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Chapter 1
Introduction

Astronomy is an ancient science that is still thriving today. Even though the objects
of study are remote it has had a direct influence on the life of people as it led to the
development of calendars and aided navigation. The discovery of laws of motion of the
celestial bodies by Copernicus, Kepler and Galilei culminated in the formulation of the
laws of classical mechanics by Newton. From then on the knowledge of the laws of
nature increased rapidly leading to the technological age.

Apart from its practical consequences, astronomy has givenus an understanding of
our origin and place in the universe. Even today many new and exciting discoveries are
done, ranging from the earliest galaxies at the edge of visible universe, to planets orbiting
stars near us or water on our neighbour planet Mars.

All major discoveries in astronomy followed after a development in observing tech-
niques. A great example is the invention of the optical telescope which Galileo Galilei
used to observe Jupiter and discover its moons. Nowadays observations are not limited
to visible light part of the spectrum. Observations range from radio, infrared, X-ray to
gamma radiation. Each frequency band provides a unique viewon the universe. Some
of these observations are carried out in space out of necessity; for example X-ray and
gamma radiation are blocked by the earth atmosphere. Other instruments, such as the
Hubble space telescope, are located in space because without the earth atmosphere a
much higher image quality can be obtained. An alternative solution is to use adaptive
optics for earth based optical telescopes, where the shape of the reflector is adjusted to
compensate for the atmospheric distortions.

The very first radio astronomical observations by Karl G. Jansky in 1931 were done
at 20.5 MHz with a single mechanically steerable antenna array. Since then radio astron-
omy has developed tremendously. Nowadays most radiotelescopes are interferometers:
they consist of multiple receivers and their signals are correlated with each other. Using
a technique calledaperture synthesisa resolution can be obtained corresponding to that
of a single dish of the diameter of the longest baseline. The baselines are the separations
between pairs of receivers. In Very Long Baseline Interometry (VLBI) the signals from
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2 INTRODUCTION 1.1

receivers across continents are combined, and resolutionsof microarcseconds have been
obtained. The invention of self calibration made it possible to make images with a dy-
namic range, i.e. the ratio of the brightest source in the image and the weakest visible
detail, of 105 [1, page 28].

The observing frequencies currently used are much higher than in Jansky’s experi-
ments, ranging from several hundred MHz up to several hundred GHz. A clear advan-
tage of observing at higher frequencies is that the resolution of the images is higher for
a given instrument size. But the most important factor that has hampered observations
below about 150 MHz is the ionosphere.

The ionosphere is the upper part of the earth atmosphere where radiation from the
sun is so intense that it partly ionizes the air. The free electrons change the phase of
electromagnetic waves traveling through the ionosphere. As the frequency goes down
the phase is affected more and more until the plasma frequency is reached andthe wave
is completely reflected. Below the plasma frequency earth based observations are im-
possible. But even long before the plasma frequency is reached observations are already
getting increasingly more difficult. Dynamic processes in the ionosphere cause the elec-
tron density to vary both in time and over space. Furthermore, the field of view of a radio
telescope scales with the wavelength, so at low frequenciesthe field of view is larger for
a fixed diameter of the receivers. And at low frequencies baselines need to be longer
to achieve the same resolution. These three effects, larger ionospheric phase changes,
larger field of view and larger baselines, taken together cause the ionospheric phase to
vary from antenna to antenna, over the field of view and over time. This explains why
ionospheric calibration is so much more difficult at low frequencies and hence why it is
difficult to make high dynamic range images.

This problem has kept astronomers away from observing at lowfrequencies for a long
time. However a lot of interesting science can be done in these scarcely studied frequency
bands. For example the telltale signature of the formation of the first stars starting the
Epoch of Reionizaton (EOR) is believed to be found in this band. The increase in process-
ing capacity of digital hardware makes it nowadays possibleto overcome the ionospheric
calibration problem. A number of efforts are currently underway to build instruments
that observe at low frequencies in the range of about 30MHz-250MHz. However just
an increase of processing capacity is not sufficient to solve the ionospheric calibration
problem. The algorithms still need to be developed. The development of an ionospheric
calibration algorithm is the subject of this thesis.

1.1 Current developments

Because of scientific interest in low frequency observationand the increased process-
ing capabilities that make these observations possible a number of instruments for this
frequency range has been developed in recent years or is currently being developed. Ex-
isting instruments with low frequency capability include

• MERLIN Multielement Radio-linked Interferometer Network, GreatBritain. This
network of 6 radio telescopes is operational since 1980. Thelowest frequency band
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is at 151 Mhz.

• GMRT Giant Metrewave Radio Telescope, India. This telescope is operational
since 1999. The lowest available frequency band is at 151 MHz. A 50 MHz
extension is being designed.

• VLA Very Large Array in New Mexico, U.S.A. - Since 1998 all 27 antennas of the
VLA are equiped with a 74 MHz system

• WSRT Westerbork Synthesis Radio Telescope in The Netherlands. Since 2004 the
Low Frequency Front Ends (LFFE) are operational. These receivers can be tuned
in the frequency range 115 MHz - 180 MHz.

Instruments currently under development or construction include

• LOFAR Low Frequency Array, 20MHz - 250MHz, The Netherlands. Currently
under construction,

• MWA Murchison Widefield Array 80MHz-300MHz, 500 (tiles) x 16 (dual polar-
ization dipoles)= 8000 dual-polarization dipole antennas placed in the outback of
Western Australia,

• LWA Long Wavelength Array, South West U.S.A. 10-88 MHz,

• Past/21CMA China. An array specifically designed to search for the EOR signal.

1.2 Ionospheric Calibration

The technique of aperture synthesis makes it possible to obtain the resolution correspond-
ing to an instrument of the size of the largest baseline. The synthesized aperture is only
sampled and not completely filled as would be the case for a dish of the size of the array.
This results in a point spread function (PSF) that has a high sidelobe level. This limits
the dynamic range of the so called dirty image. Much better images can be made by de-
convolving the dirty image. This can be done because the PSF is known, at least as long
as the array is well calibrated. Successful deconvolution requires an accurate calibration.

In the early days of radio astronomy calibration was done by first pointing the array
at a bright calibrator source, observe it for some time and then point the array to the
field of interest. The accuracy of this method is limited by the fact that the correction in
the direction of the calibrator can be different from the correction needed for the target
field. In the early 1980s self calibration methods have been developed [2, 3]. The idea
is to use the observations of the target for calibration. Since imaging can be considered
as estimating the value of all the pixels in the image, the extension of this problem by
estimating one additional complex gain per antenna adds only a few extra degrees of
freedom. Self calibration turned out to be enormously successful, increasing the dynamic
range by two orders of magnitude, from a few thousand to one, to a few hundred thousand
to one.
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The field of view of the LOFAR stations is relatively large. The gain is direction
dependent and varies rapidly over time. This complicates the calibration problem con-
siderably. In extreme cases the problem becomes untractable.

1.3 Problem Statement and Research Objectives

To satisfy the scientific goals for LOFAR it is essential thathigh dynamic range images
can be made. A limiting factor for the dynamic range are the distortions of the signals by
the ionosphere. This thesis is concerned about the following questionHow to calibrate
the ionospheric phase for LOFAR and other low frequency instruments to obtain high
dynamic range images?Here the scope will be limited to calibration at central level, i.e.
a station will be treated as a single directional receiving element. Calibration on station
level, where the gains of the antennas need to be determined,is the topic of the thesis by
Stefan Wijnholds, which will be published concurrently with this work.

The approach to solve this question is to apply techniques used in signal processing.
The usual approach in solving a signal processing problem consists of several steps.
These include:

• Making a data model describing the available data in a mathmatical form;

• Formulating an optimality criterion that describes the quality of the estimates of
the parameters of interest;

• Finding the best theoretically obtainable performance according to the optimal-
ity criterion defined in the previous step. This is the benchmark, or lower bound
against which algorithms are evaluated;

• Deriving an algorithm that attains the lower bound. Usuallyit is not possible to
find an algorithm that exactly reaches the bound or the computational costs are
excessive. Using approximations one searches for an algorithm that performes
close to the bound at an acceptable computational cost;

• Application of the algorithm on simulated data. An analytical proof of the effec-
tiveness of an algorithm can seldom be given. Therefore the algorithm is tested via
Monte Carlo runs on simulated data;

• Application of the algorithm on observed data. Since real data never exactly fol-
lows the data model the only real proof of the effectiveness of the algorithm can
only be obtained by an application to real observed data.

This procedure leads to the following research objectives.

• Find a model for the ionospheric phase fluctuations, detailed enough to model the
phases accurately, simple enough to allow the derivation ofan estimation algo-
rithm;
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• Derive an estimation algorithm for the ionospheric phase that optimizes the dy-
namic range of the final image;

• Demonstrate the algorithm on simulated data;

• Demonstrate the algorithm on observed data.

1.4 Contributions

The main contribution of this work to the field of ionosphericcalibration is the introduc-
tion of a statistical model of the ionosphere, not only to generate simulation data, but also
to actually derive optimal algorithms to estimate the ionospheric phase.

This thesis describes a Bayesian method of estimating the ionospheric phase fluctua-
tions based on a statistical model of the ionosphere. Observations supporting this model
are presented. The method is shown to outperform an existingmethod based on Zernike
polynomials, both on simulated data and observed data. Furthermore it is shown that the
method can be extended to more complicated models in a straightforward manner.

1.5 Context

This work was carried out for the VICI-SPCOM project ”Signalprocessing for future
wireless communications”1 within the Circuits and Systems group of the faculty of
Electrical Engineering, Mathematics and Computer Scienceat the Delft University of
Technology.

Although radio astronomers share the spectrum with communication applications,
the domains of radio astronomy and communication are usually considered as two sep-
arate worlds. However, previous cooperation between Circuits and Systems group and
Astron, the Netherland Institute for Astronomy in the STW project ”Nulling obstructing
electromagnetic interferers (NOEMI)”2 has shown that the signal processing algorithms
used for communications can be applied to radio astronomical observations as well.

1.6 List of publications

The following publications were prepared in the context of this thesis.

Journal papers

• S. van der Tol and A.-J. van der Veen. Performance analysis ofspatial filtering of
RF interference in radio astronomy.Signal Processing, IEEE Transactions on, 53
(3):896–910, March 2005. ISSN 1053-587X. doi: 10.1109/TSP.2004.842177.

1Supported by STW under contract number DTC.5893
2Supported by STW under contract number DEL77-476
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• S. van der Tol, B.D. Jeffs, and A.-J.. van der Veen. Self-Calibration for the LOFAR
Radio Astronomical Array.Signal Processing, IEEE Transactions on, 55(9):4497–
4510, Sept. 2007. ISSN 1053-587X. doi: 10.1109/TSP.2007.896243.

• C. van der Tol, S. van der Tol, A. Verhoef, B. Su, J. Timmermans, C. Houldcroft,
and A. Gieske. A Bayesian approach to estimate sensible and latent heat over veg-
etation.Hydrology and Earth System Sciences Discussions, 6:2337–2365, March
2009.

• H. T. Intema, S. van der Tol, W. D. Cotton, A. S. Cohen, I. M. vanBemmel, and
H. J. A. Rottgering. Ionospheric Calibration of Low Frequency Radio Interfero-
metric Observations using the Peeling Scheme: I. Method Description and First
Results.ArXiv e-prints, April 2009.

• S. van der Tol, R. Sridharan, A.J. van der Veen, H.J.A. Röttgering, and A. S. Cohen.
Vlss paper. 2009. In preparation.

Conferences

• A. J. Boonstra, S. J. Wijnholds, S. van der Tol and B. Jeffs. Calibration, Sensitivity
and RFI Mitigation Requirements for LOFAR. InIEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), March 2005.

• A.J. Boonstra and S. van der Tol. Spatial Filtering of Interfering Signals at the Ini-
tial Low Frequency Array (LOFAR) Phased Array Test Station.In Radio Science,
volume 40, 2005.

• S. van der Tol and A.J. van der Veen. Application of Robust Capon Beamform-
ing to radio astronomical imaging. InProc. IEEE ICASSP, pages IV–1089–1092,
Philadelphia (PA), March 2005. IEEE.

• S. van der Tol, B. Jeffs, and A.J. van der Veen. Calibration of a large distributed
low frequency radio astronomical array (LOFAR). InEUSIPCO, Antalya (T), sep
2005. Eurasip.

• B. Jeffs, S. van der Tol, and A.J. van der Veen. Direction dependent self calibration
of large distributed sensor arrays. InIEEE ICASSP, Toulouse (FR), May 2006.

• S. van der Tol and S.J. Wijnholds. CRB Analysis of the Impact of Unknown
Receiver Noise on Phased Array Calibration. pages 185–189,July 2006. doi:
10.1109/SAM.2006.1706118.

• S. van der Tol and A.-J. van der Veen. Ionospheric Calibration for the LOFAR
Radio Telescope. volume 2, pages 1–4, Iasi, Romania, July 2007. doi: 10.1109/
ISSCS.2007.4292761.
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1.7 Thesis Outline

Most chapters in this thesis were originally written as self-contained papers. If appli-
cable a reference to the paper and its status (in preparation, accepted or published) is
given at the beginning of a chapter. Only minor modificationshave been made to in-
clude the papers in this thesis, so some overlap between the chapters is still present.
Chapter 2 gives an overview of the LOFAR instrument, the ionosphere and calibration
in radio astronomy. Chapter 3 describes the “peeling” algorithm which is a sequential
least squares estimation algorithm and the current leadingcandidate algorithm for cal-
ibration of LOFAR. The performance of this algorithm is analysed. Depending on the
choice for the underlying model for the ionosphere “peeling” can reach satisfactory re-
sults. Chapter 4 presents a stochastic model of the ionospheric phase fluctuations and
some measurements to validate the model and estimate its keyparameters. In Chapter 5
the optimal Bayesian estimator for this model is derived andapplied to simulated data.
Chapter 6 presents a test setup where peeling is combined with the Bayesian estimator
to be applied to 74MHz data of the VLA. Chapter 7 presents possibilities to extend the
estimator to a 3D model and a temporal model of the ionosphere. Chapter 8 contains the
conclusions and recommendations.
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Chapter 2
Preliminaries

This chapter introduces a number of key concepts related to the calibration problem con-
sidered in this thesis. First we describe the LOFAR instrument. Then we describe the
ionosphere and its effect on radio astronomical observations. Self calibration techniques
are described and “Peeling” , a sequential self calibrationmethod for direction dependent
calibration is introduced.

2.1 The LOFAR radio telescope

LOFAR is a low frequency radio astronomical array currentlyunder development in The
Netherlands by a consortium led by ASTRON. Construction is expected to be finished in
2010. It is designed to produce synthesis images of the most distant (and thus youngest)
celestial objects yet observed. LOFAR will observe at unusually low frequencies (15-240
MHz). The LOFAR design calls for an instrument consisting ofnearly 13,000 relatively
wide field of view small antennas mounted at ground level. These are grouped into
stations consisting of 96 dual polarization low band antennas (15-90MHz) and 48 tiles of
16 dual polarization high band antennas (110-240MHz). There will be 18 core stations,
18 remote stations and 8 international stations The core stations packed into a 2-3km area.
The remote stations are distributed over the Netherlands. The furthest remote station will
be located at aproximately 80km from the core. The international stations are located in
Germany (5), Sweden (1), France (1), Great Brittain (1). Themaximum distance from
the core to the international stations is about 800km

The antennas in each station are used as a phased array and arecombined in such a
way that a beam is formed into a desired look direction. The resulting output of each
beamformer is similar to the output of a telescope dish pointing into the same direction,
but is obtained without the use of any moving parts. The beamformer outputs of each
station are transported over optical fibers to a central location, where (similar to existing
synthesis telescopes [4–7]) they are correlated to the outputs of the other stations, and

9
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processed into an image.

2.2 The Ionosphere

The ionosphere is the outer layer of the earth’s atmosphere.Radiation from the sun partly
ionizes the atmosphere and the resulting free electrons slow down electromagnetic waves
propagating through the ionosphere. This additional propagation delay is proportional to
the wavelength squared, hence the corresponding phase shift is proportional to the wave-
length. At lower frequencies the effects of the ionosphere are more severe. Turbulence in
the ionosphere causes the electron density to fluctuate bothover time (order 10 seconds)
and space (order 10 kilometers).

2.2.1 Electron density and refractive index

The refractive index of a plasma at frequencyf is given by [see 8, chap. 8]

n =

√

1−
f 2
p

f 2
(2.1)

where fp is the plasma frequency. The plasma frequency squared is proportional to the
electron densityNe

f 2
p =

Nee2

4π2meǫ0
, (2.2)

wheree is the electron charge,me is the mass of an electron andǫ0 the permittivity of
vacuum. When the plasma frequency is much smaller than the frequency of the electro-
magnetic wave then the deviation of the refractive index from unity can be approximated
by

∆n = n− 1 ≈ −
f 2
p

2 f 2
∝ Ne. (2.3)

Thus whenfp ≪ f the refractive index can assumed to be proportional to the electron
density. The change in refractive index causes a propagation delay which leads to a phase
rotation given by

φ =
2π f

c

∫

(n(s) − 1)ds=
e2

2π f cmeǫ0

∫

Ne(s)ds, (2.4)

where the integral is along the linge of sight andc is the speed of light in vacuum. The
ionospheric phase is approximately proportional to the integrated electron density and
inversely proportional to the frequency. The integral in (2.4) is usually refered to as the
Total Electron Content (TEC), defined as

TEC=
∫

Ne(s)ds, (2.5)

when the integral is along the vertical axis. For other directions the integral is refered to
as the Slant TEC or STEC.
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(a) Regime 1 (b) Regime 2

(c) Regime 3 (d) Regime 4

Figure 2.1: Regime 4. The problem of LOFAR calibration through ionospheric refraction. Un-
known complex gains through the ionosphere are different for each source at each station (after
C. Lonsdale [9]).
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2.2.2 Ionospheric Regimes

The effect of the ionosphere on interferometric observations depends on the relative size
of three different measures:

1. the distance between the antennas, or stations in the LOFAR case,

2. the size of the field of view projected onto the ionosphericlayer,

3. the scale size of ionospheric fluctuations, that is the distance over which the iono-
sphere changes significantly.

Based on these three parameters, Lonsdale [9] distinguishes four different regimes. For
regime 1, see Figure 2.1(a), both the size of the array and thesize of the beam at the
ionospheric layer are much smaller than the scale of the ionospheric irregularities. All
antennas see the same ionosphere. The ionosphere adds a common phase to all antennes,
for all sources. As an interferometer only measure phase differences, this is invisible
to an interferometer. In regime 2, see Figure 2.1(b), the spacing between the antennas
is larger than the ionospheric scale, but the beam size is smaller. Each antenna sees a
different ionosphere. Over the field of view however the ionospheric phase is constant,
leading to one unknown phase correction per antenna. In regime 3, see Figure 2.1(c), the
beam size is larger than the ionospheric scale, but the antenna spacing is much smaller.
The ionospheric phase varies over the field of view, but this ionospheric phase cancels
in the correlator. Figure 2.1(d) illustrates how ionospheric phase and gain perturbations
affect LOFAR calibration. The ionospheric irregularity scaleis smaller than both the full
array aperture and individual station beam field of views, soevery station and source
direction requires a unique calibration solution. This is the regime studied in this thesis.

2.3 Self Calibration Methods

In the radio astronomy literature, “self calibration” (or Selfcal) refers to the calibration of
a telescope array using existing sky signals as reference sources [4, 6]. It is assumed that
these sources have known position and are relatively bright. The parameters to estimate
are the direction-independent electronic gains and phases. Techniques for this have been
proposed and are widely used for higher frequency synthesisarrays [2, 10–12], and the
estimation statistics are well understood [13]. As a refinement, Selfcal is often combined
with the well-known CLEAN algorithm for deconvolution [14,15], i.e., a technique to
iteratively estimate the location of the sources and their powers.

In the array signal processing literature, “self calibration” (or auto-calibration) refers
to a much wider class of algorithms, namely calibration using non-cooperative sources.
Typically, the location of the sources is considered unknown (cf. Direction of Arrival
[DOA] estimation). The additional parameters which need tobe estimated can include
the direction-independent complex antenna gains or receiver channel mismatch (and
more generally the antenna coupling), e.g., [16, 17]. Much less studied are direction-
dependent gains, which may include the individual antenna response, beamshape, and
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angle-dependent propagation effects [18]. The latter case quickly leads to general mod-
els, e.g., to consider the array response matrix to have known gains and unknown phases
[19, 20].

A related area of study (not immediately relevant for LOFAR)also considers estimat-
ing or updating the antenna locations along with the other parameters. Many calibration
techniques essentially assume the presence of only a singlecalibration source, or even re-
quire a set of calibration sources which can be switched on orseparately selected at will.
This gives access to the individual uncalibrated array response vectors. Self calibration is
an extension whereby DOA estimation (and hence source separation) is alternated with
estimating the nuisance parameters. A problem rarely considered in array processing is
to assume that many sources are simultaneously present, butthat the source covariance
matrix is known [21, 22]. This is a relevant assumption in radio astronomy, and LOFAR
in particular.

2.4 Notation

Throughout this thesis the following notation will be used.

I , I L: arbitrary size andL × L identity matrices respectively.

0, 0I ,L: arbitrary andI × L matrix of zeros respectively.

1L: L × 1 vector of ones.

E{·}: expected value.

Re(·), Im(·): real and imaginary parts, respectively.

(·)[i, j]: (i, j)-th element of a matrix.

ˆ(·) : an estimated quantity.

(·)T
, (·)H : transpose and Hermitian transpose respectively.

(·)† : generalized inverse.

(·) : complex conjugate.

⊗, ◦ : Kronecker matrix product, Khatri-Rao (column-wise Kronecker) prod-
uct.

diag(·): extract diagonal, or build diagonal matrix.

vec(·): Column scan a matrix to form a vector.

| · |, ∠ : element-wise absolute value and phase angle.

‖ · ‖F : Frobenius matrix norm.
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Chapter 3
Analysis of the LOFAR calibration
problem ∗

This chapter presents a formal study of the parameter estimation problem for LOFAR
calibration. A data model is proposed, and a Cramer-Rao lower bound (CRB) analysis is
developed with a new general formulation to easily incorporate a variety of constraining
signal models. It is shown that although the unconstrained direction dependent calibra-
tion problem is ambiguous, physically justifiable constraints can be applied in LOFAR to
yield viable solutions. Use of a “compact core” of closely spaced array elements as part
of the larger array is shown to significantly improve full array direction dependent cali-
bration performance. Candidate algorithms are proposed and compared with the CRB.

This chapter is organized as follows. Section 3.1 introduces to problem of calibrating
LOFAR. Section 3.2 gives the data model and problem statement. Section 3.3 derives
the relevant CRBs. Section 3.4 proposes calibration algorithms, under various model
assumptions and parameter constraints. Section 3.5 shows simulation results. Section
3.6 presents the conclusions of this chapter.

3.1 Introduction

In this chapter, we study the calibration of a large distributed sensor array. The problem
can be phrased as direction-dependent calibration with fewer reference sources than array
elements combined with hierarchical beamforming such thatnot all antenna crosscorrela-
tions are available at a central location. The reference sources are signals of opportunity
that are all simultaneously present. Without further assumptions, the array can not be

∗The contents of this chapter have been published inIEEE Transactions on Signal Processingunder the
title ”Self-Calibration for the LOFAR Radio Astronomical Array” by S. van der Tol, B.D. Jeffs, A.-J. van der
Veen [23]. Prior conference publications providing partial results are [24, 25].

15
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calibrated.
At the station level, each station is expected to form a well-defined beam into a de-

sired direction–this requires accurate estimation of the complex gains of each antenna
element in the station array. Available for this is the observed covariance matrix at each
station, based on 1-second observations, and a table of the brightest sources in the sky,
with known powers and locations. It is further assumed that the antenna elements have
known locations and orientations, and “known” antenna patterns (as predicted by EM
modeling). We estimate that each complex gain will have an accuracy of only 25 dB
(relative to estimation error) [21], and this limits the knowledge and accuracy of the
beamshape, in particular at the side lobes.

As with station calibration, bright point-like sky sourceswith known positions are
used as “calibrator” references for ionospheric phase and gain estimation.

The initial station calibration should ensure that, withinthe mainlobe, the beam-
former response of each station is sufficiently well known. Ionospheric variation across
the field of view is gradual enough to permit a low order spatial smoothing model to fit
observed perturbations to the known calibrator levels. Theknown beam response can aid
direction dependent calibration and can be factored out so ionospheric gain and phase
terms can be isolated.

However, in most observing scenarios there are multiple calibrators outside the main-
lobe which are brighter than any source in the beam mainlobe,even after accounting for
beamformer attenuation. Furthermore, sidelobe gain and phase responses vary rapidly
with arrival angle and depend strongly on electronic instrument calibration variations.
Sidelobe response to calibrators must thus be treated as an unknown random quantity
which contributes to the direction dependent effect. The array must be accurately cali-
brated to these bright sources before their corrupting signals can be removed from the
imaging array covariance data. This means that a LOFAR calibration algorithm must be
capable of joint estimation of independent complex gain terms for every array element
(station) and calibrator source combination. Moreover, atleast for the first stages of cal-
ibration (used to remove bright sidelobe sources) this mustbe accomplished without the
luxury of a known beam response. The algorithms and analysispresented here address
this general case, where known beampatterns are not exploited.

At this stage in the LOFAR development there is significant uncertainty about how
self calibration algorithms will perform. The radio astronomy community has a wealth
of experience in successful synthesis array self calibration at higher frequencies [4] [5]
[6] [13]. But neither the theoretical or practical bounds oncalibration accuracy are well
understood for arrays with thousands of antennas spread over a hundred kilometers in the
presence of strong ionospheric perturbation. It is not clear whether extensions of existing
algorithms will be adequate, and it is likely that new approaches and algorithms will be
required [26]. For some observing conditions a sufficiently accurate calibration may be
beyond fundamental limits of parameter estimation uncertainty. We propose to answer
some of these questions with a thorough Cramer-Rao lower bound (CRB) analysis to
determine limiting estimation error variance levels undervarious model assumptions.

In summary, compared to existing telescopes, LOFAR calibration has the following
complications:



3.2 DATA MODEL AND PROBLEM DEFINITION 17

• The station beamshapes have significant side lobes; strong sources in the side lobes
can dominate weak sources in the main lobe.

• Existing telescopes can calibrate assuming there is one or only a few bright sources
in the field of view. For LOFAR, each omnidirectional antennacan see the full sky.

• Each station observes each source through a different patch of the ionosphere. It is
easy to see from this that, without further assumptions, thearray is not calibratable.

3.2 Data Model and Problem Definition

3.2.1 Signal Model

Each LOFAR station forms steered beams in 1 kHz wide subbandswhich track selected
deep space objects while their apparent positions shift dueto Earth rotation. A station
beam is treated as a single directional element in the full LOFAR array for processing
at the central location; there is no access to the individualelements. Assume all station
beams in all subbands for theJ = 72 stations are steered to the same point in the ce-
lestial sphere and that the observed signal is dominated byQ known, bright calibrator
point sources. TheJ × 1 observed array sample vector for thek-th subband centered at
frequencyfk is

xk(n) =

Q∑

q=1

ak,q(n)sk,q(n) + ηk(n) (3.1)

wheresk,q(n) is the signal from theq-th calibrator source at time samplen and frequency
fk, ak,q(n) is the array response vector for this source, andηk(n) is the noise sample
vector. sk,q(n) andηk(n) are baseband complex envelope representations of zero mean
wide sense stationary white Gaussian random processes sampled at the Nyquist rate.
Elements ofηk(n) are statistically independent, as are signals from theQ sources.1

For simplicity of presentation all wave propagation is assumed to be non-polarized.
In practice however antennas are grouped into orthogonal linear polarization pairs so full
Stokes parameter outputs are available to enable observingpolarization-specific scien-
tific phenomena. Additionally, calibration parameter estimates must track the effect of
ionospheric Faraday rotation. The non-polarized results presented in this paper are in-
structive, and extension to a more realistic model is straightforward using Jones matrix
notation (cf. [27]), a dual-polarized vector in place ofsk,q(n), and extending each array
response vectorak,q(n) to be a two column matrix.

Due to earth rotation the geometrical delay component ofak,q(n) changes slowly with
time, which is a critical feature exploited in synthesis imaging. Calibrator locations

1The subband processing in the actual instrument is slightlymore subtle than presented here. The stations
use 200 kHz subbands. At the central location these signals are time-shifted to compensate for the geometric
delays in the look direction, and subsequently split into 1 kHz bins. As a result the narrowband model (3.1)
holds for sources in the look direction, but may not quite hold for sources far outside the field of view. These
sources will experience some phase smearing. This effect is not considered in the data model.
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and intensities are known accurately from catalogues compiled in previous sky surveys.
During calibration all other space signals are neglected due to their relative weakness,
but of course their presence can bias the calibration solution.

Let N be the number of time samples in a short term integration (STI) interval. We
assume thatak,q(n) is (relatively) constant over such an interval, so that, for the m-th
interval, xk(n) is wide sense stationary over (m − 1)N ≤ n ≤ mN − 1. A single STI
autocovariance is defined as

Rk,m = E{xk(n) xH

k(n)} = Ak,mΣkA
H

k,m+Λk, (3.2)

whereRk,m has sizeJ × J,

Ak,m =
[

ak,1((m− 1)N), · · · , ak,Q((m− 1)N)
]

Σk = diag{[σ2
k,1, · · · , σ2

k,Q]}
Λk = E{ηk(n) ηH

k(n)} = diag{[λ2
k,1, · · · , λ2

k,J]}.

Here,σ2
k,q is the variance of theq-th calibrator source. Noise is assumed to be inde-

pendent but not identically distributed across the array, and the noise variancesλ2
k, j are

unknown. In the radio astronomy literature, elements ofRk,m are called “visibilities” [4].
Each visibility represents the interferometric correlation along the baseline vector be-
tween the two corresponding array elements. The corresponding short term integration
sample covariance estimate is

R̂k,m =
1
N

mN−1∑

n=(m−1)N

xk(n)xH

k(n).

The array response matrixAk,m can be factored into the product of a phase matrixK k,m

due entirely to the propagation delays associated with the array and source geometry, and
a complex calibration gain matrixGk,m which includes both source direction dependent
ionospheric perturbations and electronic instrumentation gain errors,

Ak,m = Gk,m⊙ K k,m (3.3)

In the astronomical literature, the columns ofK k,m, denoted bykq
k,m (q = 1, · · · ,Q), are

often called the “Fourier kernel” and are given by

kq
k,m = exp{ j 2π fk

c
ZTpm,q}

Z =
[

[x1, y1, z1]T
, · · · , [xJ, yJ, zJ]

T
]

.

wherec is the speed of light, [x j, y j , zj ] is the position vector for thej-th array element
(station beam) andpm,q is a unit length vector pointing in the direction of sourceq during
STI snapshotm. SinceZ, pm,q, and the source power levels are all known to high accuracy
for tabulated calibration sources,K k,m andΣk are treated as known quantities.
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3.2.2 Direction Dependent Calibration Formulation

The problem at hand is to estimateGk,m given R̂k,m over a range ofk andm. Gk,m is
in general aJ × Q full matrix of independent unknown complex gain parameterswhose
elements must be estimated to calibrate the array for imaging. A (2JQ+ J) × 1 real
parameter vector containing all unknown terms is defined as

θk,m = [vec{|Gk,m|}T, vec{∠Gk,m}T, diag{Λk}]T

= [(γ1
k,m)T

, · · · (γQ
k,m)T

, (ψ1
k,m)T

, · · · (ψQ
k,m)T

, λ
T

k]
T
, (3.4)

whereγq
k,m is theq-th column of gain matrixΓ = |Gk,m|, ψq

k,m is theq-th column of phase
matrixΨ = ∠Gk,m, andλk = diag{Λk}. In contrast to LOFAR, the conventional synthesis
imaging calibration problem at higher frequencies does notsuffer from direction depen-
dent ionospheric perturbations so in this caseG = g1T has the same gain vectorg for each
source, and (3.3) becomesA = diag{g}K [13]. In either caseλ is a nuisance parameter
which must be jointly estimated withG.

Self calibration can be viewed as a covariance fitting problem. Substituting (3.3) into
(3.2) and explicitly showing dependence onθ yields the visibility measurement equation
(ME) [28]

ME(θk,m) =
(

G(θk,m) ⊙ K k,m
)

Σk

(

K H

k,m⊙GH(θk,m)
)

+Λ(θk,m).

For a single STI and subband [one (k,m)] the least squares calibration solution follows
immediately as

θ̂k,m = arg min
θ
‖R̂k,m−ME(θ)‖2F . (3.5)

Direct solution of (3.5) is not computationally practical.Furthermore it will be shown
that without further constraintsθk,m is not identifiable through a singlêRk,m. The esti-
mation problem is ill posed and (3.5) yields ambiguous solutions due to source direction
dependence. Fortunately the physics of LOFAR permit imposing structural constraints
on individualGk,m snapshots and/or across a range of time-frequency bins to regularize
the problem, as will be shown in sections to follow.

It should also be mentioned that a maximum likelihood (ML) formulation of the
LOFAR calibration problem is also easily expressed along the lines of the result in [13].
But, as is often the case, the ML approach does not yield a computationally tractable
algorithm for this problem.

3.3 A Framework for Cramer-Rao Lower Bound Analysis

This section presents a general framework for CRB analysis of the source direction de-
pendent calibration gain estimation problem. The approachallows for simple adaptation
to a wide range of physically justifiable model assumptions,parameterizations, and sig-
nal constraints.
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3.3.1 CRB for Unconstrained Calibration Parameters

Consider a set of array samples (J stations) observed over a time-frequency domain span-
ning 1 ≤ k ≤ K frequency bins and 1≤ m ≤ M non-overlappingN sample STI time
windows. Stack these samples into anKMJ × N data matrix

X =





x1(0) · · · x1(N − 1)
...

...

x1((M − 1)N) · · · x1(MN − 1)
...

...

xk((m− 1)N) · · · xk(mN− 1)
...

