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Abstract— In radio astronomy images are made of
astronomical objects as they appear at radio frequencies
using a technique called aperture synthesis. Signals from
several antennas are correlated and integrated over time.
The data collected over several hours are further processed
to calibrate the instrument and to form an image or
intensity map. The calibration and imaging algorithms
do not use the autocorrelations because the receiver noise
is unstable and hence considered unknown. In literature
the Cramer Rao Bound for the calibration problem has
been derived assuming that the autocorrelations are part
of the available data. If the assumption is correct that the
autocorrelations do not contain useful information when
the receiver noise is unknown, than the CRB for the case
that the autocorrelations are not part of the data will be the
same. In this paper we will derive the CRB excluding the
autocorrelations and show that it indeed does not matter
whether the autocorrelations are included or not.

I. INTRODUCTION

For low frequency observations (< 300 MHz) the
radio astronomical community is currently develop-
ing a number of new instruments, for example the
Mileura Wide Field Array (MWA) [1], the Primeval
Structure Telescope (PaST) [2] and the Low Fre-
quency Array (LOFAR) [3]. At these frequencies the
beamwidths of the receiving elements are wider than
those of most existing radio telescopes, therefore
there are always multiple bright sources present
within the field of view. Existing calibration tech-
niques based on a single source calibration can
not be used. Furthermore the effects of the iono-
sphere are stronger at lower frequencies, which
makes a direction dependent calibration necessary.

New algorithms are needed for calibration at low
frequencies.

During our work on calibration algorithms for
LOFAR we have noticed that the Cramer Rao
Bound for the radioastronomical calibration prob-
lem has been derived assuming an estimate of the
full covariance matrix, R̂, is available, while ex-
isting calibration algorithms discard the diagonal of
R̂ [4]. Discarding the diagonal makes sense because
the noise powers are considered to be unknown: the
data model for the covariance matrix is of the form
R = R(θ) + D, where θ are the unknown calibra-
tion parameters (the gains and phase offsets) and D
is a diagonal matrix containing the unknown noise
powers. Existing algorithms discard the diagonal of
R̂ and only estimate θ. Of course, the lower bound
for the case that the diagonal of R̂ is available is also
a lower bound for the case the diagonal has been
discarded, because discarding data can only increase
the variance. But the question remains whether the
CRB is tighter (higher) if we take into account that
the diagonal has been discarded. If so, the diagonal
contains some useful information to estimate θ and
there might exist an algorithm that exploits that. Our
intuition was that that is not the case. In this paper
we present a proof that the bounds are indeed the
same.

Section II states the problem in mathematical
terms. In section III we will motivate our intuition.
Section IV gives the necessary background to for-
mally solve the problem. Section V presents the
results.
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Notation: Vectors are denoted by bold lowercase,
x. Matrices by bold capitals X. The transpose
operator is denoted by T and the conjugate transpose
by H. Entries of matrix X are denoted by xi,j . For
entries of matrix expressions we use a combination
brackets and indices [X−1]i,j.

II. DATA MODEL & PROBLEM STATEMENT

Assume we have an array of M elements. The
sampled array output in complex base band form
for the nth sample is modeled as

x[n] = xs[n] + n[n]

where x[n] is the M × 1 output vector, xs[n] is
the signal from the astronomical sources and n[n]
is the noise. The statistical model for the signals
is xs[n] ∼ CN (0,R(θ)) where θ are the unknown
calibration parameters, and n[n] ∼ CN (0,D) where
D is a diagonal matrix of which the entries can
be considered either known or unknown. The array
output is correlated and averaged over time to form

R̂ =
1

N

N∑
n=1

x[n]x[n]H.

The signal and the noise are assumed to be inde-
pendent so

E[R̂] = R(θ) + D.

This is a general model which fits more specific
commonly used models [4]–[7].

The question we will try to answer is the fol-
lowing. Suppose the diagonal entry di,i is unknown,
does knowledge of the corresponding data entry r̂i,i

help us to estimate θ or can r̂i,i simply be discarded
without influencing the maximum attainable perfor-
mance? Algorithms as in [8] do not use the diagonal
of R̂; the noise powers D are unknown, but not
estimated. The algorithms in [4] do use the diagonal
but they also estimate D. The question is whether
these two approaches are equivalent or not.

III. INTUITIVE ANSWER BASED ON THE LEAST

SQUARES ALGORITHM

An intuitive answer can be found when we try to
solve this estimation problem with a least squares fit
and assume that that will give us the optimal result.

