
Wireless Transceiver Design
For High Velocity Scenarios

Tao Xu



面向高速运动情景的

无线收发机设计

许许许涛涛涛



Wireless Transceiver Design
for High Velocity Scenarios

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op dinsdag 15 januari 2013
om 12:30 uur

door

Tao XU

Master of Science in Electronic Science and Technology
geboren te Liaoning, China.



Dit proefschrift is goedgekeurd door de promotoren:

Prof. dr. ir. A.-J. van der Veen

Prof. dr. ir. G.J.T. Leus

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. ir. A.-J. van der Veen Technische Universiteit Delft,

promotor
Prof. dr. ir. G.J.T. Leus Technische Universiteit Delft,

promotor
∗Dr. ir. T.G.R.M. van Leuken Technische Universiteit Delft
Prof. dr. O. Yarovyi Technische Universiteit Delft
Prof. dr. D.G. Simons Technische Universiteit Delft
Dr. ir. H.S. Dol TNO
Prof. dr. M. Stojanovic Northeastern University, USA

∗Dr. ir. T.G.R.M. van Leuken heeft als begeleider in belangrijke mate aan de
totstandkoming van het proefschrift bijgedragen.

Copyright c© 2013 by Tao XU

All rights reserved. No part of the material protected by this copyright
notice may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying, recording or by any
information storage and retrieval system, without the prior permission of
the author.

ISBN 978-94-6186-094-1



In memory of my grandparents
and

dedicated to my parents





Summary

This thesis is dedicated to transceiver designs for high data-rate wireless
communication systems with rapidly moving terminals. The challenges are
two-fold. On the one hand, more spectral bandwidth of the transmitted sig-
nals is required by future wireless systems to obtain higher transmission
rates, which can result in the frequency selectivity of the communication
channels. On the other hand, Doppler effects emerge when high mobile
speeds are present, which can result in the time selectivity of the commu-
nication channels. Therefore, it is likely that future wireless communication
systems operate in doubly-selective channels, which impose many difficul-
ties on transceiver designs. In this thesis, we investigate these challenges in
the following four scenarios, and propose a number of corresponding solu-
tions.

OFDM over Narrowband Channels:
Orthogonal frequency-division multiplexing (OFDM) is a typical multiple-
carrier transmission technique. In a narrowband scenario, Doppler
effects are well approximated as frequency shifts. In this manner, a
narrowband doubly-selective channel for OFDM systems can be ap-
proximately characterized as a banded matrix especially when a basis
expansion model (BEM) is exploited to model the channel. It thus al-
lows to reduce the complexity of the channel equalization. However,
there are various different BEM’s available. We identify a particular
BEM which leads to a more efficient hardware architecture than other
choices, while still maintaining a high modeling accuracy.
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OFDM over Wideband Channels:
The Doppler effect manifests itself as a distinct phenomenon in wide-
band channels compared to narrowband channels. Specifically, the
wideband signal waveform is measurably dilated or compressed when
Doppler is present rather than just frequency-shifted. This unique na-
ture of wideband time-varying channels requires new designs for wide-
band OFDM systems. We first quantify the amount of interference
resulting from wideband doubly-selective channels which follow the
multi-scale/multi-lag (MSML) model. Then we discuss an equaliza-
tion method for wideband channels either in the frequency domain or
in the time domain. A novel optimum resampling procedure is also
introduced, which is normally unnecessary in narrowband systems.

Multi-Rate Transmissions over Wideband Channels:
Traditional multi-carrier transmission schemes, e.g., OFDM, use a uni-
form data rate on each subcarrier, which is inherently mismatched with
wideband time-varying channels. In fact, the time variation of wide-
band channels, i.e., the Doppler scales, imply a non-uniform sampling
mechanism. To mitigate this, we propose a novel multi-rate trans-
mission scheme by placing the information symbols at different non-
overlapping sub-bands where each sub-band has a distinctive band-
width. To combat the MSML effect of the channel, a filterbank is de-
ployed at the receiver, where each branch of the filterbank samples the
received signal at a corresponding rate. By selecting a proper trans-
mit/receiver pulse, the effective input/output relationship can be cap-
tured by a block-diagonal channel, with each diagonal block being a
banded matrix similarly as seen in narrowband OFDM systems. The
benefit of this similarity is that existing low-complexity equalizers can
be adopted for wideband communications.

Robust Multi-band Transmissions over Wideband Channels:
Accurate channel estimation for wideband doubly-selective channels
is challenging and troublesome. Adaptive channel equalization is thus
attractive since it does not require precise channel information and
is robust to various prevailing environmental conditions. When the
MSML effect emerges in wideband channels, it is not wise to adopt ex-
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isting adaptive equalization designs that are previously used in other
scenarios, e.g., narrowband channels. We adopt a multi-band frequency-
division multiplexing (FDM) signal waveform at the transmitter to re-
duce the equalization complexity, while maintaining a high data rate.
By carefully designing the transmit pulse, our proposed multi-layer
turbo equalization, using a phase-locked loop (PLL) followed by a time-
invariant finite impulse response (FIR) filter, is capable of equalizing
such MSML channels.
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Glossary

Mathematical Notation

x scalar x

x vector x
‖x‖ Euclidean norm of vector x
X matrix X
XT transpose of matrix X
XH Hermitian transpose of matrix X
X∗ complex conjugate of matrix X
X−1 inverse of matrix X
X† pseudoinverse of matrix X
tr{X} trace of matrix X
‖X‖ Frobenius norm of matrix X
diag(x) square diagonal matrix with x as diagonal
[X]k,l element on the kth row and lth column of matrix X
0m×n m× n all-zero matrix
1m×n m× n all-one matrix
en unit vector with a one in the nth entry
IN identity matrix of size N

<{x} real part of x

={x} imaginary part of x

x̂ estimate of x

sgn{x} the sign of x ∈ R
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Glossary

bxc largest integer smaller or equal to x ∈ R
dxe smallest integer larger or equal to x ∈ R
< x > integer closest to x ∈ R
E{x} expectation of random variable x

xmod/y remainder after dividing x ∈ R by y ∈ R
R the set of real numbers
C the set of complex numbers
× multiplication
~ linear convolution
⊗ Kronecker product
¯ Hadamard (point-wise) product
δk a delta function which is equal to one

only if k = 0 and zero otherwise

Acronyms and Abbreviations

AWGN Additive White Gaussian Noise
BEM Basis Expansion Model
BER Bit Error Rate
BPSK Binary Phase Shift Keying
CE-BEM Complex Exponential BEM
CCE-BEM Critically-sampled CE-BEM
CDMA Code Division Multiple Access
CE Channel Estimator
CFO Carrier Frequency Offset
CG Conjugate Gradient
CP Cyclic Prefix
CSI Channel State Information
DFE Decision Feedback Equalizer
DFT Discrete Fourier Transformation
DKL-BEM Discrete Karhuen-Loéve BEM
DPS-BEM Discrete Prolate Spheroidal BEM
DSP Digital Signal Processor
DSSS Direct-Sequence Spread-Spectrum
DVB Digital Video Broadcasting
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Glossary

EQ Equalizer
FD Frequency-Domain
FDM Frequency-Division Multiplexing
FIR Finite Impulse Response
FPGA Field-Programmable Gate Array
GPS Global Positioning System
IBI Inter-Block Interference
ICI Inter-Carrier Interference
IDFT Inverse Discrete Fourier Transformation
ISI Inter-Symbol Interference
I/O Input-Output
LMMSE Linear Minimum Mean Square Error
LS Least Squares
LTE Long Term Evolution
LTV Linear Time Varying
MIMO Multi-Input Multi-Output
MSE Mean Squared Error
MSML Multi-Scale Multi-Lag
NLMS Normalized Least Mean Squares
NMSE Normalized Mean Squared Error
OCE-BEM Oversampled CE-BEM
OFDM Orthogonal Frequency-Division Multiplexing
PDF Probability Distribution Function
PLL Phase-Locked Loop
P-BEM Polynomial BEM
QPSK Quadrature Phase Shift Keying
RLS Recursive Least Squares
ROM Read-Only Memory
SIMO Single-Input Multi-Output
SINR Signal-to-Interference-plus-Noise Ratio
SISO Soft-Input Soft-Output
SNR Signal-to-Noise Ratio
SSML Single-Scale Multi-Lag
TD Time-Domain
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Glossary

TI Time-Invariant
T-F Time-Frequency
UAC Underwater Acoustic Communication
UMTS Universal Mobile Telecommunications System
UWB Ultra-wideband
WLAN Wireless Local Area Network
WLTV Wideband Linear Time Varying
ZF Zero-Forcing
ZP Zero-Padding
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Chapter 1

Introduction

Every day sees humanity more victorious in the
struggle with space and time.

Guglielmo Marconi

Since the successful demonstration of radio transmission made by Mar-
coni in 1895, wireless communication has undergone many evolutions [1].
Today, wireless communication technology is, by any measure, one of the
fastest growing segments of modern industry, and has become ubiquitous
in our daily life. Examples that come to mind include mobile phones, radio-
frequency identification (RFID) cards, wireless internet access, Bluetooth ear-
phones, etc. However, one complication of these famous applications is that
the communication terminals are relatively stationary or have a very low ve-
locity compared to the speed of the communication medium. Another com-
mon feature of them is that only a low data transfer rate is usually employed.
It is then natural to ask: what if users require a high data transfer rate while
moving rapidly?

Let us consider the following two scenarios:

Vehicular communications:
Fast moving vehicles in future intelligent transport systems will be
able to “talk” to each other for information exchange. These vehicles
could be cars running on the road, or airplanes approaching the air-
port, which may request a massive real-time data transfer.

Underwater acoustic communications:
Underwater vehicles in future underwater communication networks
can establish a continuous high-rate data communication link with a
distant mother platform using acoustic waves. These vehicles can be
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VV--22--V CommunicationV Communication

Example: Vehicular communications

Underwater VehicleUnderwater Vehicle

Example: Underwater acoustic communi-
cations

Figure 1.1: Illustrations of communications between high-mobility terminals

remote detectors for offshore oil exploration, or submarines diving in
shallow water environments.

These two examples, as depicted in Fig. 1.1, impose a common requirement
on future wireless communication systems, which is a high data transfer rate
between fast moving terminals.

In fact, in addition to the above examples, many other familiar com-
munication systems manifest themselves with the same development trend,
which is that they will not only require high data rates but also support
rapidly moving users in the future. Let us consider the mobile phone system
for instance. The first and second generation mobile phone systems, which
emerged respectively in the 1980’s and 1990’s, were mainly developed for
voice communications, which have low demands on the data rate. From the
earliest years of this century, the third generation (3G) technology starts to
be widely adopted, such as the Universal Mobile Telecommunications Sys-
tem (UMTS). Nowadays, 3G phone systems have been acting as digital mo-
bile multimedia offering several wireless data services like video, graphics
and other information besides voice. The basic requirement for these data
services is high data transfer rate, which is beyond the capability of previ-
ous generation systems. Some examples that support advanced data ser-
vices similarly as the 3G technology include wireless local area networks
(WLANs) and digital video broadcasting (DVB). However, all these existing
wireless systems are only able to provide low data rates (e.g., UMTS) or com-
pletely break down (e.g., DVB) at high speeds. Since 2004, the Long Term
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Evolution (LTE) initiated by the 3rd Generation Partnership Project (3GPP)
has been referred to as a major step towards fourth generation (4G) systems.
One of the primary goals of the future 4G technology is to support rapidly
moving users and even faster data transfers.

Increasing the data rate is always problematic as stated by Shannon’s
channel-capacity theorem, which states that the maximal achievable data
rate is ultimately limited by the effective bandwidth, the available transmit
power, and the interference energy (e.g., from the ambient noise). Solely in-
creasing the transmit power is usually avoided because of the battery limita-
tion on mobile devices. Hence the alternative is to increase the transmission
bandwidth. In recent years, ultra-wideband (UWB) has been introduced to
satisfy the high user data rate requirement. However, with the increased
spectrum bandwidth, time dispersion of the transmitted symbols appears,
inducing inter-symbol interference. When the mobility of the communica-
tion terminals is present, the performance of communication systems be-
comes even worse because the Doppler effect further deteriorates the con-
ditioning of communication channels. An extreme example is the afore-
mentioned underwater acoustic communications (UAC). On the one hand,
acoustic communication is wideband in nature because its adopted transmis-
sion bandwidth is comparable to the central frequency. On the other hand,
fast moving underwater vehicles usually introduce severe Doppler effects
since the speed of sound propagation in water is very low compared to ter-
restrial radio. In this sense, UAC is acknowledged as one of the most chal-
lenging data communication applications today.

In summary, we claim that for providing a high data transfer rate for fast
moving users, future communication systems will definitely have to combat
a very adverse communication channel which imposes a big challenge on
receiver designs.

1.1 Problem Statement and Research Objectives

When the bandwidth of the transmitted signal is larger than the coherence
bandwidth of the communication channel, it gives rise to time dispersion
of the transmitted symbols and frequency selectivity of the channel. The
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Figure 1.2: An illustration of the multiple-path propagation encountered in under-
water acoustic communications.

time dispersion of the transmitted symbols induces intersymbol interference
(ISI) when multipath propagation is present, and the frequency selectivity
indicates that different frequency components exhibit distinct attenuations.
Additionally, the Doppler effect caused by mobility gives rise to frequency
dispersion of the transmitted symbols or time selectivity of the channel, es-
pecially when the channel coherence time is smaller than the symbol period.
Consequently, it is likely that future wireless communication systems have
to handle doubly-selective (i.e., frequency- and time-selective) channels.