...

xK((M − 1)N) · · · xK(MN − 1)





.

Initially we consider the unstructured case where parameter vectorsθk,m from each time-
frequency bin are distinct with no functional relationshipand must all be estimated.
These are stacked into a large parameter vector

ϑ = [θT

1,1, · · · , θ
T

K,1, · · · , θ
T

1,M, · · · θ
T

K,M]T
. (3.6)

The corresponding stacked sample covariance isR̂ = 1
N XX H. The underlying data model

is given in (3.1). Due to Nyquist sampling of narrow passbands selected from the under-
lying continuous time broadband random signals, bothsk,q(n) andηk(n) are statistically
independent with respect to bin indicesk andm. All non zero correlations are spatial (i.e.
with respect to station indexj) and are due to phase delay across the narrowband array.
Thus the true covarianceR = E{R̂} has block diagonal form

R =





R1,1

. . .

RK,1

. . .

RK,M





andR depends onϑ through (3.2), (3.3), and (3.4).
Consider an estimate ofϑ based on an observationX. The Cramer-Rao lower bound

on the error variance for any unbiased estimator is given by the diagonal elements of

C = 1
N
M−1

evaluated at the true value ofϑ. Here,M is the Fisher information matrix, which for
Gaussian data can be expressed as [29]

M = JH(R−1 ⊗ R−1)J (3.7)
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where the JacobianJ is defined as

J = ∂vec(R)

∂ϑ
T .

The matrix (R−1⊗R−1) is usually very large. However the sparse block diagonal structure
for R in turn makesJ sparse and simplifies evaluation of (3.7). ThusM has the same
block diagonal structure asR, with

M k,m = JH

k,m

(

R
−1
k,m⊗ R−1

k,m

)

Jk,m,

and

Jk,m =
∂vec

(

Rk,m
)

∂θ
T

k,m

∣
∣
∣
∣
∣
∣
∣
θ=θ

true
k,m

.

With no assumed structure relating parameters across time or frequency, the subblocks of
M are uncoupled and the CRB for someθ̂k,m can be computed fromM k,m independently
from the other parameters. The entriesM k,m are evaluated as follows.

3.3.2 Closed Form for General Fisher Information

Using the parameter ordering from (3.4) eachM k,m can be partitioned into block form as

M k,m =





Mγ1γ1 · · ·Mγ1γQ Mγ1ψ1 · · ·Mγ1ψQ Mγ1λ

. . .
. . .

...

MγQγ1 · · ·MγQγQ MγQψ1 · · ·MγQψQ MγQλ

Mψ1γ1 · · ·Mψ1γQ Mψ1ψ1 · · ·Mψ1ψQ Mψ1λ

. . .
. . .

...

MψQγ1 · · ·MψQγQ MψQψ1 · · ·MψQψQ MψQλ

Mλγ1 · · ·MλγQ Mλψ1 · · ·MλψQ Mλλ





. (3.8)

The closed form representation for these submatrices is shown in the Appendix to be

Mγ pγq
= 2σ2

pσ
2
qRe

{

(ΦT

pR
−1
Φq)(aH

pR
−1aq) + (ΦT

pR
−1

aq)(aH

pR
−1Φq)

}

(3.9)

Mψpψq = 2σ2
pσ

2
qRe

{

(EpR
−1

Eq)(aH

pR
−1aq) − (EpR

−1
aq)(aH

pR
−1

Eq)
}

(3.10)

Mλλ = R
−1 ⊙ R−1 (3.11)

Mγ pψq = 2σ2
pσ

2
qIm

{

(ΦT

pR
−1

Eq)(aH

pR
−1aq) + (ΦT

pR
−1

aq)(aH

pR
−1Eq)

}

(3.12)

Mγqλ
= 2σ2

qRe
{

ΦqR
−1 ◦ aH

qR−1
}

(3.13)

Mψqλ = −2σ2
qIm

{

EqR
−1 ◦ aH

qR−1
}

(3.14)
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where all terms have impliedk,msubscripts and

Eq = diag
(

γq ⊙ kq

)

Φq = diag
(

φq ⊙ kq

)

φq = exp(jψq).

SinceMγ pλ
and Mψpλ are nonzero,λ is coupled with the parameters of interest and

should be jointly estimated.
As will be shown later, in the general case considered hereM k,m is singular. Without

introducing constraints on the parameters, the array is notcalibratable.

3.3.3 CRB for Constrained Parameters

The following sections discuss some scenarios where the degrees of freedom inϑ can be
reduced by physically justifiable constraining models. These impose structure inRwhich
is key to solving the calibration problem. At this stage in LOFAR development there is
much activity in identifying appropriate models of ionospheric perturbation effects which
can be incorporated into self calibration algorithms (see chapter 4). For example, when
the ionosphere is relatively time stable,θk,m may vary smoothly overk andm according
to some low order interpolation function. In such cases a lower dimensional parameter
vectorρ can represent all the required degrees of freedom over the entire domain ofk
andm.

Let ϑ = f (ρ) where f (·) is some functional relationship describing a constraint on
ϑ corresponding to an appropriate physical model. It is assumed thatϑ is an overdeter-
mined parameterization and that the underlying distribution forxk(n) is fully determined
by ρ. Under these conditions the Fisher information computed for ρ yields the CRB.

Define the constrained Fisher information matrix as

Mρ = JH

ρ

(

R−1 ⊗ R−1
)

Jρ (3.15)

where

Jρ =
∂vec(R)
∂ρT =

∂vec(R)

∂ϑ
T

∂ f (ρ)
∂ρT =: JF (3.16)

which follows by the chain rule sinceϑ = f (ρ). F can be partitioned as

F =
[

FT

1,1, · · · ,F
T

K,1, · · · ,F
T

1,M, · · · ,F
T

K,M

]T

where

Fk,m =
∂θk,m

∂ρT . (3.17)

ρ is common to all time-frequency bins and is not indexed byk or m. Specifying theFk,m

establishes the required structural constraints. Equation (3.15) can now be written as

Mρ = F H
[

JH
(

R−1 ⊗ R−1
)

J
]

F = F HMF ,
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and sinceM is block diagonal

Mρ =

K∑

k=1

M∑

m=1

FH

k,mM k,mFk,m. (3.18)

With (3.18) one may compute a CRB for the constrained parameter vectorρ using the
unconstrained general form Fisher matrices given by (3.8) and constraint Jacobians from
(3.17).

As an illustrative example consider the simplest time-frequency smoothing function
where calibration parameters are constant overk,m. In this case we can chooseρ =
θ1,1 = θk,m ∀ (k,m), andFk,m = I . To avoid a singularMρ an intrinsic bulk phase
ambiguity must be resolved with an additional constraint. Since due to its Hermitian
product formRk,m is unaffected by multiplying any column ofGk,m by a unit modulus
scalar,∠Gk,m can only be known to within one arbitrary phase factor per column. The
excess degrees of freedom inθk,m can be removed by eliminating the first element of
each phase vectorψq

k,m in θk,m. This constraint is imposed by setting

ρ = Sb
Lθ1,1 = Sb

Lθk,m, ∀k,m,

whereL = (2Q + 1)J is the number of coefficients inθk,m, and the selection matrix
Sb

L is formed by deleting the columns fromI L with indicesb = [b1, · · · , bQ]T, bq =

(q− 1+ Q)J + 1. This eliminates fromρ the stationj = 1 phase parameter for each of
theQ calibrator sources, forcing the first row ofG to be real. It follows that

Fk,m = Sb
L . (3.19)

The resulting bounds are evaluated in Section 3.5, along with the performance of the
estimation algorithms presented next.

3.4 Calibration Methods

3.4.1 Single Snapshot Calibration

Above approximately 400 MHz it is possible for conventionalastronomical synthesis
imaging arrays to estimate calibration gains from a single “snapshot” STI sample co-
variance realization̂Rk,m [13] [4]. This is useful for start-up of a tracking calibration
algorithm or to make quick look snapshot images. In general this is not possible for
LOFAR due to directionally dependent ionospheric perturbations.

To illustrate this fact note that for anyQ× Q unitary matrixU, equation (3.2) can be
rewritten as

R = AΣ
1
2 UUH

Σ
1
2 AH
+Λ

= AΣ
1
2 UΣ−

1
2Σ(Σ−

1
2 )HUH

Σ
1
2 AH
+Λ

= ÃΣÃH
+Λ , (3.20)
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Figure 3.1: Possible geometry for the full LOFAR array (left) and the compact central core (right).
Each circle or star represents a LOFAR station which acts as asingle beamformed directional
sensor element in the full array. Plans in 2004 were for five exponentially spaced spiral arms of
eight exterior stations each and a compact core of 32 stations.

whereÃ = AΣ
1
2 UΣ−

1
2 . SinceUUH

= I , it is not visible inR. However (3.20) has the
same structure as (3.2) but with a different effective array response,Ã. Thus each choice
of U leads to a different calibration solutioñG, namely (using̃A = G̃ ⊙ K ),

G̃ = (AΣ
1
2 UΣ−

1
2 ) ⊙ K⊙−1 (3.21)

where (·)⊙−1 denotes element-wise inverse. This shows that, without adding constraints,
A is not identifiable from a singlêRk,m. (This problem is not present in the classical
direction-independent calibration problem, whereG = g1T, or A = diag{g}K [13].)

In the next subsection, we introduce a physically justifiable constraint based on the
unique LOFAR array geometry which resolves this ambiguity so that with sufficient SNR
a calibration can be computed already from a single snapshotR̂k,m. Subsequently, in Sec-
tion 3.4.3, we consider multiple snapshots and make assumptions on the time evolution
of the ionosphere.

3.4.2 Exploiting the Compact Core LOFAR Geometry

The unknown calibration gains/phases can be attributed to perturbations due to (a) the
propagation through the ionosphere, and (b) the receiver electronics. The ionosphere
mostly introduces propagation delays, i.e. it can be modeled as a random phase sheet,
with gains that are approximately direction independent over a station main beam. Simi-
larly, the electronic gains and phases are independent of the directions to the calibration
sources, but do differ from station to station.

The planned geometry for LOFAR as shown in Fig. 3.1 includes acentral core ofJc

closely packed stations. As shown in Fig. 3.2, the core subarray is operating in a regime
3 (see section 2.2.2) where the station beam fields of view overlap on the ionosphere
(approximately 300 km above the array). These beam mainlobe“footprints” are much
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Figure 3.2: Calibration scenario for closely spaced LOFAR central corestations. Due to beam
overlap at ionospheric altitude, each station sees the samedirection dependence. (After C. Lons-
dale)

larger than, and the total subarray aperture is much smallerthan the ionospheric irregu-
larity scale [9]. Thus each core station observes a given celestial source through the same
patch of ionosphere and sees a common gain-phase perturbation, i.e., the core subarray
sees a coherent scene without direction dependence.

Because they are common, the ionospheric phases cancel out when computing the
correlationsRk,m for the core subarray. What remains is the direction-independent iono-
spheric gains, and the gains/phases of the receiver electronics. The corresponding core
gain matrixGc can be modeled asGc = gc1

T. This leads to a calibration problem compa-
rable to the typical synthesis imaging situation at higher frequencies (or similar to station
calibration).

For the rest of the array, i.e., for theJe = J − Jc stations exterior to the core, both the
field of view and all inter-element baselines are greater than the ionospheric irregularity
scale, as shown in Fig. 2.1(d). For these stations the corresponding gain matrixGe is best
modeled as a full matrix.

Under these assumptions, equation (3.3) becomes

A = G ⊙ K =

[

Gc ⊙ K c

Ge⊙ Ke

]

=

[
diag{gc}K c[

g1
e ⊙ k1

e, · · · , g
Q
e ⊙ kQ

e

]

]

,

(the implied (k,m) indices are omitted). To bring all calibration gain vectors to be esti-
mated into a single indexing scheme, letq = 0 refer to the central core, and define

g̃q =

{

gc , for q = 0,
gq

e , for 1 ≤ q ≤ Q
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ρ = [| g̃T

0|, · · · , | g̃
T

Q|, ∠ g̃T

0, · · · , ∠ g̃T

Q, λ
T]T
. (3.22)

Here, g̃0 corresponding to the single core subarray gain vector is length Jc, while the g̃q

are lengthJe.
The following constraint Jacobian expresses the relationship betweenρ in (3.22) and

θk,m in (3.4). It also constrains the bulk phase ambiguity as does(3.19), by omitting the
phase on the first external station.

Fk,m =





1Q ⊗
[

I Jc

0Je,Jc

]

I Q ⊗
[

0Jc,Je

I Je

]

0 0 0

0 0 1Q ⊗
[

I Jc

0Je,Jc

]

I Q ⊗
[

0Jc,Je−1

Sb
Je

]

0

0 0 0 0 IM





(3.23)

whereb = [1]. Using (3.23) in (3.18) for a single snapshot (k,m) givesMρ = FH

k,mM k,mFk,m,
and yields a closed form CRB for a LOFAR array with a central core. This has been used
to evaluate the CRB for a wide range of scenarios, and leads tothe following observa-
tions:

1. Mρ is typically singular whenJc < Q− 1.

2. WhenJc ≥ Q−1 the full array, including the fully direction dependent ionospheric
gains in the exterior stations can be reliably calibrated with a single snapshot sam-
ple covariance.

Currently, the number of central compact core stations is planned asJc = 32. Thus,
single snapshot calibration exploiting the core configuration is suitable ifQ represents a
small number of bright calibrator sources, i.e., for initial coarse calibration.

3.4.3 Exploiting Frequency-Time Diversity

We will now consider the use of multiple snapshots. The ionospheric parameters are
approximately constant over a block of (k,m) values covering 10 seconds and 500 kHz.
Due to Earth rotation and frequency dependence,K k,m varies sufficiently over this block
so that, even if the individualM k,m are singular, the sum in (3.18) produces a full rank
Mρ and a relatively low CRB.

For regions larger than a 10 s× 500 kHz block,Gk,m generally varies smoothly. It
is therefore unnecessary to compute independent estimatesfor eachθk,m. A low order
smoothing function can describe the significant variationswith fewer parameters and
thus lower estimation error variance. For example, we can use a matrix polynomial inf ,
t and coefficient vectorρ for the phase matrixΨ as

Ψ(ρ, f , t) = T1 + T2 f + T3t + T4 f t + T5 f 2

which consists ofD = 5 terms, using powers forf as{κ1, · · · , κ5} = {0, 1, 0, 1, 2} and for
t as{µ1, · · · , µ5} = {0, 0, 1, 1, 0}, and with theTd phase coefficient matrices of sizeJ×Q.
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More generally, we can model the magnitude and phase matrix at STI frequency-time
bin (k,m) as

Gk,m(ρ) =
[

Γ(ρ, f , t) ⊙ exp{ jΨ(ρ, f , t)}
]∣∣
∣
∣
∣
f= fk,t=tk

(3.24)

Γ(ρ, f , t) =
D∑

d=1

Yd f κd tµd , Ψ(ρ, f , t) =
D∑

d=1

Td f κd tµd

ρ = vec [Y1, · · ·YD,T1, · · ·TD, λ] . (3.25)

Yd andTd are theJ×Qgain and phase coefficient matrices, to be estimated by calibration.
The dual (gain and phase) polynomial model combined with thebulk phase ambiguity

resolution used in (3.19) results in the following constraint Jacobian:

Fk,m =





f κ1

k tµ1
m I L · · · f κD

k tµD
m I L 0 · · · 0 0

0 · · · 0 f κ1

k tµ1
m B · · · f κD

k tµD
m B 0

0 · · · 0 0 · · · 0 IJ




(3.26)

whereL = JQ andB = I Q ⊗ Sb
J, b = [1]. It is straightforward to combine this with the

assumption of a central core geometry (Section 3.4.2). In this case,Fk,m is given by the
product of equations (3.23) and (3.26), but usingL = QJe + Jc andB = I Q(Je−1)+Jc.

A least squares solution forρ can be expressed as

ρ̂ = arg min
ρ

K−1∑

k=0

M−1∑

m=0

‖R̂k,m−MEk,m(ρ)‖2F (3.27)

where
MEk,m(ρ) =

(

Gk,m(ρ) ⊙ K k,m
)

Σk

(

K H

k,m⊙Gk,m(ρ)H
)

+Λk(ρ). (3.28)

Although the polynomial model dramatically reduces parameter degrees of freedom and
(3.26) yields a low CRB, a direct implementation of (3.27) iscomputationally imprac-
tical. An iterative search algorithm is required but its convergence performance is poor.
The continuous phase polynomialΨ(ρ, f , t) is ambiguous to integer multiples of 2π at
every evaluation point, i.e. for every combination of station j, sourceq, fk, andtm. This
introduces many local minima so that a good initial estimatefor ρ is required. The fol-
lowing two sections present algorithms which address theseproblems.

3.4.4 The Peeling Algorithm

The current leading candidate algorithm for LOFAR calibration was introduced in [26]
and has been dubbed “Peeling” due its sequential approach ofsuccessively calibrating
on one bright source at a time followed by removing (peeling)that source’s contribution
from the observed sample covariances,R̂k,m. Peeling is based on three basic simplifying
assumptions:
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• Joint estimation for parameters of allQ calibrators sources can be approximated
with a series of single source calibration problems, in descending order of source
brightness.

• Calibration gains vary slowly and smoothly over time and frequency. Conse-
quently, over some span ofKb frequency bins andMb time bins called a “block,”
Gk,m is approximately constant. This block indexed by (k̃, m̃) includes all frequency-
time (STI) bins in the set

Bk̃,m̃ = {(k,m) : k̃Kb ≤ k ≤ (k̃+ 1)Kb − 1, m̃Mb ≤ m≤ (m̃+ 1)Mb − 1}

The evolution of the ionospheric gains over several blocks (a “domain”) is de-
scribed by a polynomial model as in (3.25).

• Within a block, the variations inK k,m (also known as fringe rotations) due to Earth
rotation and frequency change are large. Source powersσ2

k,q are constant overk
within a block.

Peeling in [26] does not use the central core geometry assumption.
Let ρ be a minimal parameterization for the calibration parameters. Defineρq as the sub-
vector ofρ corresponding to the parameters for sourceq, i.e., corresponding to theq-th
columns fromY1, · · · ,YD andT1, · · · ,TD in the polynomial model (3.25). The corre-
sponding gain vector for STI bin (k,m) is given by the vector polynomialgq

k,m = gk,m(ρq),
which is also obtained by by retaining only theq-th columns fromΓ(ρ, f , t) andΨ(ρ, f , t)
in (3.24). No superscriptq is used ingk,m(ρq) since all column-wise polynomials are iden-
tical except for the source dependent coefficients in eachρq. Similarly, kq

k,m denotes the
q-th column ofK k,m, and contains the geometric phase delays of sourceq. Finally, ρ̂p
will denote the current parameter vector estimate for a single sourcep.

Assuming theQ sources are ordered in descending brightness, anI pass peeling
algorithm based on [26] is given by

1. Initialize: source indexq = 1, pass indexi = 1, and parameter vector ˆρp = 0 for
1 ≤ p ≤ Q.

2. Update the residuals (peel):Over all (k,m) covering all blocks in the domain,
subtract from each sample covariance the current best estimates (based on ˆρp, 1 ≤
p ≤ Q, p , q) of contributions from all except theq-th source:

V̂k,m,q = R̂k,m−
Q∑

p = 1
p , q

(gk,m(ρ̂p) ⊙ kp
k,m)σ2

k,p(gk,m(ρ̂p) ⊙ kp
k,m)H

.

V̂k,m,q is an estimate of the visibility (covariance) matrix contribution toR̂k,m from
sourceq. The term under the summation is a single source version of (3.28). The
noise covarianceλ is neglected.
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3. Phase center and average:For eachV̂k,m,q, cancel the phase rotation due to the ge-
ometric delay termkq

k,m in the visibility contribution from sourceq. Then average
over (k,m) inside a blockBk̃,m̃ to attenuate the other, non-centered, sources,

V̂k̃,m̃,q =
1

KbMb

∑∑

(k,m)∈Bk̃,m̃

diag{kq
k,m}V̂k,m,q diag{kq

k,m}. (3.29)

4. Estimate polynomial coefficients: With some abuse of notation, let the subscript
(k̃, m̃) ongq

k̃,m̃ denote selecting the (k,m) frequency-time bin in the center of block
(k̃, m̃), and likewise forσ2

k̃,q
. Then assume a single-source model and estimate the

polynomial coefficients for sourceq as

ρ̂q = arg min
ρq

∑∑

(k̃,m̃)

∥
∥
∥
∥
∥
L ⊙

(

V̂k̃,m̃,q − σ2
k̃,q

gk̃,m̃(ρq)
(

gk̃,m̃(ρq)
)H

)∥∥
∥
∥
∥

2

F
.

L is a masking matrix of ones below the diagonal and zeros elsewhere which is
used to avoid fitting to diagonal terms fromΛ. This problem is solved using a
general least squares solver.

5. Iteratefor q = 1, · · · ,Q and do this forI passes.

We have found that using multiple passes (e.g. 2≤ I ≤ 5) reduces bias in ˆρq which arises
when the averaging over a block in step 3 produces insufficient attenuation of the non
centered sources. Contamination in the single source fit in step 4 occurs becauseVk̃,m̃,q
has contributions from more than the centered source. The next section presents a more
direct method of reducing this bias.

3.4.5 Demixing Calibrator Cross Contamination

The purpose of steps 2 and 3 is to form a single-source approximation of the problem.
IdeallyV̂k̃,m̃,q is equal to the true single source phase centered visibilityVk,m,q for sample
(k,m) at the center of block (k̃, m̃). Assuming the gainsgk,m(ρq) and source powersσ2

k,q
are constant within the block gives

Vk̃,m̃,q = σ
2
k,qgq

k,m(ρq)
(

gk,m(ρq)
)H

, ∀(k,m) ∈ Bk̃,m̃ . (3.30)

(the additive noise is ignored). Initially, when estimating the parameters for sourceq
there are no available estimates for sourcesq + 1 to Q, so their contribution cannot be
subtracted in step 2. Averaging in step 3 is then not sufficient to reduce bias down to the
noise level and multiple iterations are necessary.

In this section we develop an unbiased estimator,V̂k̃,m̃,q, so that even on the first

passE{V̂k̃,m̃,q} ≈ Vk̃,m̃,q. The algorithm works on a per block basis, so for notational
simplicity the block indices (̃k, m̃) will be dropped, and we take the rangesk = 1, · · · ,Kb,
m= 1, · · · ,Mb (a single block).



30 ANALYSIS OF THE LOFAR CALIBRATION PROBLEM 3.4

Consider estimatingρq during the first peeling pass. Estimates ˆρp for 1 ≤ p < q
will have been previously computed, and we assume that the corresponding sources are
peeled without bias in step 2. We now seek an estimate ˆρq which is unbiased by the
presence of sourcesq+ 1 to Q in R̂k,m. These sources have not yet been peeled since at
this stage ˆρp = 0 for p = q + 1, · · · ,Q. The expected value of entryi, j from V̂k,m,q in
step 2 can then be expressed as (fori, j = 1, · · · , J)

E
{

V̂k,m,q[i, j]
}

=

Q∑

p=q

kp
k,m[i] k

p
k,m[ j] νp,i j (3.31)

νp,i j = σ2
pgp[i] gp[ j]

wheregq = gk,m(ρq) andσ2
q = σ

2
k,q are constant within a block. The summation can be

written as

E
{

V̂k,m,q[i, j]
}

=

[

kq
k,m[i] k

q
k,m[ j], . . . , kQ

k,m[i] k
Q
k,m[ j]

]

νi j

νi j =
[

νq,i j , · · · , νQ,i j

]T

. (3.32)

This gives us one equation per (k,m) pair in the blockBk̃,m̃. To stack these into a matrix,
let

Ki j =





kq
1,1[i] k

q
1,1[ j] . . . kQ

1,1[i] k
Q
1,1[ j]

...
. . .

...

kq
Kb,Mb

[i] k
q
Kb,Mb

[ j] . . . kQ
Kb,Mb

[i] k
Q
Kb,Mb

[ j]





(sizeKbMb × Q− q+ 1) and

v̂i j =
[

V̂1,1,q[i, j], · · · , V̂Kb,Mb,q[i, j]
]T

.

then (3.31) becomesE{v̂i j } = Ki jνi j . If Ki j is a “tall” matrix, which requires (forq = 1)
KbMb ≥ Q, then it will be left-invertible. Applying the left inverseto both sides of the
equation, we obtain

E
{

(KH

i jKi j )−1KH

i j v̂i j

}

= νi j . (3.33)

The least squares estimator forνi j givenv̂i j is

ν̂i j = (KH

i jKi j )
−1KH

i j v̂i j (3.34)

which is shown by (3.33) to be unbiased. Comparing (3.30) with (3.31)–(3.32) reveals
that the first element of̂νi j is the estimator we seek for̂Vk̃,m̃,q[i, j]. Equation (3.34) is

separately computed for each (i, j) to yield full matrixV̂k̃,m̃,q for use in Peeling step 4.
A closer look at (3.34) reveals that it is directly related tothe original peeling ap-

proach of phase centering and averaging. First define

Ci j = KbMb(KH

i jKi j )
−1 .
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Table 3.1: Ten brightest calibrator sources

Source Catalog Name RA◦ DEC◦ SNR dB

1 3C461 350.8 58.8 -20.7
2 3C405 299.9 40.7 -21.0
3 3C86 51.8 55.3 -30.0
4 3C144 83.6 22.0 -31.6
5 3C274 187.7 12.4 -31.6
6 3C123 69.3 29.7 -31.9
7 4C+53.06 52.5 53.6 -37.2
8 4C+53.07 54.1 53.6 -37.2
9 3C33 17.2 13.3 -38.7
10 4C+55.07 53.1 55.9 -39.1

Now we can write

ν̂i j = Ci j

[

1
KbMb

KH

i j v̂i j

]

.

Comparing this matrix equation with the summation of (3.29)reveals that the first ele-
ment of the term in brackets is equal to the (i, j)th element ofV̂k̃,m̃,q from (3.29). The
remaining elements correspond to evaluating (3.29) for sourcesq + 1 to Q. Thus com-
puting 1

KbMb
KH

i j v̂i j performs an element-wise version of the Peeling phase centering and
averaging step on not justq, but for all sourcesq to Q. The multiplication by inver-
sion matrixCi j “demixes” the contributions of the sources into separate single source
problems.

The estimates ˆρp in step 4 are based on all samples in the domain. The demixing
algorithm works only on a single block. Therefore demixing is noisier than removing
a source by conventional Peeling subtraction. The noise amplification depends on the
condition ofCi j . Because of the third assumption of Section 3.4.4 (large fringe rotations
within a block)Ci j will be well conditioned. For large blocks,Ci j will converge to the
identity matrix.

3.5 Simulation Results

3.5.1 CRB for Constant Calibration Gains and Phases

We first consider estimating calibration parameters over a small frequency-time block
where they can be assumed constant. Fig. 3.3 illustrates theCRB for a realistic self
calibration scenario with the full LOFAR geometry of Fig. 3.1. Station beams are pointed
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Figure 3.3: Calibration CRB levels for constant parameters over small frequency-time span.
Curves are CRB values averaged across array elements (stations) to provide a representative error
level per source. Vertical bars show the range of phase errors across the 72 stations. Phase error
is in radians while gain error is unitless. “Source 0” corresponds to the compact subarray which
does not have source dependent calibration. Bottom horizontal curves are given as a reference for
the case where calibration parameters are not source direction dependent.
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at right ascension (RA) 54.0◦ and declination (DEC) 55.1◦.2 An accurate model based
on the existing LOFAR initial test station [30] was used for the station beam directional
response, including sidelobe fine structure. For this 40 MHzobservation, the−3 dB
beamwidth is approximately 5◦ with sidelobe peak levels typically at−13 dB below the
mainlobe.

TheQ = 10 brightest radio sources after beamforming are included in the simulation.
Table 3.1 lists their locations, taken from the standard 3C and 4C radio survey catalogues
[31], and apparent SNRs computed from tabulated flux values.Sources 3, 7, 8, and 10 are
seen within the beam mainlobe. Random “true” calibration parameters were generated
using Gaussian gain magnitudes with a mean of 1.0 and standard deviation of 0.3, and
phases uniformly distributed in the range [−π, π).

The curves marked with a diamond in Fig. 3.3 show the CRB as function of source
index for calibration on a single STI snapshot, using the central core configuration (Jc =

32 central core stations). The CRB is computed using equation (3.18), with constraint
JacobianFk,m from (3.23). The ‘asterisk’ curves show the same forK = 11 frequency
bins andM = 10 time snapshots, covering 110 STI snapshots on a sample grid with one
second by 50 kHz spacing. (As with all results in Section 3.5 we assume narrowband
array operation with frequency bins sufficiently narrow that no phase smearing occurs
in visibility estimates. The 50 kHz bin spacing exceeds the narrowband limit, so we
assume individual bins are more narrow, but selected at widely separated frequencies to
reduce computational burden.) The resulting region of 10 s by 500 kHz is considered to
be the maximum span that can be assumed to have constant calibration parameters. In
both the single snapshot and 10 s× 500 khz cases, the use of the direction independent
calibration model for the central core leads to low calibration error bounds for the first
few sources. The error increases with the source index, as the source SNR decreases,
and after the sixth source (third for middle single STI curves) unacceptable phase errors
of more than one radian are encountered. Useful calibrationfor the remaining sources
requires a region larger than 10 s by 500 kHz.

The top curves show the bounds forJc = 8 central core stations, modeling the other
24 core stations as external stations. Since this is smallerthan Q − 1, the calibration
error becomes extremely large. The horizontal curves at thebottom are provided as a
reference, and represent CRB values for the same 10 source case but where calibration
parameters donot depend on source direction, i.e. only one complex parametermust be
estimated for each station. This represents the conventional synthesis imaging problem at
higher frequencies where ionospheric interaction is not strong or the aperture is smaller.
The comparison illustrates the relative difficulty of direction dependent calibration, par-
ticularly for weaker sources.

2RA and DEC are astronomical polar coordinates for fixed locations in the celestial sphere
used to locate deep space objects; the celestial equivalentof latitude and longitude. See e.g.
http://liftoff.msfc.nasa.gov/academy/universe/radec.html.



34 ANALYSIS OF THE LOFAR CALIBRATION PROBLEM 3.5

3.5.2 CRB for Polynomial Calibration Variation

Large STI regions are needed to improve the CRB performance with direction dependent
callibration. The parameters are not constant over such regions but vary smoothly, and
the polynomial calibration models discussed in Section 3.4.3 will be used. To reduce the
sizable computational and memory requirements, a “thinned” LOFAR array is used in all
simulations to follow. Every second element from Fig. 3.1 was included, withJ = 36
stations covering the 100 km aperture and with a central coreof Jc = 16 stations.

In the first experiment, shown in Fig. 3.4, a basic setup without central core assump-
tion is used, so an independent frequency-time polynomial is applied for each source-
station combination. A first order in both time and frequency2-D polynomial model was
used,Γ(ρ, f , t) = Y1+Y2 f +Y3t andΨ(ρ, f , t) = T1+T2 f +T3t , with randomly selected
“true” polynomial coefficient matricesYd andTd. The same 10 calibrator sources and
beam steering direction as in the previous section were usedin this simulation. CRB val-
ues were computed using (3.18), now with the frequency-timeconstraint JacobianFk,m

from (3.26).
Fig. 3.4 presents CRB results for four linear in frequency gain and phase coefficients,

i.e., entries ofY2 andT2 corresponding to source 3 and core station 2, resp. outer station
35. An important feature is that the CRBs are unacceptably high unless the estimation
domain covers several seconds and/or a few hundred kilohertz. This is because sufficient
frequency-time diversity due to fringe rotation inK k,m is needed to overcome the multiple
source ambiguity discussed in Section 3.4.1.

The scenario of Fig. 3.4 was repeated for Fig. 3.5 with the following changes: 1) the
central core direction independent modelwasapplied, by combining (3.23) and (3.26), 2)
the scene contained only the first five sources from Table 3.1,and 3) the 2-D frequency-
time polynomial was first order in frequency, and zero order in time: Γ(ρ, f , t) = Y1 +

Y2 f , Ψ(ρ, f , t) = T1 + T2 f . This scenario will be used without change in all following
experiments to exploit the central core and to reduce computational burden in simulations
which involve many Monte Carlo random trials.

Comparing Figures 3.5 and 3.4(a) it is apparent that the central core model signifi-
cantly reduces estimation error variance and the need for large time domain span. Other
experiments (not shown) indicate that the reduction from 10to five sources and use of
a zero-order-in-time polynomial model were minor factors in this CRB reduction. This
suggests that a self calibration algorithm should exploit the central core model if array
geometry and ionospheric structure support it.

3.5.3 Peeling Calibration Performance

A full implementation of the peeling algorithm was run usingsynthesized array receiver
data to compare its performance with the corresponding CRB.When fully operational,
LOFAR will be calibrated in real time using a super computer.However, given existing
computational resources and the need to run many Monte Carlotrials, the thinned array
five-source scenario of Fig. 3.5 was used here.

A first order in frequency, zero order in time, 2-D polynomialwas applied both for
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Figure 3.4: Normalized CRB for polynomial coefficients as a function of total frequency-time span.
The direction independent compact core model wasnot used. Decibel level is normalized to the
single source CRB over the same frequency-time span. STI sample spacing is 1.0 second by 2.0
kHz, beginning at 40 MHz.(a) Normalized CRB for the gain,(Y2)[2,3], and phase,(T2)[2,3],
coefficients from the linear-in-frequency polynomial term for station 2 (in the central core) and
source q= 3. Curve families cover CRB dependence on time domain size from 1 to 10 seconds in
1 second increments. The 1 second gain curve is off the plot scale above.(b) CRB for(Y2)[35, 3]
and(T2)[35, 3], at station35 in an outer array arm.
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is 10 seconds by 1.0 MHz, with 1 second by 2 kHz STI sample spacing. Source index q= 0
represents the central core subarray, whose calibration polynomial coefficients do not depend on
source direction. The horizontal axis parameter index for elements ofρ is ordered as in (3.25).
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generating the simulated array data,xk(n), and in the peeling algorithm parameter model.
The “true” parameter matrices were randomly generated. Thefrequency-time STI bin
size is 2 kHz by 1 s, withKb = 50,Mb = 10 the Peeling block size is 100 kHz by 10 s,
and with 1≤ k̃ ≤ 10,m̃= 1, the total domain covers 40.0 to 41.0 MHz and 10 s. Peeling
usedI = 5 iterations.

