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Abstract— One of the challenges in the design of the LOFAR
radio telescope is the calibration of the ionosphere which, at
low frequencies, is not uniform and can change within minutes.
The number of unknown parameters quickly approaches the
number of measurements and hence, structural assumptions on
the ionosphere must be made, in time, frequency, and space.
Using general models for the second-order statistics, we propose
to use Maximum A Posteriori (MAP) estimators combined
with Karhunen-Loeve basis functions. The resulting estimation
algorithm is shown in simulated LOFAR data to be superior to
currently considered techniques. A significant advantage is that
it is robust to overestimation of the number of free parameters.

I. INTRODUCTION

For low frequency observations (< 300 MHz) the radio
astronomical community is currently developing a number of
new instruments, for example the Mileura Wide Field Array
(MWA) [1], the Primeval Structure Telescope (PaST) [2] and
the Low Frequency Array (LOFAR) [3] which we consider in
this paper. LOFAR consists of a large number (∼ 13, 000) of
dipole antennas, arranged in 72 stations. The antennas in each
station are combined to mimic a single telescope dish, which
is electronically steered into the desired direction. The outputs
of the stations are split into narrow frequency bins, correlated,
averaged over short intervals, and stored for offline processing.

Calibration of LOFAR is essential [4], and as described
in [5] has several components: calibration of the station
beamshapes, and calibration of the refraction in the iono-
sphere. At low frequencies the effect of the ionosphere is
stronger than at the higher frequencies used by most current
telescopes, because the phase shift caused by the ionosphere
scales with wavelength. Furthermore the beamwidths of the
station beams are wider than those of most existing radio
telescopes. The beam projected onto the ionosphere is wider
than the typical size of fluctuations within the ionosphere (in
the order of a few km), see Fig. 1. The ionospheric phase
can change considerably over the beam, therefore ionospheric
calibration is direction dependent. Most stations are spaced at
least a few km apart, thus it is also station dependent.

In this paper we will describe a statistical model for
ionospheric fluctuations, sufficiently simplified to be suitable
for Signal Processing. The Maximum A Posteriori (MAP)
estimator will be used for calibration. Simulations show that
this approach is superior to the currently popular method of
fitting Zernike polynomials [6].
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Fig. 1. LOFAR scenario: the ionosphere changes within the station beam and
direction-dependent calibration is required. Also the ionosphere is different
for different stations.

II. DATA MODEL AND PROBLEM STATEMENT

A. Radio Astronomical Interferometer

A radio astronomical interferometer estimates the covari-
ance matrices of antenna outputs by correlating them. Assume
that there are M stations. Each station consists of a number of
antennas, whose signals are beamformed resulting in a station
signal, the equivalent of the output of a ‘virtual’ parabolic dish
antenna. The sampled output of each station ‘antenna’ is split
by a filter bank into narrow frequency bins. Let xk[n] be a
vector stacking the M station signals available at frequency
k and time n. After averaging over N samples, the output of
the correlator is given by

R̂k =
1

N

N
∑

n=1

xk[n]xk[n]
H (1)

For the purpose of ionospheric calibration, we make a
number of assumptions:

• Only a single calibration source is present,
• The station beamformers are pointed towards this source

and the geometric delays are compensated for (the source
appears at zenith),

• The instrumental phase errors are zero, and gains towards
the source are unity.



These are significant simplifications that with suitable prepro-
cessing hold true, and can be generalized later on.

The resulting data model for xk[n] at the nth output sample
of the kth frequency bin centered at fk is

xk[n] = aksk[n] + wk[n] , (2)

where sk[n] is the astronomical source signal, wk[n] is a noise
vector (i.i.d. Gaussian), and ak is the spatial signature of the
source given by

ak = exp(iφk)

where
φk = Cτ kf−1

k (3)

is a vector with M entries representing the ionospheric phases
at each station (a function of frequency), and τ k is a vector
containing the Total Electron Content (TEC) seen by each
station, which is the integral of the electron density along
the line of sight towards the calibration source. The constant
C = 8422 rad/MHz/TECU (TECU = TEC unit = 1016

electrons/m2).
Under this model, the expected value of the covariance

matrices is

Rk = E[R̂k] = aka
H

kσ2

s + σ2

wI

where σ2
s and σ2

w are respectively the signal and noise power.

B. Ionospheric fluctuations

We model the ionosphere as a thin turbulent layer. The
statistics of density fluctuations in a turbulent medium can
be derived from Kolmogorovs theory of turbulence. Instead
of using autocorrelation functions, the second-order statistics
are usually given in the form of a “structure function”, defined
for a variable ϕ(x) which is a function of a distance parameter
x as []

Dϕ(∆x) = E[(ϕ(x) − ϕ(x + ∆x))2].

Structure functions are used because the autocorrelation func-
tion is infinite for a pure Kolmogorov turbulent process,
because all the large scale fluctuations are included. The
structure function only looks at local differences which are
finite.