The least squares fit equation, for known {di,i}, i =
1 . . .M , is given by

θ = arg min
θ

‖R̂− (R(θ) + D)‖2
F

= arg min
θ

M∑
j=1

M∑
k=1

(r̂j,k − (r(θ)j,k + dj,k))
2 ,

or, for unknown {di,i}, i = 1 . . .M ,

{θ, di,i} = arg min
θ,di,i

‖R̂− (R(θ) + D)‖2
F =

arg min
θ,di,i

M∑
j=1

M∑
k=1

(r̂j,k − (r(θ)j,k + dj,k))
2 ,

First consider the case of unknown {di,i}. The
unknown di,i appears only in one term of the sum
so we are free to choose di,i (for each i) such that

(r̂j,k − (r(θ)i,i + di,i))
2 = 0. (1)

So this term is always zero and to find θ only the
remaining terms are used

θ = arg min
θ

∑
1≤j≤M
1≤k≤M

(j,k)�=(i,i)

(r̂j,k − (r(θ)j,k + dj,k))
2 ,

(2)
Whether r̂i,i is available or not does not matter for
the estimation of θ because it does not appear in
(2). Now consider the case that r̂i,i is missing. The
term in (1) can not be evaluated so it needs to
be removed from the least squares problem. The
remaining problem is (2). Whether r̂i,i is known or
not does not matter for the estimation of θ because
it does not appear in (2).

So in solving θ using the least squares method the
cases that either di,i is unknown or r̂i,i is unavailable
or both are all the same. This suggests that the
theoretical best attainable performance is the same
for all cases. But is this really true? To answer this
question we will evaluate the CRB for four cases
differing in whether we consider di,i as known or
unknown and whether r̂i,i is included in the data or
not.

IV. PRELIMINARIES FOR THE DERIVATION

This section contains a summary of the back-
ground information and techniques necessary to
solve the problem. References are given to more
extensive treatments of the material presented here.
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A. Cramer Rao Bound

The Cramer Rao Bound is a lower bound on the
variance of an unbiased estimator. Here we will only
give its definition. A more extensive treatment can
be found in [9, Ch. 3].

To find the CRB we need to know the probability
density function (pdf) of the data x as function
of the unknown parameters θ. We denote the pdf
by p(x; θ). The pdf must satisfy the regularity
condition

E

[
∂ ln p(x; θ)

∂θi

]
= 0 for all θi

The entries of the Fisher Information Matrix are
given by

[F(θ)]i,j = −E

[
∂2 ln p(x; θ)

∂θi∂θj

]

= −E

[
∂ ln p(x; θ)

∂θi

∂ ln p(x; θ)

∂θj

]
.

Let θ̂ be an unbiased estimate of θ based on x. The
lower bound on the variance of θ̂ is given by the
diagonal entries of F.

B. PDF and discarded data points

Consider the case that the pdf of the obser-
vations x1 . . . xn is given but the estimator uses
only the observations x1 . . . xn−1 (observation xn is
discarded/not available). To calculate the CRB the
pdf of x1 . . . xn−1 is needed. It can be found by
integrating p(x1, . . . , xn) over xn = −∞ . . .∞, (see
[10, Ch. 4, p. 202])

p(x1, . . . , xn−1) =

∫ ∞

−∞
p(x1, . . . , xn)dxn.

C. Additional parameters

Assume that for a certain pdf p(x; θ) the Fisher
Information Matrix is given by Fθθ , where

θ =


 θ1

...
θm


 .

The CRB is the inverse of Fθθ. Now the same data
model is used but a parameter that first was con-
sidered known is considered unknown. The vector

of unknown parameters θ is extended by one entry
θm+1 forming

θ̃ =

[
θ

θm+1

]
.

The Fisher Information Matrix is extended by one
extra row and column

F
θ̃θ̃

=

[
Fθθ Fθθm+1

F
θm+1θ Fθm+1θm+1

]
.

The new CRB is the inverse of F
θ̃θ̃

which can be
partioned as follows

F−1

θ̃θ̃
=




[
F−1

θ̃θ̃

]
θθ

[
F−1

θ̃θ̃

]
θθm+1

[
F−1

θ̃θ̃

]
θm+1θ

[
F−1

θ̃θ̃

]
θm+1θm+1




Using the Schur complement [11, p. 264] the upper
left block can be written as[
F−1

θ̃θ̃

]
θθ

=
(
Fθθ − Fθθm+1

F−1
θm+1θm+1

F
θm+1θ

)−1

Now we define a modified Fisher Information Ma-
trix

F̃θθ := Fθθ − Fθθm+1
F−1

θm+1θm+1
F

θm+1θ.

The CRB for the original parameter set θ in the
presence of an additional parameter θm+1 is given
by the inverse of the modified Fisher Information
Matrix F̃.