The Doppler effect in combination with multipath propagation can cause
severe interferences to a communication system in addition to the ambient
noise, thus deteriorating its service quality. Many approaches to compen-
sate for the Doppler effect and multipath attenuations have already been
proposed in the literature during the past decades, e.g. [2–11]. To our knowl-
edge, however, little attention is paid in these works to an efficient architec-
ture for the hardware implementation of these proposed signal processing
schemes. Another joint feature is that most of these methods adopt a rela-
tively narrow bandwidth for wireless communications, i.e., they work in the
narrowband regime. In other words, they all assume that the Doppler effect
manifests itself by means of the well-known frequency shifts [12–16]. How-
ever, when the transmission bandwidth is comparable with the employed
carrier frequency, or if the velocity of the wireless terminals is considerable
relative to the speed of the communication medium, this narrowband as-
sumption is violated and wideband communications are thus introduced. It
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is noteworthy here that the concepts of “wideband” and “narrowband” may
be different in various contexts. In this thesis, we adopt a definition that
refers to the fractional bandwidth (i.e., the ratio of the baseband bandwidth
divided by the center frequency), rather than the absolute bandwidth. For in-
stance, one can define that when the fractional bandwidth is larger than 20%,
the transmission is called wideband, otherwise narrowband. This definition
is popularly used in acoustics and radar [17]. In this sense, an UAC system,
which operates within a spectral bandwidth from 4 kHz to 8 kHz, is typically
wideband. However, some broadband systems that have a small fractional
bandwidth, e.g., in [18], would not qualify as wideband but is narrowband
in this thesis. In a wideband scenario, the Doppler effect cannot be approxi-
mated by frequency shifts anymore as in the narrowband case but manifests
itself by means of Doppler scales [15,19–24]. In this case, the transmitted sig-
nal is measurably compressed or dilated at the receiver because of the wide-
band time-varying channel. This phenomenon arises in a variety of wireless
communication applications, such as underwater acoustic communication
and wideband terrestrial radio frequency systems utilizing spread-spectrum
or ultra-wideband signaling. Fig. 1.2 illustrates an UAC signal is transmitted
along two distinct propagation paths, which are characterized by different
Doppler effects and timing delays. In addition to the delays, the signal along
each path experiences a different dilation or compression rather than the fre-
quency shift that is well known in the narrowband case. In the following
chapter, we will discuss more details about these different behaviors of the
Doppler effect (i.e., in the wideband case and the narrowband case). Since
the wideband channels exhibit key fundamental differences [15] relative to
the more commonly considered narrowband channels, new transceiver de-
signs for wideband time-varying systems are inevitable [25].

In this context, open research questions are:

• How should we design the receiver and/or the transmitter, when Doppler
scales emerge in a wideband time-varying channel?

• For a wideband time-varying system, can we still adopt any knowl-
edge from previous receiver designs that are used for narrowband time-
varying channels?
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Based on the questions above, we will address the following specific re-
search questions:

• It is wise to review previous knowledge about transceiver design for
narrowband time-varying channels, before studying wideband systems.
Although many receiver design methods have been proposed to han-
dle narrowband time-varying channels, an investigation from the as-
pect of the hardware implementation of an existing algorithm for such
receivers lacks, and is interesting especially to circuit design engineers.
How can it be implemented efficiently? Is there any algorithm simpli-
fication to reduce the hardware resource cost with only a minor per-
formance influence? If a wideband receiver design can share similar
structures with a narrowband receiver, these hardware implementa-
tion approaches can be used for both cases.

• When an adverse wideband time-varying channel is present, what are
its effects on a traditional transmission scheme compared to those well-
known effects in a narrowband case? How to reduce the complexity of
the channel equalization then?

• Since existing transceiver designs are not suitable for wideband time-
varying channels, can we intelligently design a new transmission scheme
such that existing low-complexity equalizers, which are used for nar-
rowband cases, can be adopted for wideband communications? In this
case, existing hardware implementation of narrowband receivers may
be adapted with minor changes for wideband systems.

• Another issue for wideband time-varying systems can be the challenge
of obtaining precise channel information that is needed for the channel
equalization. How to enhance the robustness of the equalization of a
wideband time-varying channel, thus enhancing the detection of the
transmitted data?

The answers to these questions will be important for the design of fu-
ture wireless communication systems, which not only provide a high data
transfer rate but also support fast moving users.
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1.2 Contributions and Outline

The rest of the thesis is organized as follows.
In Chapter 2, we first give a schematic overview of wireless communi-

cation systems. Then, we introduce wireless channel models and describe
their detailed expressions in two different scenarios, i.e., the narrowband
and wideband regimes. The relations and differences of these two channel
models are discussed. Additionally, multi-carrier transmission techniques
are reviewed.

In Chapter 3, we consider an orthogonal frequency-division multiplexing
(OFDM) transmission over a narrowband channel. The method of modeling
the narrowband OFDM time-varying channels by a basis expansion model
(BEM) is reviewed. Various architectures to implement the least-squares (LS)
channel estimation and its corresponding zero-forcing (ZF) channel equal-
ization are investigated by using different BEM’s. The experimental results
suggest that the OFDM receiver design tailored for a particular BEM model
(i.e., the CCE-BEM) among these models is more appealing since it allows
for a much more efficient hardware architecture while still maintaining a
high detection accuracy.

The publications related to this chapter are the following:

• T. Xu; Z. Tang; H. Lu; R. van Leuken. Memory and Computation
Reduction for Least-Square Channel Estimation of Mobile OFDM Sys-
tems. In Proc. IEEE International Symposium on Circuits and Systems
(ISCAS), pages 3556–3559, Seoul, Korea, May 2012.

• T. Xu, M. Qian, and R. van Leuken. Parallel Channel Equalizer for Mo-
bile OFDM Systems. In Proc. International Workshop on Circuits, Systems
and Signal Processing (ProRISC), pages 200–203, Rotterdam, Netherlands,
October 2012.

In Chapter 4, we are still interested in OFDM transmissions but over a
wideband time-varying channel. We first seek to quantify the amount of in-
terference resulting from wideband channels which are assumed to follow
the multi-scale/multi-lag (MSML) model. To perform the channel equaliza-
tion, we propose to use the conjugate gradient (CG) algorithm whose per-
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formance is less sensitive to the channel condition than, e.g., a least-squares
approach. The suitability of the preconditioning technique, which often ac-
companies the CG to accelerate the convergence, is also discussed. We show
that in order for the diagonal preconditioner to function properly in the cor-
responding domain, optimal resampling is indispensable.

The publications related to this chapter are the following:

• T. Xu, Z. Tang, R. Remis, and G. Leus. Iterative Equalization for OFDM
Systems over Wideband Multi-scale Multi-lag Channels. EURASIP
Journal on Wireless Communications and Networking, DOI:10.1186/1687-
1499-2012-280, August 2012.

• T. Xu, Z. Tang, G. Leus, and U. Mitra. Time- or Frequency-Domain
Equalization for Wideband OFDM Channels?. In Proc. International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages
3556–3559, Kyoto, Japan, March 2012.

• Z. Tang, R. Remis, T. Xu, G. Leus and M.L. Nordenvaad. Equalization
for Multi-Scale Multi-Lag OFDM channels . In Proc. Allerton Conference
on Communication, Control, and Computing, pages 654–661 , Monticello,
IL, USA, September 2011.

In Chapter 5, we consider wideband time-varying channels which have
the MSML nature, but propose new transmission schemes instead of OFDM.
By carefully designing the transmit signal, we propose a simplified receiver
scheme similarly as experienced by the narrowband OFDM transmissions.
The benefit of this similarity is to make existing low-complexity equalizers,
previously used in narrowband systems, still viable for wideband commu-
nications. Specifically, a new parameterized data model for wideband LTV
channels is first proposed, where the continuous MSML channel is approx-
imated by discrete channel coefficients. We argue that this parameterized
data model is always subject to discretization errors in the baseband. How-
ever, by designing the transmit/receive pulse smartly and imposing a multi-
branch structure on the receiver, we are able to eliminate the impact of the
discretization errors on equalization. In addition, we propose a novel multi-
layer transmit signaling scheme to enhance the bandwidth efficiency. It turns
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out that the inter-layer interference, induced by the multi-layer transmitter,
can also be minimized by the same design of the transmit/receive pulse. As
a result, the effective channel experienced by the receiver can then be de-
scribed by a block diagonal matrix, with each diagonal block being strictly
banded similarly as observed by narrowband OFDM systems over narrow-
band time-varying channels.

The publications related to this chapter are the following:
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In Chapter 6, we focus on the robustness of wideband communications,
and propose an adaptive multi-layer turbo equalization at the receiver. Dif-
ferent from the previous two chapters, herein we do not require perfect knowl-
edge of the wideband channel information which is usually difficult to ob-
tain. We use a multi-band transmitter which reduces the receiver complexity
while still maintaining a high data rate. At the receiver, we propose a multi-
branch framework, where each branch is aligned with the scale and delay of
one path in the propagation channel. We show that by optimally designing
the transmit and receive filter, the discrete signal at each branch can be char-
acterized by a time-invariant finite impulse response (FIR) system subject to
a carrier frequency offset (CFO). This enables a simpler equalizer design: a
phase-locked loop (PLL), which aims to eliminate the CFO is followed by a
time-invariant FIR filter. The updating of both the PLL and the filter taps is
achieved by leveraging the soft-input soft-output (SISO) information yielded
by a turbo decoder.
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Chapter 2

Preliminaries

The wireless telegraph is not difficult to understand.
The ordinary telegraph is like a very long cat. You pull
the tail in New York, and it meows in Los Angeles.
The wireless is exactly the same, only without the cat.

Albert Einstein

Any communication system is in principle composed of three compo-
nents, i.e., the transmitter, the communication channel and the receiver. Given
a certain transmit waveform, the receiver design can be adapted to the type
of communication channels. In this chapter, we first give a schematic overview
of wireless communication systems. Then, we introduce wireless channel
models and describe their detailed expressions for two different scenarios:
narrowband and wideband. We here highlight again that the definition of
“narrowband” and “wideband” in this thesis refers to the fractional band-
width rather than the absolute bandwidth [17]. In narrowband systems, the
Doppler effect manifests itself mainly as a frequency shift around the car-
rier frequency of the transmitted signals, while in wideband systems, the
Doppler effect translates into a time scaling of the signal waveform. Finally,
multi-carrier transmission techniques are reviewed.

2.1 Elements of Wireless Communications

Let us consider a wireless communication system, as depicted in Fig. 2.1.
The source that contains information is first modulated at the transmitter
to prepare for the propagation. The transmitted signal carrying the source
information is then propagated over a wireless channel that can be a radio
link or an acoustic environment. The received signal is demodulated at the
receiver and the source information is finally recovered at the destination. In
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Source

Transmitter Channel Receiver

Destination

Figure 2.1: Elements of a communication system

practice, the transceiver (i.e., both the transmitter and the receiver) should
be smartly designed according to the channel. Otherwise, on the one hand,
a bulky communication system can be too expensive to be practical, and on
the other hand, it may fail to establish a viable wireless link. Consequently,
knowledge about the characteristics of the underlying channels is necessary
for the transceiver design.

2.2 Wireless Fading Channels

Modeling the wireless signal propagation in general can be complex (e.g.
using Maxwell’s equations for electromagnetic wave propagation). Prac-
tical wireless channel modeling resorts to statistical methods, i.e., using a
stochastic model with limited parameters to characterize the channel. An
important parameter of a channel model is the fading effect, which refers
to the changes in the received signal amplitude and phase over time and
frequency. There are two types of channel fading: large-scale fading and
small-scale fading. Large-scale fading statistically represents the average sig-
nal power attenuation as a function of propagating distance. It is generally
assumed constant over time and independent of frequency. Small-scale fad-
ing describes random time-varying changes in signal amplitude and phase
due to multipath propagation and relative movement between communica-
tion terminals. More detailed background information can be found, e.g.,
in [14, 26, 27]. In the remainder of this thesis, we will refer to the small-scale
fading as ‘fading’ unless explicitly defined. Besides fading, if the channel
coherence bandwidth is larger than the bandwidth of the transmitted signal,
the time dispersion induces intersymbol interference (ISI). In addition, the
Doppler effect causes channel temporal changes especially when the chan-
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nel coherence time is smaller than the symbol period.

2.2.1 Parametric Channel Model

We consider a continuous-time linear time-varying (LTV) system model, where
the embedded communication channel is perturbed by additive ambient noise,
given by

r̄(t) =

∞∫

−∞
h̄(t, τ)s̄(t− τ)dτ + w̄(t), (2.1)

where s̄(t) and r̄(t) are respectively the actual transmitted and received sig-
nal (normally in passband), h̄(t, τ) is the channel impulse response, and w̄(t)
is the noise.

