, (7.4)
where
K
Cpe = Z Cpkek (7.5)
k=1

Again the covariance matri€,, ¢, is by the equation for the single layer model (5.6) .
Kriging interpolation can also be applied to the layers

Pk = Cp0Cyto. (7.6)

From equations (7.4), (7.5) and (7.6) it follows that thedirg estimate of the sum of
the layers is the sum of the Kriging estimates of the layers

The dificulty with this approach is that one needs to know how mangrkajo use,
at what height these layers need to be placed and what powefBland 5) to use
for each of the layers. Since a radio telescope sees onlygipeagate phase, not the
individual layers, there is no straighforward way the estiethese parameters from the
data. Tomography, physical models and external obsensticight be necessary to
estimate these parameters.

7.3 Full 3D Model

For a three dimensional model of the ionosphere the eledeosity is described by the
functione(x,y, 2). The ionospheric phase is given by an integral over thedingight



7.4

126 EXTENSIONS
Source
A B A B A B
i
i / ! / i /
I / I i I /
i i I 1 1 /
I I I / I /
] / ] / I /
| / ! / | /
T T T T T
| / ! | / 1
I J J I ] ]
|
] /I 82,4 /I 'I II :
Layer ’l / { f / :
/ / I
i I 1 | / 1
I I 1 i I 1
I 1 II I ll 1
A g L__J l__J ]
[ ! ! I !
] I ! | !
] [ [
[ [ o
] [ [
I [ [
] [ [
1] [ I
[ [ [
[ Iy Iy
[ Iy Iy
[ Iy Iy
1y 1y Iy
I Ly Iy
Iy Iy Iy
1y Iy Ly
Iy Iy Iy
I/ Iy I/
I 1 1
1/ Iy 1
I ’I/ ’I/I
! / !
1 2 3
Antennas

Figure 7.2: Three dimensional model. The solid line marked Hyis the path through the iono-
spheric layer from Antenna 2 to Source B. The integral of teeten density over the path yields

the total electron content between the antenna and the sourc

(see Figure 7.2)
6 = Ca f e(x. Y, 2ds.
S

wheres, is the path through the ionosphere along the line of sigttie wavelength and
C a constant. The correlations between two ionospheric ghasedouble integral over

the two lines of sight ands

C9k0| = Cz/lzf fC(]ﬁ(Xk’yk’zk’ XI,YI,ZI)desk
Vs

For most models the integrals need to be evaluated nunigriddlis could also be de-
scribed as a many layer model similar to the multi layer mo@skribed in the previous

section. The dference between these two models is that the layers in the tagey
model are not independent.

The dfficulties here are similar to the multilayer model, but morenpticated be-
cause also the correlation betweefiatit heights needs to be known.
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7.4 Temporal model

The correlator generates new output for each time blockmHrere on the subscrifat
will be used to distinguish between thefdrent blocks in time, for instancg, fi, 6«
andwy. To refer to the set of all the blocks up to tkia block the indexk} is used, for
instance

X1 0, f1(61)

Xi=| |, Ow=| |, fw(bw)=
Xk O« f(Ok)

Note that functionf(6x) only depends on parameteflig, not on the parameters cor-
responding to the other time blocks. The only way th@edént time blocks are tied
together is through the correlation mat@y,,. The functiorf(6,y) establishes no con-
nection between the fierent time blocks. The correlation matg,, can be partitioned
in blocks

Cglgl R Cglgk

Cow =
Cgkgl e Cgkgk

Matrix Cg,, is a full matrix, because the parameters are asssumed tcshavly over
time and hence are correlated over time. This means thatfftdiagonal blocks are
non-zero. The correlation over time needs to be estimated the data or derived from
theoretical considerations. This is still an open problgvinen LOFAR is operational it
will generate a lot of data on the ionosphere that can be wsestimate the correlation
and verify theoretical models.

The noise is assumed to be uncorrelated over tim€,sis a block diagonal matrix

CW1
Cuwyy =
CWk

7.41 Sequential Estimation

In principle the large vectors and covariance matrices essuibstituted into the general
MAP estimator (7.3) yielding

by = arg gli)n (fig (B) — X)) Coat, (Fig () — Xqa) +
— T 1 —
(6 = O) Cop, (Bu — O1)- (7.7)
In practice this problem is too large to fit in memory. Paotiing of the problem is

needed to solve it. The partioning would be easy when thenpetexs were uncorrelated
over time. In that cas€g,, Would be a block diagonal matrix and the minimization
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problem could be solved for ea&hindependently
6y = arg l”g“n(fk(ﬁ’k) — %) " Cot (Fi(Bi) — Xic) +
k
—\T —
(6 - Bk) Cor (61— 6y). (7.8)

This is far less time consuming than solving the joint prahlégnoring the correlation
over time however gives poorer estimates. In this sectioethod will be described that
finds an approximate solution to the joint problem by solvamdy problems of the size
of a single time block.