D. Wishart Distribution

If the M × 1 vectors xj are i.i.d. with a complex
normal distribution with zero mean and variance Σ,
i.e. x ∼ CN (0,Σ) then the matrix

W =

N∑
j=1

xjx
H

j

is said to have a complex Wishart distribution with
N degrees of freedom, i.e. W ∼ CW(Σ, N). The
probability density function of the complex Wishart
distribution is given by (see [12, Ch. 4.2, p. 90]

p(W ;Σ) =
1

cM,N

1

|Σ|N e
−tr Σ−1W |W |N−M
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0 0.002 0.004 0.006 0.008 0.01 0.012

d1,1 is known, r̂1,1 is available

d1,1 is unknown, r̂1,1 is not available

d1,1 is known, r̂1,1 is not available

Fig. 1. Cramer-Rao bounds (bars) and Monte Carlo simulations of ML estimators including 99% confi dence intervals (markers)

Di,i known Di,i unknown
R̂i,i included S = Q S = Q − NP

R̂i,i excluded S = Q − (N − M)P S = Q − NP

TABLE I

THE FISHER INFORMATION MATRIX FOR THE FOUR DIFFERENT

CASES IS GIVEN BY JHSJ. THE MATRIX Q IS DEFINED AS

Q = N R
−1 ⊗R−1 .

This distribution has the following properties

E[W ] = NΣ,

cov(W ) = E[vec(W )vec(W )
H
] +

−E[vec(W )]E[vec(W )H]

= NΣ ⊗ Σ.

V. RESULTS

In this section the results summarized in table I
will be derived.

From the Wishart distribution and the definition
of the CRB one can derive the Fisher Information
Matrix for Gaussian sources. The result is well
known and given by Bang’s formula

F =

(
∂vec(R)

∂θ
T

)H

N
(
R

−1 ⊗ R−1
)(

∂vec(R)

∂θ
T

)

Now we consider the estimators that do not use
diagonal element r̂1,1. The CRB for these estimators
is based on the pdf of the remaining data. This
pdf can be found by integrating the pdf of the
Wishart distribution over r̂1,1. To present the result
in compact matrix form we define R̂0 to be equal
to R̂ except for [R̂0]1,1 = 0. We also define R̂1,1 as
a submatrix of R̂ obtained by omitting the first row

and the first column of R̂. We have found the pdf
for R̂0 to be

p(R̂0;R) =
Γ(k + 1)

cm,n

|R|−N |R̂1,1|N−M ×

(
[R−1]1,1

)N−M+1
e
−tr(R−1R̂0)+

[R−1]1,1

[R̂−1
0

]1,1 .

From this pdf the bounds can be derived. The
derivation is somewhat tedious but the result can be
expressed in a simple form. The Fisher Information
Matrix is Bang’s formula minus a ’penalty’ for
discarding data

F = J
H
(
N

(
R

−1 ⊗ R−1
)
− (N − M + 1)P

)
J,

where J is the Jacobian defined by

J =

(
∂vec(R)

∂θ
T

)

and P is a ’penalty’ matrix defined as

P =
vec (R−1E1,1R

−1)
H

vec (R−1E1,1R
−1)

[R−1]21,1

.

If we extend the vector of unknowns to θ̃, it turns
out that for both cases the Fisher Information Matrix
is

F̃ = JH
(
N

(
R

−1 ⊗ R−1
)
− NP

)
J.

So, indeed if d1,1 is unknown the corresponding
observation r̂1,1 can be discarded without changing
the bound. In other words, if d1,1 is unknown an
algorithm that does not use r̂1,1 can be efficient.

A more surprising result is that if r̂1,1 has not
been observed, it still matters whether d1,1 is known
or not. To see whether it is possible to exploit
the extra information we have implemented the
Maximum Likelihood Estimators for three cases: 1)
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d1,1 is known, r̂1,1 is available 2) d1,1 is unknown,
r̂1,1 is not available 3) d1,1 is known, r̂1,1 is not
available. We have run 106 Monte Carlo simula-
tions for a scenario with the number of antennas
M = 3, the number of samples N = 100. The
parameters were the absolute gains and the phases.
In figure 1 the CRB and the Mean Square Error
of the absolute gain of the first element have been
plotted. The figure shows that MLE performs better
when d1,1 is known. The MSE lies even slightly
below the bound. This is possible because the MLE
for this problem is biased at low N . For high N
the performance equals the bound, but also the
differences between the two bounds goes to zero.
In any practical scenario the number of samples N
is far greater than the number of sensors M , and
than the difference is negligible. Apart from this
it is questionable there exist situations in practice
where one knows d1,1, but not r̂1,1.

VI. CONCLUSIONS

Existing calibration algorithms for radio astro-
nomical interferometers (or phased arrays) do not
use the diagonal entries of the covariance estimate
R̂. In case the noise powers are unknown these
algorithms can still be efficient, since discarding the
diagonal of R̂ has no influence on the Cramer Rao
Bound.
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