When the above channel consists of resolvable propagation paths as usual,
we can specify h̄(t, τ) as

h̄(t, τ) =
∞∑

l=−∞
h̄lδ(τ − τl(t)), (2.2)

where the lth path can mathematically be characterized by the path gain h̄l

and the propagation delay τl(t) that is dependent on time t. In this way, we
can rewrite (2.1) as

r̄(t) =

∞∫

−∞

∞∑

l=−∞
h̄lδ(τ − τl(t))s̄(t− τ)dτ + w̄(t),

=
∞∑

l=−∞
h̄ls̄(t− τl(t)) + w̄(t), (2.3)

which indicates that the received signal is a sum of various copies of the
transmitted signal, each of them distinctly delayed and attenuated.

To explicate each propagation delay component (i.e., τl(t)), let us assume
the lth path is related to a radial velocity v

(T)
l and v

(R)
l for the transmitter

and the receiver, respectively. The time-varying delay component can be



16 2. Preliminaries

expressed as [15, 19]

τl(t) = τl −
(v(R)

l − v
(T)
l )(t− τl)

c + v
(T)
l

,

where τl is constant and uniquely determined by the initial delay of the l-th
path, (v(R)

l − v
(T)
l )(t − τl) reflects the length change of the l-th path along

time, while (c + v
(T)
l ) is the effective signal proration speed along the l-th

path with c being the speed of the communication medium. To this end, let
us introduce a time scaling factor as

αl =
c + v

(R)
l

c + v
(T)
l

according to the Doppler effect, and thus adapt τl(t) as

τl(t) = αlτl − (αl − 1)t. (2.4)

Next, we substitute (2.4) into (2.3) and have

r̄(t) =
∞∑

l=−∞
h̄l
√

αls̄(αl(t− τl)) + w̄(t), (2.5)

where we also introduced a factor
√

αl which is an energy normalization fac-
tor as used in many literatures, e.g., [15, 20], although one may also combine
it into the channel gain h̄l, e.g., in [28,29]. Obviously, when the radial velocity
vl = v

(R)
l − v

(T)
l ≡ 0, i.e., αl ≡ 1, for all paths, the channel embedded in (2.5)

becomes time invariant. If αl ≡ αl′ for any two paths for l 6= l′ but τl 6= τl′ , the
channel is said to have a single-scale multi-lag (SSML) nature [28, 30]. How-
ever, in general, there are at least two paths for which αl 6= αl′ and τl 6= τl′ ,
and in this case the above system exhibits a multi-scale multi-lag (MSML)
character [21, 22]. For a realistic channel, we can assume that αl ∈ [1, αmax]
and τl ∈ [0, τmax]1, where αmax ≥ 1 and τmax ≥ 0 determines the scale spread
and delay spread, respectively.

1As a matter of fact, the case where αl < 1 or τl < 0 can be converted to the current
situation by means of proper resampling and timing at the receiver. This justifies us to simply
consider a compressive and causal scenario, for the description ease in this thesis, without
loss of generality.
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The transmitted signal s̄(t) = <{s(t)ej2πfct} is normally located in pass-
band, and is up-converted from the baseband signal s(t) with fc being the
central carrier frequency. In an analogous manner, the equivalent complex
baseband received signal r(t) is related with the received passband signal
r̄(t) as r̄(t) = <{r(t)ej2πf ′ct}. Note that f ′c may not be equal to fc. Therefore,
the baseband system model corresponding to (2.5) can be given by (see for
more details about the complex baseband equivalent derivation in [26, 27])

r(t) = e−j2πf ′ct
∞∑

l=−∞
h̄l
√

αls(αl(t− τl))ej2παlfc(t−τl) + w(t),

=
∞∑

l=−∞
hl
√

αls(αl(t− τl))ej2π(αlfc−f ′c)t + w(t), (2.6)

with hl = h̄le
−j2πτlαlfc , and w(t) is the baseband version of w̄(t) = <{w(t)ej2πf ′ct}.

When αl 6= 1 exists, the embedded channel above is time varying. (2.6)
also indicates that even when the transceiver adopts an identical central fre-
quency, i.e., fc = f ′c, the baseband signal is still corrupted by carrier fre-
quency offsets [c.f., the term (αlfc − f ′c) in (2.6)].

It is noteworthy that the system descriptions in both (2.5) and (2.6) look
different from more familiar LTV communication system models, e.g., de-
scribed in [14]. Specifically, when people talk about the time variation of
LTV channels, they normally refer to Doppler frequency shifts instead of the
time-domain scales adopted in either (2.5) or (2.6). Moreover, it is also com-
monly assumed that the baseband signal should be free of the carrier fre-
quency offset (CFO) when the receiver adopts the same central frequency as
the transmitter. We will come back to these issues later on, showing that the
above descriptions for LTV systems actually correspond to wideband com-
munications and are the generalized version of the more familiar narrow-
band system models given in [14].
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I. Wideband LTV Systems

Continuous Channel Model: Wideband LTV systems are often expressed as
an integral, e.g., in [15, 20–22], given by

r̄(t) =

τmax∫

0

αmax∫

1

h̄(α, τ)
√

αs̄(α(t− τ))dαdτ + w̄(t), (2.7)

which can be viewed as a generalization of (2.5) in an environment where a
rich number of scatterers exists and the channel can thus be viewed as a col-
lection of fast moving scatterers that are continuously distributed in range
and velocity [20]. Here, h̄(α, τ) is known as the wideband spreading func-

tion [20]. In the case of (2.5), we can explicate h̄(α, τ) =
∞∑

l=−∞
h̄lδ(α−αl)δ(τ −

τl). More detailed information about the wideband spreading function can
be found, e.g., in [20, 23, 24, 31, 32].

To derive the equivalent baseband model, we can down-convert (2.7) us-
ing f ′c [c.f. (2.6)] and write

r(t) =

τmax∫

0

αmax∫

1

ej2π(αfc−f ′c)th(α, τ)
√

αs(α(t− τ))dαdτ + w(t), (2.8)

where h(α, τ) = h̄(α, τ)e−j2πατfc .

Discrete Channel Model: In order to facilitate the digital signal processing at
the receiver, efforts to discretize the wideband channel embedded in (2.7)
can be found, e.g., in [21, 22]. Herein, we cite the discrete scale-lag model
provided by these works to approximate the wideband LTV systems in (2.7),
whose noiseless expression is given by

r̄SL(t) =
R?∑

r=0

L̄?(r)∑

l=0

h̄r,la
r/2
? s̄(ar

?(t− lT̄?/ar
?)), (2.9)

where we use SL in the superscript to emphasize that in this model both the
scale and lag parameters are discretized. This model is known as the scale-lag
canonical model in [21, 22, 33], where a? is referred to as the basic scaling factor



2.2. Wireless Fading Channels 19

in [21] or dilation spacing in [22, 33], and T̄? is referred to as the translation
spacing in [22,33]. In practice, one approach [33] to seek a proper a? and T̄? is
linked to the wideband ambiguity function (WAF) of s̄(t), given by

χ̄(α, τ) =
∫

s̄(t)
√

αs̄(α(t− τ))dt, (2.10)

such that a? is defined as the first zero-crossing of χ̄(α, 0) and T̄? as the first
zero-crossing of χ̄(1, τ). An alternative approach [21] assumes that s̄(t) has
a single-sided bandwidth W̄ and Mellin support M . We note that the Mellin
support is the scale analogy of the Doppler spread for narrowband LTV chan-
nels. Specifically, the Mellin support of a signal s̄(t) is the support of the
Mellin transform of s̄(t) which is given by

∫∞
0 s̄(t)t$−1dt with $ is the Mellin

variable. More details about the Mellin transform can be found in [34, 35]. It
is then well-known that in the Fourier domain Nyquist sampling theorem
dictates that T̄? = 1/W̄ to ensure perfect signal reconstruction. Similarly
we can apply an adapted Nyquist sampling result in the Mellin domain to
obtain a? = e1/M . With the obtained a? and T̄?, we follow [21] to define
R? = dlnαmax/ ln a?e, and L̄?(r) = dar

?τmax/T̄?e. Under these conditions, the
wideband spread function h(α, τ) is discretized as

h̄r,l = h̄SL(ar
?, lT̄?/ar

?), (2.11)

where h̄SL(α, τ) is the scale-lag smoothed version of h̄(α, τ) [21], which ad-
mits an expression as

h̄SL(α, τ) =
∫ αmax

1

∫ τmax

0
h̄(α′, τ ′)

× sinc
(

lnα− lnα′

ln a?

)
sinc

(
α

τ − τ ′

T̄?

)
dτ ′dα′. (2.12)

The above has a slightly different definition than that in [22]: it implicitly
assumes bandwidth and Mellin support limitations at the transmitter, while
[22] assumes that the frequency support is limited at the transmitter while
the Mellin support is limited at the receiver. However, they both achieve an
identical description for these h̄r,l’s.

We note that we only provide a discrete system model in passband above.
One may follow (2.9) to straightforwardly derive its complex baseband equiv-
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alent as

rSL(t) =
R?∑

r=0

L̄?(r)∑

l=0

hr,la
r/2
? s(ar

?(t− lT̄?/ar
?))e

j2π(ar
?fc−f ′c)t, (2.13)

where hr,l = h̄r,le
−j2πlT?ar

?fc . However, we note that the derivation of a base-
band model of a wideband system can be different from (2.13), and we refer
readers to Chapter 4 for more details.

II. Narrowband LTV Systems

Continuous Channel Model: Generally speaking, it is difficult to process the
wideband received signal because, in addition to the reshaping of the wide-
band signal waveforms due to Doppler scales, the residual multiple CFOs in
the basedband are cumbersome at the receiver. It is possible to simplify the
channel models given by (2.8) and (2.13), but under a narrowband assump-
tion. The narrowband assumption can be described concisely as follows:

1. The effective baseband bandwidth W is very small compared to the
central frequency fc, e.g., W/fc ¿ 1.

2. The velocities, v, are very small compared to the speed of the commu-
nication medium c, e.g., max{|2v/c|} ¿ 1.

For more detailed information about these narrowband assumptions, see [15,
16, 20]. When both of the above conditions are satisfied, the communication
system can be called a narrowband system.

To derive the narrowband system model [12], let us start with the frequency-
domain equivalent of (2.7), regardless of the ambient noise, given by

R̄(f) =

τmax∫

0

αmax∫

1

h̄(α, τ)
√

αS̄(
f

α
)e−j2πτfdαdτ

=

τmax∫

0

αmax−1∫

0

√
1 + βh̄(1 + β, τ)S̄(

f

1 + β
)e−j2πτfdβdτ
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where R̄(f) and S̄(f) is the Fourier transform of r̄(t) and s̄(t), respectively,
and we have substituted α = 1 + β in the second equation above. Since
α = c+v

c−v and max{|2v
c |} ¿ 1, we have

β = α− 1 =
2v

c− v
≈ 2v

c
,

which means |β| ¿ 1. Therefore, by noticing

1
1 + β

= 1− β + β2 − β3 + · · · ≈ 1− β,

we are allowed for the approximation given by

R̄(f) ≈
τmax∫

0

αmax−1∫

0

√
1 + βh̄(1 + β, τ)S̄(f − βf)e−j2πτfdβdτ. (2.14)

Moreover, since we assume that W/fc ¿ 1 and the frequency component
in S̄(f) is limited by f ∈ [fc −W/2, fc + W/2], we can further approximate
(2.14) as

R̄(f) ≈
τmax∫

0

αmax−1∫

0

√
1 + βh̄(1 + β, τ)S̄(f − βfc)e−j2πτfdβdτ

=

τmax∫

0

θmax∫

0

h̄N (θ, τ)S̄(f − θ)e−j2πτfdθdτ

where we introduced a frequency shift

θ = βfc ≈ 2v

c
fc, (2.15)

and the narrowband spreading function h̄N (θ, τ) is given by

h̄N (θ, τ) =

√
fc + θ

fc
h̄(

fc + θ

fc
, τ).

Now, we convert R̄(f) back to the time domain and obtain

r̄(t) ≈
τmax∫

0

θmax∫

0

h̄N (θ, τ)s̄(t− τ)ej2πθtdθdτ , (2.16)
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which indicates that a narrowband received signal can be represented by a
superposition of the transmitted signal with time shifts τ ∈ [0, τmax] and fre-
quency shifts θ ∈ [0, θmax] where τmax and θmax = (αmax − 1)fc is the delay
spread and Doppler shift spread, respectively. In other words, a Doppler fre-
quency shift θ is adopted to represent the time variation of the narrowband
channel instead of a Doppler scale α.

Similarly as in wideband scenarios, the complex baseband equivalent of
the narrowband system in (2.16) can be given by

r(t) = ej2π(fc−f ′c)t
τmax∫

0

θmax∫

0

hN (θ, τ)s(t− τ)ej2πθtdθdτ , (2.17)

where f ′c is the central frequency adopted at the receiver, which may be dif-
ferent from fc, and hN (θ, τ) = h̄N (θ, τ)e−j2πτfc .