Suppose the estimaéqk} has been obtained based xj. Now new dataxy,1 be-
comes available. The joint problem is given by

Ocsr) = argemin (Fierny Ok 1) — Xpir1y)” C\X,(lm) (Fiey(Oay) — Xpany) +
{k+1}
_ T _
(9|k+1} - 0{k+1|) Con (9|k+1} - 9:k+1}) (7.9)

The previously found estimaﬁk, can be used as an initial point. A good initial point
will reduce the number of steps the solver needs, but séilctimputational cost for each
step is large because the number of free parameters andadiatsip large. A large com-
putational saving can be made by keepéhg fixed and solving only fo,1. This will
lead to degraded performance compared to joined optirnizaince only information
from the past is used. Future time blocks will not change tireenit result. However,
this is an improvement over separately solving for each tioek. The problem now
becomes

b1 = arg el”f“n(f<k+11(9<k+1l) ~ Xik+1))" Cuiy, Fiicrny (Bprn) — Xprny) +
k+1
_ T o1 _
(61 = Oien)) Cor., (O — Oy - (7.10)
The constant terms in the minimization can be eliminateeldyng
ék+l =arg gnin(fk+l(0k+l) - Xk+l)HC\7vi+l (fk+l(0k+l) - Xk+l) +
k+1
_ T o1 _
(0{k+1| - 9:k+1}) Cop (0{k+1| - 9{k+1:)- (7.11)

A further simplification can be made by partioning the lastef the equation above in
blocks

ék+l =arg g”n(f (0k+l) - Xk+l)HC\7vi'+1 (fk+l(0k+l) - Xk+l)+
k+1

1 _
A\ F \ C94k)9<k) Cg(k)9k+1 O — 0_€kl
[ (9<k1 9[k)) (0k+1 9k+1) H Coy10n  Copars Ot — O

(7.12)
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The matrix inverse in the last term of this minimization piesh can be rewritten using
the Schur complement as

-1
[ Cowon  Coubis ] —
C9k+19(k> C9k+10k+1

| —Cl. Coue c:t 0 | 0
OOk Ot Ok OOk _ 7.13
[ 0 | H 0 st H ~Co,.100Cor0, | } (7.13)

where
S= (C0k+19k+1 —Co.01 Céi)ﬂ(k) Ce(k)9k+1)
Now define
Oki1 = Oki1 + Coy0 Conay, (O — i) -

The vectod,, is a prediction oBy,1 based orf,. We can now write

0k+l - 0k+l

[ Oy — Ok
0k+l - 0k+l

' O] 6w —0u ]
= - ~ 7.14
[ _C9k+10C0(]|-()94k) I [ ( )

Substituting equation (7.13) and then equation (7.14)éateation (7.12) leads to

ék+l =arg (r;nn(f (0k+l) - Xk+l)HC\7vi+1 (fk+l(0k+1) - Xk+l) +
k+1

_\T ~ ct 0 Oug — O«
[(9<k1—9<k1) (Bk1 — Oksn)’ ][ i S H N ]

Oxi1 — Oks1
(7.15)
Eliminating the constant term results in the following mirization problem
fy,1 = arg gkliln(f (Bke1) — Xicr1)"Copp, (Fes1 (B 1) — Xicrn) +
(9k+1 - 5k+1)T st (9k+1 - 5k+1) (7.16)

This problem has the same size as estimating just tkaek only. The additional work
is finding @y, andS™.

7.4.2 Update Previous Estimates by Linear Approximation

In the previous section information from the past was useglstomate the parameters
of the current time block, but the parameters from the pasewet altered. In this
section the parameters from the past will be updated. Thetitursfy, (0, however
will be replaced by their linearizations around previoufslynd solutionsf 0. The
linearization for time block given by

f(Bk) = Tr(Ok0) + Jk(Ok0)(Ok — Ok 0). (7.17)



130 EXTENSIONS

whereJy(6k o) is the Jacobian di(6x) at by,

ofk(6k)

k(O 0) = N
K

6=6xp
The linearization for the set of time blocKg is given by

fia(B1) ~ Fia(Oia.0) + Jiia (1,0 (O — Oii.0)
whereJ,(0.0) is a block diagonal matrix,

J1(01.0) 0

Ji(O.0) = )
0 Jk(6k0)

7.4

(7.18)

(7.19)

(7.20)

From now on we will simply writeJx andJyq for Jk(6xo0) andJy(O.0) respectively.