The generated array data had a central core (Jc = 16), and the CRB analysis takes
this into account. Thus the CRB evaluation uses the product of (3.23) and (3.26) as
the constraint Jacobian,Fk,m. However, the current version of Peeling does not include
specific provision to exploit the central core model, so it generates distinct calibrations
for each source–station combination, even though they should be direction-independent
and thus identical for all sources for each central core station. As final estimate for
the core array calibration parameters, only the parametersderived from the the brightest
(q = 1) source are used.

Fig. 3.6 shows the CRB and Peeling estimation error sample variance averaged over
100 Monte Carlo trials. It is seen that Peeling closely approaches the CRB performance
bound for the central core array (q = 0) and the two brightest sources (q = 1, 2). Peeling
error variance is somewhat higher than the CRB for the three weaker sources (q = 3, 4, 5).
This suggests that there is value in continued research to develop improved calibration
algorithms. The plotted results are encouraging, but need to be verified on the full array
and with a larger number of sources.

3.5.4 Peeling with Demixing

Performance of the combined Peeling with Demixing procedure was evaluated by com-
puter simulation with the same models and parameter settings as used in Fig. 3.5 and
Section 3.5.3. Fig. 3.7 compares the average bias error magnitude for single pass con-
ventional Peeling with the bias from Peeling with Demixing.Estimation error variance
(not shown) was acceptably low and at the same level with and without demixing. The
figure shows that demixing significantly reduced bias error.

Without demixing, Peeling requiresI = 3 passes to produce bias levels comparable
to one pass of Demixed Peeling. This demonstrates the theoretical correctness of the
approach described in Section 3.4.5. However, its practical utility is somewhat ques-
tionable: With our current implementation in MATLAB it takes 3.31 times as long to
complete a single demix pass as to complete three passes of the regular peeling algo-
rithm. Since both performance and complexity depend on the number of sourcesQ and
other system parameters and assumptions, it is hard to predict how this works out in the
actual LOFAR system.

3.6 Conclusions

Calibration algorithm development for LOFAR is ongoing andis critically important if
the system is to achieve its ambitious scientific goals of observing the very weak signals
generated during the early evolution of the universe. Interaction with the ionosphere
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Figure 3.7: Comparison of bias error in estimating polynomial parameter ρq, 0 ≤ q ≤ 5 for
Peeling alone, and Peeling with Demixing. One peeling pass was performed in each case. The
plot illustrates the lower bias error performance of the demixing algorithm. Without demixing (not
shown in this plot) three to four passes of Peeling were needed to achieve the bias levels of the
lower curve. Ten Monte Carlo trials were used to compute average error magnitude. In all other
details the algorithm and source parameters were identicalto those used in Fig. 3.6.
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at low frequencies makes this self calibration problem significantly different and more
difficult than what has been encountered in existing radio synthesis imaging instruments.
It also leads to new challenges in array signal processing.

The main point of the paper was to derive and present the machinery for answering
fundamental questions about calibratability for LOFAR, and in particular to assess the
previously open issue of whether it is even theoretically possible to achieve self cali-
bration. The most significant finding is that without making assumptions on the iono-
spheric structure, LOFAR cannot be calibrated, but with some modeling assumptions
(e.g. frequency-time polynomial smoothing) and sufficient frequency-time diversity from
large estimation domains, direction dependent calibration is possible. CRB analysis re-
vealed no “show stopping” theoretical limitations on the ability to calibrate LOFAR. A
central core configuration gives a significant reduction in the number of unknown param-
eters and thus greatly enhances the calibration performance.

The Peeling calibration algorithm was implemented and compared to the CRB us-
ing simulated data. The results indicate that at least for the limited scenarios evaluated,
Peeling appears to be a viable candidate. Further algorithmdevelopment to reduce com-
putational complexity and estimation bias due to multiple sources is warranted. Next
steps will also include algorithm development to directly exploit the central core direc-
tion independent calibration model in Peeling, study of newmethods to achieve more
effectively reduced cross-source interference bias at the start of Peeling, and evaluation
of ionospheric data and physical models to determine appropriate smoothing functions
over time, frequency and space with a reduced number of parameters. To complete the
picture, further studies also need to point out (i) the accuracy of these models (model
mismatch, which translates into bias), and (ii ) the consequences of parameter variance
on the dynamic range of the image.

3.A Appendix

Here we derive the closed form expressions forM k,m in (3.8) which are shown in (3.9)–
(3.14). Subscriptsk andm are dropped for notational simplicity.

Define the Jacobians

Jγq
=
∂vec(R)
∂γT

q
, Jψq =

∂vec(R)
∂ψT

q
, Jλ =

∂vec(R)

∂λ
T .

The following expressions are useful in computing the partial derivatives:

vec(R) =
Q∑

q=1

σ2
q

(

aq ⊗ aq

)

+ vec(Λ),
∂aq

∂γT
q
= Φq,

∂aq

∂φ
T

q

= jEq



40 ANALYSIS OF THE LOFAR CALIBRATION PROBLEM 3.1

whereEq = diag
(

γq ⊙ kq

)

,Φq = diag
(

φq ⊙ kq

)

. The Jacobians can then be evaluated as

Jγq
=

∂

∂γT
q





Q∑
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σ2
p

(

ap ⊗ ap

)

+ vec(Λ)




= σ2

q

∂aq
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q
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2
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∂aq

∂γT
q

= σ2
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q
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q

∂aq

∂ψT
q
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∂ψT
q

= − jσ2
qEq ⊗ aq + σ

2
qaq ⊗ jEq

Jλ =
∂vec(Λ)

∂λ
T = I ◦ I .

An expression is derived here forMγ pψq as given in (3.12), the other blocks are
derived similarly.

Mγ pψq = JH

γ p
(R
−1 ⊗ R−1)Jψq

=
(

Φp ⊗ aH

p + aT

p ⊗Φ
H

p

)

(R
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pσ

2
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Chapter 4
Ionospheric Modeling ∗

As we have seen in the previous chapter the performance of a calibration algorithm de-
pends critically on the model for the ionospheric fluctuations. The analysis in the previ-
ous chapter only included estimation error due to noise. Theanalysis ignored modeling
error. The variance of the estimation usually gets smaller when fewer parameters need
to be estimated. On the other hand a model with more parameters can more accurately
match physical reality, resulting in a smaller bias. The optimal calibration method should
make a trade-off between modeling error and estimation error such that the total error is
minimal.

However, a detailed model of the physical processes in the ionosphere would be im-
practical for the purpose of calibration. The derivation ofan optimal estimator would be
difficult and the computational complexity of the resulting algorithm would be too high
for practical implementation. Furthermore, the current knowledge of the ionospheric
processes at the scale relevant to the calibration problem at hand is incomplete. Most
research on ionospheric processes deals with features downto the scale of a hundred
kilometers. The smallest scale relevant for calibration isa few kilometers.

Thus we need a model that is at the same time detailed enough tocapture the small
scale fluctuations of the ionosphere and simple enough to allow the derivation of an
algorithm of low complexity.

The usual method of describing complicated processes in a concise way is to resort
to a stochastic description. For example noise is the sum of many complicated physical
processes. Instead of describing these processes in detail, noise is usually described as a
random (Gaussian) process.

We will use the same approach for ionospheric processes. Instead of describing the
ionospheric fluctuations in full detail we will assume that the fluctuations are the result

∗A paper entitled ”Fitting a turbulence model to VLA Low-Frequency Sky Survey data. I. Derivations and
examples” by S. van der Tol, R. Sridharan, A.-J. van der Veen,H.J.A Röttgering and A. S. Cohen on the results
on VLSS data presented in section 4.4 is in preparation
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of a random process. The power spectral density is assumed tobe either known, or
described by a model with only a few unknown parameters.

In this chapter we will present a theoretical motivation of the chosen model from lit-
erature on turbulent flow. The choice of this model is furthersupported by measurements
from both GPS satellites and the VLA radio telescope.

4.1 Introduction

We will adopt the framework introduced by Tatarski [32] based on Kolmogorov turbu-
lence. This framework is extensively used in (adaptive) optics where turbulence is used
as a model for the refractive index fluctuations in the neutral atmosphere see Roddier
[33]. Hewish [34] identified turbulence in the ionospheric F-layer as one of the possible
mechanisms that could cause the small scale irregularities. Mills and Thomas [35] out-
lined how turbulence could be a possible mechanism capable of explaining the observed
irregularities but quickly excluded it owing to the large kinematic viscosity, and hence
a low Reynolds number (see below). Later, Yerg [36], with a modified approach to the
kinetic theory, showed that the kinematic viscosity is smaller than the values known till
then by several orders of magnitude and approaches zero in the upper ionosphere. This
indicates that the Reynolds number could indeed be high enough to cause turbulence.
Thompson et al. [4] mention that the use of the power law for describing the phase er-
rors induced by the ionosphere is more realistic, and using the same exponent as used
in Kolmogorov spectrum that describes the tropospheric turbulence is consistent with
observations. Thus, there exist some theoretical and observational evidences for the tur-
bulence in terrestrial ionosphere and it would seem appropriate to use the tropospheric
turbulence theory to describe the plasma turbulence in the ionosphere.

4.2 Kolmogorov Turbulence

The mechanics of fluids are described by the Navier-Stokes equation,

∂u(r , t)
∂t

+ (u(r , t)∇)u(r , t) = −∇p(r , t)
ρ

+ ν∇2u(r , t) (4.1)

whereu(r , t)is the fluid velocity,p(r , t) is the pressure,ρ is the density,ν is the kinematic
viscosity, r and t are the spatial and time coordinates. The Navier-Stokes equation is
non-linear because of the term (u(r , t)∇)u(r , t). The termν∇2u(r , t) describes the friction
between neighboring parcels of fluid. The friction causes kinetic energy to be dissipated
as heat. For a stationary solution there needs to be a constant input of energy.

Let the size of the phenomenon we want to describe be of sizeL, and let the velocity
difference be of the orderU. The non-linear term is approximatelyU2/L. The viscous
term isνU/L2. The ratio between the two is known as the Reynolds number,Re= UL/ν.
ForRe≪ 1 the Navier-Stokes equation is linear and closed form solutions can be found
in many cases. The resulting flow is laminar.
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For Re≫ 1 stationary solutions do not exist. The non-linearity causes the solutions
to be chaotic and the flow is turbulent. Consider a stable laminar flow for whichRe≪ 1.
Now start to increase the flow velocity. The Reynolds number increases also and at a
certain moment the flow becomes unstable and breaks up into eddies. The eddies are
smaller than the flow as a whole and they have lower Reynhold numbers. When we
further increase the velocity the eddies themselves get unstable and break up into smaller
eddies. For very high Reynolds numbers there exist eddies with a range of sizes from
the outer scaleL to the smallest scalel where viscous dissipation is dominant and kinetic
energy is converted to heat. The Navier-Stokes equation forturbulent flows can only be
solved numerically. A complete solution takes a lot of time,while for our purposes it
is sufficient to know the statistical properties of the flow. Kolmogorov introduced some
simplifying assumptions which enabled him to derive the statistical properties.

It is assumed that eddies only lose energy to eddies of smaller but comparable sizes.
There is no direct flow of energy from the largest eddies to thesmallest. This process has
come the be known as the ”Kolmogorov cascade”.

In the stationary case energy can not build up at intermediate levels. Eddies of a
certain size must loose the same amount of energy to the smaller eddies as they receive
from larger eddies. Therefore the flow of energy can be characterized by a single number
ǫ, the energy per unit time per unit mass.

It is assumed that there exists an ”inertial range” between the outer scale of energy
input and the inner scale where energy is dissipated. Eddieswith sizes away from both
the outer scale and the inner scale are not influenced by largescale effects or small scale
effects. The energy contained in eddies in the inertial range only depends onǫ. Therefore
the power spectral density of the velocity variations, denoted byΦu(q), whereq is the
wavelength, must satify an equation of the form

(Φu(q)[m3/s2])x ∼ (ǫ[m2/s3])y(q[m−1])z. (4.2)

To match the the units of time (s) on both sides we need to choose x = 3 andy = 2. The
last exponentz is used to match the units of length (m) by setting it toz= −5. This leads
to

Φu(q) ∼ q−5/3 (4.3)

Likewise for the three dimensional spectrum we find

Φu(q) ∼ ‖q‖−11/3 (4.4)

This relationship has become known as Kolmogorov’s law and is valid only within the
inertial rangeL−1

0 ≪ q≪ l−1
0 , whereL0 is the outer scale at which energy is fed into the

system andl0 is the inner scale where the energy is dissipated by viscous friction into
heat.

4.2.1 Passive Conservative Additive

In [32] it is shown that the spectrum of density fluctuations of a passive and conservative
additive also follows Kolmogorov’s law. An additive is a substance added to the turbulent
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flow. An additive is passive when it does not affect the dynamics of the flow and con-
servative when it is not created nor destroyed in the flow, i.e. the density only changes
due to mixing by the turbulent flow. Strictly speaking the free electrons in the ionosphere
violate both conditions. They are not passive because theirmovements are influenced
by the earth magnetic field, and not conservative because dissociation and recombination
change the electron density. The resulting effect could be magnetic anisotropic density
fluctuations and at times when many new electron are generated, for example at sunrise
or meteor strike, a departure from the powerlaw. In our analysis we do not include these
effects and assume the power spectrum of the electron density fluctuations is given by

ΦNe(qx, qy, qz) ∼ ‖q‖−11/3. (4.5)

The refractive index is approximately proportional to the electron density so we assume
its power spectrum is given by the same power law

Φn(qx, qy, qz) ∼ ‖q‖−11/3. (4.6)

4.2.2 Structure function

Power law spectra can be difficult to work with since the power goes to infinity when the
frequency goes to zero. At large scales a pure power law can clearly not be a valid de-
scription of a physical process. The introduction of an outer scale keeps the description
in the physical domain. However, if we are not interested in the large scale structures
the problem can be avoided altogether by describing only local differences. The fluctua-
tions of the refractive indexn as function of positionr can then described by a structure
function which is defined as

Dn(r = ‖r1 − r2‖) = E
[

(n(r1) − n(r2))2
]

, (4.7)

where E [·] denotes the expected value. The relationship between the autocorrelation
function and the structure function is given by

Dn(r) = E[(n(r1) − n(r2))
2]

= E[n(r1)2 + n(r2)2 − 2n(r1)n(r2)]

= E[n(r1)
2] + E[n(r2)

2] − 2κ(r1, r2)

whereκ(r1, r2) is the autocorrelation function

κ(r1, r2) = E[n(r1)n(r2)]. (4.8)

The autocorrelation function can be written as

κ(r1, r2) = 1/2(E[n(r1)2] + E[n(r2)2] − Dn(r1 − r2)). (4.9)

The refractive index fluctuation follow a power law the structure function can be
written, in the notation used by Prokhorov et al. [37], as

Dn(r) = C2
nrβ−1 (4.10)
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whereC2
n is a measure of the strength of the turbulence andβ = 5/3 for Komogorov

turbulence. The corresponding power spectrum is given by

Φn(q) = A(β)C2
nq−β−2, (4.11)

whereq is the spatial frequency and

A(β) = Γ(β + 1) sin[(β − 1)π/2]/4π2, (4.12)

whereΓ(·) is the gamma function.

4.2.3 Thin Layer Approximation

The phase change induced by a thin layer of thickness∆z is given by

φ(x, y) = k
∫ H+∆z/2

H−∆z/2
dzn(x, y, z), (4.13)

wherek = 2π/λ is the wave number. The two dimensional power spectrum is given by

Φ(qx, qy) = 2πk2∆zΦn(qx, qy, qz = 0) (4.14)

The corresponding structure function is

Dφ(r) = 4πT
Γ(1− β/2)
βΓ(1+ β/2)

(r/2)β (4.15)

= (r/s0)β (4.16)

whereT = 2πk2∆zA(β)C2
n ands0 is the field coherence scale which is defined byDφ(s0) =

1.

4.2.4 Propagation

After passing a turbulent layer at heightH the electromagnetic wave propagates to the
antennas at the ground. As long as the radius of the first Fresnel zoner f =

√
H/k is

smaller than the field coherence scale the phase screen arrives at the ground essentially
unaltered. ForH = 200km andλ = 4m, r f = 357m. For the datasets presented in
this chapter we have found the largest value ofs0 to be 13157m and the smallest value
1645m. This is well above the Fresnel scale, so the use of geometric optics to propagate
the field to the ground layer is justified.

4.2.5 Previous Measurements of Power Spectra

Measurements with the Palomar Testbed Interferometer by Linfield et al. [38] show that
the power-law slopeβ for the neutral atmosphere was between 1.40 and 1.50 on most
nights.

An overview article by Yeh and Liu [39] contains a number of references in support
of power-law structure of the ionospheric fluctuations.

Velthoven [40] obtained power-law slopes above the Kolmogorov value, in the range
1.8 to 2, for wavelengths between 100km and 1000km.
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4.3 GPS observations

Measurements of the signals of GPS satellites can provide valuable information on iono-
spheric properties. The signals from GPS satellites travelthrough the ionosphere and
experience an ionospheric delay just like astronomical signals do. GPS satellites are ac-
tively monitored worldwide by networks of receivers. Some of these networks make their
observations publicly available on the internet. In this section we describe how this data
can be used to estimate the ionospheric delay by the dual frequency method and how the
structure function can be estimated. The results show good agreement with a powerlaw.
The slope can take a range of values, although the most frequently occurring slope is
close to Kolmogorov’s value.

4.3.1 Data Set

The data used in this analysis comes from the Dutch PermanentGNSS Array (DPGA).
GNSS stands for Global Navigation Satellite System. The DPGA permanently observes
the GPS and GLONASS satellites. Data files can be downloaded from http://gnss1.
lr.tudelft.nl/dpga/. The highest available time resolution is one sample per second.
Each hour of observation is stored in a separate file. In between the hourly measurements
there are gaps of missing data of approximately 9 minutes. Wehave chosen for the mea-
surements from the month January in 2006 at Cabauw, The Netherlands by the receiver
identified as CAB2 (http://gnss1.lr.tudelft.nl/dpga/station/Cabauw.html#CAB2).
The data published by the DPGA is in the compact RINEX format.The RINEX file
format is the international standard for the exchange of GPSmeasurement data. RINEX
stands for The Receiver Independent Exchange Format. The RINEX format allows users
to use the same set of software to process data from different receivers. A description
of the file format can be found athttp://www.ngs.noaa.gov/CORS/Rinex2.html. To
save disk space RINEX files are often compressed into the Compact RINEX format.
A utility to convert Compact RINEX files to standard RINEX files can be found at
ftp://garner.ucsd.edu/pub/software/rnxcmp/source/crx2rnx.c. The RINEX files
contain among others information on the location of the receiver, the orbital parame-
ters of the satellites and the measured carrier phase of the two carrier frequencies of the
satellite.

4.3.2 Dual Frequency Method

In principle it is possible to measure the absolute TEC from satellite to receiver by mea-
suring the time delay of a transmitted signal. In practice this is difficult because the
clocks of satellite and receiver need to be synchronized andthe satellite-receiver distance
needs to be known up to millimeter accuracy. Furthermore, water vapor in the lower
atmosphere causes an additional delay which is usually muchlarger than the ionospheric
delay. Thus the water vapor content needs to be known too.

The problem of unknown satellite receiver distance and unknown delay in the neutral
atmosphere can be overcome by using two carrier frequenciesto distinguish between the
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frequency dependent ionospheric delay and the other delays. The unsynchronized clocks
are not a problem for estimating changes in TEC over time rather than absolute TEC.

The dual frequency method works as follows. GPS satellites have two carrier fre-
quencies,L1 = 1575.42 MHz andL2 = 1227.60 MHz. GPS receivers track the phases
of the two carriers. Because the receiver locks to an arbitrary cycle and because the os-
cillators of the satellite and the receiver are not synchronized, the measured phases will
have an unknown offset. As long as the receiver maintains locked the offset will not
change. At low SNR so called ”cycle-slip” can occur. The receiver loses lock which re-
sults in a change of the offset by an integer number of cycles, or equivalently a multiple
of 2π radians. It is possible to correct for an occasional cycle-slip. From here on we will
assume the cycle-slips have been corrected for. Let the measured phase (in cycles) be
given byϕ = ϕtrue + ϕo f f set.This number can be converted to a propagation distance by
multiplication with the wavelengthλn, wheren is the carrier number,

d(t, λn) = ϕn(t)λn = dtrue(t, λn) + do f f set,n. (4.17)

The measured propagation distance consists of the true, time and frequency dependent
partdtrue(t, λn), and the unknown offsetdo f f set,n which is different for each carrier. The
true propagation distance is the sum of the geometric or physical distance and a tropo-
spheric and an ionospheric component,

dtrue(t, λn) = ϕn(t)λn = dgeom(t) + dtrop(t) + dion(t, λn). (4.18)

Of these, only the ionospheric component is frequency dependent. Converting equation
(2.4) for the ionospheric phaseφion to propagation distancedion leads to

dion(t, λ) =
λ

2π
φionT EC(t) = λ2C (4.19)

where

C =
e2

8π2meǫ0c2
= 4.47−16[m]. (4.20)

The frequency independent components cancel by subtraction of two different measure-
ments at two different frequencies,

∆d(t) = d(t, λ1) − d(t, λ2)

= dion(t, λ1) − dion(t, λ2) + do f f set,1 − do f f set,2

= T EC(t)(λ2
1 − λ2

2)C + do f f set,1 − do f f set,2.

The unknown offsets are still part of the equation. The offsets are constant over time so
they can be canceled by subtracting two measurements at different time instants,

∆d(t1, t2) = ∆d(t1) − ∆d(t0) = (T EC(t1) − T EC(t0))(λ2
1 − λ2

2)C. (4.21)

From this equation an expression for the TEC difference over time,∆T EC(t1, t2) =
T EC(t1) − T EC(t0), can be derived :

∆T EC(t1, t2) =
∆d(t1, t2)

(λ2
1 − λ2

2)C
= 9.55[TECU m−1]∆d(t1, t2)[m] (4.22)
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Figure 4.1: (a) Schematic view of GPS satellite orbit, the ionospheric single layer model and the
receiver. (b) Plot of the trace of the piercepoint as the GPS satellite passes over

where the numerical value was found by substituting the wavelength of the two GPS
carriers L1 and L2.

The TEC differences are rather small. To ease the interpretation of the results the
TEC values have been converted to a phase shift in radians at alower frequency. This
frequency is set to 74 MHz so that a direct comparison to the 74MHz Very Large Array
(VLA) observations, presented later in this chapter, is possible.

4.3.3 GPS tracks

GPS satellites broadcast their orbital parameters which can be used to calculate the satel-
lite positions. The parameters are stored in RINEX navigation files. These have been
used to calculate the positions of the satellites. The pierce point is the intersection of the
line of sight and the ionospheric layer. The ionospheric layer is assumed to be a plane,
not following the curvature of the earth. The height of the layer is chosen somewhat
arbitrarily to be 300km, which is approximately the height of maximum electron den-
sity. Figure 4.1(a) illustrates the model. The position of the piercepoints is given by an
(x,y) coordinate pair in this plane. At low elevations the curvature of the earth can not
be ignored anymore therefore an 30°elevation mask has been applied. The pierce point
changes over time and traces out a track in the ionospheric plane. An example of such
a track is shown in figure 4.1(b). The measured ionospheric phases together form an
ionospheric phase profile.
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Earth

GPS Orbit

Turbulent layer

Parallel Lines of Sight

Figure 4.2: Approximately to scale figure of the GPS orbit with a 30°elevation mask, the turbulent
layer and parallel lines of sight from two antennas at 400km from each other.

4.3.4 Detrending

The bulk ionosphere above the turbulent F-layer and the air mass effect (see below in
section 4.3.5) of the mean electron density in the F-layer add a large scale trend to the
ionospheric phase profile. This trend is not visible in radioastronomical observations for
two reasons: 1) the lines of sight from different antennas to the same source intersects the
turbulent layer at the same angle (ignoring earth curvature), 2) the width of the region of
the upper ionosphere covered by the lines of sight is relatively small (not wider than the
largest baseline). Figure 4.3.4 shows the GPS orbit and the lines of sight from a baseline
of 400km approximately to scale. It shows the difference between probing the turbu-
lent layer by observing the same source at different receiver locations (radio telescope)
and observing a moving source from one location (GPS). The contribution of the bulk
ionosphere can be approximated by a second order polynomial. To separate the turbulent
fluctuations from the trend we ”detrend” the data by subtracting a least squares fit of a
second order polynomial. The detrending introduces some error especially at large scales
because it includes part of the large scale random fluctuations in the trend and removes
them. Empirically we have found that if the distance betweenthe start and end point of a
track is more than 400 km then there is only minor influence on fluctuations on the scale
of 100 km and smaller. Tracks shorter than 400 km are not included in the data set.
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4.3.5 Airmass Correction

After detrending the profile still needs a correction for theAirmass effect. At lower
elevations the line of sight is not perpendicular to the turbulent layer. This increases the
ionospheric delay by a factor 1/ cosθ, whereθ is the zenith angle. To correct this we
multiply the delays by cosθ. To calculate the zenith angle the position of the satellites
needs to be known.

4.3.6 Estimation of the structure function slope

This section describes how the power law slope can be estimated from a GPS track. The
model for ionospheric phase is a model over space. The observed phases are measured at
different times and locations. The method described below does not distinguish between
the behavior over time and over space. We assume that the ionosphere is frozen i.e.
changes over space only1.

A track consists ofN samples. Each sample consists of a phaseφi and a piercepoint
location (xi , yi), wherei is the sample number. There are1

2N(N − 1) different pairs of
samples. For each pair we calculate the piercepoint distance r i, j

r i, j =

√

(xi − x j)2 + (yi − y j)2 (4.23)

The data is binned according to piercepoint distance. To obtain an even distribution of
bins over the logarithm of the distance the bin sizes increase exponentially. The bin edges
are given by

en =

(

dmax

dmin

)n/K

dmin, (4.24)

wheredmin is the minimum distance,dmax is the maximum distance andK is the number
of bins. These parameters were chosen as follows:dmin = 1 km, dmax = 100 km and
K = 20. For distances below 1 km the phase difference is small relative to the receiver
noise. For distances above 100 km detrending causes an underestimation of the phase
difference.

The bin mean valuebn is the average of the phase differences squared for all samples
for which the piercepoint distances fall within the bin,

bn =
1

Mn

∑

{i, j|en−1<r i, j<en}
(φi − φ j)

2, (4.25)

whereMn is the number of pairs in binn. In some cases, when the ionosphere is quiet,
the mean value of the lower bins is below 1 rad2. For these low values the measurement

1This assumption is probably not completely realistic. Indeed, the pierce point typically moves with a speed
of 40− 120 m/s through the ionospheric plane. This is in the same order of magnitude as the wind speed at the
altitude of the ionospheric layer. The typical speed of Traveling Ionospheric Disturbances (TIDs) can be several
hundred meters per second. Hence we suspect that the resulting structure function will include variations over
both time and space. This problem can be overcome if one has a very dense network of GPS receivers available
and a method of eliminating the different offsets of each receiver. This is outside the scope of this analysis.
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noise is significant, so these bins are discarded. The bin averagesbn are plotted against
the bin centerscn = (en−1 + en)/2 in a double logarithmic plot, see Figure 4.3(d)

The ionospheric phase fluctuations are expected to follow a power law (4.16). When
the bins are sufficiently small the bin mean valuesbn are expected to be given by

bn = D(cn) =

(

cn

s0

)β

. (4.26)

Taking the logarithm of this equation yields a linear equation:

log(bn) = log(cn)β − log(s0). (4.27)

After stacking the mean bin valuesbn and the bin centerscn into the vectorsb andc
respectively (4.27) can be written in matrix form:

logb = Ap, (4.28)

where
A =

[

1 logc
]

(4.29)

and

p =
[

log s0

β

]

(4.30)

The least squares solution to (4.28) is given by

p =
(

ATA
)−1

AT logb, (4.31)

The estimated power spectrum slope isp2, the last entry ofp. A measure of the goodness
of fit is the residual modeling error, given by

res=
∥
∥
∥
∥
∥

(

I − A
(

ATA
)−1

AT
)

logb
∥
∥
∥
∥
∥
. (4.32)

4.3.7 The procedure

The complete procedure to find the powerlaw slope from measured GPS data is summa-
rized below.

1. Read the phases of carriers L1 and L2 from the RINEX file,

2. If necessary, correct for cycle slips,

3. Use the dual frequency method to find the ionospheric delay,

4. Detrend the ionospheric delay,

5. Calculate satellite and piercepoint positions,

6. Correct for the airmass term,

7. Estimate the structure function,

8. Fit a straight line in a double logarithmic plot.
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4.3.8 Variability of the Ionosphere

The ionosphere is continuously changing. The most prominent feature on the short term
is the variation over the day. During daytime radiation fromthe sun creates many free
electrons. At night time the number of free electrons drops.On larger time scales there
are seasonal differences and the eleven year solar cycle. Our data spans a period of one
month, so only the variation over the day can be seen.

4.3.9 GPS Data Results and Conclusions

From the data of the month January 2006 1059 satellite trackshave been extracted. Of
these 973 were longer than 400 km. For one of these tracks, starting at 18:35:46 January
3, 2006 of satellite number 24 the results of several steps inthe estimation procedure are
shown in figure 4.3.

Plot 4.3(a) shows the measured ionospheric phase shift at 74MHz. The ionospheric
phase shift is dominated by the contribution of the bulk ionosphere, which has been
removed in figure 4.3(b). After detrending an airmass correction has been applied, the
result is shown in 4.3(c). The corresponding structure function and the linear fit are
shown in figure 4.3(d). This last graph shows a good agreementbetween the power law
model and observed data for this track.

The histogram of the residual in figure 4.4 shows how well the other tracks match
a power law model. The triangle marks the residual of the example track in figure 4.3.
Most tracks have residuals similar to the example track. A few tracks match poorly as
can be seen from the tail in the histogram. Tracks for which the residual is more than
the, somewhat arbitrarily chosen, threshold of 0.18 are rejected. This removes 8% of the
tracks.

The remaining 896 tracks provides a set of samples of the slope of the power law.
A histogram of the slopes is shown in figure 4.5(a). The 5/3 slope predicted by Kol-
mogorov’s law is indicated by a dashed line. The peak of the histogram is close to the
theoretical value, but there is a considerable spread of slopes over the range from 1 to 2.
The average slope is not constant over the day as can be seen infigure 4.5(b). A clear dis-
tinction between day and night time conditions is visible. The individual samples show
that although there is a trend over the day, at any time duringthe day there still is a large
spread over a range of slopes.

From these GPS measurements it can be concluded that most of the time a power law
model is in agreement with the observed data. The most frequently found slope is close
to theoretical value of 5/3, but there is is considerable spread over a range of slopes.
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Figure 4.3: (a) Ionospheric phase as measured by the GPS receiver. (b) Ionospheric phase after
detrending. (c) Ionospheric phase after airmass correction. (d) Estimated structure function and
linear fit.



54 IONOSPHERIC MODELING 4.3

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

250

Residual

O
cc

ur
en

ce

Histogram of residuals

 

 
Residual of example
Cut off limit

Figure 4.4: Histogram of the residuals after fitting a power law to the data. The dashed line
indicates the cut off threshold which removes 8% of the data. The triangle marks the residual of
the example in figure 4.3, showing that the example has a residual that is typical for this data set.
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Figure 4.5: (a) Histogram of measured structure function slopes. The dashed line indicates the
slope for the Kolmogorov spectrum. (b) Slope of the structure function over the day. The cross
markers show the individual samples, the solid line with circular markers show the hourly aver-
ages.
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4.4 VLA observations

In this section we will analyze data obtained from the VLA Low-frequency Sky Survey
(VLSS) by Cohen et al. [41]. The Very Large Array (VLA) is a radio telescope in New
Mexico, U.S. wich has moveable 25 meter dishes that can be putin different configura-
tions. The 74 MHz VLSS data has been obtained in VLA B and BnA configurations and
processed using the Field Based Calibration (FBC) method developed by Cotton et al.
[42]. FBC is an improvement over self-calibration accommodating a time and direction
dependent phase gradient to capture the ionospheric phase fluctuations. The intricate
details of the calibration procedure and the fidelity of the resulting maps can be found
in [41]. Here we present a brief high level description of thedata, and the calibration
process that generates the intermediate data relevant for the investigations carried out in
this section. This data has been analyzed before by Cohen andRöttgering [43]. They
however did not fit the data to an actual model of the ionospheric phase fluctuations.
Here we will fit the data to the power law model described earlier in this chapter.

4.4.1 Description of the Data

The original survey data in the VLA B configuration includes 393 distinct pointing di-
rections in the sky. In each pointing direction, a field of view of approximately 10° is
observed in three scans, each spanning approximately 25 minutes duration, separated by
one or two hours. In each scan, the correlation data is integrated for 10 seconds in each
baseline and stored. While processing the data, a map of the field of view is obtained
in every two minutes in each scan. If the coherence time of theionosphere is larger
than 2 minutes, these maps can be considered analogous to theshort exposure images
obtained with ground based filled aperture telescopes. The sources in different directions
within the field of view will be sharp, but will exhibit a random displacement from their
true position or will be blurred and will exhibit a speckled intensity structure depending
upon whether the ionosphere behaves like a refractive or a diffractive medium at those
directions at a given time interval. The positions of all thedetected sources are com-
pared to their corresponding positions in the GHz map (NVSS catalog) and any observed
differences in the positions are attributed to the random tilt induced by the ionosphere
(ionospheric phase gradient) in the direction of the sources plus an unknown position
shift due to a residual instrumental phase. A table of the observed position offsets of the
detected sources as a function of time forms the basic data for the present study. Fig-
ure 4.6 shows a schematic representation of the data. The number of detected sources
varies with time depending on the ionospheric conditions. If a source is bright enough
to get detected all the time, there will be a maximum of 13 position offset values (in RA
and Dec) for it in a scan.