Discrete Channel Model: Discretizing the narrowband LTV channel embed-
ded in (2.16) is thoroughly studied. One typical discretization approach is
given by

r̄DL(t) =
Q?∑

q=0

L̄?∑

l=0

h̄q,ls̄(t− lT̄?)ej2πqθ?t, (2.18)

which describes a well-known channel model in terms of sampled time de-
lays and frequency shifts [36], called the Doppler-shift-lag canonical model, with
T? and θ? being the arithmetic time resolution and frequency shift resolution,
respectively. Here we use DL in the superscript to emphasize that in this
model both the Doppler-shift and lag parameters are discretized. Assuming
s̄(t) has an single-sided bandwidth of W̄ and a time period of Ω, we have
T̄? = 1/W̄ and θ? = 1/Ω [36]. Hence, h̄q,l = h̄DL(qθ?, lT̄?) with

h̄DL(θ, τ) =
1

T̄?θ?

∫ τmax

0

∫ θmax

0
h̄N (θ′, τ ′)

sinc(
τ − τ ′

T̄?
)sinc(

θ − θ′

θ?
)e−j2π θ−θ′

θ? dθ′dτ ′, (2.19)

where L̄? = dτmax/T̄?e and Q? = dθmax/θ?e as defined in [36].
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Figure 2.2: T-F tile diagram of a discretized channel model

Following (2.18), the corresponding complex baseband equivalent is then
given by

rDL(t) = ej2π(fc−f ′c)t
Q?∑

q=0

L̄?∑

l=0

hq,ls(t− lT̄?)ej2πqθ?t, (2.20)

where hq,l = h̄q,le
−j2πlT̄?fc .

III. Differences Between Wideband and Narrowband

From the above descriptions for wideband and narrowband channel mod-
els, their differences can be perceptually recognized. Firstly, narrowband
LTV systems can be seen as an approximation of the corresponding wide-
band LTV systems; secondly, the narrowband transmitted signal waveform
per se is not reshaped by scaling but only shifted in time and frequency; and
thirdly, the received complex baseband signal equalivalent in narrowband
scenarios is free of the CFO if only fc = f ′c. Hence generally speaking, it is
usually much easier to handle a narrowband LTV channel than its wideband
counterpart. More background information about the comparison between
narrowband LTV systems and wideband LTV systems can be found, e.g.,
in [15, 20, 22, 24, 31]. Among their fundamental differences, we herein only
want to emphasize one fact that the parameterized narrowband LTV chan-
nel is arithmetically uniform in both the lag (time) and frequency dimension
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[c.f. (2.18)], while the parameterized wideband LTV channel is arithmetically
uniform in the lag (time) dimension but geometrically uniform in the scale
(frequency) dimension [c.f. (2.9)]. Therefore, they result in different time-
frequency (T-F) tiling diagrams. In other words, a transmitted symbol will
disperse differently over a narrowband LTV channel than over a wideband
LTV channel. This fact is schematically depicted in Fig. 2.2, where the circles
indicate the positions where the channel is sampled in the T-F plane. In the
figure, we assume that a single symbol is transmitted at time 0 and carrier
frequency fc, whose location is represented by a dark circle, and the open
circles show the locations of signal leakage. The symbol θ? in Fig. 2.2 de-
notes the arithmetically uniform frequency spacing used to sample the nar-
rowband channel in the Doppler (frequency) dimension where Q? = 3 and
L̄? = 2 for illustration. Analogously, a? = 2 in Fig. 2.2 denotes the geometri-
cally uniform frequency spacing used to sample the wideband channel in the
Doppler (frequency) dimension where R? = 2 and L̄?(0) = 2 for illustration.
From their comparison, we learn that a transmit signal will experience fun-
damentally different channel characteristics in wideband LTV systems than
in narrowband LTV systems. Hence, distinct receiver designs are required
for these two scenarios, respectively.

2.2.2 Non-Parametric Channel Model

In either wideband or narrowband systems, it is also common to consider
the baseband channel as a LTV finite impulse response (FIR) filter. More
specifically, assuming that the bandwidth of the channel is smaller than 1/T ,
then let us sample r(t) at the symbol rate T based on the Nyquist criterion
(otherwise, the sampling rate is increased). In this case, the nth sample of the
received baseband signal is given by

rn = r(nT ) =
∞∑

l=−∞
h

(n)
n−lsl + wn

.=
L(n)∑

l=0

h
(n)
l sn−l + wn (2.21)



2.2. Wireless Fading Channels 25

where sn = s(nT ) is the nth transmitted data symbol, wn = w(nT ) is the ad-
ditive discrete noise. The superscript (n) in the FIR coefficients h

(n)
l stands

for the time variation along consecutive symbol durations. In a realistic
communication system, most of the channel power is concentrated within
a limited time interval, implying that the channel has a limited time support,
say L(n)T ≥ τmax where L(n) is generally dependent on time especially for
wideband time-varying systems. In addition, if we take the causality of the
transmission process into account, the channel can further be simplified to
an FIR filter, with h

(n)
l = 0 if l < 0 or l > L(n) as expressed in the second

equation of (2.21). The channel in (2.21) is typically “doubly-selective” (in
both frequency and time), which is a generalization of various channel sit-
uations. For example, time-selective channels occur when h

(n)
l ≡ h(n) with

L(n) ≡ 0, indicating zero delay spread. For frequency-selective channels
(2.21) degrades to h

(n)
l ≡ ∑L

m=1 hlδl−m with L(n) ≡ L, which is independent
on the index n, implying zero Doppler spread. Herein, δn denotes the Kro-
necker delta which equals one if n = 0, or zero otherwise. Finally, an AWGN
channel is described by h

(n)
l ≡ hlδl, which is an idealized situation where

both the delay and Doppler spread are zero.
Although the LTV FIR filter model provides a quite precise perception

of a realistic channel, these time-varying FIR taps can be too cumbersome to
utilize in practice in both the wideband and the narrowband case. To ease
the processing procedure at the receiver, many existing works thus resort to a
parsimonious channel model, such as the basis expansion model (BEM) [37].
The BEM is widely adopted for narrowband LTV channels, e.g., in [3–5,8,38–
41].

To introduce how to use the BEM to model a narrowband time-varying
channel, let us currently consider a block transmission with N symbols and
L(n) ≡ L is constant during the concerned duration. Thus the channel in
(2.21) is characterized in this narrowband regime by NL FIR taps: h

(n)
l , for

l = {0, 1, · · · , L} and n = {0, 1, · · · , N−1}. If we denote h = [hT
0 , · · · ,hT

N−1]
T

stacking all the channel taps with hn = [h(n)
0 , h

(n)
l , · · · , h

(n)
L ]T , we can use the

BEM to model the channel h specified as [8]

h ≈ (Q⊗ IL+1) c (2.22)

where Q = [q−Q, · · · ,qQ] is a N×(2Q+1) matrix with qq being the qth basis



26 2. Preliminaries

expansion function, and 2Q is the BEM order. It is typical that these qq’s are
designed to be orthonormal to each other, e.g.,

qq = [1, ej 2π
N

q, · · · , ej
2π(N−1)

N
q]T

for the critically-sampled CE-BEM (CCE-BEM) [37]. Depending on the ba-
sis expansion function, various BEM designs are available, such as the dis-
crete Karhuen-Loève BEM [42], the discrete prolate spheroidal BEM [39], etc.
We further have c = [cT

−Q, · · · , cT
Q]T with cq = [cq,0, cq,1, · · · , cq,L]T being

the qth BEM coefficient vector corresponding to qq. We highlight that when
N > 2Q + 1 as usual, BEM models allow to reduce the number of unknown
channel parameters from NL (the h

(n)
l ’s) to (2Q + 1)L (the cq,l’s).

Besides the BEM approach, a Gauss-Markov process can also be found to
model time-varying channels [43]. Other modeling methods using wavelet
techniques can be found, e.g., in [44–46].

2.3 Multi-Carrier Transmission

Orthogonal frequency division multiplexing (OFDM), which is a spectrum
efficient case of frequency-division multiplexing (FDM) where subcarriers
overlap in the frequency domain while remaining orthogonal, is one of the
most popular multicarrier techniques today [47]. In Fig. 2.3, the spectrum of
a general FDM waveform is compared with OFDM.

With many desirable properties such as high spectral efficiency and in-
herent resilience to the multipath dispersions of frequency-selective chan-
nels [48], OFDM shows attractive features to many wireless communication
applications, e.g., wireless local area networks (WLANs) and digital video
broadcasting (DVB). Let us consider an OFDM waveform given by

s(t) =
1√
KT

K−1∑

k=0

bke
j2πfkt, −Tpre < t ≤ KT (2.23)

where K is the number of orthogonal subcarriers, a data symbol bk is mod-
ulated on the k-th subcarrier whose frequency is fk = (k − K/2)∆f , for
k = {0, 1, · · · ,K − 1}, with ∆f being the subcarrier frequency spacing,



2.3. Multi-Carrier Transmission 27

An FDM Spectrum An OFDM Spectrum

Figure 2.3: Signaling Spectrum Comparison, FDM v.s. OFDM

KT = 1/∆f is the effective duration of an OFDM symbol, and 1√
KT

is
a normalization factor. The length of the cyclic prefix is Tpre. It is well-
known that the cyclic prefix is assumed to be longer than the delay spread
to eliminate the inter-symbol interference (ISI) between successive OFDM
symbols [48]. Though a cyclic extension is introduced above, the above ex-
pression can be changed to zero padding OFDM (ZP-OFDM) with minor
modifications [48, 49]. Note that we consider a single OFDM symbol being
transmitted for notational ease in (2.23), which is without loss of generality
due to the use of cyclic extensions.

Stacking all the data within the OFDM symbol into a vector, as b =
[b0, b1, · · · , bK−1]T , we can equivalently describe (2.23) in a matrix-vector form
given by

s′ = TCPs

where TCP is a (K + Kpre)×K matrix given by

TCP =

[
0Kpre×(K−Kpre) IKpre

IK

]
,

with Kpre = dTpre/T e and s = [s0, s1, · · · , sK−1]T with sn = s(nT ). More
specifically,

s = FHb, (2.24)
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where F stands for the K point unitary discrete Fourier transform (DFT)
matrix specified by

[F]m,k =
1√
K

e−j2π mk
K . (2.25)

Suppose the above OFDM signal is transmitted over a frequency-selective
channel as modeled in (2.21) with L(n) ≡ L and h

(n)
l ≡ ∑L

m=1 hlδl−m. Thus
we can write the input/output (I/O) relation of this time-invariant OFDM
system as [48, 49]

rT = RCPH′
Ts′ + wT

= RCPH′
TTCPs + wT (2.26)

= HTs + wT (2.27)

where rT = [r0, r1, · · · , rK−1]T stacks all the received signal samples in the
time domain after discarding cyclic extensions, RCP is the K × (K + Kpre)
cyclic-extension-removal matrix specified as

RCP =
[

0K×Kpre IK

]
,

and wT is similarly defined like rT as the discrete noise vector, while H′
T is a

(K +Kpre)× (K +Kpre) matrix representing the time-domain time-invariant
channel given by

H′
T =




h0

...
. . . 0

hL
... h0

. . .
...

. . .

hL
...

. . .
. . .

...
. . .

0 hL · · · h0




where hl is the time-invarant channel coefficient. Here Kpre ≥ L, which
means that the prefix guard is longer than the maximal delay spread. The ef-
fective channel matrix in the time domain is then given by HT = RCPH′

TTCP,
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which is specified as

HT =




h0 hL · · · h1

...
. . . . . .

...

hL
. . . . . . 0 hL

. . . . . . . . .

0
. . . . . . . . .

hL · · · h0




. (2.28)

We highlight here that, when the channel is time invariant, HT is a circulant
matrix as shown above.

If we describe the noiseless received OFDM signal in the frequency do-
main as [48, 49]

rF = FrT

= FHTs

= FHTFHb

= HFb, (2.29)

where the frequency-domain channel matrix HF = FHTFH is diagonal be-
cause HT is a circulant matrix [50]. It means that the time-invariant OFDM
channel is characterized by a diagonal matrix in the frequency domain, indi-
cating that the orthogonality among OFDM subcarriers is maintained at the
receiver. However, when the Doppler effect is present, HF becomes full, thus
introducing the inter-carrier interference (ICI). We refer readers to Chapter 3
and Chapter 4 for its more details in the narrowband case and the wideband
case, respectively.

Besides the OFDM system mentioned above, other multi-carrier trans-
mission techniques are available. For instance, instead of uniformly spac-
ing subcarriers like in OFDM, we may also adopt wavelet techniques [51] to
build a wavelet-OFDM scheme, which is popular in power line communi-
cations [52]. More multi-carrier transmissions using wavelet-based modula-
tions can be found, e.g., in [53–58].





Chapter 3

Narrowband OFDM Systems

Every truth has two sides; it is as well to look at both,
before we commit ourselves to either.

Aesop

In the last chapter, we have introduced the channel model in two scenar-
ios: the narrowband and the wideband. OFDM was also introduced as a typ-
ical multi-carrier transmission technique. In this chapter, we first describe an
OFDM transmission over a narrowband time-varying channel which is mod-
eled by the basis expansion model (BEM). Afterwards, the least-squares (LS)
channel estimation and its corresponding zero-forcing (ZF) channel equal-
ization are investigated when different BEM models are used. The purpose
herein is to identify a particular BEM model which allows a more efficient
hardware architecture while still maintaining a high modeling accuracy.