Now let us start with the joint optimization problem flor- 1 data blocks
Oy = arg gTig(f:k}(O{k:) = %) Cu, (Fiia (B0) = Xp) +
(fke1(Bks1) — Xir1) "Conr,, (Fira(Bke1) — Xics1) +
(61 — Or1)'Co Oy — Oiiry)

Substituting approximation (7.19) into the equation abeagls to
Oyk:1) = arg gTig(f:k}(O{k:,o) +Ji (O — O1k9.0) = X)) Coap, X

(fia(B.0) + Iy (B — 611.0) — X))+
(fr2(Bkr1) — Xkr1)"Cint,, (Fes 1 (Bcrn) = Xicrn) +
(61ks1) = Opee)) Ciy, Bukrt) = iesy)

Now we need the following basic result

Lemma 7.1. In a minimization problem ove? a term of the form
(AG —1) (AO )

can be rewritten in the form
(6-6) A'A(6-6),
where 3
0=(AA)Tr

Proof. Expanding (7.23) leads to

O'ATAG-O0'ATr —r"AG +1'r

(7.21)

(7.22)

(7.23)

(7.24)

(7.25)

(7.26)
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and expanding (7.25) leads to
O'ATAO - 0'ATr —r'AG +rAT(ATA) AT (7.27)

The only diference between (7.26) and (7.27) is the last term, whicldegandent of
hence for the purpose of minimization ow(7.23) and (7.24) are equivalent. m|

The first term of (7.22) is of the form defined in Lemma 7.1, veher

A = Cyltdu, (7.28)
r= C\;\,I’/S (X[k) - f[k)(elk),o) + J{k]G{kLo). (729)
- _ 1
O = (JTkICw%k)Jm) Cuy (Xt = Fig (B10.0) + JaO.0) (7.30)

Equation (7.22) can be rewritten as
b1y = arg G 611)" Jity v I By — Oiig) +

(Fier1(Or1) — Xis1)"Copr, (Fres1(Brce) — Xie1) +
(Oiks1) — Os1) 'Coy, (Opsn) = Oiieny) (7.31)

The linear term can be written as a norm,
é€k+1l =arg I;nir(fk+1(0k+1) - Xk+1)HC\7vi'+l(fk+1(0k+1) — Xgp1)+
{k}
_ Y2 N
H(J{Hklcw(lk,\]lk)) (O — G{kl)H +
A _ 2
”CeM (Oksy) — 9[k+1>)” (7.32)

The termcg;/kzl) can be rewritten using the Schur complement as

C.2 0
Y2 _ 2]
Ce(k+1) - [ Sl/chl/z(k) cr 15 (7.33)
Ok:1649 O

Substituting (7.33) into (7.32) leads to

1) = arg BTill)”(fk+1(9k+1) — Xis1) " Cor, (Frs1(Brsn) — Xir1) +

H ~—1 Y2 ~ 2
H(J<k1CW<k)J=k}) (O — Oa)|| +

H[ C,” 0
O
Y2~Y2 -2 1/2 :| (
S C9k+19(k) Ce(k) S

2
(7.34)

O |_| O
Oys1 0k+1
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é{k+ll arg mlr(fk+l(0k+l) Xk+l) ka+1(fk+l(0k+l) - Xk+1)+
(k+1)

Y2 ~
(J CW«k»‘]{k’) 0 0 ( {klcwck‘]‘k) O
c,’ 0 [ H‘k} ]— g/ O
suc s e ghe [L %] gue C, &/ "B + S0
010~ O 61101 (k) k+l
(7.35)

Lemma 7.2. A term in a minimization problem ovéy and 8, of the form

2
H[ A A, ][ z; }—r (7.36)
can also be written as
(01— 6) ALAL (81— 01) + (62 - 62) APA (62 - 62) (7.37)
where
61 = (AJAL) T AL(r - Az6)) (7.38)
6, = (AJPAZ)  APr (7.39)
P=1-A(AJA) Al (7.40)
Proof. Expanding (7.36) results in
(A101 + A205) (A101 + A202) + (A101 + A202)'t + 1 (A101 + Az0,)+
rr (7.41)
Expanding (7.37) results in
(A101 + A205) (A101 + A20,) + (A101 + A20,)'t + 1 (A101 + As02)+
r"PA; (AjPAz)" AjPr (7.42)