The structure function for ionospheric TEC fluctuations over
a distance r has the form [7]

DTEC(r) =

(

f0

C

)2 (

r

s0

)β

(4)

where s0 is a reference distance and f0 is a reference fre-
quency. Translating this into the structure function of the phase
fluctuations, we obtain

Dφ(r, f) =

(

f0

f

)2 (

r

s0

)β

.

The expression for the structure function has the form of a
power law with exponent β. The scaling is chosen such that
for the reference frequency f0 and over the reference distance
s0, the structure function Dφ(s0, f0) = 1.

III. CALIBRATION ALGORITHM

A. General Data Model

We can translate the problem into more generic terms by
utilizing a general nonlinear data model of the form

y = f(θ) + w (5)

where y is a vector that stacks all observations, θ is a vector
stacking the unknown parameters, and w is a noise vector.
In this model, both the unknowns and the noise are assumed
to be the result of Gaussian random processes with known
covariance matrices Cθ and Cw respectively.

The generic data model is related to our application as
follows. Let

y = vec(R̂k) , f(·) = vec(Rk) = (āk ⊗ak)σ2

s +vec(I)σ2

w ,

where vec(·) stacks the columns of a matrix into a vector,
and ⊗ denotes the Kronecker product. The observation noise
vec(R̂k − Rk) corresponds to the noise vector w in (5).
The observation noise is Wishart, not Gaussian, but for a
sufficiently large N Gaussian noise is a good approximation.

The unknown parameter vector is τ k, but since we cannot
expect to estimate the bulk delay, we subtract the average
value of τ k and define

θ = τ k −
1

M
11

T

τ k .

The corresponding covariance matrix for θ is, from (4),

Cθ =
−1

2

(

f0

C

)2

(I −
1

M
11

T

)

(

D

s0

)¯β

(I −
1

M
11

T

) (6)

where D is a distance matrix containing all distances (base-
lines) between the antennas, and the superscript ¯β denotes
entrywise raising to the power β.

The above translates the data model into the generic model
for a single frequency k and time point. It takes only the
spatial structure into account. However, the model is readily
generalized; the main issue is to obtain a model for the
covariance matrix Cθ.

B. MMSE estimator

A desirable estimator is the estimator with the minimum
Mean Squared Error, the MMSE, given by [8]

θ̂ = arg min

θ̂

E[|θ̂ − θ|2] .

The solution of this minimization problem is given by

θ̂ = E[θ|y]

where the expectation is taken over the a posteriori pdf. Using
Bayes’ rule the a posteriori pdf is found to be

p(θ|y) =
p(y|θ)p(θ)

∫

p(y|θ)p(θ)dθ
.

Both the determination of the a posteriori pdf and taking
the expectation require multi-dimensional integration. In many



cases an analytical solution cannot be found and numerical in-
tegration is needed. Multi-dimensional numerical integration is
a computationally demanding problem, and for large problems
such as LOFAR calibration this is simply not feasible.

C. MAP estimator

A good alternative is to use the Maximum A Posteriori
(MAP) estimator [8],

θ̂ = arg max
θ

p(θ|y) = arg max
θ

p(y|θ)p(θ)
∫

p(y|θ)p(θ)dθ

= arg max
θ

p(y|θ)p(θ) .

For the MAP no numerical integration is needed. With a
Gaussian data model the MAP reduces to a Least Squares
problem, because

p(y|θ)=
1

(2π)
k

2 |Cw|
1

2

exp

[

−
1

2
(y − f(θ))

T

C−1

w
(y − f(θ))

]

p(θ)=
1

(2π)
k

2 |Cθ|
1

2

exp

[

−
1

2
θ

T

C−1

θ θ

]

so that

θ̂ = arg max
θ

p(y|θ)p(θ)

= arg min
θ

‖C
−

1

2

w (y − f(θ))‖2 + ‖C
−

1

2

θ θ‖2 . (7)

D. Karhunen-Loeve transformation

In many cases the dimensionality of θ is large. It may
contain not only entries corresponding to sample points, but
also entries corresponding to distances where we wish to know
the phase or the TEC, e.g., on a uniformly spaced grid. Thus,
it is necessary to interpolate the sample points, assuming a
“smooth” behavior over space and taking into account the
spatial correlation behavior given by the structure function,
or equivalently the covariance matrix Cθ.

The full parameter vector θ is “explained” in terms of fewer
underlying parameters by posing

θ = Uθp

where Uθ is a tall matrix whose columns are regarded as basis
functions of the interpolation. The reduced parameter vector
is p. The basis vectors in Uθ can be selected in several ways:

• Data independent, e.g., by choosing polynomial func-
tions. Zernike polynomials are often used [].

• Data dependent, by computing an eigenvalue decompo-
sition of the covariance matrix

Cθ = UΛU
H

≈ UθΛθU
H

θ (8)

where U is a unitary matrix containing the eigenvec-
tors, Λ is a diagonal matrix containing the eigenval-
ues. In the approximation, only the dominant eigenvec-
tors/eigenvalues are retained in Uθ and Λθ.