3.1 Introduction

Future communication systems are required to support a high data trans-
fer rate between fast moving terminals, e.g., vehicular communications de-
picted in Fig. 1.1. Orthogonal frequency division multiplexing (OFDM), as
a bandwidth efficient multi-carrier transmission technique, shows attractive
features to wireless radio applications [47]. It is well known that OFDM re-
lies on the assumption that the channel stays constant within at least one
OFDM symbol period to maintain the orthogonality among OFDM subcar-
riers. When temporal channel variation emerges due to the Doppler effect,
this orthogonality is corrupted and non-negligible inter-carrier interference
(ICI) is induced [59], severely deteriorating the system performance. In this
case, channel equalization is necessary, for which we need accurate models
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of narrowband time-varying channels. It is common to describe the channel
taps statistically by their Doppler spectrum which may be bathtub-shaped
[14]. Despite their accuracy, these models are generally cumbersome. Hence,
many works resort to a parsimonious channel modeling approach such as a
Gauss-Markov process [43] or the basis expansion model (BEM) [37] to de-
scribe the channel dynamics. The Gauss-Markov process is mainly adopted
for time-domain sequential processing, while in this chapter we shall focus
on the BEM which is often more convenient for block transmission schemes
such as OFDM. The optimal BEM in terms of the mean square error (MSE) is
the discrete Karhuen-Loève BEM (DKL-BEM) [42] which however requires
the true channel statistics and thus is not always practical. The discrete
prolate spheroidal BEM (DPS-BEM) [39] is derived based on the channel
statistics approximated by a rectangular spectrum. Avoiding the depen-
dence on the channel statistics, the critically-sampled complex-exponential
BEM (CCE-BEM) [37] is proposed using complex exponentials as its basis
functions. Due to its algebraic ease, the CCE-BEM is widely adopted, e.g,
in [3, 5, 8, 37, 38, 40, 60, 61]. Additionally, the polynomial BEM (POL-BEM),
which models each tap as a linear combination of a set of polynomials, has
also gained attention for low Doppler spreads, e.g., in [62, 63]. The detailed
comparison of the aforementioned BEMs can be found in [4, 39].

Research on OFDM systems from the aspect of the hardware implemen-
tations can also been found, e.g., on FPGA platforms [64] or using a specific
digital signal processor (DSP) [65]. A complication of these works is assum-
ing a time-invariant channel where the transceiver and significant scatter-
ers are stationary or have a negligible velocity. Hence, the adopted OFDM
systems are free of inter-carrier interference (ICI), and called “traditional
OFDM” or time-invariant OFDM in this chapter. To our knowledge, lit-
tle attention has been paid to an efficient hardware implementation of mo-
bile OFDM, which refers to the OFDM systems over rapidly time-varying
channels. In this chapter, we shall investigate efficient architectures corre-
sponding to different BEM’s to implement the channel estimator and chan-
nel equalizer for mobile OFDM in the narrowband regime. Moreover, we
then identify a particular model, among available BEM’s, which leads to the
most efficient hardware architecture while still maintaining high modeling
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Figure 3.1: Transceiver block diagram.

accuracy.

3.2 Narrowband Time-Varying OFDM System Model

Let us consider an OFDM system with N subcarriers as described in (2.23)
but over a narrowband time-varying channel modeled by (2.21) with L(n) ≡
L being constant during an OFDM duration. In this case, we adapt the
OFDM system in (2.29) as [2, 3, 61]

rF = FZHTFHb + FZwT

= FH̃TFHb + FZwT

= HFb + nF (3.1)

where rF is the received sample vector in the frequency domain and Z =
diag{z}with its diagonal z = [z0, z1, · · · , zN−1]T representing the time-domain
windowing. We underscore that the time-domain windowing is normally
not included in traditional OFDM systems [c.f., (2.29)], i.e., Z = IN . However
such a time-domain windowing is required by a time-varying OFDM system
(mobile OFDM) to suppress the ICI [2, 61]. Moreover, HT and H̃T = ZHT

represents the channel matrix in the time domain without and with win-
dowing, respectively. With h

(n)
l denoting the lth channel tap at the nth time

instant for l = {0, 1, · · · , L} with L finite (i.e., h
(n)
l = 0 for l < 0 or l > L), HT
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is specified a “pseudo-circulant” matrix given by

HT =




h
(0)
0 h

(0)
L · · · h

(0)
1

...
. . . . . .

...

h
(L)
L

. . . . . . 0 h
(L−1)
L

. . . . . . . . .

0
. . . . . . . . .

h
(N−1)
L · · · h

(N−1)
0




. (3.2)

and H̃T thus has the same “pseudo-circulant” structure specified as

H̃T =




h̃
(0)
0 h̃

(0)
L · · · h̃

(0)
1

...
. . . . . .

...

h̃
(L)
L

. . . . . . 0 h̃
(L−1)
L

. . . . . . . . .

0
. . . . . . . . .

h̃
(N−1)
L · · · h̃

(N−1)
0




(3.3)

where h̃
(n)
l = znh

(n)
l . Additionally, nF = FZwT is the windowed frequency-

domain noise, and HF = FH̃TFH is the effective frequency-domain channel
matrix that is not diagonal any more but full. Fig. 3.1 illustrates the data
flow of this OFDM transmission over a narrowband time-varying channel
by ignoring the introduction and the removal of the cyclic prefix.

Using the BEM to model the effective OFDM channel H̃T in the time do-
main, let us stack all the channel taps into a single vector h̃ = [h̃T

0 , · · · , h̃T
N−1]

T

with h̃n = [h̃(n)
0 , h̃

(n)
1 , · · · , h̃

(n)
L ]T . Regardless of the modeling error, we follow

(2.22) to first obtain [4, 37]

h̃ = (Q⊗ IL+1) c (3.4)

where the (2Q + 1)(L + 1)× 1 vector

c = [cT
−Q, · · · , cT

Q]T
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with
cq = [cq,0, cq,1, · · · , cq,L]T

being the qth BEM coefficient vector corresponding to the qth basis expan-
sion function qq, and Q = [q−Q, · · · ,qQ] with 2Q being the BEM order. (3.4)
indicates that after introducing the BEM, one can estimate the BEM coeffi-
cients to perform channel estimation.

Using (3.4), we can describe H̃T in (3.3) alternatively as

H̃T =
Q∑

q=−Q

diag(qq)Cq (3.5)

where Cq is an N×N circulant matrix (assuming that N > L which is usually
the case) given by

Cq =




cq,0 cq,L · · · cq,1

...
. . . . . .

...

cq,L
. . . . . . 0 cq,L

. . . . . . . . .

0
. . . . . . . . .

cq,L · · · cq,0




.

Now, we can describe OFDM systems in light of BEM by substituting
(3.5) into (3.1) as [4]

rF = FH̃TFHb + nF

= F




Q∑

q=−Q

diag(qq)Cq


FHb + n̂F

=
Q∑

q=−Q

(
Fdiag(qq)FH

) (
FCqFH

)
b + n̂F

=
Q∑

q=−Q

Dq∆qb + n̂F (3.6)
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where ∆q = FCqFH and

Dq = Fdiag (qq)FH (3.7)

is a circulant matrix, while n̂F combines nF and the BEM modeling error.
Due to the circulant structure of Cq, we also rewrite ∆q as a diagonal matrix
given by

∆q = diag(F(L)cq) (3.8)

with F(L) representing the first L + 1 columns of the Fourier matrix
√

NF.
If we introduce

ĤF =
Q∑

q=−Q

Dq∆q (3.9)

as the modeled channel matrix that approximates HF, we rewrite (3.6) as

rF = ĤFb + n̂F (3.10)

Now, let us have a look at the structure of ĤF. We notice that ĤF is a
banded matrix approximately, as illustrated in Fig. 3.2. This is no surprise
since ĤF approximates the effective frequency-domain channel matrix HF

and thus has a similar structure of HF. In practice, HF can always be ap-
proximated as a banded matrix [2], due to the limited Doppler shift spread
of the channel and the use of a time-domain windowing Z. Moreover, it
is clear from (3.9) that since ∆q is diagonal, ĤF has a similar structure of∑

q Dq = Fdiag
(∑

q qq

)
FH . In fact, the designs of the basis functions qq’s

of a proper BEM family lead to a banded matrix
∑

q Dq approximately (or
exactly when the CCE-BEM is used) with a bandwidth of 2Q + 1 [4, 37]. In
the following sections of this chapter, we will employ this feature of ĤF.

3.3 Algorithm Background Overview

We underscore that there has been extensive research on the channel estima-
tion and channel equalization for OFDM systems over narrowband linear
time-varying (LTV) channels, e.g., for channel estimation in [4, 40, 63] and
for channel equalization in [3, 5, 40, 41, 61, 66]. In this chapter, we do not
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Figure 3.2: An example of the Power allocation of ĤF.

attempt to summarize these efforts, but instead focus on the least-squares
(LS) channel estimation and zero-forcing (ZF) equalization for narrowband
OFDM LTV channels. In the following, we first clarify the arrangement of all
OFDM subcarriers, and then describe the detailed descriptions for channel
estimation and equalization respectively.

3.3.1 OFDM Carrier Arrangement

For time-varying OFDM systems, comb-type pilot subcarriers and guarded
null subcarriers are usually required [4, 38]. Specifically, we assume that
the N subcarriers of the OFDM symbol include NP pilot subcarriers and
(N −ND−NP ) null subcarriers, and thus, out of N carriers, only ND subcar-
riers carry information which are called data subcarriers. Let us specify an
OFDM symbol vector b = [b0, b1, · · · , bN−1]T which includes a pilot symbol
set b(p) = [b(p)

0 , · · · , b
(p)
NP−1]

T , and a data symbol set b(d) = [b(d)
0 , · · · , b

(d)
ND−1]

T

as well as zeros at null subcarriers. At the receiver, according to (3.10), the
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Figure 3.3: OFDM Subcarrier Allocation Illustration

noiseless received sample vector is modeled by rF = ĤFb, where ĤF is (ap-
proximately) a banded matrix with a bandwidth of 2Q + 1. Illustratively,
as depicted in Fig. 3.3. between b and rF, the banded channel matrix ĤF is
placed whose bandwidth is 2Q + 1. Moreover, the gray part of ĤF in Fig. 3.3
stands for significant non-zero entries, while its blank part represents the
trivial entries (which will be zeros if the CCE-BEM is used).

In order to combat a narrowband time-varying OFDM channel modelled
by ĤF, it is crucial to carefully allocate these subcarriers and their corre-
sponding observations [4, 38]. We follow [4] to arrange OFDM subcarriers.
These NP pilots are distributed into the OFDM symbol, and every trans-
mitted pilot is guarded by 2Q null subcarriers to diminish mutual influ-
ences with adjacent data subcarriers in the present of Doppler frequency
shifts. The rest of null subcarriers are placed on edge positions, and we
require that the number of edge null subcarriers is sufficiently large (i.e.,
≥ Q) [3, 5, 40, 61], whose reason will be evident later on. In such a manner,
the ND data subcarriers are separated into several isolated clusters. If we as-
sume that each data cluster has the same length B for simplicity reasons, the
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mth isolated transmitted data subcarrier cluster is denoted by a B× 1 vector
b(d)

m = [b(d,m)
0 , · · · , b

(d,m)
B−1 ]T ⊂ b(d), for m ∈ {0, 1, · · · , NB − 1} with

NB = ND/B.

Illustratively, such an arrangement of the OFDM subcarriers is depicted in
Fig. 3.3, with NP = 3. From there, it is clear that within the transmitted
OFDM symbol b, the guarded pilots b

(p)
k and null edge subcarriers separate

the ND data subcarriers into NP − 1 clusters.
At the receiver, corresponding to this mth transmitted data cluster b(d,m),

we build an observation window denoted by a (B + 2Q) × 1 vector r(d)
m =

[r(d,m)
−Q , · · · , r

(d,m)
0 , · · · , r

(d,m)
B−1 , · · · , r

(d,m)
B−1+Q]T ⊂ rF. Likewise, corresponding

to the kth transmitted pilot b
(p)
k , for k ∈ {0, 1, · · · , NP − 1}, its observation

window is denoted as a (2Q+1)×1 vector r(p)
k = [r(p,k)

−Q , · · · , r
(p,k)
0 , · · · , r

(p,k)
Q ]T ⊂

rF. In Fig 3.3, the locations of these observation windows is also illustrated.
We note that other options for the observation window are available [4], but
the method adopted here is the optimal choice for LS channel estimation [4].