The only diference between (7.41) and (7.42) is the last term, whichdispandent of
6, and @, hence for the purpose of minimization ov@ér and@,, (7.36) and (7.37) are
equivalent. O

Now using Lemma 7.2 and defining

12 2
H -1 H -1
(J(klcwﬁ,/‘z][k}) 0 (J‘klcwtkl"z][f)) O
Ap = Cem , A= 01/ , = Ce,k O
1Y2~Y2 -1/2 S7? Yo~Y2 oy Y29
S Cgk+10(k)cg(k) S C0k+19(k C m0[k) + S 0k+1

(7.43)
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and
B = (AJAL) AL (F - AzBier) (7.44)
Brs = (A3PAZ) T AJPY (7.45)
P=1-Ai(AJA) Al (7.46)

the minimization program (7.35) can be written as

By = arg Minfic1(6k1) - Xke1)" Cor, (Fir1(Oce1) — Xia1) +
{k+1)

(61 - énk})T AlA1 (0 — O) +
(0k+1 - 45’~|<+1)T ALPA, (0k+1 - §k+1) (7.47)

From the equation abow®y, can be solved in closed form as functionéyf ; yielding
O = O The remaining problem
-1

Oyi1 = afggTilf(fkﬂ(Okﬂ) = Xier1)" ' Cor, (Fres1 (B 1) — Xicrn) +

(9k+1 - 5k+1)T APA; (9k+1 - 5k+1) (7.48)

is again a problem of the size of a single time block, but naitearized version of all
the previous steps is taken into account.

7.5 Conclusions

In this chapter we have briefly presented a few extensionsaaingle layer stochastic
model discussed in the previous chapters. The models fiegskare are far from com-
plete. They serve more as an example of how various comalbetween parameters
can be described. More observations are needed to formaaterify such models.
These observations will become available once LOFAR iy fyflerational. For all these
models the MAP estimator retains the same structure of dinear least squares opti-
mization problem. These solvers are already (being) impteed in the LOFAR soft-
ware and hence the MAP estimator for more extended stochastilels can be readily
implemented in the LOFAR software.
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Chapter

Conclusions

Analysis of the LOFAR calibration problem, where the compdain can vary rapidly
over time, frequency and depending on direction, showstkige is no unique solution
unless the gain is constrained to some low order model. Fofympmial model it has
been shown that there is a unique solution and that the ‘fgeinethod attains the
Cramer Rao Lower Bound after a few iterations.

A derivation of a determinstic model for the ionosphere fifinst principles is infea-
sible. A phenomenological model inevitably involves sordaac choices of the func-
tions used to describe the ionopsphere and the model order.

However, a stochastic description of the ionosphere carebead! from first princi-
ples following the theory of turbulent flow by Kolmogorov. iffuermore the statistical
properties of ionospheric fluctuations can be estimated fsbservations. Observational
data shows that a powerlaw for the spectrum of ionosphegtufitions is a reasonable
model although the slope can deviate from the value pretitngd<olmogorov.

The optimal estimator in the least squares sense is the BaybEnimum Mean
Square Error estimator. The Maximum A Posteriori (MAP)rastior is computationally
feasible and achieves near optimal performance. Usingdhal assumption of Gaussian
process both for the ionospheric fluctuations and the nbiséVtAP estimator leads to
a Least Squares (LS) problem. This problem can also be sskgaentially using the
peeling method.

The combined MAPPeeling method has been applied to VLA 74 MHz data and
showed significant improvement over existing calibratioetimods. Other advantages
include 1) the othogonality of the base vectors, which lgadess problems with con-
vergence of the least squares solver and 2) the good behafithe basis functions at
the edges unlike polynomials which results in proper extiapon towards the edges of
the field of view.

Possible extensions of this method include an extensioashiod spatial dimension
and the inclusion of the time domain.
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Summary

Radio astronomical observations at low frequencie2%0 MHz), can be severely dis-
torted by fluctuations in electron density in the ionosphériee free electrons cause a
phase change of electromagnetic waves traveling throwgiottosphere. Thisfiect in-
creases for lower frequencies. For this reason obserggitlow frequencies have been
limited to short baselines and hence poor angular resolutidost radio astronomical
observations today are done at higher frequencies.