4.4.2 Experimental Setup and Data Model

The observational setup is illustrated in figure 4.7. A field of sources is observed by an
antenna array through the ionosphere. The ionosphere is assumed to be an infinitesimally
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Figure 4.6: Position shift of the sources with respect to the catalog as function of time due to
ionospheric aberrations and residual instrumental phase

thin layer at heightH above the surface of the earth.
The array consists ofM telescopes. The position of an antenna is given by the posi-

tion vectorr =
[

x y
]T

. The antenna positions are collected in a (M × 2) matrix

R =





r T

1
...

r T

M





(4.33)

The intersection of the path from source to antenna and the ionospheric layer is called
a piercepoint. The location of the piercepoint is denoted bythe length 2 vectorr ′. Here
we adopt the convention that whenever there are similar quantities in the ground plane
and the ionospheric plane we use the same symbol, where the ionospheric quantity gets
a prime (′). Figure 4.8 shows the two sets of piercepoints for two sources. The distance
between the two sets is the piercepoint separation and it depends on both the angular
distance between the sources and the height of the ionospheric layer.

For rays perpendicular to the ionospheric layer the ionospheric phase shift is given by
(4.13) and will here be denoted byφ′(r ′). For paths not perpendicular to the ionospheric
layer the phase shift is scaled by the airmass term, which represents the longer distance
traveled through the ionosphere. The airmass term depends on the zenith angle at the
piercepointγ′ and is given by sec(γ′). The ionospheric phase shift seen by the instrument
is given by

φ =
φ′(r ′)

cos(γ′)
(4.34)
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Figure 4.7: Geometry of the setup

Note that the zenith angle at the piercepoint,γ′, is not equal to the zenith angle at the
antenna array,γ, due to the curvature of the earth. The two are related by

sinγ′ =
R

R+ H
sinγ (4.35)

whereR is the radius of the earth.

4.4.3 Method

The method consist of fitting the observed position shift to the power law model of the
ionospheric phase fluctuations. The observed data consistsof position shifts including an
unknown residual instrumental effect, while the model is for the ionospheric phase. The
following processing steps are needed to do the fitting,

1. derive the differential phase gradients over the array from the observed position
offsets, see Section 4.4.4,

2. derive the differential phase gradients over the array from the ionospheric phase
screen, see Section 4.4.5

3. derive the statistical properties of the differential phase gradient over the array
from the parameterized model for the ionospheric phase screen, see Section 4.4.6,
as verification we compare the results to previous results found in literature, see
Section 4.4.7,

4. fit the results of step 3 to the results of step 1 to obtain theionospheric parameters,
using the method described in Section 4.4.8.
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Figure 4.8: Plot of two sets of piercepoints for two sources separated bypiercepoint distance∆r ′.
The distance depends both on the position of the sources and the height H of the layer

4.4.4 From Position Shifts to Phase Gradients over the Array

The field based calibration method provides a set of positionoffsets∆RA, ∆dec as illus-
trated in figure 4.6. An observed position shift is caused by aphase screen over the array.
We will convert the position offsets to phase shifts. The first step is convert the position
offset to a change of the wave vectork, i.e.

∆k = ∆RA kRA + ∆deckdec. (4.36)

The vectorskRA andkdec are orthogonal to the wave vector and point in the direction of
increasing right ascension and declination respectively.Over the course of the observa-
tion they slowly rotate with respect to the array. Thex andy component of vector∆k can
be interpreted as the phase gradient over the array. The phase gradientv can be written
as

v = I2×3∆k (4.37)

whereI2×3 is the matrix

I2×3 =

[

1 0 0
0 1 0

]

(4.38)

which selects the first two entries of a length 3 vector. For a given phase gradientv the
phases at the antennas are given by

φ = Rv (4.39)

Due to the residual instrumental phase the observed gradients contain an unknown offset.
This offset is assumed to be the same for all sources. The observed phase gradient for
sourcei is given by

vi = vion,i + voffset (4.40)
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By taking differences between the gradients of two sourcesi and j, this unknown offset
cancels and we get a quantity that is determined by the ionosphere only,

∆vi, j = vi − v j = vion,i − vion, j . (4.41)

4.4.5 From Ionospheric Phases to a Gradient over the Array

In this section we will derive the phase gradient over the array as function of the iono-
spheric phases at the piercepoints. It is convenient to stack the ionospheric phases into a
vector. For a set of pierce points{r ′1...M} a vector of phases can be defined as

φ′ =





φ(x′1, y
′
1)

...

φ(x′M, y
′
M)





, (4.42)

wherex′, y′ are the coordinates of the pierce points in the ionospheric plane. The iono-
spheric phases are assumed to be described by a gradient. Thetrue ionospheric phase
does not follow that model so we will fit a gradient to the ionospheric phases. The gra-
dient description and the ionospheric phase shift as seen bythe array are approximately
equal to each other,

PRvion ≈
1

cosγ′
Pφ′ (4.43)

Both sides of the equation are multiplied by the projection matrix P which removes the
mean phase, where the mean is taken over all antennas. This mean value is invisible to
the interferometer and does not cause a position shift. The projection matrix is given by

P = I − 1
M

11T (4.44)

The least squares solution of (4.43) is given by

vion =
1

cosγ′
(PR)†Pφ′ = Fφ′, (4.45)

where

F =
1

cosγ′
(PR)†P. (4.46)

The difference between two gradients∆vi, j can be written in the same compact notation
when the phase vectors of the both sources are stacked into one vector

φ′i, j =

[

φ′i
φ′j

]

=





φ′(x′1,i, y
′
1,i)

...

φ′(x′M,i , y
′
M,i)

φ′(x′1, j, y
′
1, j)

...

φ′(x′M, j , y
′
M, j)





(4.47)
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and the following matrix is defined

Fi, j =
[ 1

cosγ′i
(PR)†P −1

cosγ′j
(PR)†P

]

(4.48)

The differential phase gradient can now be expressed as

∆vi, j = Fi, jφ
′
i, j (4.49)

From the linear expressions for the gradient (4.45) and gradient difference (4.49) in terms
of the phases, the statistics ofvi and∆vi, j can be easily derived as will be shown in the
next section.

4.4.6 Gradient Statistics

In this section we will derive the statistics of the (differential) phase gradients in the form
of the covariance matricesCφ′i

andC
∆φ

′
i, j

of vi and∆vi, j respectively. The covariance

matrix of the gradientvi is defined as

Cvi = E
[

viv
T

i

]

. (4.50)

Substituting (4.45) into the equation above leads to

Cvi = E
[

Fiφ
′
iφ
′
i

T
FT

i

]

= Fi E
[

φ′iφ
′
i
T
]

FT

i = FiCφ′i
FT

i , (4.51)

whereCφ′i
is defined as

Cφ′i
= E

[

φ′iφ
′T
i

]

(4.52)

Likewise, the covariance matrix of∆vi, j, defined as

C∆vi, j = E
[

∆vi, j∆vT

i, j

]

, (4.53)

and substitution of (4.49) into this definition leads to

C∆vi, j = E
[

Fi, j∆φ
′
i, j∆φ

′
i, j

T
FT

i, j

]

= Fi, j E
[

∆φ′i, j∆φ
′
i, j

T
]

FT

i, j = Fi, jC∆φ′i, j
FT

i, j, (4.54)

whereC
∆φ

′
i, j

is defined by

C
∆φ

′
i, j
= E

[

∆φ′i, j∆φ
′T
i, j

]

(4.55)

Now we need to find the expression forCφ′i
andC

∆φ
′
i, j

from the power law (4.16).

We assume the statistics of the ionospheric fluctuations canbe described by the structure
function given in equation (4.16). We further assume that the expected value of the phase
is zero and that its variance is the constantσ2

φ′ . From these assumption it follows that the
covariance ofφ′(r ′k) andφ′(r ′l ) is

E
[

φ′(r ′k)φ
′(r ′l )

]

= σ2
φ′ −

1
2

Dφ(‖r ′k − r ′l ‖) (4.56)
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Let us now define a distance matrixD of which the elements are the distances between
the piercepoints given by

dk,l = ‖r ′k − r ′l ‖ (4.57)

The covariance matrix ofφ′i can be written as

Cφ′i
= E

[

φ′iφ
′
i

T
]

= − 1

2sβ0
D⊙βi + σ

2
φ′11T (4.58)

whereDi is the distance matrix for the piercepoints of sourcei, D⊙βi is Di taken element
wise to the powerβ, 1 is a vector of all ones, and the product11T is a matrix of all ones.
Likewise we find for the covariance matrix of∆φ′i, j

C∆φ′i, j = E
[

∆φ′i, j∆φ
′
i, j

T
]

= − 1

2sβ0
D⊙βi, j + σ

2
φ′11T (4.59)

whereDi, j is the 2M × 2M distance matrix for the piercepoints of sourcesi and j.
Now we can substitute (4.58) into (4.51) leading to

Cφ′i
= − 1

2sβ0
D⊙βi + σ

2
φ′11T (4.60)

The termσ2
φ′11T will be projected out by multiplication withF so the equation simplifies

to

Cvi = −
1

2sβ0
FiD

⊙β
i FT

i (4.61)

Likewise forC∆vi, j we find

C∆vi, j = −
1

2sβ0
Fi, jD

⊙β
i, j F

T

i, j (4.62)

Equations (4.61) and (4.62) are our main results which we will compare in the next
section to their equivalents in literature on optical astronomy. Equation (4.62) is the
model which we will fit to the data.

4.4.7 Comparison to Previous Results in Literature

The expression found by Fried [44, 45] for the variance of thenorm of the position shift
for a circular aperture of diameterB is given by

E
[

‖δ‖2
]

= 0.357λ2 r−5/3
0 B−1/3, (4.63)

whereδ is the position shift vector in radians. To compare equations (4.61) and (4.63) de-
fine the diameterB of a radio telescope as the length of the longest baseline andintroduce
the normalized matrices

D̃ = D/B (4.64)

F̃ = FB (4.65)
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Figure 4.9: Decomposition of the position shifts in parallel and orthogonal components with re-
spect to the source separation

The phase gradient can be converted to a position shift by

δ =

[

δ1

δ2

]

= vi/k (4.66)

The variance of the norm of the position shifts is given by

E
[

‖δ‖2
]

= E[δT
δ] = k−2tr

(

Cvi

)

(4.67)

SubstitutingF, D ands0 in equation (4.61) by the appropriately scaled equivalentsF̃, D̃
andr0 leads to

E
[

‖δ‖2
]

= λ2Bβ−2r−β0

1
2π2

(

8
β
Γ(2/β)

)β/2

tr(F̃D̃F̃T) (4.68)

For the VLA B configuration andβ = 5/3 this becomes

E
[

‖δ‖2
]

= λ2B−1/3r−5/3
0 0.174 tr

[

1.06 0.0
0.0 1.06

]

(4.69)

= 0.368λ2B−1/3r−5/3
0 (4.70)

The 3% difference is due to the fact that equation (4.63) is based on a circular completely
filled aperture, while (4.70) uses the exact antenna configuration of the VLA. Interest-
ingly the matrix in (4.69) is a diagonal matrix with identical entries (up to the numerical
accuracy). By taking the trace no information is lost. The matrix variant we have found
provides not more information then Fried’s scalar variant.This is only true for arrays
that exhibit a large degree of symmetry, like the VLA.

Also for the differential position offset an expression has been found previously by
Fried [46]. His expression is for the mean norm of the differential position offset∆δ as
function of the angular separationα of the sources, assuming a completely filled circular
aperture. A typographical error was corrected in [47] as follows

E [‖∆δ‖2] = 2.91

(

16
π

)

B−1/3
∫ ∞

0
C2

n(h) fα(h)dh, (4.71)
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Figure 4.10: Variance of position shift split into a parallel and a orthogonal component with
respect to the source separation. The mean of the two components matches with the expression
found by Fried. The orientation of the array was changed in small steps which caused a slight
broadening of the lines.

where

fα(h) =
∫ 2π

0

∫ 1

0
u[arccos(u) − (3u− 2u3)(1− u2)1/2]

×{0.5[u2 + 2uscos(ω) + s2]5/6

+0.5[u2 − 2uscos(ω) + s2]5/6

−u5/3 − s5/3}dudω, (4.72)

wheres = hα/B. For the single layer modelC2
n(h) = C2

nδ(h− H), whereδ(·) is Dirac’s
delta function, equation (4.71) reduces to

E [‖∆δ‖2] = 2.91

(

16
π

)

B−1/3C2
n fα(H) (4.73)

We would like to compare this result to our result (4.62). Interestingly the numerical
evaluation of (4.62) is not a diagonal matrix. This means that the differential position
shift is non-isotropic i.e. the shift is not equally large inall directions, but depends on
the orientation with respect to the array and source separation. This anisotropy is not
reflected by the equation found by Fried because it is an expression for the norm of the
position shift only.

The VLA configuration exhibits a large degree of symmetry thus the orientation of
the position shift with respect to the array is of minor influence. The relative orientation
of the source separation and the position shift however has an appreciable effect. This
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effect can be shown by decomposing the position shift in two components, one parallel,
one orthogonal to the source separation as is illustrated infigure 4.9. The transformation
of ∆δ to the vector∆δ̃ in the source separation oriented coordinate system can be written
as a matrix multiplication

∆δ̃ = UT
∆δ, (4.74)

whereU is a 2× 2 matrix of which the columns are the unit vectorsu1 andu2, which are
parallel and orthogonal respectively to the source separation. The correlation matrix of
∆δ̃ is given by

C
∆δ̃ = UTC∆δU. (4.75)

For the VLA in A or B configuration this matrix is practically diagonal, i.e. the trans-
formationU diagonalizesC∆δ. This can be expected for an array with a large degree
of symmetry and no preferred direction. The only special direction in the setup is the
source separation. If there is any anisotropy in the differential position shift it will be
aligned along this special direction. The results are probably different for arrays with
a configuration with a preferred direction such as an East-West array or the VLA BnA
configuration for which the northern arm is longer than the two other arms.

Figure 4.10 shows the two components together with the mean,and the expression
found by Fried. Our results for the VLA match closely with theresults by Fried for a
completely filled circular aperture. The calculation has been repeated for many different
orientations of the source separations with respect to the array. The results are very close
to each other as can be seen in the figure where they are all plotted together, resulting in
only a slight broadening of the lines.
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4.4.8 Fitting Method

As we saw in the previous section the covariance of the differential phase gradients given
in (4.62) depends on the height of the ionospheric layerH, the exponent in the power
law β and the coherency lengths0. These unknowns will be estimated from the observed
phase gradients.

An asymptotically optimal method of estimating the parameters is Maximum Like-
lihood (ML) estimation. In this section an algorithm will bepresented to find the ML
estimate.

Given a set of observationsx with normal distribution with meanµ and varianceΣ.
The varianceΣ = Σ(p) is a function of parameter vectorp. The goal is to estimatep.
The ML estimator is given by the following maximization problem

p̂ = arg max
p

1
(2π)N/2|Σ|1/2 exp(

−1
2

(x − µ)T
Σ
−1(x − µ)) (4.76)

Taking the logarithm, discarding the independent terms andreversing the sign leads to
the following minimization problem

p̂ = arg min
p

[

log detΣ + (x − µ)T
Σ
−1(x − µ)

]

(4.77)

If the covariance would be known and the mean valueµ would be the unknown then the
problem above would immediately be reduce to a least squaresfitting problem. However
in our case the mean is assumed to be zero and the covariance isthe unknown parameter.
This type of problems is known as covariance matching [48]. An iterative algorithm can
easily be derived as is shown below.

Taking the derivative of the expression to be minimized in (4.77) and setting it to zero
leads to

∂vec(Σ)T

∂p
vec

(

Σ
−1

(

Σ − xxT
)

Σ
−1

)

= 0 (4.78)

This problem is not easily solved but there exists a Least Squares (LS) problem that gives
a result similar to (4.78). Indeed, consider

p̂ = arg min
p
‖W1/2xxTW1/2 −W1/2

ΣW1/2‖2F . (4.79)

Taking the derivative with respect top and equating it to zero leads to

∂vec(Σ)T

∂p
vec

(

W
(

Σ − xxT
)

W
)

= 0. (4.80)

Now if the weighting matrixW would have be equal toΣ−1, then the problems (4.80)
and (4.78) are equivalent. This leads to the following iterative method:

1. Initialize the weightsW = I ,

2. Solve equation (4.79),
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3. If ‖W −Σ
−1‖ > ǫ then setW = Σ

−1 and go to step 2.

Hereǫ is the convergence criterion. When this iteration converges, the stationary point
satisfies (4.78). If the solution of the initial least squares fit was close enough to the ML
solution then the stationary point equals the ML solution.

Now as we have discussed before we expect some difficulty in estimatingH andβ
simultaneously, because these parameters have a similar effect on the covariance. The
likelihood function might not have a single peak but a range of values ofH andβ for
which the function is close to maximum. To be able to detect this problem we will scan
over a range ofH andβ, and estimate onlys0 by the algorithm derived above. This way
we can plot the likelihood function as function ofH andβ.

A technicality that needs to be dealt with are the outliers. The position shifts are
determined by a search for sources in an image. Detection errors lead to huge position
errors that will dominate the fit when they are not removed. The removal of the outliers
is a two step process. First all differential position error that exceed a fixed threshold of
200 arcsec are removed. After an initial fit the differential position shifts that exceed 3σ
are rejected.

The method described above should lead to statistically optimal fits. In practice there
were a few issues which limited the number of datasets for which good fits could be
obtained:

• The Maximum Likelihood estimator is optimal in the case thatthe only sources
of error are statistical fluctuations. In this case model errors are another source of
significant error. The model is fairly crude; it is assumed that the ionosphere con-
sists of a single layer of turbulence that follows a power law. The real ionosphere
is distributed over a considerable height and its behavior is more complex than a
simple powerlaw.

• The sampling of the piercepoints separations depends on thedistances between
the available calibrator sources. The most notable featurein the model for the co-
variance is the difference between piercepoint separations smaller and largerthan
the array size. A sampling that is distributed more or less evenly over both cate-
gories results in a well conditioned fitting problem. Many datasets lack a sufficient
number of samples especially for the smaller piercepoint separations.

• Ideally the variance of the measurement noise should also beincluded as free pa-
rameter in the fitting problem. In many cases this made the fitting problem ill
conditioned and visual inspection of fits showed a bad fit especially for the smaller
piercepoint separations.

4.4.9 Results and Discussion

Out of 545 datasets in VLA-B configuration in the VLSS survey,three where selected to
be included in this chapter. All three datasets have a relatively large number of usable
samples and an even distribution over the piercepoint separation.
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Figure 4.12 shows the results of the fits to the three different datasets. The plots on
the left side show the logarithm of the likelihood function.Contours are plotted at the
levels −n2

2 . For a linear model in Gaussian noise these contours correspond to thenσ
confidence regions. The plots on the right show the data and the model. The samples are
binned according to piercepoint separation and averaged. The standard deviation within
a bin is indicated by 3σ error bars. Note that the model includes the exact configuration,
not just the piercepoint separation. Because of this and a selection effect, i.e. the samples
that are available within a bin of piercepoint separations,even the model seems somewhat
irregular in the plot.

Figure 4.12(a) shows the results for a relatively quiet ionosphere and figure 4.12(b)
for a more active ionosphere. For both conditions there is a good agreement between
model and observed data. That this is not always the case is shown in figure 4.12(c)
where the match is not that good. The data shows a gradual increase in while the model
predicts an initial steep increase which levels off for piercepoint separations larger than
the size of the array.

A possible explanation would be that the electron density fluctuations are not con-
fined to a thin layer. For different heights the characteristic turnover would occur at
different angular separations. The summation over many layers results in a far more
gradual transition than for a single layer. In principle onecould try to fit a multilayer
model to the data. There is not sufficient data to produce a meaningful result, hence a
validation of the multilayer model using this data is not possible.

A distribution over heights could also explain the high value found forβ. The values
are very close, but not equal to 2. Forβ = 2 the phase screen is a random gradient with
no curvature at all. The fact that the differential position shifts are not zero is solely due
to the zenith angle, or airmass effect. The observed position shifts cannot be explained
by the zenith angle effect alone; the fits forβ = 2 are bad. However, as can be seen
in figure 4.11 the closerβ gets to 2 the more gradual the transition becomes, just as we
would expect for a distribution over heights.

Another interesting feature is the local optimum in the lower left corner in the left
panel of 4.12(c). There are quite a number datasets for whichthe global optimum oc-
curred at a height below 100km and at lowβ. These datasets show a gradual increase
without a transition or leveling off at larger piercepoint separations. The good match
at low heights can be explained by realizing that a low heighttranslates to small pierce
point separations. All data points fall in the region beforethe transition. The model will
probably fail for large piercepoint separation, but no datais available there.

It is unlikely that the position shifts are caused by the electron density fluctuations
below 100km. Measurements of the electron density at these heights [49] and [50] show
a typical electron density ofNe = 103cm−3. An electron density gradient over a baseline
of lengthB = 10km which goes from neutral atmosphere to the typical value, and a layer
of thickness∆z= 10km, leads to a position shift of

f 2
p

2 f 2

∆z
B
= 1.5arcsec (4.81)

This is an estimate of the maximum (differential) position one could expect if the turbu-
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lence is localized in the lower layers. The upper bound is an order of magnitude lower
than the observed position shifts.

The heights found for datasets 0700+398 and 2300+123.1 confirm the result by [40]
that the strongest fluctuations are found 100km below the peak electron density which
for the location of the VLA is about 300km.

4.4.10 Conclusions

Our results for the differential position shift as function of source separation extends the
scalar result known in literature to a vector expression. This expression can be decom-
posed in two components, parallel and orthogonal. The observed data confirms that the
two components behave differently.

Except for obviously wrong fits where the height is below 100km the estimated height
of the ionosphere confirms earlier results stating that the strongest electron density fluc-
tuations are found 100 km below the peak density.

The estimated values ofβ are higher than the 5/3 which is expected for pure Kol-
mogorov turbulence.

Both the high value ofβ and the mismatches might be explained by a multilayer or
a full three dimensional model or by the presence of an inner scale. More research is
needed to test this hypothesis.
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(a) Quiet Ionosphere - Field 0700+398
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(b) Disturbed Ionosphere - Field 2300+123.1
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(c) Mismatch between data and model - Field 0500+517

Figure 4.12: Left: Loglikelihood function including contours corresponding to the nσ confidence
regions. Right: Observed data, binned including3σ error bars and modeled data for the best
fit. The fitted height H and the coherence length s0 are shown and the Fresnel scale rf for height
H is shown too. The first two datasets show a good match betweendata and model for different
ionospheric conditions. The last data set shows a slight mismatch. Even though most points fall
within the error bars the overall trends of data and model aredifferent.



70 IONOSPHERIC MODELING 4.4



Chapter 5
Optimal Estimation ∗

One of the challenges in the design of the LOFAR radio telescope is the calibration of
the ionosphere which, at low frequencies, is not uniform andcan change within minutes.
The number of unknown parameters quickly approaches the number of measurements
and hence, structural assumptions on the ionosphere must bemade, in time, frequency,
and space. Using general models for the second-order statistics, we propose to use Max-
imum A Posteriori (MAP) estimators combined with Karhunen-Loève basis functions.
The resulting estimation algorithm is shown in simulated LOFAR data to be superior to
currently considered techniques. A significant advantage is that it is robust to overesti-
mation of the number of free parameters.

5.1 Introduction

For low frequency observations (< 300 MHz) the radio astronomical community is cur-
rently developing a number of new instruments, for example the Mileura Wide Field Ar-
ray (MWA) [52], the Primeval Structure Telescope (PaST) [53] and the Low Frequency
Array (LOFAR) [54] which we consider in this chapter. LOFAR consists of a large num-
ber (∼ 13, 000) of dipole antennas, arranged in 72 stations. The antennas in each station
are combined to mimic a single telescope dish, which is electronically steered into the
desired direction. The outputs of the stations are split into narrow frequency bins, corre-
lated, averaged over short intervals, and stored for offline processing.

Calibration of LOFAR is essential[26], and as described in [23] has several com-
ponents: calibration of the station beamshapes, and calibration of the refraction in the
ionosphere. At low frequencies the effect of the ionosphere is stronger than at the higher
frequencies used by most current telescopes, because the phase shift caused by the iono-
sphere scales with wavelength. Furthermore the beamwidthsof the station beams are

∗The results contained in this chapter have been presented atthe International Symposium on Signals,
Circuits and Systems, 2007, Iasi, Romania[51].
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Figure 5.1: LOFAR scenario: the ionosphere changes within the station beam and direction-
dependent calibration is required. Also the ionosphere is different for different stations.

wider than those of most existing radio telescopes. The beamprojected onto the iono-
sphere is wider than the typical size of fluctuations within the ionosphere (in the order of
a few km), see Fig. 5.1. The ionospheric phase can change considerably over the beam,
therefore ionospheric calibration is direction dependent. Most stations are spaced at least
a few km apart, thus it is also station dependent.

In this chapter we will describe a statistical model for ionospheric fluctuations, suf-
ficiently simplified to be suitable for Signal Processing. The Maximum A Posteriori
(MAP) estimator will be used for calibration. Simulations show that this approach is
superior to the currently used method of fitting Zernike polynomials [55].

5.2 Data model and Problem Statement

5.2.1 Radio Astronomical Interferometer

A radio astronomical interferometer estimates the covariance matrices of antenna outputs
by correlating them. Assume that there areM stations. Each station consists of a number
of antennas, whose signals are beamformed resulting in a station signal, the equivalent
of the output of a ‘virtual’ parabolic dish antenna. The sampled output of each station
‘antenna’ is split by a filter bank into narrow frequency bins. Let xk[n] be a vector
stacking theM station signals available at frequencyk and timen. After averaging over
N samples, the output of the correlator is given by

R̂k =
1
N

N∑

n=1

xk[n]xk[n]H (5.1)
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For the purpose of ionospheric calibration, we make a numberof assumptions:

• Only a single calibration source is present,

• The station beamformers are pointed towards this source andthe geometric delays
are compensated for (the source appears at zenith),

• The instrumental phase errors are zero, and gains towards the source are unity.

These are significant simplifications that with suitable preprocessing hold true, and can
be generalized later on.

The resulting data model forxk[n] at thenth output sample of thekth frequency bin
centered atfk is

xk[n] = aksk[n] + wk[n] , (5.2)

wheresk[n] is the astronomical source signal,wk[n] is a noise vector (i.i.d. Gaussian),
andak is the spatial signature of the source given by

ak = exp(iφk)

where
φk = Cτ f −1

k (5.3)

is a vector withM entries representing the ionospheric phases at each station (a function
of frequency), andτ is a vector containing the Total Electron Content (TEC) seenby
each station, which is the integral of the electron density along the line of sight towards
the calibration source. The constantC = 8422 rad/MHz/TECU (TECU= TEC unit=
1016 electrons/m2).

Under this model, the expected value of the covariance matrices is

Rk = E[R̂k] = aka
H

kσ
2
s + σ

2
wI

whereσ2
s andσ2

w are respectively the signal and noise power.

5.2.2 Ionospheric fluctuations

We model the ionosphere as a thin turbulent layer. The statistics of density fluctuations
in a turbulent medium can be derived from Kolmogorovs theoryof turbulence. Instead of
using autocorrelation functions, the second-order statistics are usually given in the form
of a “structure function”, defined for a variableϕ(x) which is a function of a distance
parameterx as

Dϕ(∆x) = E[(ϕ(x) − ϕ(x+ ∆x))2].

Structure functions are used because the autocorrelation function is infinite for a pure
Kolmogorov turbulent process, because all the large scale fluctuations are included. The
structure function only looks at local differences which are finite.
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The structure function for ionospheric TEC fluctuations over a distancer has the form
[4]

DTEC(r) =

(

f0
C

)2 (

r
s0

)β

(5.4)

wheres0 is a reference distance andf0 is a reference frequency. Translating this into the
structure function of the phase fluctuations, we obtain

Dφ(r, f ) =

(

f0
f

)2 (

r
s0

)β

.

The expression for the structure function has the form of a power law with exponentβ.
The scaling is chosen such that for the reference frequencyf0 and over the reference
distances0, the structure functionDφ(s0, f0) = 1.

5.3 Calibration Algorithm

5.3.1 General Data Model

We can translate the problem into more generic terms by utilizing a general nonlinear
data model of the form

y = f (θ) + w (5.5)

wherey is a vector that stacks all observations,θ is a vector stacking the unknown pa-
rameters, andw is a noise vector. In this model, both the unknowns and the noise are
assumed to be the result of Gaussian random processes with known covariance matrices
Cθ andCw respectively.

The generic data model is related to our application as follows. Let

y = vec(R̂k) , f (·) = vec(Rk) = (āk ⊗ ak)σ
2
s + vec(I )σ2

w ,

where vec(·) stacks the columns of a matrix into a vector, and⊗ denotes the Kronecker
product. The observation noise vec(R̂k − Rk) corresponds to the noise vectorw in (5.5).
The observation noise is Wishart, not Gaussian, but for a sufficiently largeN Gaussian
noise is a good approximation.

The unknown parameter vector isτ , but since we cannot expect to estimate the bulk
delay, we subtract the average value ofτ and define

θ = τ − 1
M

11T
τ .

The corresponding covariance matrix forθ is, from (5.4),

Cθ =
−1
2

(

f0
C

)2

(I − 1
M

11T)

(

D
s0

)⊙β
(I − 1

M
11T) (5.6)
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whereD is a distance matrix containing all distances (baselines) between the antennas,
and the superscript⊙β denotes entrywise raising to the powerβ.

The above translates the data model into the generic model for a single frequencyk
and time point. It takes only the spatial structure into account. However, the model is
readily generalized; the main issue is to obtain a model for the covariance matrixCθ.

5.3.2 MMSE estimator

A desirable estimator is the estimator with the minimum MeanSquared Error, the MMSE,
given by [29]

θ̂ = arg min
θ̂

E[|θ̂ − θ|2] .

The solution of this minimization problem is given by

θ̂ = E[θ|y]

where the expectation is taken over the a posteriori pdf. Using Bayes’ rule the a posteriori
pdf is found to be

p(θ|y) =
p(y|θ)p(θ)

∫

p(y|θ)p(θ)dθ
.

Both the determination of the a posteriori pdf and taking theexpectation require multi-
dimensional integration. In many cases an analytical solution cannot be found and nu-
merical integration is needed. Multi-dimensional numerical integration is a computa-
tionally demanding problem, and for large problems such as LOFAR calibration this is
simply not feasible.

5.3.3 MAP estimator

A good alternative is to use the Maximum A Posteriori (MAP) estimator [29],

θ̂ = arg max
θ

p(θ|y) = arg max
θ

p(y|θ)p(θ)
∫

p(y|θ)p(θ)dθ

= arg max
θ

p(y|θ)p(θ) .

For the MAP no numerical integration is needed. With a Gaussian data model the MAP
reduces to a Least Squares problem, because

p(y|θ)=
1

(2π)
k
2 |Cw|

1
2

exp

[

−1
2

(y − f (θ))TC−1
w (y − f (θ))

]

p(θ)=
1

(2π)
k
2 |Cθ|

1
2

exp

[

−1
2
θ

TC−1
θ θ

]
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so that

θ̂ = arg max
θ

p(y|θ)p(θ)

= arg min
θ
‖C−

1
2

w (y − f (θ))‖2 + ‖C−
1
2

θ
θ‖2 . (5.7)

5.3.4 Interpolation

To make an image the ionospheric phase in other directions than that of the calibrators
needs to be estimated. Thus some form of interpolation is required. Optimal interpolation
can be achieved by including the intermediate points in the Bayesian estimation problem.
The vector of unknowns

θ =

[

κ

ρ

]

now consists of two parts,κ, the phases in the direction of the calibrators, andρ the rest
of the phases. Now the MAP estimator can be applied to the extended problem

θ̂ =

[

κ̂

ρ̂

]

= arg min
κ,ρ
‖C−

1
2

w (x − f (κ))‖2 +
[

κ
T
ρ

T
]
[

Cκκ Cκρ
Cρκ Cρρ

]−1 [

κ

ρ

]

The addition of more unknowns complicates the optimizationproblem. Fortunately the
complete problem including calibration and interpolationcan be separated into a distinct
calibration and an interpolation problem.

θ̂ = arg min
κ,ρ
‖C−

1
2

w (x−f (κ))‖2+
[

κ
T
ρ

T
]
[

C−1
κκ + C−1

κκCκρS−1CρκC−1
κκ −C−1

κκCκρS−1

S−1CρκC−1
κκ S−1

] [

κ

ρ

]

whereS= Cρρ − CρκC−1
κκCκρ is the Schur complement.

θ̂ = arg min
κ,ρ
‖C−

1
2

w (x − f (κ))‖2 + κTC−1
κκκ +

κ
TC−1
κκCκρS−1CρκC−1

κκκ − κ
TC−1
κκCκρS−1ρ + ρ

TS−1CρκC−1
κκκ + ρ

TS−1ρ

The second line of the equation can be made zero by choosing

ρ = CρκC−1
κκκ

The whole procedure can be summarized as follows. The first step is calibration by

κ̂ = arg min
κ
‖C−

1
2

w (x − f (κ))‖2 + κTC−1
κκκ.

The next step is interpolation by

ρ̂ = CρκC−1
κκκ̂.

This interpolation method is known as Kriging interpolation [56]
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5.3.5 Karhunen-Loève transformation

In many cases the dimensionality ofθ is large. The number of parameters to be estimated
can be reduced by writing vectorθ in terms of a sum of fewer underlying base vectors
i.e.

θ = Uθp

whereUθ is a tall matrix whose columns are regarded as basis vectors.The reduced
parameter vector isp. The basis vectors inUθ can be selected in several ways:

• Data independent, e.g., by choosing polynomial functions.Zernike polynomials
are often used.