3.3.2 LS Channel Estimation

Pilots and their observations at the receiver are used to estimate time-varying
channels. We recall the NP × 1 vector b(p) = [b(p)

0 , · · · , b
(p)
NP−1]

T which stacks

all pilot symbols, and let the (2Q+1)NP ×1 vector r(p) = [r(p)T

0 , · · · , r(p)T

NP−1]
T

represent all the received samples within the pilot observation windows em-
bedded in rF. Then from (3.6), we obtain

r(p) =
Q∑

q=−Q

D(p)
q ∆(p)

q b(p) + n̂(p) (3.11)

where D(p)
q is a submatrix obtained from Dq by only selecting the rows (columns)

corresponding to r(p) in rF (b(p) in b); ∆(p)
q is obtained from ∆q by selecting

the rows of b(p) in b, while n̂(p) not only contains the noise obtained from
n̂F in a similar manner but also includes crosstalk components from differ-
ent positions of the data subcarriers (see [4] for details). We note that in this
chapter the statistics of n̂(p) is irrelevant since we focus on an LS channel
estimation.
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In order to estimate the BEM coefficients in c, we now convert (3.11) (see
Appendix 3.A for the detailed derivations) into

r(p) = A(p)c + n̂(p), (3.12)

where the (2Q + 1)NP × (2Q + 1)(L + 1) matrix A(p) is specified as

A(p) = D(p)
(
I2Q+1 ⊗

(
diag{b(p)}F(L,p)

))
(3.13)

and
D(p) = [D(p)

−Q, · · · ,D(p)
Q ],

while F(L,p) collects the rows of F(L) corresponding to the positions of b(p)

in b. It is noteworthy that A(p) is only related to the pilot symbols b(p), the
BEM basis functions qq’s [c.f. (3.7)] and the normalized Fourier matrix F,
all of which are perfectly known at the receiver. In other words, A(p) can be
pre-computed when designing the channel estimator (CE).

Based on the LS criterion, we obtain the estimate of the BEM coefficient
vector from (3.12) given by

ĉ =
(
A(p)H

A(p)
)−1

A(p)H
r(p), (3.14)

which has less entries than the channel gain vector h̃ [cf. (3.4)] when N >

(2Q + 1) as usually the case. It also explains the benefit of introducing the
BEM since it allows for reducing the number of the estimated parameters. If
we rewrite

ĉ = [ĉT
−Q, · · · , ĉT

Q]T

it is clear that ĉq estimates the qth BEM coefficient vector cq. Here it is note-
worthy that NP > L is assumed in this chapter so that A(p)H

A(p) is invertible
(otherwise, pilots from multiple OFDM symbols are needed to be jointly con-
sidered to perform the channel estimation [67], which is not included in this
thesis).

However, the final purpose of the estimator is not these BEM coefficients,
but the channel between the transmitted data subcarriers and their corre-
sponding observations at the receiver [5, 40], e.g., H(d)

m in Fig. 3.3. It shall
be equalized by the channel equalizer (EQ) to recover the transmitted data
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symbols that carry information. As illustrated in Fig. 3.3, the data subcarriers
and their observation windows are divided into isolated clusters. Instead of
handling the whole OFDM symbol jointly, we can parallelize the estimation
for each cluster. Specifically, we explicitly write the mth observation vector
r(d)
m that corresponds to b(d)

m for m ∈ {0, 1, · · · , NB − 1}, regardless of noise,
as

r(d)
m =

Q∑

q=−Q

D(d)
q,m∆(d)

q,mb(d)
m

=
Q∑

q=−Q

D(d)
q,mdiag(F(L,d)

m cq)b(d)
m (3.15)

= H(d)
m b(d)

m , (3.16)

where D(d)
q,m is a (B +2Q)×B submatrix obtained from Dq by selecting rows

(columns) corresponding to r(d)
m in rF (b(d)

m in b); F(L,d)
m is obtained from F(L)

by selecting the rows of b(d)
m in b, and ∆(d)

q,m = diag(F(L,d)
m cq) is obtained from

∆q similarly, while the (B + 2Q)×B sub-channel matrix

H(d)
m =

Q∑

q=−Q

D(d)
q,mdiag(F(L,d)

m cq). (3.17)

By replacing cq in (3.17) with ĉq from (3.14), we obtain

Ĥ(d)
m =

Q∑

q=−Q

D(d)
q,mdiag(F(L,d)

m ĉq)

=
Q∑

q=−Q

Ĥ(d)
q,m, (3.18)

where Ĥ(d)
q,m is the qth component of Ĥ(d)

m , which is specified as Ĥ(d)
q,m =

D(d)
q,mdiag(F(L,d)

m ĉq).
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3.3.3 ZF Channel Equalization

After obtaining each Ĥ(d)
m , a ZF equalization is carried out accordingly given

by

b̂(d)
m =

(
Ĥ(d)H

m Ĥ(d)
m

)−1
Ĥ(d)H

m r(d)
m , (3.19)

where b̂(d)
m is a B × 1 vector as an estimate of b(d)

m . We perform (3.19) for
m = {0, 1, · · · , NB} and thus all the transmitted data symbols are recovered.

It is known that the inversion of a B×B matrix Ĥ(d)H

m Ĥ(d)
m is costly when

it is considered as a full matrix [50]. As mentioned before, ĤF is a banded
matrix approximately (or exactly when the CCE-BEM is used) and the ma-
trix bandwidth is (2Q + 1) that is usually much less than the matrix size.
Therefore, we are allowed to reduce the computational complexity of invert-

ing Ĥ(d)H

m Ĥ(d)
m , if the trivial entries (or zeros when the CCE-BEM is used)

outside the matrix bandwidth are removed from ĤF (equiv. from Ĥ(d)
m ) [c.f.

Fig. 3.3]). Such operation is well motivated by the fact that the energy of
these trivial entries is reasonably negligible as indicated by Fig. 3.2, thus al-
lowing for a significant reduction of the equalization complexity at the price
of an acceptable performance loss [2,3,5,40,61]. We will discuss this in more
details in Section 3.4.2. Inspired by these works [2, 3, 5, 40, 61], we first intro-
duce a (B + 2Q) × B selecting matrix which only has ones within a 2Q + 1
bandwidth or zeros otherwise, as depicted by

Θ =




1 0
...

. . .
1 1 1

. . .
...

0 1




.

Then, instead of Ĥ(d)
m defined in (3.18), we shall actually substitute into (3.19)

its adapted version after removing trivial entries. Specifically, we adapt
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(3.18), by introducing Θ, as

Ĥ(d)
m = Θ¯

Q∑

q=−Q

D(d)
q,mdiag(F(L,d)

m ĉq)

=
Q∑

q=−Q

(
Θ¯D(d)

q,m

)
diag(F(L,d)

m ĉq) (3.20)

=
Q∑

q=−Q

Ĥ(d)
q,m, (3.21)

where ¯ stands for the Hadamard (element-wise) product, and

Ĥ(d)
q,m = Θ¯D(d)

q,mdiag(F(L,d)
m ĉq).

Here, we note that we keep the same notations (i.e., Ĥ(d)
m and Ĥ(d)

q,m) as in
(3.18) for notation ease. To avoid any confusion, in the remainder of this
chapter, we will refer to (3.21) as the definition of Ĥ(d)

m unless explicitly de-
fined.

3.4 Parallel Implementation Architecture

After reviewing the background of LS channel estimation and ZF equaliza-
tion for narrowband OFDM time-varying channels, we shall in this section
describe efficient architectures for their implementation.

3.4.1 Channel Estimator

As mentioned in Section 3.3.3, we understand that the channel estimator
yields Ĥ(d)

m ’s as defined in (3.21), for m ∈ {0, 1, · · · , NB − 1}, which shall
be used by the channel equalizer in practice.

General LS estimator To efficiently implement the LS estimator, we first
combine (3.14) and (3.20) to avoid the unnecessary computations on known
matrices (i.e., A(p) and F(L,d)

m ’s).
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Let us first introduce a (2Q + 1)B × (2Q + 1)NP matrix

Mm =
(
I2Q+1 ⊗ F(L,d)

m

)(
A(p)H

A(p)
)−1

A(p)H

,

and then obtain a B × (2Q + 1)NP submatrix Mq,m that is embedded in Mm

at the rows corresponding to ĉq in ĉ [c.f. (3.14)]. In this way, we can obtain
an equation [c.f. (3.14)] given by

F(L,d)
m ĉq = Mq,mr(p).

Now, we rewrite (3.20), for m ∈ {0, · · · , NB − 1}, as

Ĥ(d)
m =

Q∑

q=−Q

(
Θ¯D(d)

q,m

)
diag(F(L,d)

m ĉq)

=
Q∑

q=−Q

(
Θ¯D(d)

q,m

)
diag(Mq,mr(p)) (3.22)

=
Q∑

q=−Q

Ĥ(d)
q,m, (3.23)

where we rewrite Ĥ(d)
q,m in (3.21) as Ĥ(d)

q,m =
(
Θ¯D(d)

q,m

)
diag(Mq,mr(p)).

Next, we reduce memory utilization by exploiting special matrix struc-
tures. We observe that Θ ¯ D(d)

q,m is a banded Toeplitz matrix with a band-
width of (2Q + 1), which is obtained from the circulant matrix Dq [c.f. (3.7)]
corresponding to the position of Ĥ(d)

m in ĤF. It indicates that we only need
the first 2Q + 1 entries in the first column of this circulant matrix Dq to rep-
resent all Θ¯D(d)

q,m’s for m ∈ {0, · · · , NB−1}. We denote a vector dq to stack
these 2Q + 1 entries. Moreover, Ĥ(d)

m is a banded matrix with a bandwidth
of (2Q + 1) [c.f. (3.22)], and hence a memory efficient storage, called the DIA
format [68], is adopted in this chapter. Fig. 3.4 illustrates how Ĥ(d)

m is repre-

sented by its DIA format H̄(d)
m , where Q = 1 is used and h̄(d)T

q,m stands for the
(Q + q)th row in H̄(d)

m . Likewise, we denote H̄(d)
q,m as the DIA format of Ĥ(d)

q,m

in (3.23).
Finally, we describe the steps to efficiently implement (3.22) as Algo-

rithm 1, which is suitable for any BEM model, and the only difference lies in
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Figure 3.4: Efficient DIA Storage for Band Matrices

Algorithm 1 General LS estimator
0. Pre-compute each matrix Mq,m, for q ∈ {−Q, · · · , Q} and m ∈
{0, · · · , NB − 1}, and a single vector dq to present all Θ ¯ D(d)

q,m’s, for
q = {−Q, · · · , Q}; Thus, totally (NP ND +1)(2Q+1)2 complex elements
are stored in ROM;

1. Perform (3.22) equivalently using dq and Mq,m, by

(a) First calculating the B × 1 vector tq,m = Mq,mr(p);

(b) Then scaling dq with each entry of tq,m to attain each column of
the (2Q + 1)×B matrix H̄(d)

q,m;

(c) Finally summing these H̄(d)
q,m’s for q ∈ {−Q, · · · , Q} to yield H̄(d)

m ,
the DIA format of Ĥ(d)

m .

the values of ROM components (i.e., Mq,m’s and dq’s) when different BEM
models are selected. Hence we call it “General LS estimator”. In this algo-
rithm, we underscore that the mth channel estimator actually yields the DIA
format H̄(d)

m instead of its original Ĥ(d)
m . The computational complexity of

the implementation for the mth estimator using Algorithm 1 is specified in
Table 3.1 which lists the number of required complex multipliers (CMs) and
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Figure 3.5: Schematic of the mth General LS estimator

Table 3.1: Computation Complexity Analysis for Channel Estimator
Complex Estimator Architecture

Operations Simplifed (for CCE-BEM) General
CMs (2Q + 1)NP B (2Q + 1)(NP + NB)B
CAs (2Q + 1)(NP − 1)B ((2Q + 1)(2Q + NP )− 1)B

complex adders (CAs) for the mth estimator, for m ∈ {0, · · · , NB−1}. Its im-
plementation schematic is depicted in Fig. 3.5. To maximize the processing
concurrency, the parallelism for m ∈ {0, · · · , NB − 1} can be adopted.

Simplified LS estimator using CCE-BEM Although we have investigated
an efficient implementation above, it still has a fairly high complexity and
thus one may hope to further simplify it. Among various (windowed) BEM’s,
we observe that the basis functions of the CCE-BEM yield shifted identity
matrices, i.e., Dq = Fdiag {qq}FH = I(q) according to (3.7) since qq =

[1, ej 2π
N

q, · · · , ej
2π(N−1)

N
q]T for the CCE-BEM; and I(q) only contains 1’s on the

qth (sub- or super-) diagonal but 0’s otherwise, and I(0) = IN is an identity
matrix. It also yields Θ¯D(d)

q,m = D(d)
q,m in (3.20).

If we exploit this property (i.e., Dq = I(q)) in (3.13), A(p) is then yielded
with the special sparse structure as shown in the left part of Fig. 3.6, where
the blank area stands for zero entries. Moreover, if we introduce a permuta-
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tion matrix P which only contains 1’s in the positions

{(
i + 1, bi/NP c+ (2Q + 1)imod/NP

+ 1
)}NP−1

i=0

but 0’s elsewhere, then since

PD(p) = I(2Q+1)Np
,

we obtain that [c.f. (3.13)]

PA(p) = I2Q+1 ⊗
(
diag(b(p))F(L,p)

)

is a block diagonal matrix as shown in the right part of Fig. 3.6 with every
sub-block at the diagonal of PA(p) being the same sub-matrix given by

Ā(p) = diag
(
b(p)

)
F(L,p).

Consequently, denoting r̄(p) = Pr(p) = [̄r(p)T

−Q , · · · , r̄(p)T

Q ]T , we can split
(3.14) in parallel for q ∈ {−Q, · · · , Q} into

ĉq =
(
Ā(p)H

Ā(p)
)−1

Ā(p)H
r̄(p)
q , (3.24)

Note that the permutation operation by P does not cost additional resources
or processing latency, since it only refers to different access addresses into
the memories in the hardware design.