The lower frequency bands however contain signals thatfageeat scientific value.
Due to the expansion of the universe signals from distanéatbjare redshifted, i.e.
shifted to lower frequencies. The more distant an obsertgetois the further we look
back in time. An important period in the history of the unseis the "Epoch of Reion-
ization” (EoR). A few hundred thousand years after the Bigdtne universe has cooled
enough to allow the formation of neutral hydrogren and mliMvhen the universe was a
few hundred million years old the EoR started and the almasiptetely neutral gas was
ionized again. Probably the only method to trace the negésin this period is through
the 1420 MHz spectral line of neutral hydrogen. For the EaR lthe is redshifted to
somewhere probably 100 and 200 MHz.

Recently it has in principle become possible to observe tiigh resolution at low
frequencies because the ever increasing computing powBgitdl data processing de-
vices has made it possible to correct for tifgeet of the ionosphere. Determining the
necessary corrections to th&eet of the ionosphere is calles ionospheric calibration.
The reason that ionospheric calibration iffidult is that the gain is direction dependent
and rapidly varying over time. This greatly increases theber of degrees of freedom
which causes two problems. First, the estimation of a latgaber of parameters is
computationally costly. Second, the more parameters neée estimated, the larger
the estimation error will be. Without further constrainte tsignal to noise ratio of the
calibrator sources is too low to accurately estimate the i@rameters.

The first problem can in principle be tackled by a brute forppraach by simply
increasing the data processing capacity. In practicefacient algorithm is needed.
The second problem is more fundamental in nature. A good hafdbe ionosphere,
including as much prior knowledge about the ionosphere asiple, is needed to reduce
the number of degrees of freedom.

The first problem is addressed in this thesis by an analysispobposed calibration
method called “Peeling”. This is a calibration techniquesvaby the Least Squares (LS)
optimization problem is sequentially solved foffdrent calibrator sources. This can be
computationally more fcient than joint estimation. Our analysis by simulation of a
realistic target field finds that “Peeling” reaches the tké&oally optimal result in a few
iterations.

The second problem is addressed by proposing a stochastisgberic model based
on a single layer of Kolmogorov turbulence. The stochastidehconsists of a paramet-
ric description of the spatial power spectral density of itreospheric electron density
fluctuations. This model is verified by GPS observations andftequency observations
from the Very Large Array (VLA).
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An optimal estimator for this model is the Bayesian Minimunedh Square Error
(MMSE) estimator. This estimator is impractical due to tleeessary numerical inte-
gration of high dimensional integrals. The Maximum a Paste(MAP) estimator is an
approximation of the MMSE estimator which leads to a Leasiz®es (LS) problem that
can be solvedféciently by standard techniques. Simulations show that tAdPMsti-
mator based on the power law model performs better than astimbased on a Zernike
polynomial model for the ionosphere.

The MAP estimator has been incorporated into the softwatkgme SPAM (Source
Peeling and Atmospheric Modeling). SPAM has been used @ettast cases, a simu-
lated visibility data set and two selected 74 MHz VLA datassethis resulted in sig-
nificant improvements in image background noise (5-75 pe¢nmealuction) and source
peak fluxes (up to 25 percent increase) as compared to thingxéelf-calibration and
field-based calibration methods. The improved image qualdicates a significant im-
provement in ionospheric phase calibration accuracy.

For this particular single layer ionospheric model the ltssare encouraging. It is
indicated how the MAP estimator can be applied to possibteressons of the model
including the addition of a third spatial dimension and theetdimension.
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Samenvatting

Radioastronomische waarnemingen op lage frequenrtigs@ MHz) kunnen ernstig ver-
stoord worden door fluctuaties in de elektrondichtheid inot@sfeer. De vrije elektro-
nen veroorzaken een fase verdraaing van elektromagnetigitien die door de ionos-
feer reizen. Des te lager de frequentie van de golf des temddtefect. Om deze reden
zijn waarneming op lage frequenties tot nu toe beperkt gebl#ot korte basislijnen en
dus een lage resolutie.