• Data dependent, by computing an eigenvalue decomposition of the covariance ma-
trix

Cθ = UΛUH ≈ UθΛθU
H

θ (5.8)

whereU is a unitary matrix containing the eigenvectors,Λ is a diagonal matrix
containing the eigenvalues. In the approximation, only thedominant eigenvec-
tors/eigenvalues are retained inUθ andΛθ.

Inserting this into the MAP estimator, we obtain

p̂ = arg min
p
‖C−

1
2

w (y − f (Uθp̂))‖2 + ‖Λ−
1
2

θ p̂‖2 . (5.9)

After estimatingp̂, an estimate of̂θ is obtained aŝθ = Uθp̂ .

5.3.6 Unknown hyperparameters

In the context of Bayesian estimation, the parameters whichparameterize the a priori
distribution are called the hyperparameters. In our case the hyperparameters areβ and
s0. If they are unknown they need to be estimated too. The MAP estimator can easily
be extended to incorporate this by simply extending the search space with the extra un-
knowns. However, this makes the problem much harder becauseit changes from a large
least squares problem, to a large generic non-linear problem. A solution is to alternately
estimateθ, using least squares, and the other two parameters using a generic non-linear
solver:

1. Initializeβ ands0 with some reasonable guess

2. Estimatep using (5.9)

3. Estimateβ ands0 using a non-linear solver as

arg max
β,s0

1

(2π)
k
2 |Cθ(β, s0)| 12

exp

[

−1
2
θ

TC−1
θ (β, s0)θ

]

4. Check for convergence ofβ ands0, if necessary go to step 2.
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Figure 5.2: Station configuration used for simulation. Only the selected stations were actually
included in the simulation.

5.4 Simulations

In this section, we demonstrate the applicability of the proposed method to the LOFAR
calibration problem. Several simplifications were made to allow for sufficient Monte
Carlo runs. The ionosphere is assumed to be a thin layer abovethe array. The TEC
values of the ionospheric layer are a function of position. They are assumed to be the
result of a random process with a Kolmogorov spectrum. The TEC values of interest
are the ones at the pierce-points where the line of sight intersects the ionospheric layer.
Ignoring the curvature of the earth, the distance between the pierce-points equals the
distance between the stations. Figure 5.2 shows a configuration of 72 stations which is
similar to the actual LOFAR configuration. One third of the stations was selected to be
included in the simulation, so the number of antennasM = 24. Let vi be the vector
describing the position of theith station. The entries of the distance matrixD are given
by di, j = ‖vi − v j‖. From the distance matrix the covariance matrixCθ can be found
using (5.6). The parameters used to generate the data areβ = 5/3, f0 = 100 MHz and
s0 = 3000 m, i.e. a pure Kolmogorov spectrum with an r.m.s phase fluctuation of 1 radian
over a distance of 3000 m at 100 MHz.

The relative TEC valuesτ are generated as

θ = C1/2
θ

w ,

wherew is zero mean i.i.d. Gaussian noise. The resultingθ is jointly Gaussian with
covarianceCθ. The TEC values are subsequently used to construct the spatial signatures
ak. Data samplesxk[n] are generated using Gaussian random signalssk[n] and noise
wk[n] according to equation (5.2). The covariance estimates arethen obtained from (5.1).

For the simulation we have used 501 frequency bins of 1 kHz with center frequencies
ranging from 100 Mhz to 100.5 MHz. The integration time is 1 second so each covariance
estimate is based onN = 1000 samples. The signal to noise ratioσ2

s/σ
2
w was−30dB. For

each Monte Carlo run a new set of TEC values and covariance data was generated.
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Figure 5.3: Estimation performance as function of model order selection: (a) known model pa-
rameters, (b) estimated model parameters. The error is scaled relative to the minimum in each
plot.

Based on the simulated data the TEC values are estimated using three different meth-
ods: Least Squares using Zernike polynomials, Least Squares using a Karhunen-Loève
basis, and the MAP using a Karhunen-Loève basis. All methods are based on equation

(5.9). When we omit the term‖Λ−
1
2

θ p̂‖, the method reduces to an ordinary least squares
fit. The basisUθ consists either of Zernike polynomials or the Karhunen-Lo`eve basis
computed from (5.8). When the term is included, the method isa (truncated) MAP. In
each case, the size of the basis, or the model order, can be varied from 1 toM − 1. The
maximum order is one less than the number of antennas becauseonly the relative TECτ
is estimable.

From the estimatedτ , the ionospheric phasesφk are computed as in (5.3). The error
measure is the r.m.s. phase error at the reference frequencyf0 = 100MHz.

In figure 5.3(a)(a) the error is plotted against the selected model order. It isseen
that increasing the order reduces the model error, but at thesame time the estimates get
noisier. Initially incrementing the order will result in a lower total error, but at some point
the additional noise outweighs the reduction of the modeling error.

Using the optimal basis (5.8) improves the performance. Thelowest error of the LS
method using the Karhunen-Loève basis is below the best performance of the Zernike
polynomials, and is also reached at a lower order. However, to reach the lowest attainable
error of the Least Squares method one needs to know at what order the optimum is
reached.

The MAP estimator is not only always better than the Least Squares methods, but it
is also guaranteed that the performance will improve with increasing model order. The
fact that the algorithm is robust to overestimation of the number of free parameters is a
significant advantage.

The increased performance is the result of exploiting thea priori information. Of
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course, if the assumed prior does not match the actual distribution, the performance suf-
fers, as can be seen in figure 5.3(b), where the MAP estimationis done using wrong
settings for the hyperparameters (β, s0). The performance is greatly improved by esti-
mating the hyperparameters iteratively, as proposed in section 5.3.6.

In the next chapter the estimation method described in this chapter will be applied to
actual observations from the Very Large Array (VLA).



Chapter 6
Application of the MAP estimator to

74 MHz VLA Data ∗

This chapter presents a description and first results of SPAM(Source Peeling and Atmo-
spheric Modeling), a new calibration method that attempts to iteratively solve and correct
for ionospheric phase errors. SPAM has been developed by H.T. Intema at Leiden Ob-
servatory, Leiden University. The method uses a variant of the peeling technique, which
we analyzed in Chapter 3. SPAM proved to be ideal to integratethe ionspheric model
presented in chapter 4 and the MAP estimator presented in chapter 5 and test these on
real observed data. In cooperation parts of the techniques described in Chaper 5 were
included in SPAM.

To model the ionosphere SPAM uses a time-variant, 2-dimensional phase screen at
fixed height above the Earth’s surface. Spatial variations are described by a truncated set
of discrete Karhunen-Loève base functions, optimized foran assumed power-law spec-
tral density of free electrons density fluctuations described in Chapter 4, and a given
configuration of calibrator sources and antenna locations.The model is constrained us-
ing antenna-based gain phases from individual self-calibrations on the available bright
sources in the field-of-view. Application of SPAM on three test cases, a simulated visi-
bility data set and two selected 74 MHz VLA data sets, yields significant improvements in
image background noise (5–75 percent reduction) and sourcepeak fluxes (up to 25 per-
cent increase) as compared to the existing self-calibration and field-based calibration

∗The contents of this chapter have been accepted for publication as a paper by H. T. Intema, S. van der
Tol, W. D. Cotton, A. S. Cohen, I. M. van Bemmel and H. J. A. Röttgering entitled ”Ionospheric Calibration of
Low Frequency Radio Interferometric Observations using the Peeling Scheme: I. Method Description and First
Results” inAstronomy and AstrophysicsThe main text of this paper was written almost entirely by Intema. To
the paper a brief description of the MAP estimator was added as an appendix. That part is omitted here since a
more detailed description can be found in chapter 5 of this thesis. However, the implementation of the estimator
in software has been done in close cooperation with the author of this thesis. Intema has agreed to include the
almost verbatim text of the paper in this thesis.

81
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methods, which indicates a significant improvement in ionospheric phase calibration ac-
curacy.

6.1 Introduction

Radio waves of cosmic origin are influenced by the Earth’s atmosphere before detection
at ground level. At low frequencies (LF;. 300 MHz), the dominant effects are refraction,
propagation delay and Faraday rotation caused by the ionosphere [e.g. 4]. For a ground-
based interferometer (array from here on) observing a LF cosmic source, the ionosphere
is the main source of phase errors in the visibilities. Amplitude errors may also arise
under severe ionospheric conditions due to diffraction or focussing [e.g. 57].

The ionosphere causes propagation delay differences between array elements, result-
ing in phase errors in the visibilities. The delay per array element (antenna from here
on) depends on the line-of-sight (LoS) through the ionosphere, and therefore on antenna
position and viewing direction. The calibration of LF observations requires phase cor-
rections that vary over the field-of-view (FoV) of each antenna. Calibration methods that
determine just one phase correction for the full FoV of each antenna (like self-calibration;
[e.g. 11]) are therefore insufficient.

Ionospheric effects on LF interferometric observations have usually been ignored for
several reasons: (i) the resolution and sensitivity of the existing arrays were generally too
poor to be affected, (ii) existing calibration algorithms (e.g., self-calibration) appeared
to give reasonable results most of the time, and (iii) a lack of computing power made
the needed calculations prohibitly expensive. During the last 15 years, two large and
more sensitive LF arrays have become operational: the VLA at74 MHz [58] and the
GMRT at 153 and 235 MHz [59]. Observations with these arrays have demonstrated that
ionospheric phase errors are one of the main limiting factors for reaching the theoretical
image noise level.

For optimal performance of these and future large arrays with LF capabilities (such
as LOFAR, LWA and SKA), it is crucial to use calibration algorithms that can properly
model and remove ionospheric contributions from the visibilities. Field-based calibration
[42] is the single existing ionospheric calibration & imaging method that incorporates
direction-dependent phase calibration. This technique has been succesfully applied to
many VLA 74 MHz data sets, but is limited by design for use withrelatively compact
arrays.

In Section 6.2, we discuss ionospheric calibration in more detail. In Section 6.3, we
present a detailed description of SPAM, a new ionospheric calibration method that is
applicable to LF observations with relatively large arrays. In Section 6.4, we present the
first results of SPAM calibration on simulated and real VLA 74MHz observations and
compare these with results from self-calibration and field-based calibration. Conclusions
and a discussion are presented in Section 6.5.
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6.2 Ionosphere and Calibration

In this Section, we describe some physical properties of theionosphere, the phase effects
on radio interferometric observations and requirements for ionospheric phase calibration.

6.2.1 The Ionosphere

The ionosphere is a partially ionised layer of gas between∼ 50 and 1000 km altitude
over the Earth’s surface [e.g. 60]. It is a dynamic, inhomogeneous medium, with elec-
tron density varying as a function of position and time. The state of ionization is mainly
influenced by the Sun through photo-ionization at UV and short X-ray wavelengths and
through injection of charged particles from the solar wind.Ionization during the day is
balanced by recombination at night. The peak of the free electron density is located at a
height around 300 km. The free electron column density alonga LoS through the iono-
sphere is generally referred to astotal electron content, or TEC. The TEC unit (TECU)
is 1016 m−2 which is a typically observed value at zenith during nighttime.

The refraction and propagation delay are caused by a varyingrefractive indexn of the
ionospheric plasma along the wave trajectory. For a cold, collisionless plasma without
magnetic field,n is a function of the free electron densityne and is defined by [e.g. 4]

n2 = 1−
ν2

p

ν2
, (6.1)

with ν the radio frequency andνp the plasma frequency, given by

νp =
e

2π

√
ne

ǫ0m
, (6.2)

with e the electron charge,m the electron mass,ǫ0 the vacuum permittivity. Typically, for
the ionosphere,νp ranges from 1–10 MHz, but may locally rise up to∼ 200 MHz in the
presence of sporadic E-layers (clouds of unusually high free electron density). Cosmic
radio waves with frequencies below the plasma frequency arereflected by the ionosphere
and do not reach the Earth’s surface. For higher frequencies, the spatial variations in
electron density cause local refractions of the wave (Snell’s Law) as it travels through
the ionosphere, thereby modifying the wave’s trajectory. The total propagation delay,
integrated along the LoS, results in a phase rotation given by

φion = −2πν
c

∫

(n− 1) dl, (6.3)

with c the speed of light in vacuum. For frequenciesν ≫ νp, this can be approximated
by

φion ≈ π

cν

∫

νp
2dl =

e2

4πǫ0mcν

∫

ne dl. (6.4)
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where the integral overne on the right is the TEC along the LoS. Note that this integral
depends on the wave’s trajectory, and therefore on local refraction. Because the refrac-
tive index is frequency-dependent, the wave’s trajectory changes with frequency. As a
consequence, the apparent scaling relationφion ∝ ν−1 from Equation 6.4 is only valid to
first order in frequency.

Although bulk changes in the large scale TEC (e.g., a factor of 10 increase during sun-
rise) have the largest amplitudes, the fluctuations on relatively small spatial scales and
short temporal scales are most troublesome for LF interferometric observations. Most
prominent are the traveling ionospheric disturbances (TIDs), a response to acoustic-
gravity waves in the neutral atmosphere [e.g. 40]. Typically, medium-scale TIDs are
observed at heights between 200 and 400 km, have wavelengthsbetween 250 and 400
km, travel with near-horizontal velocities between 300 and700 km h−1 in any direction
and cause 1–5 percent variations in TEC [4].

The physics behind fluctuations on the shortest spatial and temporal scales is less
well understood. Temporal and spatial behaviour may be coupled through quasi-frozen
patterns that move over the area of interest with a certain velocity and direction [57].
Typical variations in TEC are on the order of 0.1 percent, observed on spatial scales of
tens of kilometers down to a few km, and time scales of minutesdown to a few tens of
seconds. The statistical behaviour of radio waves passing through this medium suggests
the presence of a turbulent layer with a power-law spectral density of free electron density
fluctuationsPne

(q) ∝ q−α [e.g. 4], withq ≡ |~q| the magnitude of the 3-dimensional spatial
frequency.Pne

(q) is defined in units of electron density squared per spatial frequency.
The related 2-dimensional structure function of the phase rotationφ of emerging radio
waves from a turbulent ionospheric layer is given by

Dφ = 〈[φ(~x) − φ(~x+ ~r)]2〉 ∝ rγ, (6.5)

where~x and~x+~r are Earth positions,r ≡ |~r | is the horizontal distance between these two
points,〈. . . 〉 denotes the expected value andγ = α−2. For pure Kolmogorov turbulence,
α = 11/3, thereforeγ = 5/3.

Using differential Doppler-shift measurements of satellite signals, van Velthoven [40]
found a power-law relation between spectral amplitude of small-scale ionospheric fluc-
tuations and latitudinal wave-number with exponentα/2 = 3/2. Combining with radio
interferometric observations of apparent cosmic source shifts, van Velthoven derived a
mean height for the ionospheric perturbations of 200–250 km. Through analysis of differ-
ential apparent movement of pairs of cosmic sources in the VLSS, Cohen and Röttgering
[43] find typical values forγ/2 of 0.50 during nighttime and 0.69 during daytime. Di-
rect measurement of phase structure functions from different GPS satellites (van der Tol,
unpublished) shows a wide distribution of values forγ that peaks at∼ 1.5. On aver-
age, these results indicate the presence of a turbulent layer below the peak in the free
electron density that has more power in the smaller scale fluctuations than in the case
of pure Kolmogorov turbulence. Note that for individual observing times and locations,
the behaviour of small-scale ionospheric fluctuations may differ significantly from this
average.
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6.2.2 Image Plane Effects

Interferometry uses the phase differences as measured on baselines to determine the an-
gle of incident waves, and is therefore only sensitive to TECdifferences. A baseline is
sensitive to TEC fluctuations with linear sizes that are comparable to or smaller than the
baseline length. At 75 MHz, a 0.01 TECU difference on a baseline causes a∼ 1 ra-
dian visibility phase error (Equation 6.4). Because the observed TEC varies with time,
antenna position and viewing direction, visibility phasesare distorted by time-varying
differential ionospheric phase rotations.

An instantaneous spatial phase gradient over the array in the direction of a source
causes an apparent position shift in the image plane [e.g. 43], but no source deformation.
If the spatial phase behaviour deviates from a gradient, this will also distort the apparent
shape of the source. Combining visibilities with different time labels while imaging
causes the image plane effects to be time-averaged. A non-zero time average of the phase
gradient results in a source shift in the final image. Both a zero-mean time variable phase
gradient and higher order phase effects cause smearing and deformation of the source
image, and consequently a reduction of the source peak flux (see [55] for an example).
In the latter case, if the combined phase errors behave like Gaussian random variables,
a point source in the resulting image experiences an increase of the source width and
reduction of the source peak flux, but the total flux (the integral under the source shape)
is conserved.

For unresolved sources, theStrehl ratiois defined as the ratio of observed peak flux
over true peak flux. In case of Gaussian random phase errors, the Strehl ratioR is related
to the RMS phase errorσφ by [42]

R= exp



−
σ2
φ

2



 . (6.6)

A larger peak flux is equivalent to a smaller RMS phase error. This statement is more
generally true, because all phase errors cause scattering of source power into sidelobes.

A change in the apparent source shape due to ionospheric phase errors leads to
an increase in residual sidelobes after deconvolution. Deconvolution subtracts a time-
averaged source image model from the visibility data at all time stamps. In the presence
of time-variable phase errors, the mean source model deviates from the apparent, in-
stantaneous sky emission and subtraction is incomplete. Residual sidelobes increase the
RMS background noise level and, due to its non-Gaussian character, introduce structure
into the image that mimics real sky emission. In LF observations, due to the scaling
relation of the dirty beam with frequency (width∝ ν−1), residual sidelobes around bright
sources can be visible at significant distances from the source.

6.2.3 Ionospheric Phase Calibration

Lonsdale [9] discussed four different regimes for (instantaneous) ionospheric phase cal-
ibration, depending on the different linear spatial scales involved. These scales are the
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array sizeA, the scale sizeS of ionospheric phase fluctuations and the projected size
V of the field-of-view (FoV) at a typical ionospheric height. We use the termcompact
array whenA ≪ S andextendedarray whenA & S. Note that these definitions change
with ionospheric conditions, so there is no fixed linear scale that defines the difference
between compact and extended. A schematic overview of the different regimes is given
in Figure 6.1.

The combinationAV/S2 is a measure of the complexity of ionospheric phase cali-
bration. BothS andV depend on the observing frequencyν. For a power-law spectral
density of free electron density fluctuations (see Section 6.2.1)S scales withν , and for
a fixed circular antenna apertureV scales withν−1. Therefore,AV/S2 scales withν−3,
signalling a rapid increase in calibration problems towards low frequencies.

Underisoplanaticconditions (V ≪ S), the ionospheric phase error per antenna does
not vary with viewing direction within the FoV, for both compact and large arrays (Lons-
dale regimes 1 and 2, respectively). Phase-only self-calibration on short enough time-
scales is sufficient to remove the ionospheric phase errors from the visibilities.

Under anisoplanaticconditions (V & S), the ionospheric phase error varies over
the FoV of each antenna. A single phase correction per antenna is no longer sufficient.
Self-calibration may still converge, but the resulting phase correction per antenna is a
flux-weighted average of ionospheric phases across the FoV (see Section 6.3.1). Accu-
rate self-calibration and imaging of individual very bright and relatively compact sources
is therefore possible, even with extended arrays (see [61] for an example). For a compact
array (Lonsdale regime 3), the FoV of different antennas effectively overlap at iono-
spheric height. The LoS of different antennas towards one source run close and parallel
through the ionosphere. For an extended array (Lonsdale regime 4), the FoV of differ-
ent antennas may partially overlap at ionospheric height, but not necessarily. Individual
LoS from widespread antennas to one source may trace very different paths through the
ionosphere

In regime 3, ionospheric phases behave as a spatial gradientover the array that varies
with viewing direction. This causes the apparent position of sources to change with time
and viewing direction, but no source deformation takes place. The 3-dimensional phase
structure of the ionosphere can be effectively reduced to a 2-dimensional phase screen,
by integrating the free electron density along the LoS (Equation 6.4). Radio waves that
pass the virtual screen experience an instantaneous ionospheric phase rotation depending
on thepierce pointposition (where the LoS pierces the phase screen). When assuming a
fixed number of required ionospheric parameters per unit area of phase screen, calibra-
tion of a compact array requires a minimal number of parameters because each antenna
illuminates the same part of the phase screen.

In regime 4, the dependence of ionospheric phase on antenna position and viewing
direction is more complex. This causes source position shifts and source shape defor-
mations that both vary with time and viewing direction. A 2-dimensional phase screen
model may still be used, but only when the dominant phase fluctuations originate from
a restricted height range∆h ≪ S in the ionosphere. The concept of a thin layer at a
given height is attractive, because it reduces the complexity of the calibration problem
drastically. When using an airmass function to incorporatea zenith angle dependence,
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Figure 6.1: Schematic overview of the different calibration regimes as discussed by Lonsdale
[9]. For clarity, only two spatial dimensions and one calibration time interval are considered.
In this overview, the array is represented by three antennasat ground level, looking through the
ionospheric electron density structure (grey bubbles) with individual fields-of-view (red, green and
blue areas). Due to the relatively narrow primary beam patterns in regimes 1 and 2 (top left
and top right, respectively), each individual antenna ’sees’ an approximately constant TEC across
the FoV. The relatively wide primary beam patterns in regimes 3 and 4 (bottom left and bottom
right, respectively) causes the antennas to ’see’ TEC variations across the FoV. For the relatively
compact array configurations in regimes 1 and 3, the TEC variation across the array for a single
viewing direction within the FoV is approximately a gradient. For the relatively extended array
configurations in regimes 2 and 4, the TEC variation across the array for a single viewing direction
differs significantly from a gradient. The consequences for calibration of the array are discussed
in the text.
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the spatial phase function is in effect reduced to 2 spatial dimensions. Generally, a phase
screen in regime 4 requires a larger number of model parameters than in regime 3, be-
cause the phase screen area illuminated by the total array islarger.

It is currently unclear under which conditions a 2-dimensional phase screen model
becomes too inaccurate to model the ionosphere in regime 4. For very long baselines or
very severe ionospheric conditions, a full 3-dimensional ionospheric phase model may be
required, where ionospheric phase corrections need to determined by ray-tracing. Such
a model is likely to require many more parameters than can be extracted from radio
observations alone. To first order, it may be sufficient to extend the phase screen model
with some form of height-dependence. Examples of such extensions are the use of several
phase screens at different heights [62] or introducing smoothly varying partialderivatives
of TEC or phase as a function of zenith angle [63].

Calibration needs to determine corrections on sufficiently short time scales to track
the ionospheric phase changes. The phase rate of change depends on the intrinsic time
variability of the TEC along a given LoS and on the speed of theLoS from the array
antennas through the ionosphere while tracking a cosmic source. The latter may range
up to∼ 100 km h−1 at 200 km height. The exact requirements on the time resolution
of the calibration are yet to be determined. In principle, the time-variable ionospheric
phase distortions needs to be sampled at least at the Nyquistfrequency. However, during
phase variations of large amplitude (≫ 1 radian), 2π radian phase winding introduces
periodicity on much shorter time scales. To succesfully unwrap phase winds, at least two
corrections per 2π radian phase change are required.

6.2.4 Proposed and Existing Ionospheric Calibration Schemes

Schwab [64] and Subrahmanya [65] have proposed modifications to the self-calibration
algorithm to support direction-dependent phase calibration. Both methods discuss the
use of a spatial grid of interpolation nodes (additional free parameters) to characterize the
spatial variability of the ionospheric phase error. Schwabsuggests to use a different set
of nodes per antenna, while Subrahmanya suggests to combinethese sets by positioning
them in a quasi-physical layer at fixed height above the Earth’s surface (this to reduce the
number of required nodes when the FoVs from different antennas overlap at ionospheric
height). Neither of both proposed methods have been implemented.

Designed to operate in Lonsdale regime 3, field-based calibration by Cotton et al. [42]
is the single existing implementation of a direction-dependent ionospheric phase calibra-
tion algorithm. Typically, for each time interval of 1–2 minutes of VLA 74 MHz data,
the method measures and converts the apparent position shift of 5–10 detectable bright
sources within the FoV into ionospheric phase gradients over the array. To predict phase
gradients in arbitrary viewing directions for imaging of the full FoV, an independent
phase screen per time interval is fitted to the measured phasegradients. The phase screen
is described by a 5 term basis of Zernike polynomials (up to second order, excluding the
constant zero order).

Field-based calibration has been used to calibrate 74 MHz VLA observations, mostly
in B-configuration [41, e.g.] but also several in A-configuration [66, 67, e.g.]. Image
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plane comparison of field-based calibration against self-calibration shows an overall in-
crease of source peak fluxes (in some cases up to a factor of two) and reduction of resid-
ual sidelobes around bright sources, a clear indication of improved phase calibration over
the FoV [55]. The improved overall calibration performancesometimes compromises the
calibration towards the brightest source.

Zernike polynomials are often used to describe aberrationsin optical systems, be-
cause lower order terms match well with several different types of wavefront distortions,
and the functions are an orthogonal set on the circular domain of the telescope pupil.
Using Zernike polynomials to describe an ionospheric phasescreen may be less suitable,
because they are not orthogonal on the discrete domain of pierce points, diverge when
moving away from the field center and have no relation to ionospheric image abberations
(except for first order, which can model a large scale TEC gradient). Non-orthogonality
leads to interdependence between model parameters, while divergence is clearly non-
physical and leads to undesirable extrapolation properties.

For extended LF arrays or more severe ionospheric conditions, the ionospheric phase
behaviour over the array for a given viewing direction is no longer a simple gradient.
Under these conditions, performance of field-based calibration degrades. For the 74 MHz
VLA Low-frequency Sky Survey (VLSS; [41]), field-based calibration was unable to
calibrate the VLA in B-configuration for about 10–20% of the observing time due to
severe ionospheric conditions. Observing at 74 MHz with the∼ 3 times larger VLA
A-configuration leads to a relative increase in the failure rate of field-based calibration.
This is to be expected, as the larger array size results in an increased probability for the
observations to reside in Lonsdale regime 4.

The presence of higher order phase structure over the array in the direction of a cal-
ibrator requires an antenna-based phase calibration rather than a source position shift to
measure ionospheric phases. The calibration methods proposed by Schwab and Subrah-
manya (see above) do allow for higher order phase corrections over the array and could,
in principle, handle more severe ionospheric conditions. An alternative approach is to
use thepeelingtechnique [26], which consist of sequential self-calibrations on individ-
ual bright sources in the FoV. This yields per source a set of time-variable antenna-based
phase corrections and a source model. Because the peeling corrections are applicable to
a limited set of viewing directions, they need to be interpolated in some intelligent way
to arbitrary viewing directions while imaging the full FoV.Peeling is described in more
detail in Section 6.3.3

Noordam [26] has proposed a ‘generalized’ self-calibration method for LOFAR [e.g.
68] that includes calibration of higher order ionospheric phase distortions. Similar to
‘classical’ self-calibration, instrumental and environmental (including ionospheric) pa-
rameters are estimated by calibration against a sky brightness model. Sky model and
calibration parameters are iteratively updated to converge to some final result. Unique-
ness of the calibration solution is controlled by putting restrictions on the time-, space-
and frequency behaviour of the fitted parameters. The effects of the ionosphere are mod-
eled in a Minimum Ionospheric Model (MIM; [63]), which is yetto be defined in detail.
The philosophy of the MIM is to use a minimal number of physical assumptions and free
parameters to accurately reproduce the observed effects of the ionosphere on the visi-
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bilities for a wide-as-possible range of ionospheric conditions. The initial MIM is to be
constrained using peeling corrections.

6.3 Method

SPAM, an abbreviation of ‘Source Peeling and Atmospheric Modeling’, is the imple-
mentation of a new ionospheric calibration method, combining several concepts from
proposed and existing calibration methods. SPAM is designed to operate in Lonsdale
regime 4 and can therefore also operate in regimes 1 to 3. It uses the calibration phases
from peeling sources in the FoV to constrain an ionospheric phase screen model. The
phase screen mimics a thin turbulent layer at a fixed height above the Earth’s surface, in
concordance with the observations of ionospheric small-scale structure (Section 6.2.1).
The main motivation for this work was to test several aspectsof ionospheric calibra-
tion on existing VLA and GMRT data sets on viability and qualitative performance, and
thereby support the development of more advanced calibration algorithms for future in-
struments such as LOFAR.

Generally, the instantaneous ionosphere can only be sparsely sampled, due to the non-
uniform sky distribution of a limited number of suitable calibrators and an array layout
that is optimized for UV-coverage rather than ionospheric calibration. To minimize the
error while interpolating to unsampled regions, an optimalchoice of base functions for
the description of the phase screen is of great importance. Based on the results in Chapter
5 [see also 51], we use the discrete Karhunen-Loève (KL) transform to determine an op-
timal set of base ‘functions’ to describe our phase screen. For a given pierce point layout
and an assumed power-law slope for the spatial structure function of ionospheric phase
fluctuations (see Section 6.2.1), the KL transform yields a set of base vectors with sev-
eral important properties: (i) the vectors are orthogonal on the pierce point domain, (ii)
truncation of the set (reduction of the model order) gives a minimal loss of information,
(iii) interpolation to arbitrary pierce point locations obeys the phase structure function,
and (iv) spatial phase variability scales with pierce pointdensity, i.e., most phase screen
structure is present in the vicinity of pierce points, whileit converges to zero at infinite
distance (more detail on this phase screen model is given in Section 6.3.4).

Because the required calibration time resolution is still an open issue, and the SPAM
model does not incorporate any restrictions on temporal behaviour, independent phase
screens are determined at the highest possible time resolution (which is the visibility
integration time resolution).

SPAM calibration can be separated in a number of functional steps, each of which
is discussed in detail in the sections to follow. The required input is a spectral-mode
visibility data set that has flux calibration and bandpass calibration applied, and radio
frequency interference (RFI) excised (see [69] or [41] for details). The SPAM recipe
consists of the following steps:

1. Obtain and apply instrumental calibration corrections for phase (Section 6.3.1).
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2. Obtain an initial model of the apparent sky, together withan initial ionospheric
phase calibration (Section 6.3.2).

3. Subtract the sky model from the visibility data while applying the phase calibra-
tion. Peel apparently bright sources (Section 6.3.3).

4. Fit an ionospheric phase screen model to the peeling solutions (Section 6.3.4).

5. Apply the model phases on a facet-to-facet basis during re-imaging of the apparent
sky (Section 6.3.5).

Steps 3 to 5 define the SPAM calibration cycle, as the image produced in step 5 can serve
as an improved model of the apparent sky in step 3.

The scope of applications for SPAM is limited by a number of assumptions that were
made to simplify the current implementation:

• The ionospheric inhomogeneities that cause significant phase distortions are lo-
cated in a single, relatively narrow height range.

• There exists a finitely small angular patch size, which can bemuch smaller than
the FoV of an individual antenna, over which the ionosphericphase contribution
is effectively constant. Moving from one patch to neighbouring patches results in
small phase transitions (≪ 1 radian).

• There exists a finitely small time range, larger than the integration time interval of
an observation, over which the apparent ionospheric phase change for any of the
array antennas along any line-of-sight is much smaller thana radian.

• The bandwidth of the observations is small enough to be effectively monochro-
matic, so that the ionospheric dispersion of waves within the frequency band is
negligible.

• Within the given limitations on bandwidth and integration time, the array is sensi-
tive enough to detect at least a few (& 5) sources within the target FoV that may
serve as phase calibrators.

• The ionospheric conditions during the observing run are such that self-calibration
is able to produce a good enough initial calibration and sky model to allow for
peeling of multiple sources. This might not work under very bad ionospheric con-
ditions, but for the applications presented in this articleit proved to be sufficient.

• After each calibration cycle (steps 3 to 5), the calibrationand sky model are equally
or more accurate than the previous. This implies convergence to a best achievable
image.

• The instrumental amplitude and phase contributions to the visibilities, including
the antenna power patterns projected onto the sky towards the target source, are
constant over the duration of the observing run.
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SPAM does not attempt to model the effects of ionospheric Faraday rotation on polariza-
tion products, and is therefore only applicable to intensity measurements (stokes I).

In our implementation we have focussed on functionality rather than processing
speed. In its current form, SPAM is capable of processing quite large offline data sets,
but is not suitable for real-time processing as is required for LOFAR calibration. SPAM
relies heavily on functionality available in NRAO’s Astronomical Image Processing Sys-
tem (AIPS; [e.g. 70]). It consists of a collection of Python scripts that accesses AIPS
tasks, files and tables using the ParselTongue interface [71]. Two main reasons to use
AIPS are its familiarity and proven robustness while serving a large group of users over a
30 year lifetime, and the quite natural way by which the ionospheric calibration method
is combined with polyhedron imaging [72, 73]. SPAM uses a number of 3rd party Python
libraries, like scipy, numpy and matplotlib for math and matrix operations and plot-
ting. For non-linear least squares fitting of ionospheric phase models, we have adopted a
Levenberg-Marquardt solver (LM; [e.g. 74]) based on IDL’s MPFIT package [75].

6.3.1 Instrumental Phase Calibration

Each antenna in the array adds an instrumental phase offset to the recorded signal before
correlation. At low frequencies, changes in the instrumental signal path length (e.g., due
to temperature induced cable length differences) are very small compared to the wave-
length, therefore instrumental phase offsets are generally stable over long time periods
(hours to days). SPAM requires removal of the instrumental phase offsets from the visi-
bilities prior to ionospheric calibration.