Further observations based on Dq = I(q) suggest that the multiplication
between Θ ¯D(d)

q,m = D(d)
q,m and diag(F(L,d)

m ĉq) in (3.20) only acts as placing
the vector F(L,d)

m ĉq onto the (Q+q)th diagonal line of the Toeplitz-like matrix
Ĥ(d)

m , for q ∈ {−Q, · · · , Q}. Let us use Fig. 3.4 for an illustration. When
the CCE-BEM is used, the entries within the framed diagonal line in Ĥ(d)

m in
Fig. 3.4 is actually equal to F(L,d)

m ĉq with q = −1. It is equivalent to say that

in its DIA format H̄(d)
m , the corresponding row h̄(d)T

q,m is actually composed
by F(L,d)

m ĉq, i.e., h̄(d)
q,m = F(L,d)

m ĉq. Therefore, if we jointly consider the fact
that the estimator will yield a DIA format H̄(d)

m instead of Ĥ(d)
m , the operation

in (3.20) acts equally as placing F(d)
L,mĥq’s onto the corresponding rows in

H̄(d)
m , for q = {−Q, · · · , Q}, when the CCE-BEM is used.
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Now, we are allowed to describe the LS estimation tailored to the CCE-
BEM, for q ∈ {−Q, · · · , Q} and m ∈ {0, · · · , NB − 1}, as

h̄(d)T

q,m = F(L,d)
m ĉq (3.25)

and then, by substituting (3.24) into (3.25), we obtain

h̄(d)T

q,m = M̄mr̄(p)
q (3.26)

where the B ×NP matrix M̄m is given by

M̄m = F(L,d)
m

(
Ā(p)H

Ā(p)
)−1

Ā(p)H
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which is also perfectly known at the receiver.
Finally, the yielded DIA format of each Ĥ(d)

m is stacked as

H̄(d)
m = [h̄(d)

−Q,m, · · · , h̄(d)
Q,m]T .

We call this implementation method as the “Simplified LS Estimator”,
which is particularly tailored for the CCE-BEM. Its detailed implementation
is described as Algorithm 2. Its computational complexity is listed in Ta-
ble 3.1 for comparison with the previous method. It is clear that this simpli-
fied LS estimator is more economic and memory efficient than the previous
general LS estimator. The schematic of the simplified LS estimator is de-

Algorithm 2 Simplified LS estimator (for CCE-BEM)
0. Pre-compute the matrix all M̄m’s for m = {0, · · · , NB − 1}; Totally

NDNP elements are stored for ROM;

1. Carefully collect r̄(p)
q ’s and perform (3.26) to attain h̄(d)

q,m for q =
{−Q, · · · , Q}, which is stacked into a (2Q + 1) × B matrix H̄(d)

m , the
DIA format of Ĥ(d)

m .

picted in Fig. 3.7. To maximize the concurrency, the processing parallelism
for both q ∈ {−Q, · · · , Q} and m ∈ {0, · · · , NB − 1} can be exploited. It
is noteworthy that, when Q = 0, (3.26) degrades to the channel estimation
for the traditional OFDM systems which operate in the time-invariant chan-
nels. In other words, our simplified estimator tailored for the CCE-BEM can
be considered as an extension of the channel estimator design for the time-
invariant OFDM systems. One may argue that the CCE-BEM is inferior to
other BEM models [4, 39] in terms of the modeling accuracy. We shall show
that the CCE-BEM still yields a good performance of channel estimation in
the presence of a realistic mobility velocity.

3.4.2 Channel Equalizer

To recover the mth data cluster denoted by a B×1 vector b(d)
m , a ZF equaliza-

tion is introduced in (3.19), where a matrix inversion is required. For a tradi-
tional OFDM over a time-invariant channel, Q = 0 is efficient and thus Ĥ(d)

m
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Table 3.2: Complexity Analysis for the Estimator and Equalizer
Complex Mobile OFDM TI OFDM

Operations Simplified CE EQ CE EQ
CMs (2Q + 1)NP B (4Q2 + 12Q + 2)B NP B 0
CAs (2Q + 1)(NP − 1)B (4Q2 + 8Q + 3)B (NP − 1)B 0
CDs 0 (2Q + 1)B 0 B

is a diagonal matrix. In this case, the equalization (3.19) has only a compu-
tational complexity linear to the vector size B. However, when the channel
is time varying, Ĥ(d)

m is in principle a full matrix, and thus the equalization
complexity using its direct matrix inversion is too high (i.e., O(B3) [50]) to
be practical. An important feature is that each Ĥ(d)

m is a banded matrix with

a bandwidth of 2Q + 1 [c.f. (3.21)], and thus Ĥ(d)H

m Ĥ(d)
m is a banded positive

definite Hermitian matrix. Based on this property, we can adapt the LDLH

factorization [50] to realize the inversion more efficiently, yielding a low-
complexity equalization as specified in Algorithm 3. This equalization has a
computational complexity O(Q2B), which is usually much less than O(B3)
because Q is typically small (e.g., Q = 1) [3]. Note that the above algorithm
requires a strictly banded matrix Ĥ(d)

m [3], which also explains Θ in (3.20). We
also need to note that the above process is correct, for m = {0, · · · , NB − 1},
only if the number of null subcarriers at either edge is larger than the half
bandwidth of Ĥ(d)

m , i.e., ≥ Q [c.f. Fig. 3.3]. Such a condition is widely consid-
ered in the literature in, e.g., [3, 5, 40, 61], and it can be satisfied in many ex-
isting OFDM standards, e.g., a multiple-band UWB standard [69]. Table 3.2
specifies the complexity of the equalizer for the mth data cluster in complex
operations, i.e. CAs, CMs, and complex dividers (CDs). In the same table, we
also quote the complexity of our channel estimator tailored for the CCE-BEM
from Table 3.1.

To implement the channel equalizer efficiently, we first recall that the
DIA format H̄(d)

m is obtained by the channel estimator as described in the
previous section, instead of its original matrix Ĥ(d)

m . Here, prior to the equal-
izer implementation, we describe how to efficiently store the matrices used

in Algorithm 3 (i.e., Wm = Ĥ(d)H

m Ĥ(d)
m , while L and D are obtained from
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Figure 3.9: Index Mapping between Matrices and their DIA format
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Wm = LDLH ). Due to the special structures of these matrices, the DIA
format is adapted herein. We plot Fig. 3.8 to illustrate the storage of these
matrices, where W̄m is the adapted DIA format to store Wm, while L̄D rep-
resents two matrices L and D jointly since the diagonal of L always equals
to one and D is diagonal with the same size of L. The index mapping from
these DIA formats to the original matrices are given in Fig. 3.9, where we
deliberately consider the DIA format only accessed in one-dimension ad-
dresses to represent the physical memories. Using the index mapping, each
matrix computation in Algorithm 3 can thus be identically carried out using
their DIA formats, and the only difference lies in exploiting different indices
for each non-zero value. It is noteworthy that such index mapping does not
introduce additional operations since it only refers to different memory ad-
dresses. Fig. 3.10 depicts the schematic of the equalizer for the mth data
cluster b(d)

m , for m ∈ {0, · · · , NB − 1}.
From the above, we know that the mth channel estimator yields a DIA

format H̄(d)
m of Ĥ(d)

m , which are used directly by the mth equalizer as an in-
put. It indicates that the aforementioned channel estimator shares the same
interfaces to communicate with our channel equalizer herein. Fig. 3.11 de-
scribes the parallel connection between each pair of channel estimator (CE)
and equalizer (EQ), and also illustrates the testbench environment used in
this chapter.

3.5 Experiments

For the OFDM setup, we consider the cases listed in Table 3.3. It is known
that using a larger Q, a higher system performance with regards to the sym-
bol detection accuracy can be obtained [3–5, 40, 61]. But its paid price is a
higher hardware cost for implementation, which is evident later. Each pi-
lot is guarded by 2Q null subcarriers on its either side. In addition to these
guarded null subcarriers, the number of the null edge subcarriers placed at
either edge is needed to be larger than Q. For all the cases, QPSK symbols are
modulated on the data and pilot subcarriers; To represent the time-varying
channels, the Jakes’ model [14] with a maximal normalized Doppler factor
(i.e., the Doppler shift divided by the OFDM subcarrier interval) of 0.02 is
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Figure 3.11: Testbench of Mobile OFDM Baseband Receiver
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Table 3.3: Testing Setups for OFDM System
Setup Q N NP NB B ND Edge Guard*

O 0 256 8 7 35 245 1 2
I 1 256 8 7 30 210 3 3
II 2 256 8 7 25 175 4 5
III 3 256 8 7 20 140 6 6

* referring to the edge null subcarriers. The number of the null subcarrier at either edge
must be larger than Q. For simplicity reasons, we never place separated data subcarriers
but only place them as NB clusters, and thus abundant edge null subcarriers may exist.

adopted. Physically, if we consider that the OFDM baseband bandwidth is
W = 20 MHz and the central radio frequency is fc = 10 GHz, this maximal
normalized Doppler factor corresponds to the highest velocity of v = 84.38
km/h (computed by fc×2v/c

W/N = 0.02, where c = 1.08× 109 km/h). Moreover,
the delay tap number of the channel is taken less than NP , which means a
delay spread of 0.4ms if the baseband bandwidth of W = 20 MHz, such that
NP > L is satisfied [c.f. (3.14)]. One can check that this OFDM system satis-
fies our narrowband assumption according to Chapter 2, because the moving
velocity is negligible compared to the propagation speed of terrestrial ratio
v ¿ c, and also the bandwidth is very small compared to the central fre-
quency W ¿ fc. The time-varying channel is windowed by a time-domain
windowing from [61]. According to the testbench environment as illustrated
in Fig. 3.11, we randomly generate the received OFDM symbols for our LS
channel estimator and ZF equalizer, and then examine the performances of
the channel estimation and equalization.

Let us currently focus on the Setup O and Setup I for the OFDM sys-
tem. Fig. 3.12 illustrates the mean-square-error (MSE) performances of the
LS channel estimator using various BEM’s for the Setup I, with different
signal-to-noise ratio (SNR) conditions. The traditional LS estimator for the
time-invariant (TI) OFDM channels is realized using our simplified LS esti-
mator corresponding to Q = 0 as previously mentioned. The MSE is defined
as

MSE =
1

NB

NB−1∑

m=0

∥∥∥H(d)
F,m − Ĥ(d)

m

∥∥∥
2
/
∥∥∥H(d)

F,m

∥∥∥
2
, (3.27)
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where H(d)
F,m is carved from HF in (3.1) at the same positions correspond-

ing to Ĥ(d)
m in ĤF. From Fig. 3.12, it is clear that the traditional estimator

designed for TI channels can not combat a time-varying channel, while the
performances of our LS estimators without a time windowing are still not
good. With a proper windowing design, our LS estimators all perform well
for time-varying channels, no matter which BEM is adopted. It is notewor-
thy that although the estimation accuracy of a simplified LS estimator using
the CCE-BEM is indeed inferior to other BEM models, the drop of the estima-
tion accuracy is slight especially in presence of the time-domain windowing.
Additionally, it is certain that the estimation accuracies obtained by using
different implementation methods (i.e., general LS estimator or simplified LS
estimator) are identical when the CCE-BEM is adopted to model the channel.

At the same time, we compare the hardware resource utilizations of the
aforementioned two approaches of implementing the channel estimation (i.e.,
general LS estimator and simplified LS estimator). Setup I is tested. Specifi-
cally, using a similar methodology as [70], we first realize an LS estimator for
one data cluster (e.g., the mth data cluster), and then duplicate it to generate
other pairs with Q = 1, resulting a concurrency for m = {0, · · · , NB − 1}.
Table 3.4 lists the values of their synthesis results in a 90nm technology. It
shows that our simplified LS estimator brings a roughly 57% cut for the
ASIC core area (excluding the ROM), a 88% savage for the ROM size and
a 55% reduction of the processing latency compared to the general LS esti-
mator. Jointly considering their estimation performances shown in Fig. 3.12
and their hardware costs herein, it suggests that the it is more appealing to
design time-varying OFDM systems using the CCE-BEM than using other
BEM options.

Now, we select the simplified LS estimator tailored to the CCE-BEM and
then combine it with the ZF channel equalizer. Fig. 3.13 compares the bit-
error ratio (BER) performance of our design using OFDM Setup I, II and III
(i.e., with Q = 1, 2 and 3) for a narrowband time-varying channel. Addi-
tionally, we also build a TI OFDM receiver corresponds to OFDM Setup O
using Q = 0 and without any time-domain windowing. We note that these
BER performances are obtained without any channel coding. It is clear that
since the TI OFDM receiver fails to combat the time variation of the channel,
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Table 3.4: Synthesis Results of Channel Estimator
ASIC Core Area* ROM Area* Latency*

(103µm2) (103µm2) (cycle)

Method
Simplified CE 487.46 25.24 159

General CE 1129.84 213.36 353
* 90nm ASIC technology with 100MHz clock and 20 (40) bits are adopted for a real

(complex) number; Here Q = 1.
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Figure 3.13: BER Performance

it hardly recover the transmitted data information correctly. However the
receiver using our estimator and equalizer significantly improves the BER
performance especially at a higher SNR. In addition, the use of a larger Q

parameter indeed brings a performance improvement with regards to the
symbol detection accuracy, as noticed by [3, 5, 40, 61].