De laag frequente signalen bevatten echter informatie vate gvetenschappelijke
waarde. Door de expansie van het heelal worden de signatemeraveg gelegen ob-
jecten roodverschoven, d.w.z. verschoven naar lageredrags. Des te verder een
object van ons is verwijderd, des te verder kijken we terugdertijd en des te meer
zijn de signalen in frequentie verschoven. Een belangpjode in de geschiedenis
van het heelal is de zogenaamde "Epoch of Reionization” {EBRkele honderdduizen-
den jaren na de Big Bang was het heelal ver genoeg afgekogé#d meutraal waterstof-
en heliumgas kon worden gevormd. Toen het heelal enkelegndad miljoenen jaren
oud was begon de EoR werd het vrijwel geheel neutrale gastinrtieersum opnieuw
geioniseerd. Over hoe en wanneer dit precies gebeurde iw@iogg bekend. Waarschi-
jnlijk de enige manier om het neutrale gas gedurende deiedeete traceren is via de
1420 MHz spectrale lijn van neutraal waterstof. Voor de EeRifd deze lijn zich door
de roodverschuiving ergens tussen de 100 en 200 MHz.

Recent is het in principe mogelijk geworden om op deze fratjee met hoge res-
olutie waar te nemen omdat het dankzij de toegenomen veingstapaciteit van digi-
tale hardware mogelijk is geworden te corrigeren voor lfietcé van de ionosfeer. Het
bepalen van de benodigde correcties wordt ionosferisditgaize genoemd. De reden
dat de ionosferische calibratie zo moeilijk is, is dat defasrdraaing ten gevolge van de
ionosfeer sterk richtingsafhankelijk is en sterk variesr tijd. Dit verhoogt het aantal
vrijheidsgraden van het calibratieprobleem aanzienlifen eerste nemen hierdoor de
kosten in rekenkracht sterk toe en ten tweede neemt de nauvighkeid van de schatting
af. Zonder aannames over de ionosfeer is calibratie in \@eallgn onmogelijk.

Het eerste probleem kan in principe opgelost worden doatoaride rekenkrachtin
te zetten. In de praktijk zijnf@ciente algoritmes nodig om tot een acceptabele rekentijd
te komen. Het tweede probleem is meer fundamenteel van dandler een goed model
dat zoveel mogelijk a priori kennis van de ionosfeer bevaaliratie niet mogelijk zelfs
als de rekencapaciteit ongelimiteerd is.

Een eerder voorgesteld potentiediaent algoritme genaamd "Peeling” wordt in
deze thesis geanalyseerd. Dit algoritme lost het kleingtelkaten probleem sequentieel
per calibrator bron op. Onze analyse met behulp van een aiimwlan een realitisch
bronnen veld laat zien dat dit algoritme binnen enkele fieseconvergeert en de theo-
retische ondergrens voor de schattingsfout behaalt.

Voor het modeleren van de ionosfeer is een stochastischlrgekezen. De ionos-
ferische fase fluctuaties worden beschreven door een diakelean Kolmogorov turbu-
lentie. Het stochastisch model bestaat uit een paramiegriseschrijving van het spec-
trum van de fluctuaties van de elektron dichtheid in de ioemsfHet model wordt gever-
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ifieerd met behulp van data van GPS satellieten en obsesvatehet 74 MHz systeem
van de Very Large Array (VLA).

Een optimale schatter voor een stochastisch data model Bagesiaanse kleinste
kwadraten schatter. In de praktijk is deze schatter mkeiéjrealiseren omdat numerieke
integratie noodzakelijk is. Een benadering is the Maximuosteriori (MAP) schatter.
Deze schatter leidt weer tot een kleinste kwadraten prabkemor een Gaussisch data
model. Simulaties tonen aan dat voor een dergelijk model A€ [gchatter een kleinere
schattingsfout oplevert dan voor een kleinste kwadratefiteen deterministisch model
gebaseerd op Zernike polynomen.

Het calibratie pakket Source Peeling and Atmospheric ModelSPAM) combi-
neert “Peeling” met het stochastisch model. SPAM is toegiepa drie scenario’s, een
gesimuleerde dataset en twee observaties op 74 MHz van de Me#resultaat toont
een significante reductie (5—75 procent) van de achterguisich de kaart en een hogere
peak flux van de radiobronnen (toename tot 25 procent) wkgrlmet standaard zelf-
calibratie en Field Based Calibration. Het is niet mogetifk de nauwkeurigheid van
fase oplossingen direct te bepalen, omdat de echte iomsdferfase onbekend is. De
verbeterde kwaliteit van de kaart is een indicate voor egmifitante verbetering van de
nauwkeurigheid van de ionosferische calibratie.

De resultaten voor dit ionosferisch model en de MAP schatfarbemoedigend.
Daarom is verder nog aangegeven hoe de MAP schatter toédemasorden op mo-
gelijke uitbreidingen van het model zoals het toevoegerneamnderde spatiele dimensie
en de tijd dimensie.
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