Instead of directly measuring the sky intensityI (l,m) as a function of viewing direc-
tion cosines (l,m), an interferometer measures an approximate Fourier transform of the
sky intensity. For a baseline consisting of antennasi and j, the perfect response to all vis-
ible sky emission for a single time instance and frequency isgiven by the measurement
equation (ME) for visibilities [4, e.g.]:

Vi j =

∫ ∫

I (l,m)e−2πJ
[

ui j l+vi j m+wi j (n−1)
] dl dm

n
, (6.7)

whereJ indicates the imaginary part of a complex number,n =
√

1− l2 −m2, ui j andvi j
are baseline coordinates in the UV plane (expressed in wavelengths) parallel tol andm,
respectively, andwi j is the perpendicular baseline coordinate along the LoS towards the
chosen celestialphase tracking centerat (l,m) = (0, 0). In practise, these measurements
are modified with predominantly antenna-based complex gainfactorsai that may vary
with time, frequency, antenna position and viewing direction. This modifies the ME into

V̂i j =

∫ ∫

ai(l,m) a†j (l,m)

I (l,m)e−2πJ
[

ui j l+vi j m+wi j (n−1)
] dl dm

n
. (6.8)

Determination of the gain factors is generally referred to as calibration. When known,
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only gain factors that do not depend on viewing direction canbe removed from the visi-
bility data prior to image reconstruction by applying the calibration:

Vi j = (ai a†j )
−1V̂i j (6.9)

This operation is generally not possible for gain factors that do depend on viewing direc-
tion, because these gain factors cannot be moved in front of the integral in Equation 6.8.
One may still choose to apply gain corrections for a single viewing direction (e.g. to
image a particular source), but the accuracy of imaging and deconvolution of other vis-
ible sources will degrade when moving away from the selectedviewing direction. A
solution for wide-field imaging and deconvolving in the presence of direction-dependent
gain factors is discussed in Section 6.3.5.

The standard approach for instrumental phase calibration at higher frequencies is to
repeatedly observe a bright (mostly unresolved) source during an observing run. Antenna-
based gain phase correctionsgi ≈ a−1

i are estimated by minimizing the weighted differ-
ence sumS between observed visibilitieŝVi j and source model visibilitiesVmodel

i j ≈ Vi j
[e.g. 4]; implemented in AIPS task CALIB):

S =
∑

i

∑

j>i

Wi j ‖Vmodel
i j − gi g†j V̂i j ‖p, (6.10)

with Wi j the visibility weight (reciproke of the uncertainty in the visibility measurement),

gi = eiφcal
i andp the power of the norm (typically 1 or 2). The source model visibilities

Vmodel
i j are calculated using Equation 6.7 withI (l,m) = Imodel(l,m). The phase corrections

φcal
i consist of an instrumental and an atmospheric part. The corrections are interpolated

in time and applied to the target field visibilities, under the assumptions that the instru-
mental and atmospheric phase offsets vary slowly in time, and that the atmospheric phase
offsets in the direction of the target are equal to those in the direction of the calibrator.

At low frequencies, there are two complicating factors for the standard approach:
(i) the FoV around the calibrator source is large and includes many other sources, and
(ii) the ionospheric phase offset per antenna changes significantly with time and viewing
direction. The former can be overcome by choosing a very bright calibrator source with
a flux that dominates over the combined flux of all other visible sources on all baselines
(the gainsgi are a ). For the VLSS [41], the 17,000 Jy of Cygnus A was more than
sufficient to dominate over the total apparent flux of 400−500 Jy in a typical VLSS field.
The latter requires filtering of the phase corrections to extract only the instrumental part,
which is then applied to the target field visibilities.

For SPAM, we have adopted an instrumental phase calibrationmethod that is very
similar to the procedure used for field-based calibration [42]. Antenna-based phase cor-
rections are obtained on the highest possible time resolution by calibration on a very
bright sourcek using the robust L1 norm (Equation 6.10 withp = 1; [76]). A phase
correctionφcal

ikn for antennai at time intervaln consist of several contributions:

φcal
ikn = φ

instr
i + φion

ikn − φrkn − φ
ambig
ikn , (6.11)
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where the instrumental and ionospheric phase corrections,φinstr
i andφion

ikn respectively, are
assumed to be constant resp. vary with time and antenna position over the observing run.
The other right-hand terms are the phase offsetφrkn = φ

instr
r +φion

rkn of an arbitrarily chosen

reference antennar ∈ {i}, and the phase ambiguity termφambig
ikn = 2πNikn with integerNikn

that mapsφcal
ikn into the [0, 2π) domain.

The antenna-based phase corrections are split into instrumental and ionospheric parts
on the basis of their temporal and spatial behaviour. The phase corrections are filtered by
iterative estimation of invariant instrumental phases (together with the phase ambiguities)
and time- and space-variant ionospheric phases. The instrumental phases are estimated
by robust averaging (+3σ rejection) over all time intervalsn:

φ̃instr
i =

〈(

φcal
ikn − φ̃

ion
i

)

mod 2π
〉

n
. (6.12)

The phase ambiguity estimates follow from

φ̃
ambig
ikn = 2π round

([

φ̃instr
i + φ̃ion

i − φcal
ikn

]

/2π
)

, (6.13)

where the round() operator rounds a number to the nearest integer value. The instrumen-
tal phase offset of the reference antenna is arbitrarily set to zero. The ionospheric phases
are constrained by fitting a time-varying spatial gradient~Gkn to the phases over the ar-
ray. The gradient fit consists of an initial estimate directly from the calibration phase
corrections, followed by a refined fit by using the LM solver tominimize

χ2
kn =

∑

i

[ (

φcal
ikn − φ̃

instr
i + φ̃

ambig
ikn

)

−

~Gkn ·
(

~xi − ~xr
)

︸           ︷︷           ︸

φ̃ion
ikn

]2

, (6.14)

where~xi is the position of antennai. The ionospheric phase offset of the reference an-
tenna is arbitrarily set to zero, which makes it a pivot pointover which the phase gradient
rotates. Higher order ionospheric effects are assumed to average to zero in Equation 6.12.

6.3.2 Initial Phase Calibration and Initial Sky Model

The instrumental phase calibration method described in Section 6.3.1 assumes that the
time-averaged ionospheric phase gradient over the array inthe direction of the bright
phase calibrator is zero. Any non-zero average is absorbed into the instrumental phase
estimates, causing a position shift of the whole target fieldand thereby invalidating the
astrometry. Before entering the calibration cycle (Sections 6.3.3–6.3.5), SPAM requires
restoration of the astrometry and determination of an initial sky model and initial iono-
spheric calibration.

To restore the astrometry, the instrumentally corrected target field data from Sec-
tion 6.3.1 is phase calibrated against an apparent sky model(AIPS task CALIB). The
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default is a point source model, using NVSS catalog positions [77, 78], power-law inter-
polated fluxes from NVSS and WENSS/WISH catalogs [79] and a given primary beam
model. To preserve the instrumental phase calibration as obtained in Section 6.3.1 dur-
ing further processing, time-variable phase corrections resulting from calibration steps in
this and the following sections are stored in a table (AIPS SNtable) rather than applied
directly to the visibility data. The sky model calibration is followed by wide-field imag-
ing (AIPS task IMAGR) and several rounds of phase-only self-calibration (CALIB and
IMAGR) at the highest possible time resolution, yielding the initial sky model and initial
phase calibration.

For wide-field imaging with non-coplanar arrays, the standard imaging assumptions
that the relevant sky area is approximately flat and the thirdbaseline coordinate (w-term
in Equation 6.7) is constant across the FoV are no longer valid. To overcome this, SPAM
uses the polyhedron method [72, 73] that divides the large FoV into a hexagonal grid
of small, partially overlappingfacetsthat individually do satisfy the assumptions above
(AIPS task SETFC). Additional facets are centered on relatively bright sources inside
and outside the primary beam area to reduce image artefacts due to pixellation [80–84].

The Cotton-Schwab algorithm [64, 85, 86] is a variant of CLEAN deconvolution [14,
87] that allows for simultaneous deconvolution of multiplefacets, using a different dirty
beam for each facet.Boxesare used to restrict CLEANing to real sky emission, making
sure that sources are deconvolved in the nearest facet only (CLEAN model components
are stored in facet-based AIPS CC tables). After deconvolution, the CLEAN model is
restored to the relevant residual facets (AIPS task CCRES) using a CLEAN beam, and
the facets are combined to form a single image of the full FoV (AIPS task FLATN).

6.3.3 Peeling

To construct a model of ionospheric phase rotations in arbitrary viewing directions within
the FoV, SPAM requires measurements in as many directions aspossible. When no ex-
ternal sources of ionospheric information are available, the target field visibilities them-
selves need to be utilized. (Self-)calibration on individual sources can supply the required
information, even in the presence of higher order phase structure over the array. After
instrumental phase offsets are removed, phase calibration corrections are an relative mea-
sure of ionospheric phase:

φcal
ikn = φ

ion
ikn − φ

ion
rkn − φ

ambig
ikn , (6.15)

where we used Equation 6.11 withφinstr
i = φinstr

r = 0.
SPAM uses the peeling technique [26] to obtain phase corrections in different view-

ing directions. Peeling consists of self-calibration on individual sources, yielding per
source a set of time-variable antenna-based phase corrections and a source model. Af-
ter self-calibration of a source, the source model is subtracted from the visibility data
set while temporarily applying the phase corrections (AIPStasks SPLIT, UVSUB and
CLINV /SPLIT).

For peeling to converge, a source needs to be the dominant contributor of flux to the
visibilities on all baselines. Especially at low frequencies, the presence of many other
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sources in the large FoV may add considerable noise to the peeling phase corrections.
To suppress this effect, the following steps are performed: (i) The best available model
of the apparent sky is subtracted from the visibility data while temporarily applying the
associated phase calibration(s). The initial best available model and associated phase
calibration is the self-calibration output of Section 6.3.2. Individual source models are
added back before peeling. (ii) Sources are peeled in decreasing flux order to suppress
the effect of brighter sources on the peeling of fainter sources. (iii) Calibration only
uses visibilities with projected baseline lengths longer than a certain threshold. This
excludes the high ‘noise’ in the visibilities near zero-length baselines from the coherent
flux contribution of imperfectly subtracted sources.

The radio sky can be approximated by a discrete number of isolated, invariant sources
of finite angular extend. Visibilities in the ME (Equation 6.7) for a single integration time
n can therefore be split into a linear combination of contributions from individual sources
k:

Vi jn =
∑

k

Vi jkn =
∑

k

∫ ∫

Ik(l,m)

e−2πJ
[

ui jn l+vi jnm+wi jn(n−1)
] dl dm

n
. (6.16)

The subtraction of all but the peeling sourcek′ from the measured visibilities in step (i)
above can be described as

V̂i jk ′n ≈ V̂i jn −
∑

k,k′
(gikn g†jkn)−1Vmodel

i jkn , (6.17)

with gikn = gi(lk,mk, tn) = eiφcal
ikn the best available calibration in the viewing direction of

sourcek, andVmodel
i jkn the visibilities that are derived from the best available model Imodel

i jk
of sourcek. The peeling itself consists of iterative calibration and imaging steps of the
peeling sourcek′. The calibration (Equation 6.10 withp = 1) updates the antenna gain
correctionsgikn by minimizing

Sn =
∑

i

∑

j>i

wi jn‖Vmodel
i jk ′n − gin g†jnV̂i jk ′n‖, (6.18)

while the imaging step updatesImodel
i jk ′ and thereforeVmodel

i jk ′n .
In practise, due to incompleteness of the sky model and inaccuracies in the phase

calibration, there will always remain some contaminating source flux in the visibilities
while peeling. Complemented with system noise, sky noise, residual RFI and other pos-
sible sources of noise, the noise in the visibilities propagates into the phase corrections
from the peeling process.

Absolute astrometry is not conserved during peeling, because self-calibration allows
antenna-based phase corrections to vary without constraint. In subsequent peeling cy-
cles, small non-zero phase gradients in the phase residualsafter calibration can cause the
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source model to wander away from its true position. In SPAM, astrometry errors are min-
imized by re-centering the source model to its true (catalog) position before calibration in
each self-calibration loop. By default, SPAM re-centers the peak of the model flux to the
nearest bright point source position in the NVSS catalog [77, 78]. It is recommended to
visually check the final peeling source images for possible mismatches with the catalog
(e.g., in case of double sources or sources with a spatially varying spectral index).

While peeling, SPAM attempts to calibrate sources on the highest possible time res-
olution, which is the visibility time grid. The noise in the resulting phase corrections
depends on the signal-to-noise ratio (SNR) of the source fluxin the visibilities. To in-
crease the number of peeling sources and limit the phase noise in case of insufficient
SNR, SPAM is allowed to increase the calibration time interval beyond the visibility in-
tegration time up to an arbitrary limit. Through image planeanalysis, SPAM estimates
the required calibration time-interval per source:

nt =

(
σL

αSp

)2

Nt, (6.19)

wherent is the required number of integration times in a calibrationinterval, Nt is the
total number of integration times within the observation,α is the minimum required SNR
per integration time (a tweakable parameter that sets the balance between the SNR and
the time resolution of the peeling phase corrections), andSp andσL are the measured
source peak flux and local background noise level in the image. For a fixed upper limit
on the calibration time interval, an increase inα results in a decrease in the number of
peeling sources. Fornt < 1, phase corrections are determined on the visibility time grid.
For nt > 1, a spline is used to resample the phase corrections per antenna in time onto
the visibility time grid.

Apart from SNR issues, the number of sources that can be peeled is fundamentally
limited by the available number of independent visibility measurements. When peeling
Ns sources, self-calibration fitsNs(Na−1) phase solutions per calibration time interval to
the visibility data, whereNa is the number of antennas. For self-calibration to converge
to an unique combination of phase solutions and source model, this number needs to be
much smaller than the number of independent visibility measurements. The maximum
of visibilities measurements that is available in one calibration time interval is given by
Nc〈nt〉Na(Na − 1)/2, with Nc the number of frequency channels and〈nt〉 the average
number of visibility integration times in a calibration interval. In the ideal case, when we
assume that each visibility is an independent measurement,the determination of antenna-
based phase corrections for all peeling sources is well constrained if

Ns≪
NaNc〈nt〉

2
. (6.20)

The applications presented in this article do satisfy this minimal condition (see Sec-
tion 6.4).

Equation 6.20 is equivalent to stating that the number of degrees-of-freedom (DoF;
the difference between the number of independent measurements and the number of
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model parameters) should remain a large positive number. Correlation between visi-
bilities over frequency and time may reduce the number of independent measurements
drastically, thereby also reducing the number of DoFs. The exact number of DoFs for any
data set is hard to quantify. When this number becomes too low, the data is ‘over-fitted’
[e.g. 88], which could result in an artificial reduction of both the image background noise
level and source flux that is not represented in the self-calibration model [12]. Although
we have found no evidence of this effect occuring in the applications presented in this
article, the SPAM user should be cautious not to peel too manysources. In case of a
high number of available peeling sources, one can choose a subset with a sufficiently
dense spatial distribution over the FoV (e.g., one source per isoplanatic patch; see Sec-
tion 6.3.5).

6.3.4 Ionospheric Phase Screen Model

The phase corrections that are obtained by peeling several bright sources in the FoV
(Section 6.3.3) are only valid for ionospheric calibrationin a limited patch of sky around
each source. To correct for ionospheric phase errors over the full FoV during wide-field
imaging and deconvolution, SPAM requires a model that predicts the phase correction
per antenna in arbitrary viewing directions.

SPAM constructs a quasi-physical phase screen model that attempts to accurately re-
produce and interpolate the measured ionospheric phase rotations (or more accurately:
the peeling phase corrections). The phase screen is determined independently for each
visibility time stamp, therefore we drop then-subscript in the description below. Fig-
ure 6.2 is a schematic overview of the geometry of ionospheric phase modeling in SPAM.
The ionosphere is represented by a curved phase screen at a fixed heighth above the
Earth’s surface, compliant to the WGS84 standard (NIMA [89]). The total phase rotation
experienced by a ray of radio emission traveling along a LoS through the ionosphere is
represented by an instantaneous phase rotationφion(~p, ζ) on passage through the phase
screen that is a function of pierce point position~p and zenith angleζ. For a thin layer
(∆h≪ S; see Section 6.2.3), the dependence ofφion on ζ can be represented by a simple
airmass function, so that

φion(~p, ζ) =
φion(~p)
cos(ζ)

. (6.21)

SPAM uses an angular local longitude/latitude coordinate system to specify~p, rel-
ative to the central pierce point from array center to field center. For the applications
presented in this article, the angular distances between pierce points over the relevant
ionospheric domain are all< 5 degrees, which effectively makes the pierce point vector
~p a 2-dimensional cartesian vector.

The 2-dimensional phase screenφion(~p) is defined on a set of KL base vectors, gen-
erated from the instantaneous pierce point configuration{~pik} and an assumed power-law
shape for the phase structure function (Section 6.2.1). TheKL base vector generation
and interpolation described in detail in Section 5.3.5. Thephase screen model requires
one free parameter per KL base vector. The initial complete set of KL base vectors is
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Figure 6.2: Schematic overview of the SPAM thin ionospheric phase screen model geometry. For
clarity, only two spatial dimensions and one calibration time interval are considered. In this
overview, five ground-based array antennas (labelled 1 to 5)observe three calibrator sources (col-
ored red/green/blue and labelled A to C) within the FoV. The (colored) LoSs from the array towards
the sources run parallel for each source and pierce the phasescreen at fixed height h (colored cir-
cles). The LoS from antenna i at Earth location~ai towards a peeling source k at local sky position
ŝik intersects the phase screen at a single pierce point~pik under a zenith angleζik. For a single LoS
from antenna 1 towards source A, we have indicated how the pierce point position~pik = p1A and
zenith angleζik = ζ1A relate to the antenna position~ai = a1 and the local sky position̂sik = s1A
of the source. For some LoSs the pierce points may overlap (ornearly overlap), as is the case
for 1C& 4A and 2C& 5A in our example. The total (integrated) phase rotation along any LoS
through the ionosphere is modeled by an instantaneous phaserotation φion

ik at the phase screen
height. For example, radio waves traveling along LoSs from source A towards antennas 1 to 5 ex-
perience an instantaneous phase rotationφion

ik = φ1A to φ5A, respectively, while passing the screen
at their related pierce points~pik = p1A to p5A, respectively. Peeling the three calibrator sources
yields measurements of the ionospheric phasesφion

ik , relative to a common reference antenna (in
this example antenna 3; encircled).
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Figure 6.3: Plots of the interpolations of the first six KL base vectors, derived for an artifi-
cial but realistic configuration of ionospheric pierce points. In this example, the pierce points
(black crosses) are calculated for a single time instance during a 74 MHz VLA-B observation with
13 available calibrator sources in the∼ 10degree FoV, adopting a phase screen height h= 200km
and a structure function power-law slopeγ = 5/3. The horizontal and vertical axes represent
angular distances in East-West and North-South directions, respectively, as seen from the center
of the Earth, relative to the phase screen’s pierce point along the line-of-sight from array center
to pointing center, with East- and Northward offsets being positive. At this height, a 0.1 degree
angular offset represents a physical horizontal offset of∼ 11.5 km. The direction-dependent phase
for each interpolated KL base vector is color-coded and scaled to an arbitrary amplitude range.

arbitrarily reduced in order by selecting a subset based on statistical relevance (princi-
ple component analysis). This reduces the effect of noise in the peeling solutions on the
model accuracy and simultaneously limits the number of model parameters. However,
the subset should still be large enough to accurately reproduce the peeling phase cor-
rections. Per visibility time stamp, the KL base vectors arestored for later use during
imaging (for this purpose, we mis-use the AIPS OB table). As an example, the first six
interpolated KL base vectors for a single configuration of ionospheric pierce points are
plotted in Figure 6.3.

The peeling phase correctionsφcal
ik are interpreted to be relative measurements of the

absolute ionospheric phase screen modelφion(~p, ζ) which may be determined up to a
constant. The model parameters are determined by minimizing the differences between
the observed and the model phases using the LM non-linear least-squares solver, for
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which aχ2 sum needs to be defined. From Equation 6.15 it follows that

φcal
ik = φ

ion(~pik, ζik) − φion(~prk, ζrk) − φambig
ik . (6.22)

Consequently, the phase correction in the direction of sourcek for a baseline consisting
of antennasi and j is

φcal
ik − φcal

jk =
[

φion(~pik, ζik) − φion(~p jk, ζ jk)
] −

[

φ
ambig
ik − φambig

jk

]

. (6.23)

Theχ2 sum is defined as:

χ2 =
∑

k

∑

i

∑

j>i

[([

φcal
ik − φcal

jk

] −

[

φion(~pik, ζik) − φion(~p jk, ζ jk)
])

mod 2π
]2

. (6.24)

This definition has several properties: (i) By remapping theχ2 terms into the [0, 2π)
domain, the phase ambiguity terms do not have to be fitted explicitly, (ii) the χ2 terms
of all calibrator sources are weighted equally, so the modelis not biased towards the
brightest source (as is the case for self-calibration), and(iii) using χ2 terms from all
possible antenna pairs prevents a bias towards the reference antenna.

Using Equation 6.24, the LM solver yields a set of model parameters per visibility
time stamp. These are stored for later use during imaging (AIPS NI table). The square
root of the average of theχ2 terms equals the average RMS phase residual between
peeling and model phases. Time intervals that have a bad fit are identified and removed
by means of an upper limit (+2.5σ rejection) on the distribution of RMS phase residuals
over time.

Convergence of the LM solver is troubled by 2π phase ambiguities, because these
introduce local minima inχ2 space. A good initial guess of the model parameters greatly
helps to overcome this problem. To this purpose, SPAM estimates the global phase gra-
dient over all the pierce points directly from the phase correctionsφcal

ik and projects it
onto the KL base vectors before invoking the LM solver.

Figure 6.4 shows an example of an ionospheric phase screen that was constructed as
described above. The pierce point layout consists of multiple projections of the array onto
the phase screen. The low density of calibrators causes a minimal overlap between array
projections. Figure 6.5 shows a comparison between time-sequences of phase corrections
from self-calibration, peeling and model fitting. Because the self-calibration corrections
are a flux-weighted average for the full FoV, they are biased towards the brightest source.
They look somewhat similar to the peeling solutions of the brightest source, but the
latter contains additional fluctuations that vary on a relatively short timescale. The model
phases appear similar to the peeling phases, but vary more smoothly. Their values fall
somewhere in between the self-calibration phases and the peeling phases. The difference
between the peeling phases and model phases are mainly caused by the constraints on
the spatial variability of the phase screen model.
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Figure 6.4: Example of an ionospheric phase screen model fit. The color map represents an
ionospheric phase screen at 200 km height that was fitted to the peeling phase solutions of 8
calibrator sources at time-interval n= 206of 10 seconds during a VLSS observing run of the 74
MHz VLA in BnA-configuration (see Section 6.4, the J1300-208data set). The plot layout is similar
to Figure 6.3. The overall phase gradient (depicted in the bottom-left corner) was removed to make
the higher order terms more clearly visible. The collectionof pierce points from all array antennas
to all peeling sources are depicted as small circles., The color in the circle represents the measured
peeling phase (the reference antenna VLA N36 was set to matchthe phase screen value). The size
of the circle scales with the magnitude of the estimated phase residual after model correction. The
overall RMS phase residualσphase= 21.799degrees (averaged over all pierce points) was one of
the better fitting results during this particular observingrun.
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Figure 6.5: Example of phase corrections from different steps in the ionospheric calibration pro-
cess, resulting from processing a VLSS data set with SPAM (see Section 6.4, the real J0900+398
data set). The antenna under consideration is VLA E28, with W20 being the reference antenna
(an 5.7 km east-west baseline). The plots represent 25 minutes of observing time, using a 10 sec-
ond time resolution. Top: Antenna-based phase correctionsresulting from self-calibration on the
whole FoV. Middle: Phase corrections resulting from peeling the brightest (30 Jy) source. Bottom:
Corrections resulting from ionospheric phase modeling in the direction of the (same) brightest
source.
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6.3.5 Imaging

With an ionospheric phase screen model available for a givenvisibility data set, antenna-
based phase corrections for any direction in the wide FoV canbe calculated (Equa-
tion 6.22). Because each visibility consist of contributions from visible sources in differ-
ent viewing directions, there is no simple operation that removes the ionospheric phase
rotations from a visibility data set prior to imaging. Instead, SPAM requires an algorithm
that calculates and applies the appropriate model phase corrections during imaging and
deconvolving for different parts of the FoV.

SPAM works under the assumption that there exists a fixed angular isoplanatic patch
size on the sky, with a projected size at ionospheric height smaller than the scale size of
ionospheric phase fluctuations, over which variations in ionospheric phase rotation are
negligible. Each isoplanatic patch requires at least one phase correction per antenna per
visibility time interval. For the VLA at 74 MHz, the isoplanatic patch size is estimated
to be 2–4 degrees [55].

The facet-based polyhedron method for wide-field imaging (see Section 6.3.2) allows
for a relatively simple implementation of ionospheric phase correction [64]. By choosing
a facet size smaller than the isoplanatic patch size, a set ofmodel phase corrections
calculated for the center of a facet are assumed to be accurate for the whole facet area.
Ionospheric phase model corrections are calculated and stored (AIPS SN tables) for each
facet center in the FoV prior to imaging and deconvolution. For the additional facets
centered on bright sources (see Section 6.3.2), model phasecorrections are optionally
replaced by peeling phase corrections to allow for optimized calibration towards these
sources.

The SPAM imaging and deconvolution procedure is similar to the procedure used
for the field-based calibration method by Cotton et al. [42],which differs from the stan-
dard Cotton-Schwab algorithm by the temporary applicationof the facet-based phase
corrections (AIPS tasks SPLIT and CLINV/SPLIT) to the visibility data for the duration
of major CLEAN cycles on individual facets (AIPS tasks IMAGRand UVSUB). After
deconvolution, facets are combined to form a single image ofthe full FoV (AIPS task
FLATN). Because antenna-based phase corrections change very little between adjacent
facets, the complete set of partly overlapping facet imagescombine into a continuous
image of the FoV.

6.4 Applications

To demonstrate the capabilities of SPAM, we have defined three test cases based on
observations with the VLA at 74 MHz [58]. In each test case, SPAM is used for iono-
spheric phase calibration and imaging of a VLSS visibility data set [41], following the
steps described in Section 6.3. In the first test case, SPAM was applied to simulated
data to validate basic functionality in a controlled environment. In the next two test
cases, SPAM was applied to visibility data from real observations under varying iono-
spheric conditions. We compare SPAM performance against self-calibration (SC) and
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field-based calibration (FBC) by analyzing the resulting images. The setup and results of
these test cases are described in detail in the following sections.

6.4.1 Data Selection, Preparation and Processing

In this Section we describe how the visibility data sets for the three test cases were se-
lected/constructed. Furthermore, we present details on how these data sets were pro-
cessed by SPAM into calibrated images of the FoV.

Two VLSS observations, at pointing centers J0900+398 and J1300-208, respectively,
have been picked from more than 500 available VLSS observations on the following
criteria: (i) both fields contain a relatively large number of bright sources that can serve
as calibrators, and (ii) the ionospheric conditions duringthe observations appear to be
relatively good (J0900+398) and relatively bad (J1300-208). The presence of more than
5 bright sources of at least 5 Jy compensates for the relatively poor efficiency of the
VLA 74 MHz receiving system [58]. The ionospheric conditions were derived from
the apparent smearing of point sources in the images, due to residual phase errors after
applying FBC. From experience, we adopted the qualification‘good’ when the mean
width of apparent point sources was at most 5′′ larger than the intrinsic 80′′ resolution,
while for ‘bad’ conditions the mean point source width was larger by at least 15′′. In
terms of Strehl ratioR (Equation 6.6), ’good’ and ’bad’ conditions correspond with R >

0.996 andR< 0.966, respectively. Additionally, candidate fields were visually inspected
for evidence of residual phase errors by the presence or absence of image artefacts near
bright sources, which lead to the final selection of the two fields mentioned above.

The difference in observed ionospheric conditions between the two real data sets may
be the result of the difference in array size and elevation of the target field. From the VLA
site at+34 degrees declination, the J0900+398 field was observed in B-configuration (up
to 11 km baselines) at relatively high elevation, while the J1300-208 field was observed in
BnA-configuration (up to 23 km baselines) at relatively low elevation. For the J1300-208
observation, the array observed through the ionosphere at larger separations and along
longer path lengths than for the J0900+398 observation, which is expected to result in
both larger and less coherent phase errors over the array.

Because both real data sets have been previously calibratedand imaged with FBC, the
data sets were already partly reduced at the start of SPAM processing. Instrumental cal-
ibration was applied (including instrumental phase calibration, similar to Section 6.3.1),
most RFI-contaminated data was flagged and the spectral resolution was reduced [see
41] for details), but no FBC has been applied yet. For the simulated data set, which is
based on the real J0900+398 observations, the measured visibilities were replacedby
noiseless model visibilities of an idealized sky, consisting of 91 bright point sources with
peak fluxes (larger than 1 Jy) and positions as measured in theJ0900+398 FBC image.
For each point source, the corresponding model visibility phases were corrupted using
the direction-dependent ionospheric phase model that was obtained with FBC to correct
the real J0900+398 data.

FBC images of the two real data sets were available in the VLSSarchive. For the sim-
ulated J0900+398 data set, an ‘undisturbed’ image was made before applying the iono-
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spheric phase corruptions. All three VLSS data sets have been processed with SPAM,
yielding both an SC image and an ionosphere-corrected SPAM image. Relevant details
on the processing can be found in Table 6.1. For SC and SPAM imaging, we adopted
most of the imaging-specific settings from FBC (like uniformweighting). Noticeable
differences are the use of CLEAN boxes, a smaller pixel size and a different facet con-
figuration.

By choosing a minimum SNR per time interval of 15 and a maximumpeeling time
interval of 4 minutes (see Equation 6.19), SPAM was able to peel ∼ 10 sources in each
of the real data sets. Lowering the SNR resulted in a much larger scatter in the peeling
phases over time, or prevented peeling to converge at all. The peeling time upper limit
was chosen to roughly match the spatial density of calibrator sources used in FBC. Deter-
mining phase corrections on a 4 minute time scale could result in undersampling the time
evolution of ionospheric phase errors. Note that this only applies to the faintest of the
calibrator sources. The limitations on spatial and temporal sampling of the ionosphere
are dictated by the given sensitivity of the VLA.

Because of the high SNR, all 91 sources in the simulated J0900+398 data set quali-
fied for peeling at the highest time resolution of 10 seconds.To mimic a more realistic
scenario for further SPAM processing, the number of calibrators was arbitrarily limited to
10. Generally, for all data sets, the images of peeling sources showed larger peak fluxes
and less background structure than their counterparts in the SC image, although the con-
trast became less apparent for weaker and extended (mostly doubles) peeling sources.

As stated in Section 6.3.3, the number of peeling sources is fundamentally limited
by the requirement for a large positive number of degrees-of-freedom in the available
visibility data. The minimal requirement is given in Equation 6.20. Typically, for the
VLSS data sets, there were 25 active antennas, 12 frequency channels and 6 visibility
intervals (of 10 seconds) in an average peeling interval of 1minute. In our test cases, we
typically peel 10 sources, which is much less than 25×12×6/2= 900, thereby satisfying
the minimal requirement.

Due to the uncertainty in their optimal values, it is left to the SPAM user to specify
the phase screen model order (the number of KL base vectors),the heighth of the phase
screen and the power-law exponentγ of the phase structure function. For the applications
presented here, we usedh = 200 km andγ = 5/3, which is compliant to the measured
values given in Section 6.2.1 given the uncertainty in thesevalues. For the simulated data
set, we chose insteadh = 1000 km to better match the corrupting FBC ionospheric phase
model that is attached to the sky plane at infinite height. These values gave satisfactory
results for the test applications presented here, but can befurther optimized. The optimal
model order was found to lie in the range of 15–20 terms, whichis 1.5–2 times the
number of available peeling sources. Increasing or decreasing the model order caused
the model fit to be less accurate or more problematic in terms of convergence.

For both the simulated and real J0900+398 data sets, no improvement in background
noise was observed by adding a second calibration cycle after the first. This indicates fast
convergence of the SPAM calibration method for quiet ionospheric conditions, where the
initial self-calibration is already close to the best achievable calibration of SPAM. For the
real J1300-208 data set, adding up to third calibration cycle did improve over the previous
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Field name VLSS J0900+398 (simulated) VLSS J0900+398 (real) VLSS J1300-208 (real)

Pixel sizea 18.9′′ 18.9′′ 11.1′′

Number of facets 347 243 576
Facet separation 1.◦18 1.◦18 0.◦62
SPAM calibration cyclesb 1 1 3
Peeling sources 10c 11 9
KL model height 1000 kmd 200 km 200 km
Fitted KL model terms 15 15 20e

Rejected time intervals 0/ 464 25/ 464 86/ 484
Model fit phase RMS 3.0± 0.8 degrees 21.3± 2.4 degrees 23.2± 3.2 degrees
Peeling corrections applied directly no yes yes
a The pixel size for all field-based calibration images is 20′′ .
b Adding more cycles did not significantly improve the image quality.
c Arbitrarily limited to mimic a more realistic scenario.
d Increased to improve match with FBC phase screen.
e In this case, 15 terms proved to be insufficient.

Table 6.1: Overview of processing parameters for the three data sets that are handled with SPAM as defined in the test cases.
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cycles.

6.4.2 Phase Calibration Accuracy

For the simulated J0900+398 data set, the absolute accuracy of ionospheric calibration
can be determined by a direct comparison between the corrupting FBC phase screen and
the correcting SPAM phase screen. To this purpose, phase corruptions and corrections
were calculated from the models for a hexagonal grid of 342 viewing directions within
the FoV. Per viewing direction, the RMS phase error was calculated by differencing of
the phases from both models and averaging over all time stamps and baselines. The result
is depicted in Figure 6.6.

For areas near the calibrators and in the center of the field ingeneral, there is a rel-
atively good match between the input and output model, with typical RMS phase errors
. 5 degrees. The absence of calibrator sources south-west of the field center still re-
sults in relatively accurate predictions by the SPAM model.In the direction of peeling
sources, the measured RMS phase error can be split into a contribution from inaccuracies
in the peeling process and a contribution from imperfect model fitting. The latter is ap-
proximately 3 degrees (Table 6.1), therefore the RMS phase error introduced by peeling
is . 4 degrees. Considering the model setup, the only possible source of error is con-
tamination from other sources while peeling (which appearsto happen despite the initial
subtraction of the SC model).