Inserting this into the MAP estimator, we obtain

p̂ = arg min
p

‖C
−

1

2

w (y − f(Uθp̂))‖2 + ‖Λ
−

1

2

θ p̂‖2 . (9)

After estimating p̂, an estimate of θ̂ is obtained as θ̂ = Uθp̂ .
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Fig. 2. Station configuration used for simulation. Only the selected stations
were actually included in the simulation.

E. Unknown hyperparameters

In the context of Bayesian estimation, the parameters which
parameterize the a priori distribution are called the hyperpa-
rameters. In our case the hyperparameters are β and s0. If
they are unknown they need to be estimated too. The MAP
estimator can easily be extended to incorporate this by simply
extending the search space with the extra unknowns. However,
this makes the problem much harder because it changes from
a large least squares problem, to a large generic non-linear
problem. A solution is to alternately estimate θ, using least
squares, and the other two parameters using a generic non-
linear solver:

1) Initialize β and s0 with some reasonable guess
2) Estimate p using (9)
3) Estimate β and s0 using a non-linear solver as

arg max
β,s0

1

(2π)
k

2 |Cθ(β, s0)|
1

2

exp

[

−
1

2
θ

T

C−1

θ (β, s0)θ

]

4) Check for convergence of β and s0, if necessary go to
step 2.

IV. SIMULATIONS

In this section, we demonstrate the applicability of the
proposed method to the LOFAR calibration problem. Several
simplifications were made to allow for sufficient Monte Carlo
runs. The ionosphere is assumed to be a thin layer above
the array. The TEC values of the ionospheric layer are a
function of position. They are assumed to be the result of
a random process with a Kolmogorov spectrum. The TEC
values of interest are the ones at the pierce-points where
the line of sight intersects the ionospheric layer. Ignoring the
curvature of the earth, the distance between the pierce-points
equals the distance between the stations. Figure 2 shows a
configuration of 72 stations which is similar to the actual
LOFAR configuration. One third of the stations was selected
to be included in the simulation, so the number of antennas
M = 24. Let vi be the vector describing the position of
the ith station. The entries of the distance matrix D are
given by di,j = ‖vi − vj‖. From the distance matrix the
covariance matrix Cθ can be found using (6). The parameters
used to generate the data are β = 5/3, f0 = 100 MHz and



s0 = 3000 m, i.e. a pure Kolmogorov spectrum with an r.m.s
phase fluctuation of 1 radian over a distance of 3000 m at 100
MHz.

The relative TEC values τ are generated as

θ = C
1/2

θ w ,

where w is zero mean i.i.d. Gaussian noise. The resulting
θ is jointly Gaussian with covariance Cθ. The TEC values
are subsequently used to construct the spatial signatures ak.
Data samples xk[n] are generated using Gaussian random
signals sk[n] and noise wk[n] according to equation (2). The
covariance estimates are then obtained from (1).

For the simulation we have used 501 frequency bins of 1
kHz with center frequencies ranging from 100 Mhz to 100.5
MHz. The integration time is 1 second so each covariance
estimate is based on N = 1000 samples. The signal to noise
ratio σ2

s/σ2
w was −30dB. For each Monte Carlo run a new set

of TEC values and covariance data was generated.
Based on the simulated data the TEC values are estimated

using three different methods: Least Squares using Zernike
polynomials, Least Squares using a Karhunen-Loeve basis,
and the MAP using a Karhunen-Loeve basis. All methods
are based on equation (9). When we omit the term ‖Λ

−
1

2

θ p̂‖,
the method reduces to an ordinary least squares fit. The basis
Uθ consists either of Zernike polynomials or the Karhunen-
Loeve basis computed from (8). When the term is included,
the method is a (truncated) MAP. In each case, the size of the
basis, or the model order, can be varied from 1 to M − 1.
The maximum order is one less than the number of antennas
because only the relative TEC τ k is estimable.

From the estimated τ k, the ionospheric phases φk are
computed as in (3). The error measure is the r.m.s. phase error
at the reference frequency f0 = 100MHz.

In figure 3(a) the error is plotted against the selected model
order. It is seen that increasing the order reduces the model
error, but at the same time the estimates get noisier. Initially
incrementing the order will result in a lower total error, but
at some point the additional noise outweighs the reduction of
the modeling error.

Using the optimal basis (8) improves the performance. The
lowest error of the LS method using the Karhunen-Loeve basis
is below the best performance of the Zernike polynomials, and
is also reached at a lower order. However, to reach the lowest
attainable error of the Least Squares method one needs to
know at what order the optimum is reached.

The MAP estimator is not only always better than the Least
Squares methods, but it is also guaranteed that the performance
will improve with increasing model order. The fact that the
algorithm is robust to overestimation of the number of free
parameters is a significant advantage.

The increased performance is the result of exploiting the a
priori information. Of course, if the assumed prior does not
match the actual distribution, the performance suffers, as can
be seen in figure 3(b), where the MAP estimation is done using
wrong settings for the hyperparameters (β, s0). The perfor-
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Fig. 3. Estimation performance as function of model order selection: (a)
known model parameters, (b) estimated model parameters. The error is scaled
relative to the minimum in each plot.

mance is greatly improved by estimating the hyperparameters
iteratively, as proposed in section III-E.
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