Overall, the change in model base from the corrupting FBC model (5 Zernike polyno-
mials) to the correcting SPAM model (15 KL vectors) has a constant accuracy over large
parts of the FoV. Towards some parts of the edge of the field thephase errors are sub-
stantially larger, up to 20–25 degrees at worst. This agreeswith the different asymptotic
behaviour towards large radii of the Zernike model (divergeto infinity) and the KL model
(converge to zero) in the absence of calibrators. The presence of calibrator sources near
the edge (like the one on the North-East edge of the field) leads to a better local match
between corrupting ionosphere and correcting model.

For the real observations, in the absence of external sources of information (e.g.,
GPS measurements), it is not possible to derive the absoluteaccuracy of ionospheric
calibration from the observations themselves. Instead, the residual RMS phase error of
the model fit to the peeling phases is used as an relative indicator for calibration accuracy
over time. For both the real J0900+398 and J1300-208 data sets, the residual RMS phase
error of∼ 22 degrees is much larger than for the simulated data. This already excludes
rejected time stamps with exceptionally large RMS values. By inspecting model fits
on individual time stamps, we found that there are often a fewpierce point phases that
deviate significantly more from the fitted model than most neighbouring points. These
errors do not appear to be antenna-based instrumental errors, because peeling solutions
for the same antenna towards other calibrator sources do notdeviate in the same manner.
Typically, these deviating points persist for a few time stamps before disappearing. The
ionosphere may be responsible for these very small scale deviations. Another possibility
is that the peeling solutions are (sometimes) noisy due to limitations in source SNR.
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Figure 6.6: The grayscale map represents the residual phase RMS betweenthe distorting and
correcting ionospheric phase models across the primary beam area, averaged over baselines and
time. The phase RMS was calculated for a hexagonal grid of viewing directions across the FoV.
Each viewing direction is depicted by a small circular area.Overplotted is a contour map of the
point sources as seen in the SPAM image (which extends slightly beyond the grid of circles). The
10 peeling sources are marked by circles. The correspondence between the models is largest near
the calibrator sources and over a large part of the inner primary beam. The discrepancy is largest
near the South-East and North-West borders, away from the calibrators.
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6.4.3 Background Noise

In this and the next sections, we revert to analyzing image properties for an indirect, rela-
tive comparison between the different calibration techniques. In the presence of residual
phase errors, part of the image background noise level consists of residual sidelobes after
CLEANing. The local sidelobe noise increases with both the RMS phase error and the
local source flux. When measured over a large image area, the mean sidelobe noise de-
pends mainly on RMS phase error. For all relevant output images, the mean image noise
σ was determined by fitting a Gaussian to the histogram of imagepixel values from the
inner quarter radius of the FoV (AIPS task IMEAN). Note that these images have not
been corrected for primary beam attenuation. The results are given in Table 6.2.

Because no noise was added to the simulated J0900+398 data set, the resulting image
noise of 3.0 mJy beam−1 in the undisturbed image is caused by incomplete UV coverage
and inaccuracies in the imaging process (see Section 6.3.2), limiting the dynamic range
to ∼ 104. The local noise is highest near the sources, but significantly less near the
brightest 10 sources with dedicated facets centered on their peak position. The SC and
SPAM images from this data set were created using the same facet configuration. The
SC image noise of 10.2 mJy beam−1 is 3.4 times as high as the undisturbed image noise,
therefore dominated by phase error induced sidelobe noise.The SPAM image noise of
6.7 mJy beam−1 is a significant improvement over the SC image, but still 2.2 times as
high as in the undisturbed image. The local noise in the SC andSPAM images has
increased most apparently near bright sources as compared to the undisturbed image,
which confirms the presence of residual phase errors after calibration.

For the real J0900+398 data set, both the SC and SPAM images have an image noise
of ∼ 70 mJy beam−1 . The SPAM image noise is slightly lower than SC. The local noise
in the SC image is higher near bright sources. This is not the case in the SPAM image,
which must be a direct result of an improved calibration accuracy near these sources.
The FBC image noise for this data set is∼ 20 percent higher, a combination of a higher
average noise over the FoV and higher local noise near brightsources.

For the real J1300-208 data set, the SPAM image has the same image noise as for
the real J0900+398 data set, with no apparent increase near bright sources.At the same
time, the noise levels in the SC and FBC images have increasedwith 30 and 35 percent,
respectively. The noise in the SC image is highest near the bright sources. The FBC
noise is highest near the brightest source and remains high in the rest of the image. The
significant increase of the average FBC noise level indicates a dependence on ionospheric
conditions, and therefore on calibration accuracy. The SPAM image noise appears to
have little or no dependence on varying ionospheric conditions (Figure 6.7).

6.4.4 Source Properties

The presence of residual phase errors changes the apparent distribution of flux of a source
(see Section 6.2.2). In the time-averaged image, sources may appear offset from their in-
trinsic position, may suffer from smearing or deformation, and sidelobes may be misiden-
tified as sources. Comparing the properties of the same sources in differently calibrated
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Field name VLSS J0900+398 (simulated) VLSS J0900+398 (real) VLSS J1300-208 (real)

Mean background noiseσ [mJy beam−1]:
Undisturbed 3.0 – –
SC 10.2 71 92
FBC – 87 118
SPAM 6.7 67 68

Number of sources with a peak flux larger than 5σ:
Undisturbed 91 – –
SC 91 393 374
FBC – 310 285
SPAM 91 372 392

5σ source fraction with an NVSS counterpart within 80′′:
Undisturbed 1. – –
SC 1. 0.83 0.60
FBC – 0.86 0.74
SPAM 1. 0.97 0.97

Table 6.2: Overview of results from calibrating and imaging three testcase data sets with no ionosphere (Undis-
turbed), self-calibration (SC), field-based calibration (FBC) and SPAM.
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Figure 6.7: Greyscale plots of a3.5×3.5 square degree area in the VLSS J1300-208 field centered
on the bright (40 Jy) point source 3C 283. All three images have contours (black lines) overplotted
at [0.15, 0.48, 0.83, 1.16, 1.50] Jy. Left: Image after self-calibration, middle: image after field-
based calibration, and right: image after SPAM calibration.

images allows for a relative comparison of the performance of the different calibration
techniques.

To allow for comparison of source properties, we applied thesource extraction tool
BDSM [90] on all relevant images. BDSM performed a multiple 2-dimensional Gaussian
fit on islands of adjacent pixels with amplitudes above a specified threshold based on
the local image noiseσL in the image. Multiple overlapping Gaussians were grouped
together into single sources. We applied BDSM to all images,using the default extraction
criteria, except for the following: a source detection requires at least 4 adjacent pixel
values above 2.5σL, with at least one pixel value above 4σL.

Source Counts

Due to the non-Gaussian character of the phase-induced sidelobe noise, the source cat-
alogs will contain spurious detections. To suppress these,we removed sources with a
peak flux smaller than 5σ from the catalogs. The remaining number of catalog entries
are listed in Table 6.2. Additionally, each catalog was cross-associated against the NVSS
catalog, which has a slightly higher resolution (45′′). For an average spectral index of
−0.8, the NVSS detection limit is at least 10 times lower than forthe VLSS. At the risk
of missing an incidental ultra-steep spectrum source, we determined the source fraction
that has an NVSS counterpart within an 80′′ radius (one VLSS beamsize), which are also
listed in Table 6.2.

For the simulated J0900+398 data set, all 91 input sources are detected and matched
against NVSS counterparts, regardless of the calibration method. Due to the low noise
levels and the lower limit of 1 Jy on the input source catalog,all sources are effectively
& 100σ detections. None of the sources had more than one Gaussian fitted to it, despite
the freedom to do so.
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For the real J0900+398 data set, the higherσ in the FBC image is reflected in a
smaller number of source detections as compared to SC and SPAM. SC detects slightly
more sources than SPAM, despite the slightly higherσ. However, there is a very large
fraction of sources in the SPAM catalog that has an NVSS counterpart, significantly
larger than for both the SC and FBC catalogs. This suggests that the SPAM catalog is
much less contaminated by false detections than the SC and FBC catalogs, resulting in a
larger absolute number of true detections.

This is further strenghtened by the results from the real J1300-208 data set. For this
test case, the SPAM image has the largest number of source detections. Again, the SPAM
catalog has the largest fraction of associations with the NVSS catalog, the same fraction
as with the J0900+398 data set. In contrast, the fraction of NVSS counterpartsfor SC
and VLSS have both gone down. This is best explained by an increase in (non-Gaussian)
sidelobe noise in the image background due to calibration errors, which corresponds with
the observed increase inσ.

Source Peak Fluxes

The presence of residual phase errors after calibration cancause an unresolved source
shape to deviate from a point source shape. The source flux is redistributed over a larger
area and the peak flux of the source drops. At 80′′ resolution, most sources in a VLSS
field are unresolved. Therefore, a mean increase of source widths over the point source
width is a direct measure of ionospheric conditions. This argument was used in the pre-
selection of data sets for our test cases.

For significant source deformations or low SNR sources, determination of the shape
of individual sources is subject to large uncertainties (e.g., Condon et al. [91]). Because
determination of peak fluxes is much more robust, we use thesefor a relative comparison
of calibration accuracy. Starting with the original catalogs as produced by BDSM, we
associate sources between the undisturbed, FBC, SC and SPAMcatalogs that lie within
80′′ of the same NVSS source and has a peak flux larger than 5σ in at least one of the
two catalogs.

For the simulated J0900+398 data set, the true peak fluxes of all 91 sources are
known. A comparison between peak fluxes from the undisturbedimage and the input
catalog identifies a small (< 1 percent) CLEAN bias of 3.6 mJy beam−1 [e.g. 77, 78, 92].
Ignoring the image noise dependency of CLEAN bias, we applied this small correction
to the peak fluxes in the undisturbed, SC and SPAM source catalogs before proceeding.
Figure 6.8 shows a comparison of the measured-to-input peakflux ratios for sources in
the SC and SPAM images. The mean peak flux ratio for both imagesis approximately
equal and just slightly smaller than one. The larger scatterin the SC peak fluxes is con-
sistent with a higherσ. Using Equation 6.6, the random part of the mean RMS phase
error for both SC and SPAM is estimated at 5–6 degrees. This value is comparable to the
observed RMS phase error over large parts of the SPAM image (Section 6.4.2).

To study the nature of residual RMS phase errors after application of SPAM, we plot
the RMS phase errors at the source positions from Figure 6.6 against SPAM-to-input
peak flux ratios (Figure 6.9). For Gaussian random phase errors, the peak flux ratio
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Figure 6.8: Peak flux ratios of point sources in the simulated J0900+398 field. Peak fluxes were
measured in the self-calibration image and the SPAM image, corrected for a small CLEAN bias and
divided by the input model peak fluxes. The size of each dot scales with the input model peak flux,
ranging from 1.02 to 26.7 Jy. Ideally (without phase errors), the peak flux ratios would be scat-
tered around one (solid lines) due to image noise dependent errors in the peak flux determination.
Instead, the peak flux ratio distributions along the x- and y-axis are centered around 0.995 and
0.996, respectively (dotted lines), which is a direct result of the residual phase errors. The smaller
and larger scatter in distribution of SPAM- and self-calibration peak flux ratios is consistent with
peak flux determination inaccuracies due image background noise levels.
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Figure 6.9: Peak flux ratios in the simulated J0900+398 field: Left: Peak flux ratios of the 91 ex-
tracted sources from the SPAM image as compared to the input model sources, plotted as a function
of the residual RMS phase error after SPAM calibration. Overplotted is the theoretical Strehl ratio
(solid line) as given in Equation 6.6. For larger RMS phase errors, the measured peak flux ratios
do not follow the theoretical strehl ratio curve. This indicates that systematic phase errors domi-
nate the larger RMS phase errors. Right: Same peak flux ratiosplotted as a function of absolute
position offset between extracted sources in the SPAM image and the inputmodel (see Figure 6.12).
The presence of a strong correlation indicates that residual phase gradients dominate the larger
RMS phase errors.

is expected to decrease with increased RMS phase error as described in Equation 6.6.
However, the discrepancy between the data points and Equation 6.6 indicates that for
larger RMS values the phase errors are predominantly systematic rather than random.

For the real J0900+398 data set, Figure 6.10 shows a comparison of peak fluxes for
associated sources in the SC, FBC and SPAM catalogs. There isa good match between
peak fluxes measured in the SC and SPAM catalogs. For high SNR sources with a peak
flux above 1 Jy, the SPAM peak fluxes match on average within 1 percent with the SC
peak fluxes. Similarly, SC and SPAM peak fluxes are on average 10 percent higher than
FBC peak fluxes. The systematic increase of peak fluxes for SC and SPAM as compared
to FBC for many more than the calibrator sources denotes a more accurate calibration
over large parts of the FoV. Towards the low flux end, source detections are slightly
biased towards the image with the highest noise level, whichis the FBC image.

Figure 6.11 shows the same comparison of peak fluxes for the real J1300-208 data
set. For high SNR sources with a peak flux above 1 Jy, the SC peakfluxes are by far the
smallest, while FBC and SPAM peak fluxes are on average higherby 15 and 24 percent,
respectively. The relative loss of peak flux in the SC image isa clear indication of the
break-down of the assumption of isoplanaticity across the FoV. Under the conditions
that clearly need direction-dependent corrections, the SPAM peak fluxes are on average
7 percent higher than the FBC peak fluxes.
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Figure 6.10: Peak fluxes in the real J0900+398 field Left: Peak flux comparison for 367 sources
detected in both the self-calibration and SPAM images. The straight diagonal line represents
equality, the dashed lines represent3σC deviations (whereσC is the combined noise level from
both images), and the dotted lines indicate the5σ detection limit. For bright sources (peak fluxes
& 1 Jy beam−1 ), the average peak flux ratio is 1.00. Middle: Same for 329 sources in the field-
based calibration (VLSS) and SPAM images. The average bright peak flux ratio of SPAM over
field-based calibration is 1.10. Right: Same for 313 sourcesin the self-calibration and field-based
calibration (VLSS) images. The average bright peak flux ratio of self-calibration over field-based
calibration is 1.10. In all plots, the image noise causes a larger scatter in the peak flux deter-
minations of faint sources (. 1 Jy beam−1 ) and consequently, a selection bias towards positively
enhanced peak fluxes that increases with image noise.

Figure 6.11: Peak fluxes in the (real) J1300-208 field: Left: Peak flux comparison for 247
sources detected in both the self-calibration and SPAM images. For bright sources (peak fluxes
& 1 Jy beam−1 ), the average peak flux ratio of SPAM over SC is 1.24. Middle: Same for 278
sources in the field-based calibration (VLSS) and SPAM images. The average bright peak flux ra-
tio of SPAM over field-based calibration is 1.07. Right: Samefor 202 sources in the self-calibration
and field-based calibration (VLSS) images. The average bright peak flux ratio of field-based cali-
bration over self-calibration is 1.15.
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Figure 6.12: Position offsets in the simulated J0900+398 field: Left: Offsets between the measured
source positions in the self-calibration image as comparedto the input model. Right: Same for the
SPAM image. In both cases, the distribution around the origin is non-Gaussian. For the SPAM
image, the tail of points extending roughly northwards indicates the presence of persistent phase
gradients in local parts of the SPAM image. All source position offsets fall well within the size of
the 80′′ restoring beam (dotted line).

Astrometry

When the time-average of residual phase errors towards a source contains a non-zero
spatial gradient, the source will appear to have shifted itsposition in the final image
(see Section 6.2.2). This gradient may indicate a limitation of the calibration model to
reproduce the ionospheric phase corruptions (e.g., in the absence of nearby calibrators),
but may also be introduced by the peeling process. The latteroccurs when a peeling
source is re-centered to the wrong catalog position (see Section 6.3.3). Because such an
error propagates into the calibration model, many sources in the vicinity of the peeling
source may also suffer from a systematic astrometric error.

For the simulated data set, the peak positions of sources as determined by BDSM
were compared against the positions of counterparts in the input model. For the real data
sets, we compared against the NVSS catalog instead. When comparing against NVSS
positions, apparently large position offsets may occur due to resolution differences and
spectral variation across the source. Averaged over a largenumber of sources, these
offsets should have no preferential orientation. In contrast,a residual phase gradient in a
certain viewing direction is expected to cause systematic offsets for groups of sources in
a certain preferential direction.

For the simulated J0900+398 data set, Figure 6.12 shows that the positions for both
SC and SPAM are accurate to within∼ 10′′, except for a small tail of∼ 15 SPAM sources
that have somewhat larger offsets. These sources are all positioned near the edge of the
FoV, where the RMS phase error is large (Figure 6.6). Figure 6.9 also confirms this by
the clear correlation between RMS phase error and absolute position offsets.

For the real J0900+398 data set, the source position offsets for SC, FBC and SPAM
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Figure 6.13: Position offsets in the real J0900+398 field Left: Offsets between the measured source
positions in the self-calibration image as compared to the NVSS catalog. Middle: Same for the
field-based calibration (VLSS) image. Right: Same for the SPAM image.

relative to NVSS catalog positions are plotted in Figure 6.13. The larger scatter as com-
pared to the simulated J0900+398 data set can be the (combined) result of less accurate
position measurements due to higher image noise, resolution and spectral differences be-
tween the observations and the NVSS catalog or larger residual RMS phase errors after
calibration. The observed scatter for SC is centered arounda point that is offset from the
origin by∼ 5′′, which is either caused by inaccuracies in the initial sky model or during
the self-calibration process (Section 6.3.2). The scatterof both FBC and SPAM offsets
is centered close to the origin. The RMS of the scatter aroundthe mean position offset is
10.5′′ for both FBC and SPAM (despite the apparently larger scatterfor SPAM, which is
due to a larger number of data points), both smaller than the 11.9′′ for SC.

For the real J1300-208 data set, the source position offsets for SC, FBC and SPAM
relative to NVSS catalog positions are plotted in Figure 6.14. The position scatter for all
three methods is significantly larger than for the real J0900+398 data set, and all suffer
from systematic position offsets in varying degrees of severity. The position offsets in the
SC image have a seriously distorted distribution, which includes a large tail of points that
extends roughly southwards. This indicates the presence ofvarying systematic source
offsets over the whole FoV. The distribution of position offsets in the FBC image is more
compact but also asymmetric, and is approximately centeredaround a point that is∼ 10′′

offset in northward direction from the origin. A large number ofthe SPAM position
offsets are clustered near the origin, similar to the real J0900+398 data set, but there is
an additional tail of points that runs roughly northwards. The RMS of the scatter around
the mean position offset is 20.7′′, 16.5′′ and 14.8′′ for SC, FBC and SPAM, respectively,
which confirms the apparently strongest clustering of points in the SPAM position offset
plot.

Systematic position offsets in the images can be reduced by distortion and regridding
of the images. To this purpose, Cohen et al. [41] fit a fourth order Zernike polynomial to
the (time constant) position offsets of typically more than 100 sources in the FBC images
of the VLSS. They estimate that, after correction, the final residual position error in the
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Figure 6.14: Position offsets in the real J1300-208 field: Left: Offsets between the measured
source positions in the self-calibration image as comparedto the NVSS catalog. Middle: Same for
the field-based calibration (VLSS) image. Right: Same for the SPAM image.

full VLSS catalog due to the ionosphere is. 3′′ in both RA and DEC.

6.5 Discussion and Conclusions

The SPAM method for ionospheric calibration has been succesfully tested on one sim-
ulated and two carefully selected visibility data sets of 74MHz observations with the
VLA (taken from the VLSS; Cohen et al. [41]). From the resultsof these test cases, we
draw the following conclusions:
(i) A proof-of-concept is given for several different techniques that were incorporated in
SPAM calibration. The peeling technique [26] was succesfulin providing relative mea-
surements of ionospheric phase errors in the direction of several bright sources in the
FoV. The Karhunen-Loève phase screen (Chapter 5 [see also 51]) at fixed height was
able to combine these measurements into a consistent model per time stamp. For rela-
tively bad ionospheric conditions, it was demonstrated that the ionospheric calibration
cycle (repeated ionospheric calibration and subsequent imaging; Noordam [26]) con-
verges within a few iterations to a calibration of similar accuracy as under relatively
good ionospheric conditions (for which one iteration was sufficient).
(ii) Ionospheric calibration with SPAM is more accurate than the existing self-calibration
[e.g. 11] and field-based calibration [42] techniques. Evenfor relatively compact array
configuration like VLA-B and BnA, significant improvements in image quality are ob-
tained by allowing for higher-order (i.e., more than a gradient) spatial phase corrections
over the array in any viewing direction. In the resulting images, we obtained dynamic
range improvements of 5–45% and 70–80% under relatively good and bad ionospheric
conditions, respectively.
(iii) Although the mean astrometric accuracy of source positions in SPAM images is sim-
ilar to or better than for self-calibration and field-based calibration, systematically larger
astrometric errors are present in regions of the output images of all calibration meth-
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ods. This is caused by a shortage of available calibrators inthese regions and positional
inaccuracies in the reference source catalog used for calibration.

The 65 mJy beam−1 noise levels in the SPAM images match the lowest noise levelsof
the more than 500 images that define the VLSS survey. A potential reduction of the aver-
age noise level from 100 mJy beam−1 to 65 mJy beam−1 for the full VLSS survey would
significantly increase the number of source detections from∼70,000 to about 120,000
(an increase of∼ 75%), but also it would greatly enhance virtually every science goal.
For example, using the radio luminosity function for high-luminosity radio galaxies from
Jarvis et al. [93], the estimated number of detectable HzRGsin the VLSS would increase
by 65%, but also the maximum redshift would increase. For a luminous radio galaxy
with luminosity of 2× 1028 W Hz−1 sr−1 at 74 MHz, the redshift limit would rise from
z = 5.7 to z = 6.8. Another example is the detection and study of cluster radio halos.
Using available halo population models [94, 95], the anticipated noise reduction would
roughly double the number of detectable halo systems.

For the VLSS, the estimated theoretical thermal noise levelof 35 mJy beam−1 is still
a factor of two lower than the average background noise levelof ∼ 65 mJy beam−1 in the
SPAM images. From inspection of the SPAM images we cannot identify an obvious sin-
gle cause for this. Therefore, similar to Cohen et al. [41], we expect the remaining excess
noise to be the combined result of several different causes, including residual ionospheric
phase errors after SPAM calibration, but also residual RFI,collective sidelobe noise from
many non-deconvolved sources (too faint or outside the FoV)and variable source am-
plitude errors (e.g., due to pointing errors and non-circular antenna beam patterns; see
Bhatnagar et al. [88]).

The SPAM test results indicate that the ionospheric calibration accuracy may be fur-
ther improved. The typical model fit RMS phase error per antenna of∼ 20− 30 degrees
for real data sets is much larger than the 3 degrees for the noiseless simulated data set.
There are several possible sources of error, either in the peeling phase corrections or
the ionospheric phase model. Noise in the visibilities (either thermal or non-thermal),
contamination from other sources, inaccuracies in the peeling source model and under-
sampling of the fastest phase fluctuations are factors that degrade the accuracy of peeling.
Also, the ionospheric phase screen model may be a poor representation of reality, either
because it is incomplete (e.g., absence of vertical structure) or the fixed model parameters
are chosen poorly (e.g., screen height, spectral index of phase fluctuations). Several of
these issues will be addressed in future work (Section 6.6).

The potential problems with the peeling technique raises the question whether one
should use alternative methods. Apart from the precautionsdescribed in Section 6.3.3,
we have found little means to improve the accuracy of the peeling process for single
sources any further. One unexplored option is to peel sources in groups, e.g. identify
isoplanatic patches of sky with a large enough total flux frommultiple sources. Two
possible alternatives approaches to peeling are: (i) simultaneous self-calibration towards
multiple sources in the FoV, or (ii) fitting the ionosphere model directly to the visibilities
rather than using peeling as an intermediate step. Althoughthese alternative approaches
have not been tested by us in practise, we anticipate little improvement over our current
accuracy. In Chapter 3 [see also 23] it was shown, by simulation, that iterative peel-
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ing converges to the same solution as simultaneous self-calibration. A direct fit of the
ionosphere model to the visibilities is, similar to self-calibration, biased towards accurate
solving in the direction of the apparently strongest sourcein the FoV. Although not con-
clusive for this approach, tests with SPAM show that using even a moderate flux-based
weighting into the ionospheric phase model fitting against peeling phase corrections in-
troduces a large bias towards the brightest source, while calibration accuracy towards
other peeled sources degrades severely.

For the existing and future large low-frequency radio interferometer arrays like VLA-
A, GMRT, LOFAR, LWA and SKA, the need for a direction-dependent ionospheric cal-
ibration method is evident. Based on the results presented in this paper, it is difficult to
draw quantitative conclusions on the achievable calibration accuracy for these arrays. If
a SPAM-like calibration algorithm is to be used in a very highsignal-to-noise observing
regime under quiet to moderate ionospheric conditions, it seems likely that residual RMS
phase errors in the order of a few degrees could be achieved, comparable to the SPAM
results on the simulated VLSS data set.

When relying on the array itself to provide the necessary measurements to constrain
ionospheric correction models, ionospheric calibration requires an array layout and sen-
sitivity that allows for sampling the ionsphere over the array at the relevant spatial scales
and time resolution. The spatial sampling is determined by the instantaneous pierce point
distribution (or more general, the distribution of lines-of-sight through the ionosphere),
which depends on the array layout and the detectable calibrator constellation. For future
design of low-frequency arrays, it is recommended to optimize the array layout not just
for scientific arguments (in general, centrally dense and sparse outside for good UV cov-
erage), but also for ionospheric calibrability (in general, both uniform and randomized).

6.6 Future Work

To test the robustness and limitations of the method, it is necessary to apply SPAM cal-
ibration on a wide variety of data sets at different (low) frequencies, obtained with dif-
ferent arrays under different ionospheric conditions. Our highest priority is to test SPAM
on observations from the largest existing LF arrays; the VLAin A-configuration and the
GMRT. Data for these tests have been obtained and tests are currently in progress. One
important possible limitation is the use of a 2-dimensionalphase screen to represent the
ionosphere. We plan to expand the SPAM model by including multiple screens at differ-
ent heights and compare the resulting image properties against the current single screen
model.

Another limitation of the current implementation is the absence of restrictions on the
time behaviour of the model. Antenna-based peeling phases clearly show a coherent
temporal behaviour, which is likely to exist for physical reasons. This could be used
to reduce the number of required model parameters and suppress the noise propagation
from the peeling solutions. We are currently investigatingthe possibilities of forcing the
SPAM model to be continuous in time. In chapter 7 we will present a few ideas on how
this can be done without adding much computational complexity.
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The MAP estimator was not fully implemented in SPAM. The phase screen was com-
posed of the Karhunen-Loève basis function, but the term representing the a priori infor-
mation was not included in the least squares cost function. The main reason for not
implementing this was that the ionospheric conditions, i.e. the slope and scaling of the
powerlaw, were not known in advance. In Chapter 5 is described how these hyperpa-
rameters can be estimated from the data. Once this has been implemented, the number
of basis functions can be increased without the risk of lowerperformance due to noisier
estimates.

Several of the authors of the article om which this chapter isbased are currently
involved in setting up a simulation framework in which one has full control over the
sky emission, ionospheric behaviour and array characteristics when generating artificial
low frequency observations. Like in the test case on simulated data presented in Sec-
tion 6.4, this allows for direct and quantitative comparison between the distorting iono-
sphere model and the recovered ionospheric phase model by SPAM. We plan to use this
setup to further test optimize SPAM calibration for a broad range of ionospheric condi-
tions.



Chapter 7
Extensions

Bayesian estimation is a generic method with a wide range of applications. In this thesis
we have applied the method to a single layer model of the ionosphere with a power law
distribution of the electron density fluctuations. The method has been proved to be rela-
tively easy to implement, robust and to have a better performance than existing methods
based on deterministic models. In this chapter we will explore a few possible applica-
tions of Bayesian estimation to more extended data models. Most of these extensions
have not been tried in practice yet, but based on the successful application of Bayesian
estimation described in the previous chapter we are hopefulthat in practice at least some
these extensions will perform better than estimators basedon deterministic models.

7.1 Introduction

The starting point for the extensions will be the MAP estimator as described in section
5.3.3. The underlying data model of the observed datax is assumed to be of the form

x = f (θ) + w. (7.1)

The functionf describes the relationship between the unknown parametersθ and the
expected value of the data. The functionf is known as the Measurement Equation in
radio astronomical literature. The parameter vectorθ contains all unknowns, such as the
ionopshere induced phase shifts, instrument gain. The actually observed data is contami-
nated by noise, modeled as the noise vectorw. The data is the output of the correlator, so
x contains the entries of correlation matrix estimates. The correlation matrix estimates
have a Wishart distribution. For simplicity the distribution of w is assumed to be Gaus-
sian, with covariance matrixCw and zero mean. The covariance of the noise vector can
be estimated from the data by using the well known expressionfor the covariance of
Wishart distributed data [96]

Cw =
1
N

R̄ ⊗ R, (7.2)
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Figure 7.1: Multilayer model

whereR is the expected value of the Wishart distributed data. The entries ofx are es-
timates of the entries ofR. By substitingR with the estimate ofR, an estimate ofCw

can be found. The a priori information is given in the form of an expected valuēθ and
covariance matrixCθ. Again the distribution is assumed to be Gaussian.

The general MAP estimator solves the following minimization problem

θ̂ = arg min
θ

(f (θ) − x)HC−1
w (f (θ) − x) + (θ − θ̄)TC−1

θ (θ − θ̄) (7.3)

In the next sections we will present a few ideas on how we couldfind Cθ for iono-
spheric models that go beyond a single layer. We also presentsome ideas on how (7.3)
can be solved efficiently when correlations over time are included andθ grows very large.

7.2 Multilayer model

Consider the ionospheric model again, where the vectorθ contains the unknown iono-
spheric phases. In chapters 5 and 6 this problem was solved byusing a single layer model
assuming that the electron density fluctuations are confinedto a thin layer. In reality the
fluctuations are distributed over height. A relatively simple way to capture the distribu-
tion over height is by using multiple independent layers at different heights, as shown in
Figure 7.1. Let the ionospheric phase for thekth layer be given by the vectorθk. The
total ionospheric phase is the sum of the layers:

θ =

K∑

k=1

θk,
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whereK is the number of layers. Because the layers are independent,the correlation
matrixCθ is sum of the correlation matrices for each layer:

Cθ =
K∑

k=1

Cθk.

The matricesCθk are computed based on a single layer model as given in equation (5.6).
This matrix can then be substituted in the standard MAP equation (7.3).

The interpolated values for directions other than the calibrator sources are also sum-
mations over the layers

ρ =

K∑

k=1

ρk,

whereρ andρk are the ionospheric phases at the interpolation point, respectively for
the total line of sight and the individual layers. The estimates are given according to
Kriging’s interpolation equation (see section 5.3.4)

ρ̂ = CρθC−1
θ θ̂, (7.4)

where

Cρθ =

K∑

k=1

Cρkθk (7.5)

Again the covariance matrixCρkθk is by the equation for the single layer model (5.6) .
Kriging interpolation can also be applied to the layers

ρ̂k = CρkθC−1
θ θ̂. (7.6)

From equations (7.4), (7.5) and (7.6) it follows that the Kriging estimate of the sum of
the layers is the sum of the Kriging estimates of the layers

ρ̂ =

K∑

k=1

ρ̂k.

The difficulty with this approach is that one needs to know how many layers to use,
at what height these layers need to be placed and what power law (β and s0) to use
for each of the layers. Since a radio telescope sees only the aggreagate phase, not the
individual layers, there is no straighforward way the estimate these parameters from the
data. Tomography, physical models and external observations might be necessary to
estimate these parameters.

7.3 Full 3D Model

For a three dimensional model of the ionosphere the electrondensity is described by the
functione(x, y, z). The ionospheric phase is given by an integral over the lineof sight
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1 2 3

A B A B A B

Layer

Antennas

Source

Figure 7.2: Three dimensional model. The solid line marked by s2,A is the path through the iono-
spheric layer from Antenna 2 to Source B. The integral of the electron density over the path yields
the total electron content between the antenna and the source.

(see Figure 7.2)

θk = Cλ
∫

sk

e(x, y, z)dsk.

wheresk is the path through the ionosphere along the line of sight,λ the wavelength and
C a constant. The correlations between two ionospheric phases is a double integral over
the two lines of sightsk andsl

Cθkθl = C2λ2
∫

sk

∫

sl

Cφ(xk, yk, zk, xl , yl , zl)dsldsk

For most models the integrals need to be evaluated numerically. This could also be de-
scribed as a many layer model similar to the multi layer modeldescribed in the previous
section. The difference between these two models is that the layers in the manylayer
model are not independent.

The difficulties here are similar to the multilayer model, but more complicated be-
cause also the correlation between diffent heights needs to be known.
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7.4 Temporal model

The correlator generates new output for each time block. From here on the subscriptk
will be used to distinguish between the different blocks in time, for instancexk, fk, θk

andwk. To refer to the set of all the blocks up to thekth block the index{k} is used, for
instance

x{k} =





x1
...

xk





, θ{k} =





θ1
...

θk





, f{k}(θ{k}) =





f1(θ1)
...

fk(θk)





Note that functionfk(θk) only depends on parametersθk, not on the parameters cor-
responding to the other time blocks. The only way the different time blocks are tied
together is through the correlation matrixCθ{k} . The functionf{k}(θ{k}) establishes no con-
nection between the different time blocks. The correlation matrixCθ{k} can be partitioned
in blocks

Cθ{k} =





Cθ1θ1 . . . Cθ1θk

...
. . .

...

Cθkθ1 . . . Cθkθk





.

Matrix Cθ{k} is a full matrix, because the parameters are asssumed to varyslowly over
time and hence are correlated over time. This means that the off diagonal blocks are
non-zero. The correlation over time needs to be estimated from the data or derived from
theoretical considerations. This is still an open problem.When LOFAR is operational it
will generate a lot of data on the ionosphere that can be used to estimate the correlation
and verify theoretical models.

The noise is assumed to be uncorrelated over time, soCw is a block diagonal matrix

Cw{k} =





Cw1

. . .

Cwk





.

7.4.1 Sequential Estimation

In principle the large vectors and covariance matrices can be substituted into the general
MAP estimator (7.3) yielding

θ̂{k} = arg min
θ{k}

(

f{k}(θ{k}) − x{k}
)H

C−1
w{k}

(

f{k}(θ{k}) − x{k}
)

+

(

θ{k} − θ̄{k}
)T

C−1
θ{k}

(

θ{k} − θ̄{k}
)

. (7.7)

In practice this problem is too large to fit in memory. Partitioning of the problem is
needed to solve it. The partioning would be easy when the parameters were uncorrelated
over time. In that caseCθ{k} would be a block diagonal matrix and the minimization
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problem could be solved for eachk independently

θ̂k = arg min
θk

(fk(θk) − xk)
HC−1

wk
(fk(θk) − xk)+

(

θk − θ̄k

)T

C−1
θk

(

θk − θ̄k

)

. (7.8)

This is far less time consuming than solving the joint problem. Ignoring the correlation
over time however gives poorer estimates. In this section a method will be described that
finds an approximate solution to the joint problem by solvingonly problems of the size
of a single time block.

Suppose the estimatêθ{k} has been obtained based onx{k}. Now new dataxk+1 be-
comes available. The joint problem is given by

θ̂{k+1} = arg min
θ{k+1}

(

f{k+1}(θ{k+1}) − x{k+1}
)H

C−1
w{k+1} (f{k+1}(θ{k+1}) − x{k+1})+

(

θ{k+1} − θ̄{k+1}
)T

C−1
θ{k+1}

(

θ{k+1} − θ̄{k+1}
)

(7.9)

The previously found estimatêθ{k} can be used as an initial point. A good initial point
will reduce the number of steps the solver needs, but still the computational cost for each
step is large because the number of free parameters and data points is large. A large com-
putational saving can be made by keepingθ{k} fixed and solving only forθk+1. This will
lead to degraded performance compared to joined optimization since only information
from the past is used. Future time blocks will not change the current result. However,
this is an improvement over separately solving for each timeblock. The problem now
becomes

θ̂k+1 = arg min
θk+1

(f{k+1}(θ{k+1}) − x{k+1})
HC−1

w{k+1}(f{k+1}(θ{k+1}) − x{k+1})+

(

θ{k+1} − θ̄{k+1}
)T

C−1
θ{k+1}

(

θ{k+1} − θ̄{k+1}
)

. (7.10)

The constant terms in the minimization can be eliminated, yielding

θ̂k+1 = arg min
θk+1

(fk+1(θk+1) − xk+1)HC−1
wk+1

(fk+1(θk+1) − xk+1)+

(

θ{k+1} − θ̄{k+1}
)T

C−1
θ{k+1}

(

θ{k+1} − θ̄{k+1}
)

. (7.11)

A further simplification can be made by partioning the last term of the equation above in
blocks

θ̂k+1 = arg min
θk+1

(f (θk+1) − xk+1)HC−1
wk+1

(fk+1(θk+1) − xk+1)+

[
(

θ{k} − θ̄{k}
)T (

θk+1 − θ̄k+1

)T
] [ Cθ{k}θ{k} Cθ{k}θk+1

Cθk+1θ{k} Cθk+1θk+1

]−1 [

θ{k} − θ̄{k}
θk+1 − θ̄k+1

]

(7.12)
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The matrix inverse in the last term of this minimization problem can be rewritten using
the Schur complement as

[

Cθ{k}θ{k} Cθ{k}θk+1

Cθk+1θ{k} Cθk+1θk+1

]−1

=

[

I −C−1
θ{k}θ{k}

Cθ{k}θk+1

0 I

] [

C−1
θ{k}θ{k}

0
0 S−1

] [

I 0
−Cθk+1θ{k}C

−1
θ{k}θ{k}

I

]

(7.13)

where
S=

(

Cθk+1θk+1 − Cθk+1θ{k}C
−1
θ{k}θ{k}

Cθ{k}θk+1

)

Now define
θ̃k+1 = θ̄k+1 + Cθk+1θ{k}C

−1
θ{k}θ{k}

(

θ{k} − θ̄{k}
)

.

The vector̃θk+1 is a prediction ofθk+1 based onθ{k}. We can now write

[

θ{k} − θ̄{k}
θk+1 − θ̃k+1

]

=

[

I 0
−Cθk+1θC−1

θ{k}θ{k}
I

] [

θ{k} − θ̄{k}
θk+1 − θ̄k+1

]

(7.14)

Substituting equation (7.13) and then equation (7.14) intoequation (7.12) leads to

θ̂k+1 = arg min
θk+1

(f (θk+1) − xk+1)
HC−1

wk+1
(fk+1(θk+1) − xk+1)+

[
(

θ{k} − θ̄{k}
)T

(θk+1 − θ̃k+1)T

] [ C−1
θ{k}θ{k}

0
0 S−1

] [

θ{k} − θ̄{k}
θk+1 − θ̃k+1

]

(7.15)

Eliminating the constant term results in the following minimization problem

θ̂k+1 = arg min
θk+1

(f (θk+1) − xk+1)
HC−1

wk+1
(fk+1(θk+1) − xk+1)+

(

θk+1 − θ̃k+1

)T

S−1
(

θk+1 − θ̃k+1

)

(7.16)

This problem has the same size as estimating just blockk + 1 only. The additional work
is findingθ̃k+1 andS−1.

7.4.2 Update Previous Estimates by Linear Approximation

In the previous section information from the past was used toestimate the parameters
of the current time block, but the parameters from the past were not altered. In this
section the parameters from the past will be updated. The functions f{k}(θ{k} however
will be replaced by their linearizations around previouslyfound solutionsθ{k},0. The
linearization for time blockk given by

fk(θk) ≈ fk(θk,0) + Jk(θk,0)(θk − θk,0), (7.17)
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whereJk(θk,0) is the Jacobian offk(θk) atθk,0,

Jk(θk,0) =
∂fk(θk)

∂θT

k

∣
∣
∣
∣
∣
∣
θk=θk,0

. (7.18)

The linearization for the set of time blocks{k} is given by

f{k}(θ{k}) ≈ f{k}(θ{k},0) + J{k}(θ{k},0)(θ{k} − θ{k},0), (7.19)

whereJ{k}(θ{k},0) is a block diagonal matrix,

J{k}(θ{k},0)) =





J1(θ1,0) 0
. . .

0 Jk(θk,0)





(7.20)

From now on we will simply writeJk andJ{k} for Jk(θk,0) andJ{k}(θ{k},0) respectively.
Now let us start with the joint optimization problem fork+ 1 data blocks

θ̂{k+1} = arg min
θ{k+1}

(f{k}(θ{k}) − x{k})
HC−1

w{k} (f{k}(θ{k}) − x{k})+

(fk+1(θk+1) − xk+1)
HC−1

wk+1
(fk+1(θk+1) − xk+1)+

(θ{k+1} − θ̄{k+1})
TC−1
θ{k+1}

(θ{k+1} − θ̄{k+1}) (7.21)

Substituting approximation (7.19) into the equation aboveleads to

θ̂{k+1} = arg min
θ{k+1}

(f{k}(θ{k},0) + J{k}(θ{k} − θ{k},0) − x{k})
HC−1

w{k}×

(f{k}(θ{k},0) + J{k}(θ{k} − θ{k},0) − x{k})+

(fk+1(θk+1) − xk+1)
HC−1

wk+1
(fk+1(θk+1) − xk+1)+

(θ{k+1} − θ̄{k+1})
TC−1
θ{k+1}

(θ{k+1} − θ̄{k+1}) (7.22)

Now we need the following basic result

Lemma 7.1. In a minimization problem overθ a term of the form

(Aθ − r )T (Aθ − r ) (7.23)

can be rewritten in the form
(

θ − θ̌
)T

ATA
(

θ − θ̌
)

, (7.24)

where
θ̌ = (ATA)−1r (7.25)

Proof. Expanding (7.23) leads to

θ
TATAθ − θTATr − r TAθ + r Tr (7.26)
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and expanding (7.25) leads to

θ
TATAθ − θTATr − r TAθ + rA T(ATA)−1ATr (7.27)

The only difference between (7.26) and (7.27) is the last term, which is independent ofθ
hence for the purpose of minimization overθ (7.23) and (7.24) are equivalent. �

The first term of (7.22) is of the form defined in Lemma 7.1, where

A = C
−1/2
w{k}J{k}, (7.28)

r = C
−1/2
w{k}

(

x{k} − f{k}(θ{k},0) + J{k}θ{k},0
)

. (7.29)

θ̌{k} =
(

JH

{k}C
−1
w{k}J{k}

)−1
C
−1/2
w{k}

(

x{k} − f{k}(θ{k},0) + J{k}θ{k},0
)

(7.30)

Equation (7.22) can be rewritten as

θ̂{k+1} = arg min
θ{k+1}

(θ{k} − θ̌{k})TJH

{k}C
−1
w{k}J{k}(θ{k} − θ̌{k})+

(fk+1(θk+1) − xk+1)HC−1
wk+1

(fk+1(θk+1) − xk+1)+

(θ{k+1} − θ̄{k+1})
TC−1
θ{k+1}

(θ{k+1} − θ̄{k+1}) (7.31)

The linear term can be written as a norm,

θ̂{k+1} = arg min
θ{k}

(fk+1(θk+1) − xk+1)
HC−1

wk+1
(fk+1(θk+1) − xk+1)+

∥
∥
∥
∥
∥

(

JH

{k}C
−1
w{k}J{k}

)1/2
(θ{k} − θ̌{k})

∥
∥
∥
∥
∥

2

+

∥
∥
∥
∥C

−1/2
θ{k+1}

(θ{k+1} − θ̄{k+1})
∥
∥
∥
∥

2
(7.32)

The termC
−1/2
θ{k+1}

can be rewritten using the Schur complement as

C
−1/2
θ{k+1}
=





C
−1/2
θ{k}

0

S−1/2C
−1/2
θk+1θ{k}

C
−1/2
θ{k}

S−1/2



 (7.33)

Substituting (7.33) into (7.32) leads to

θ̂{k+1} = arg min
θ{k+1}

(fk+1(θk+1) − xk+1)
HC−1

wk+1
(fk+1(θk+1) − xk+1)+

∥
∥
∥
∥
∥

(

JH

{k}C
−1
w{k}J{k}

)1/2
(θ{k} − θ̌{k})

∥
∥
∥
∥
∥

2

+

∥
∥
∥
∥
∥
∥
∥





C
−1/2
θ{k}

0

S−1/2C
−1/2
θk+1θ{k}

C
−1/2
θ{k}

S−1/2





([

θ{k}
θk+1

]

−
[

θ̄{k}
θ̄k+1

])
∥
∥
∥
∥
∥
∥
∥

2

(7.34)
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θ̂{k+1} = arg min
θ{k+1}

(fk+1(θk+1) − xk+1)
HC−1

wk+1
(fk+1(θk+1) − xk+1)+

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥





(

JH

{k}C
−1
w{k}J{k}

)1/2
0

C
−1/2
θ{k}

0

S−1/2C
−1/2
θk+1θ{k}

C
−1/2
θ{k}

S−1/2





[

θ{k}
θk+1

]

−





(

JH

{k}C
−1
w{k}J{k}

)1/2
θ̌{k}

C
−1/2
θ{k}
θ̄{k}

S−1/2C
−1/2
θk+1θ{k}

C
−1/2
θ{k}
θ̄{k} + S−1/2θ̄k+1





∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

(7.35)

Lemma 7.2. A term in a minimization problem overθ1 andθ2 of the form
∥
∥
∥
∥
∥
∥

[

A1 A2

]
[

θ1

θ2

]

− r

∥
∥
∥
∥
∥
∥

2

(7.36)

can also be written as
(

θ1 − θ̃1

)T

AT

1A1

(

θ1 − θ̃1

)

+
(

θ2 − θ̃2

)T

AT

2PA2

(

θ2 − θ̃2

)

(7.37)

where

θ̃1 =
(

AT

1A1

)−1
AT

1 (r − A2θ2) (7.38)

θ̃2 =
(

AT

2PA2

)−1
AT

2Pr (7.39)

P = I − A1

(

AT

1A1

)−1
AT

1 (7.40)

Proof. Expanding (7.36) results in

(A1θ1 + A2θ2)T(A1θ1 + A2θ2) + (A1θ1 + A2θ2)Tr + r T(A1θ1 + A2θ2)+

r Tr (7.41)

Expanding (7.37) results in

(A1θ1 + A2θ2)T(A1θ1 + A2θ2) + (A1θ1 + A2θ2)Tr + r T(A1θ1 + A2θ2)+

r TPA2

(

AT

2PA2

)
1
AT

2Pr (7.42)

The only difference between (7.41) and (7.42) is the last term, which is independent of
θ1 andθ2 hence for the purpose of minimization overθ1 andθ2, (7.36) and (7.37) are
equivalent. �

Now using Lemma 7.2 and defining

A1 =





(

JH

{k}C
−1
w{k}J{k}

)1/2

C
−1/2
θ{k}

S−1/2C
−1/2
θk+1θ{k}

C
−1/2
θ{k}





, A2 =





0
0

S−1/2




, r =





(

JH

{k}C
−1
w{k}J{k}

)1/2
θ̌{k}

C
−1/2
θ{k}
θ̄{k}

S−1/2C
−1/2
θk+1θ{k}

C
−1/2
θ{k}
θ̄{k} + S−1/2θ̄k+1





(7.43)
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and

θ̃{k} =
(

AT

1A1

)−1
AT

1 (r − A2θk+1) (7.44)

θ̃k+1 =
(

AT

2PA2

)−1
AT

2Pr (7.45)

P = I − A1

(

AT

1A1

)−1
AT

1 (7.46)

the minimization program (7.35) can be written as

θ̂{k+1} = arg min
θ{k+1}

(fk+1(θk+1) − xk+1)HC−1
wk+1

(fk+1(θk+1) − xk+1)+

(

θ{k} − θ̃{k}
)T

AT

1A1

(

θ{k} − θ̃{k}
)

+

(

θk+1 − θ̃k+1

)T

AT

2PA2

(

θk+1 − θ̃k+1

)

(7.47)

From the equation aboveθ{k} can be solved in closed form as function ofθk+1 yielding
θ̂{k} = θ̃{k}. The remaining problem

θ̂k+1 = arg min
θ{k+1}

(fk+1(θk+1) − xk+1)HC−1
wk+1

(fk+1(θk+1) − xk+1)+

(

θk+1 − θ̃k+1

)T

AT

2PA2

(

θk+1 − θ̃k+1

)

(7.48)

is again a problem of the size of a single time block, but now the linearized version of all
the previous steps is taken into account.

7.5 Conclusions

In this chapter we have briefly presented a few extensions to the single layer stochastic
model discussed in the previous chapters. The models presented here are far from com-
plete. They serve more as an example of how various correlations between parameters
can be described. More observations are needed to formulatean verify such models.
These observations will become available once LOFAR is fully operational. For all these
models the MAP estimator retains the same structure of a non-linear least squares opti-
mization problem. These solvers are already (being) implemented in the LOFAR soft-
ware and hence the MAP estimator for more extended stochastic models can be readily
implemented in the LOFAR software.
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Chapter 8
Conclusions

Analysis of the LOFAR calibration problem, where the complex gain can vary rapidly
over time, frequency and depending on direction, shows thatthere is no unique solution
unless the gain is constrained to some low order model. For a polynomial model it has
been shown that there is a unique solution and that the “peeling” method attains the
Cramer Rao Lower Bound after a few iterations.

A derivation of a determinstic model for the ionosphere fromfirst principles is infea-
sible. A phenomenological model inevitably involves some adhoc choices of the func-
tions used to describe the ionopsphere and the model order.

However, a stochastic description of the ionosphere can be derived from first princi-
ples following the theory of turbulent flow by Kolmogorov. Furthermore the statistical
properties of ionospheric fluctuations can be estimated from observations. Observational
data shows that a powerlaw for the spectrum of ionospheric fluctuations is a reasonable
model although the slope can deviate from the value predicted by Kolmogorov.

The optimal estimator in the least squares sense is the Bayesian Minimum Mean
Square Error estimator. The Maximum A Posteriori (MAP) estimator is computationally
feasible and achieves near optimal performance. Using the usual assumption of Gaussian
process both for the ionospheric fluctuations and the noise the MAP estimator leads to
a Least Squares (LS) problem. This problem can also be solvedsequentially using the
peeling method.

The combined MAP/Peeling method has been applied to VLA 74 MHz data and
showed significant improvement over existing calibration methods. Other advantages
include 1) the othogonality of the base vectors, which leadsto less problems with con-
vergence of the least squares solver and 2) the good behaviour of the basis functions at
the edges unlike polynomials which results in proper extrapolation towards the edges of
the field of view.

Possible extensions of this method include an extensions toa third spatial dimension
and the inclusion of the time domain.
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[67] A. S. Cohen, H. J. A. Röttgering, M. J. Jarvis, N. E. Kassim, and T. J. W. Lazio.
A Deep, High-Resolution Survey at 74 MHz.Astrophysical Journal, Supplement,
150:417–430, February 2004. doi: 10.1086/380783.

[68] H. J. A. Rottgering, R. Braun, P. D. Barthel, M. P. van Haarlem, G. K. Miley,
R. Morganti, I. Snellen, H. Falcke, A. G. de Bruyn, R. B. Stappers, W. H. W. M.
Boland, H. R. Butcher, E. J. de Geus, L. Koopmans, R. Fender, J. Kuijpers, R. T.
Schilizzi, C. Vogt, R. A. M. J. Wijers, M. Wise, W. N. Brouw, J.P. Hamaker,
J. E. Noordam, T. Oosterloo, L. Bahren, M. A. Brentjens, S. J.Wijnholds, J. D.
Bregman, W. A. van Cappellen, A. W. Gunst, G. W. Kant, J. Reitsma, K. van der
Schaaf, and C. M. de Vos. LOFAR - Opening up a new window on the Universe.
ArXiv Astrophysics e-prints, October 2006.

[69] T.J.W. Lazio, N.E. Kassim, and R.A. Perley. Low-Frequency Data Reduction at
the VLA: A Tutorial for New Users, version 1.13. Technical report, 2005. URL
http://lwa.nrl.navy.mil/tutorial/tutorial.html.

[70] A.H. Bridle and E.W. Greisen. The NRAO AIPS Project – A Summary, AIPS
Memo 87. Technical report, NRAO, April 1994. URLftp://ftp.aoc.nrao.edu/
pub/software/aips/TEXT/PUBL/AIPSMEMO87.PS.



8.0 BIBLIOGRAPHY 143

[71] M. Kettenis, H. J. van Langevelde, C. Reynolds, and B. Cotton. ParselTongue:
AIPS Talking Python. In C. Gabriel, C. Arviset, D. Ponz, and S. Enrique, editors,
Astronomical Data Analysis Software and Systems XV, volume 351 ofAstronomical
Society of the Pacific Conference Series, pages 497–+, July 2006.

[72] R. A. Perley. Wide Field Imaging II: Imaging with Non-Coplanar Arrays. In R. A.
Perley, F. R. Schwab, and A. H. Bridle, editors,Synthesis Imaging in Radio As-
tronomy, volume 6 ofAstronomical Society of the Pacific Conference Series, pages
259–+, 1989.

[73] T. J. Cornwell and R. A. Perley. Radio-interferometricimaging of very large fields
- The problem of non-coplanar arrays.Astronomy and Astrophysics, 261:353–364,
July 1992.

[74] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and Flannery B.P.Numerical Recipes
in C, Second Edition. Cambridge University Press, Cambridge, UK, 1992.

[75] Craig B. Markwardt. Non-linear Least Squares Fitting in IDL with MPFIT. 2008.

[76] F.R. Schwab. VLA Scientific Memo 136. Technical report,1981. URLhttp:
//www.vla.nrao.edu/memos/sci/136.pdf.

[77] J. J. Condon, W. D. Cotton, E. W. Greisen, Q. F. Yin, R. A. Perley, and J. J. Broder-
ick. The NRAO VLA Sky Survey. In D. R. Crabtree, R. J. Hanisch,and J. Barnes,
editors,Astronomical Data Analysis Software and Systems III, volume 61 ofAstro-
nomical Society of the Pacific Conference Series, pages 155–+, 1994.

[78] J. J. Condon, W. D. Cotton, E. W. Greisen, Q. F. Yin, R. A. Perley, G. B. Taylor,
and J. J. Broderick. The NRAO VLA Sky Survey.Astronomical Journal, 115:
1693–1716, May 1998. doi: 10.1086/300337.

[79] R. B. Rengelink, Y. Tang, A. G. de Bruyn, G. K. Miley, M. N.Bremer,
H. J. A. Roettgering, and M. A. R. Bremer. The Westerbork Northern Sky Sur-
vey (WENSS), I. A 570 square degree Mini-Survey around the North Ecliptic
Pole. Astronomy and Astrophysics, Supplement, 124:259–280, August 1997. doi:
10.1051/aas:1997358.

[80] R. A. Perley. High Dynamic Range Imaging. In R. A. Perley, F. R. Schwab, and
A. H. Bridle, editors,Synthesis Imaging in Radio Astronomy, volume 6 ofAstro-
nomical Society of the Pacific Conference Series, pages 287–+, 1989.

[81] D. S. Briggs and T. J. Cornwell. An Alternative Interpretation for the Physical Basis
of CLEAN. In D. M. Worrall, C. Biemesderfer, and J. Barnes, editors,Astronomical
Data Analysis Software and Systems I, volume 25 ofAstronomical Society of the
Pacific Conference Series, pages 170–+, 1992.

[82] D.S. Briggs. High Fidelity Deconvolution of Moderately Resolved Sources. PhD
thesis, New Mexico Institute of Mining Technology, Socorro, New Mexico, USA,
1995.



144 BIBLIOGRAPHY 8.0

[83] M. A. Voronkov and M. H. Wieringa. The Cotton-Schwab Clean At Ultra-High
Dynamic Range.Experimental Astronomy, 18:13–29, April 2004. doi: 10.1007/
s10686-005-9000-7.

[84] W.D. Cotton and J.M.Uson. EVLA Memo 114. Technical report, NRAO, 2007.
URL http://www.aoc.nrao.edu/evla/geninfo/memoseries/evlamemo114.pdf.

[85] W. D. Cotton. Special Problems in Imaging. In R. A. Perley, F. R. Schwab, and
A. H. Bridle, editors,Synthesis Imaging in Radio Astronomy, volume 6 ofAstro-
nomical Society of the Pacific Conference Series, pages 233–+, 1989.

[86] T. Cornwell, R. Braun, and D. S. Briggs. Deconvolution.In G. B. Taylor, C. L.
Carilli, and R. A. Perley, editors,Synthesis Imaging in Radio Astronomy II, volume
180 ofAstronomical Society of the Pacific Conference Series, pages 151–+, 1999.

[87] B. G. Clark. An efficient implementation of the algorithm ’CLEAN’.Astronomy
and Astrophysics, 89:377–+, September 1980.

[88] S. Bhatnagar, T. J. Cornwell, K. Golap, and J. M. Uson. Correcting direction-
dependent gains in the deconvolution of radio interferometric images.Astronomy
and Astrophysics, 487:419–429, August 2008. doi: 10.1051/0004-6361:20079284.

[89] DoD World Geodetic System 1984. Technical Report TR8350.2, NIMA, 1984.

[90] N.R. Mohan. ANAAMIKA manual – version 2.1. Technical report, 2008. URL
http://www.strw.leidenuniv.nl/$\sim$mohan/anaamika\_manual.pdf.

[91] J. J. Condon. Errors in Elliptical Gaussian FITS.Publications of the ASP, 109:
166–172, February 1997. doi: 10.1086/133871.

[92] R. H. Becker, R. L. White, and D. J. Helfand. The FIRST Survey: Faint Images of
the Radio Sky at Twenty Centimeters.Astrophysical Journal, 450:559–+, Septem-
ber 1995. doi: 10.1086/176166.

[93] M. J. Jarvis, S. Rawlings, C. J. Willott, K. M. Blundell,S. Eales, and M. Lacy. On
the redshift cut-off for steep-spectrum radio sources.Monthly Notices of the RAS,
327:907–917, November 2001. doi: 10.1046/j.1365-8711.2001.04778.x.

[94] T. A. Enßlin and H. Röttgering. The radio luminosity function of cluster radio
halos. Astronomy and Astrophysics, 396:83–89, December 2002. doi: 10.1051/
0004-6361:20021382.

[95] R. Cassano, G. Brunetti, and G. Setti. Statistics of giant radio haloes from electron
reacceleration models.Monthly Notices of the RAS, 369:1577–1595, July 2006.
doi: 10.1111/j.1365-2966.2006.10423.x.

[96] JOHN WISHART. THE GENERALISED PRODUCT MOMENT DISTRIBU-
TION IN SAMPLES FROM A NORMAL MULTIVARIATE POPULATION.
Biometrika, 20A(1-2):32–52, 1928. doi: 10.1093/biomet/20A.1-2.32. URLhttp:
//biomet.oxfordjournals.org.



Summary

Radio astronomical observations at low frequencies (< 250 MHz), can be severely dis-
torted by fluctuations in electron density in the ionosphere. The free electrons cause a
phase change of electromagnetic waves traveling through the ionosphere. This effect in-
creases for lower frequencies. For this reason observations at low frequencies have been
limited to short baselines and hence poor angular resolution. Most radio astronomical
observations today are done at higher frequencies.

The lower frequency bands however contain signals that are of great scientific value.
Due to the expansion of the universe signals from distant objects are redshifted, i.e.
shifted to lower frequencies. The more distant an observed object is the further we look
back in time. An important period in the history of the universe is the ”Epoch of Reion-
ization” (EoR). A few hundred thousand years after the Big Bang the universe has cooled
enough to allow the formation of neutral hydrogren and helium. When the universe was a
few hundred million years old the EoR started and the almost completely neutral gas was
ionized again. Probably the only method to trace the neutralgas in this period is through
the 1420 MHz spectral line of neutral hydrogen. For the EoR this line is redshifted to
somewhere probably 100 and 200 MHz.

Recently it has in principle become possible to observe withhigh resolution at low
frequencies because the ever increasing computing power ofdigital data processing de-
vices has made it possible to correct for the effect of the ionosphere. Determining the
necessary corrections to the effect of the ionosphere is calles ionospheric calibration.
The reason that ionospheric calibration is difficult is that the gain is direction dependent
and rapidly varying over time. This greatly increases the number of degrees of freedom
which causes two problems. First, the estimation of a large number of parameters is
computationally costly. Second, the more parameters need to be estimated, the larger
the estimation error will be. Without further constraints the signal to noise ratio of the
calibrator sources is too low to accurately estimate the free parameters.

The first problem can in principle be tackled by a brute force approach by simply
increasing the data processing capacity. In practice an efficient algorithm is needed.
The second problem is more fundamental in nature. A good model of the ionosphere,
including as much prior knowledge about the ionosphere as possible, is needed to reduce
the number of degrees of freedom.

The first problem is addressed in this thesis by an analysis ofa proposed calibration
method called “Peeling”. This is a calibration technique whereby the Least Squares (LS)
optimization problem is sequentially solved for different calibrator sources. This can be
computationally more efficient than joint estimation. Our analysis by simulation of a
realistic target field finds that “Peeling” reaches the theoretically optimal result in a few
iterations.

The second problem is addressed by proposing a stochastic ionospheric model based
on a single layer of Kolmogorov turbulence. The stochastic model consists of a paramet-
ric description of the spatial power spectral density of theionospheric electron density
fluctuations. This model is verified by GPS observations and low frequency observations
from the Very Large Array (VLA).
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An optimal estimator for this model is the Bayesian Minimum Mean Square Error
(MMSE) estimator. This estimator is impractical due to the necessary numerical inte-
gration of high dimensional integrals. The Maximum a Posteriori (MAP) estimator is an
approximation of the MMSE estimator which leads to a Least Squares (LS) problem that
can be solved efficiently by standard techniques. Simulations show that the MAP esti-
mator based on the power law model performs better than estimation based on a Zernike
polynomial model for the ionosphere.

The MAP estimator has been incorporated into the software package SPAM (Source
Peeling and Atmospheric Modeling). SPAM has been used on three test cases, a simu-
lated visibility data set and two selected 74 MHz VLA data sets. This resulted in sig-
nificant improvements in image background noise (5–75 percent reduction) and source
peak fluxes (up to 25 percent increase) as compared to the existing self-calibration and
field-based calibration methods. The improved image quality indicates a significant im-
provement in ionospheric phase calibration accuracy.

For this particular single layer ionospheric model the results are encouraging. It is
indicated how the MAP estimator can be applied to possible extensions of the model
including the addition of a third spatial dimension and the time dimension.
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Samenvatting

Radioastronomische waarnemingen op lage frequenties (< 250 MHz) kunnen ernstig ver-
stoord worden door fluctuaties in de elektrondichtheid in deionosfeer. De vrije elektro-
nen veroorzaken een fase verdraaing van elektromagnetische golven die door de ionos-
feer reizen. Des te lager de frequentie van de golf des te groter dit effect. Om deze reden
zijn waarneming op lage frequenties tot nu toe beperkt gebleven tot korte basislijnen en
dus een lage resolutie.

De laag frequente signalen bevatten echter informatie van grote wetenschappelijke
waarde. Door de expansie van het heelal worden de signalen van ver weg gelegen ob-
jecten roodverschoven, d.w.z. verschoven naar lagere frequenties. Des te verder een
object van ons is verwijderd, des te verder kijken we terug inde tijd en des te meer
zijn de signalen in frequentie verschoven. Een belangrijkeperiode in de geschiedenis
van het heelal is de zogenaamde ”Epoch of Reionization” (EoR). Enkele honderdduizen-
den jaren na de Big Bang was het heelal ver genoeg afgekoeld zodat neutraal waterstof-
en heliumgas kon worden gevormd. Toen het heelal enkele honderden miljoenen jaren
oud was begon de EoR werd het vrijwel geheel neutrale gas in het universum opnieuw
geioniseerd. Over hoe en wanneer dit precies gebeurde is nogweinig bekend. Waarschi-
jnlijk de enige manier om het neutrale gas gedurende deze periode te traceren is via de
1420 MHz spectrale lijn van neutraal waterstof. Voor de EoR bevind deze lijn zich door
de roodverschuiving ergens tussen de 100 en 200 MHz.

Recent is het in principe mogelijk geworden om op deze frequenties met hoge res-
olutie waar te nemen omdat het dankzij de toegenomen verwerkingscapaciteit van digi-
tale hardware mogelijk is geworden te corrigeren voor het effect van de ionosfeer. Het
bepalen van de benodigde correcties wordt ionosferische calibratie genoemd. De reden
dat de ionosferische calibratie zo moeilijk is, is dat de fase verdraaing ten gevolge van de
ionosfeer sterk richtingsafhankelijk is en sterk varieertover tijd. Dit verhoogt het aantal
vrijheidsgraden van het calibratieprobleem aanzienlijk.Ten eerste nemen hierdoor de
kosten in rekenkracht sterk toe en ten tweede neemt de nauwkeurigheid van de schatting
af. Zonder aannames over de ionosfeer is calibratie in veel gevallen onmogelijk.

Het eerste probleem kan in principe opgelost worden door voldoende rekenkracht in
te zetten. In de praktijk zijn efficiente algoritmes nodig om tot een acceptabele rekentijd
te komen. Het tweede probleem is meer fundamenteel van aard.Zonder een goed model
dat zoveel mogelijk a priori kennis van de ionosfeer bevat iscalibratie niet mogelijk zelfs
als de rekencapaciteit ongelimiteerd is.

Een eerder voorgesteld potentieel efficient algoritme genaamd ”Peeling” wordt in
deze thesis geanalyseerd. Dit algoritme lost het kleinste kwadraten probleem sequentieel
per calibrator bron op. Onze analyse met behulp van een simulatie van een realitisch
bronnen veld laat zien dat dit algoritme binnen enkele iteraties convergeert en de theo-
retische ondergrens voor de schattingsfout behaalt.

Voor het modeleren van de ionosfeer is een stochastisch model gekozen. De ionos-
ferische fase fluctuaties worden beschreven door een enkelelaag van Kolmogorov turbu-
lentie. Het stochastisch model bestaat uit een parametrische beschrijving van het spec-
trum van de fluctuaties van de elektron dichtheid in de ionosfeer. Het model wordt gever-
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ifieerd met behulp van data van GPS satellieten en observaties met het 74 MHz systeem
van de Very Large Array (VLA).

Een optimale schatter voor een stochastisch data model is deBayesiaanse kleinste
kwadraten schatter. In de praktijk is deze schatter moeilijk de realiseren omdat numerieke
integratie noodzakelijk is. Een benadering is the Maximum APosteriori (MAP) schatter.
Deze schatter leidt weer tot een kleinste kwadraten probleem voor een Gaussisch data
model. Simulaties tonen aan dat voor een dergelijk model de MAP schatter een kleinere
schattingsfout oplevert dan voor een kleinste kwadraten fitaan een deterministisch model
gebaseerd op Zernike polynomen.

Het calibratie pakket Source Peeling and Atmospheric Modeling (SPAM) combi-
neert “Peeling” met het stochastisch model. SPAM is toegepast op drie scenario’s, een
gesimuleerde dataset en twee observaties op 74 MHz van de VLA. Het resultaat toont
een significante reductie (5–75 procent) van de achtergrondruis in de kaart en een hogere
peak flux van de radiobronnen (toename tot 25 procent) vergeleken met standaard zelf-
calibratie en Field Based Calibration. Het is niet mogelijkom de nauwkeurigheid van
fase oplossingen direct te bepalen, omdat de echte ionosferische fase onbekend is. De
verbeterde kwaliteit van de kaart is een indicate voor een significante verbetering van de
nauwkeurigheid van de ionosferische calibratie.

De resultaten voor dit ionosferisch model en de MAP schatterzijn bemoedigend.
Daarom is verder nog aangegeven hoe de MAP schatter toegepast kan worden op mo-
gelijke uitbreidingen van het model zoals het toevoegen vaneen derde spatiele dimensie
en de tijd dimensie.
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