To investigate the hardware resource utilization of our designs, we im-
plement the designs with these setups (i.e., with Q = 0, 1, 2 and 3). Sim-
ilar for the channel estimator, we first realize a ZF equalizer in combina-
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Table 3.5: Comparison of FPGA Implementations
Mobile OFDM TI OFDM

Q = 3 Q = 2 Q = 1 Q = 0
Latency (cycle) 2759 2451 1758 706

Resource*

acc. Inst. 128720 96966 69808 20163
LUTs 40.02% 35.69% 27.14% 6.88%
CLBs 40.05% 35.71% 27.18% 6.94%
DFFs 3.70% 3.22% 2.32% 0.98%

DSP48Es 28.52% 25.43% 18.24% 4.16%
RAMS 65.77% 58.73% 42.25% 8.94%

* 20 (40) bits for a real (complex) number on Xilinx 6VLX240TFF1156 Device
with a 100MHz clock; The RAMS stands for the block RAM components,
which are mainly used to store matrices during the channel estimation and
equalization.

tion with a simplified LS estimator, and then duplicate their combination for
m = {0, · · · , NB − 1}. Their synthesis results on a Xilinx 6VLX240TFF1156
device are listed in Table 3.5, where the processing latency is counted by the
clock cycles and the FPGA resource utilization report is quoted. It is no sur-
prise that a time-varying OFDM receiver (or a mobile OFDM receiver) based
on the BEM requires more hardware efforts to support high-mobility users
since we remarkably extend a TI OFDM system. In other words, the BER
improvement of time-varying OFDM systems is earned at the price of more
complicated hardware design, compared to a TI OFDM receiver. Moreover,
we observe that for the time-varying OFDM system from Q = 1 to Q = 3, the
hardware resource utilization (e.g., by considering “acc. Inst.” as an overall
utilization of hardware resource), as well as the processing latency, increases
roughly linearly along Q. Jointly considering the BER performance as illus-
trated in Fig. 3.13, an excessively large Q (e.g., Q = 3) is not desirable since
a remarkable increased hardware cost only brings a slight improvement of
the BER performance. For instance, a roughly 0.1dB BER improvement from
Q = 2 to Q = 3 is obtained, but at a price of 1.32 times resource utilization.
It indicates that a small Q is sufficient (e.g., Q = 2) to provide an accurate
symbol detection without introducing too high hardware utilization.
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3.6 Summary

The narrowband OFDM system model in light of BEM was introduced. Two
efficient implementations for the least-squares estimator of OFDM time-varying
channels were discussed. The first one is the general estimator which sup-
ports estimation methods using various BEM models. The second one, the
simplified estimator particularly tailored for the CCE-BEM, leads to a more
efficient hardware architecture, while still maintains a high estimation accu-
racy. Hence, the CCE-BEM is more appealing to time-varying OFDM sys-
tems than other BEM’s. The efficient implementation of the parallel equal-
izer was presented afterwards. Our design for OFDM receivers with a small
BEM order is capable of combatting the narrowband time-varying OFDM
channel. For comparison, a traditional time-invariant OFDM receiver design
which only works for time-invariant channels fails in a time-varying chan-
nel.
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Appendix 3.A Detailed Derivation of (3.12)

Let us start from the noiseless version of (3.11) as

r(p) =
Q∑

q=−Q

D(p)
q ∆(p)

q b(p)

where D(p)
q is a submatrix obtained from Dq by only selecting rows (columns)

corresponding to r(p) in rF (b(p) in b), and ∆(p)
q is obtained from ∆q by se-

lecting the rows of b(p) in b.
We first notice that ∆q = diag(F(L)cq) as specified in (3.8), and thus we

can specify ∆(p)
q as

∆(p)
q = diag(F(L,p)cq),

where F(L,p) collects the rows of F(L) corresponding to the positions of b(p)

in b.
To this end, it is clear that

∆(p)
q b(p) = diag

(
F(L,p)cq

)
b(p)

= diag
(
b(p)

)
F(L,p)cq. (3.28)

Substituting (3.28) into r(p), we obtain

r(p) =
Q∑

q=−Q

D(p)
q

(
diag(b(p))F(L,p)

)
cq

= [D(p)
−Q, · · · ,D(p)

Q ]

× I2Q+1 ⊗
(
diag(b(p))F(L,p)

)

× [cT
−Q, · · · , cT

Q]T

= D(p)
(
I2Q+1 ⊗

(
diag(b(p))F(L,p)

))
c (3.29)

where ⊗ stands for the Kronecker product, D(p) = [D(p)
−Q, · · · ,D(p)

Q ] and c =
[cT
−Q, · · · , cT

Q]T .
Consequently, if we denote

A(p) = D(p)
(
I2Q+1 ⊗

(
diag(b(p))F(L,p)

))
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as defined in (3.13), we obtain

r(p) = A(p)c

which is the noiseless version of (3.12).
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Algorithm 3 Low-Complexity equalization algorithm

1. Compute the matrix Wm = Ĥ(d)H

m Ĥ(d)
m and also p = Ĥ(d)H

m r(d)
m ;

2. Perform the banded-LDLH factorization as Wm = LDLH , where D is
a diagonal matrix, and L is a lower triangular matrix whose diagonal
are ones and whose lower bandwidth is 2Q; Such LDLH factorization
can be implemented in pseudo-code as:

D[0, 0] = Wm[0, 0];
for(i = 1; i < B; i = i + 1)
u = max(0, i− 2Q);
for(j = u; j < i; j = j + 1)

L[i, j] = 1
D[j,j]

(
Wm[i, j]−

j−1∑
k=u

L∗[j, k]L[i, k]D[k, k]

)
;

end

D[i, i] = Wm[i, i]−
i−1∑
k=u

|L[i, k]|2D[k, k];

end

3. Solve Wmb̂(d)
m = p by solving firstly the triangular system Lf = p

and the diagonal system Dg = f , and then another triangular system
LH b̂(d)

m = g to recover b̂(d)
m . This step can be specified in pseudo-code

as:
for(i = 0; i < B; i = i + 1)

u = max(0, i− 2Q);

f [i] = p[i]−
i−1∑
k=u

L[i, k]f [k]; g[i] = f [i]/D[i, i];

end
for(i = B − 1; i ≥ 0; i = i− 1)

v = min(B − 1, i + 2Q);

b̂(d)
m [i] = g[i]−

v∑
k=i+1

L∗[k, i]b̂(d)
m [k];

end





Chapter 4

Wideband OFDM Systems

Give people a little bit more bandwidth and they’ll find
something for which that bandwidth is not nearly
enough.

Paul Green

In Chapter 2, the fundamental differences between the narrowband chan-
nels and the wideband channels have already been clarified. In Chapter 3,
OFDM over narrowband channels was discussed. This chapter describes
OFDM transmissions over a wideband channel and seeks to quantify the
amount of interference resulting from the time variation of wideband chan-
nels which generally follow the multi-scale/multi-lag (MSML) model. It is
shown that a more complicated receiver scheme is inevitable for wideband
OFDM time-varying channels compared to the narrowband case.

4.1 Introduction

For the narrowband communication systems considered in the last chapter,
the Doppler effect manifests itself primarily as frequency shifts [15, 16]. In
this case, it is reasonable to assume that each OFDM subcarrier experiences
statistically identical frequency offsets [59] and the effective channel matrix
of a narrowband OFDM system is approximately banded [2] in the presence
of Doppler. Many researches on narrowband OFDM LTV systems are based
on this banded approximation [2, 3, 5, 40, 40, 41, 61, 66] and we have also ex-
ploited this banded structure in the last chapter to propose an efficient im-
plementation architecture for narrowband OFDM receiver designs.

In a wideband system, where the relative signal bandwidth is large, the
Doppler effect should be more appropriately modeled as scalings of the sig-
nal waveform [15, 16]. Wideband systems arise in, e.g., underwater acoustic
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communication (UAC) systems or wideband terrestrial radio frequency sys-
tems such as ultra wideband (UWB). Due to multipath, a wideband linear
time-varying (LTV) channel can be more accurately described by a multi-
scale multi-lag (MSML) model [15, 21]. Many signaling schemes have been
studied for wideband systems. For instance, [33,71] consider direct-sequence
spread spectrum (DSSS). Recently, the use of OFDM for UAC or UWB has re-
ceived considerable attention. To counteract the scaling effect due to Doppler,
[72] proposes a multi-band OFDM system such that within each band, the
narrowband assumption can still be valid. More commonly, many works as-
sume a single-scale multi-lag (SSML) model for the wideband LTV channel.
Based on the SSML assumption, after a resampling operation the channel
can be approximated by a time-invariant channel but subject to a carrier fre-
quency offset (CFO) [28, 30]. However, since the channel should be more ac-
curately described by an MSML model, determining the optimal resampling
rate is not trivial [29].

In this chapter, we consider OFDM transmission over on an MSML model.
The resulting channel, which is a full matrix in the presence of Doppler, will
be equalized by means of the conjugate gradient (CG) algorithm [50, 73],
whose performance is less sensitive to the condition of the channel matrix
than, e.g., a least-squares approach. On the other hand, the convergence rate
of CG is inversely proportional to the channel matrix condition number. This
is especially of significance if a truncated CG is to be used in practice, which
halts the algorithm after a limited number of iterations in order to reduce
the overall complexity. Therefore, it is desired that the channel matrix is
well-conditioned to ensure a fast convergence. To this end, preconditioning
techniques can be invoked to enforce the eigenvalues of the channel matrix
to cluster around one [74]. To achieve a balance between performance and
complexity, we restrict the preconditioner to be a diagonal matrix, whose
diagonal entries can be designed by following the steps given in [75]. We
notice that a circulant preconditioner in the time domain was introduced
in [41], which is equivalent to a diagonal preconditioner in the frequency do-
main. This preconditioner is introduced based on a basis expansion model
(BEM), which is often used to approximate the channel’s time-variation for
a narrowband system. For a wideband system as considered in this chapter,
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it can be shown that this preconditioner in the frequency domain is equal to
the inverse of the diagonal entries of the frequency-domain channel matrix.

What is not considered in [41, 75] is the resampling operation at the re-
ceiver, which is an indispensable and crucial step for wideband LTV chan-
nels. Different from the trivial resampling scheme for SSML channel mod-
els, an optimum resampling method is proposed in [29] for MSML channels,
which aims at minimizing the average error of approximating the MSML
channel by an SSML model. This chapter studies the resampling from a pre-
conditioning point of view. It is observed that if the major channel energy is
located on the off-diagonals of the channel matrix, a diagonal preconditioner
will deteriorate the channel matrix condition rather than improve it, thereby
reducing the convergence rate of CG instead of increasing it as opposed to
the claim of [75]. The energy distribution of the channel matrix is governed
by the resampling. Different from [29], which only considers rescaling the
received signal, and [76], which considers both rescaling and frequency syn-
chronization, this chapter will show that for OFDM systems, all these three
resampling parameters can have a significant impact on the system perfor-
mance (i.e., rescaling, frequency synchronization and time synchronization).
More specifically, we will extend the results of [76] and [77] by jointly opti-
mizing these three resampling parameters both in the frequency domain and
the time domain.

4.2 System Model Based on an MSML Channel

4.2.1 Continuous Data Model

Suppose that the baseband transmit signal s(t) consists of K subcarriers, we
adapt (2.23) to describe this OFDM signal with a minor change given by

s(t) =
1√
KT

K−1∑

k=0

bke
j2πfktu(t), −Tpre < t ≤ KT + Tpost (4.1)

where the data symbol bk is modulated on the kth subcarrier fk = k∆f ,
for k = 0, 1, · · · ,K − 1, with ∆f being the OFDM subcarrier spacing. With
T = 1/(K∆f), KT is the effective duration of an OFDM symbol. The cyclic
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prefix is given as Tpre which is assumed to be longer than the delay spread.
Different from (2.23), we introduce a cyclic postfix Tpost, which is assumed
long enough to ensure signal completeness in case of scaling and will be
defined later on. Additionally, the rectangular pulse u(t) is defined to be 1
within t ∈ [−Tpre,KT + Tpost] and 0 otherwise. Prior to transmission, s(t) is
up-converted to passband, yielding s̄(t) = <{s(t)ej2πfct} where fc denotes
the carrier frequency. With sufficient cyclic extensions, the interference from
adjacent OFDM symbols can be neglected and hence we are allowed to con-
sider an isolated OFDM symbol in this chapter without loss of generality. Al-
though this chapter discusses the scenario when cyclic extensions are used,
the analysis can be directly applied to zero padding OFDM (ZP-OFDM) with
minor modifications.

The considered signal is transmitted over a wideband LTV channel, which
is assumed to comprise multiple resolvable paths as mentioned in (2.5) but
with a finite path number of L + 1. With a collection of these L + 1 paths, the
actual received signal r̄(t) is given by

r̄(t) =
L∑

l=0

h̄l
√

αls̄(αl(t− τl)) + w̄(t), (4.2)

and, if fc = f ′c in (2.6), we obtain its corresponding complex baseband equiv-
alent given by

r(t) =
L∑

l=0

hl
√

αls(αl(t− τl))ej2π(αl−1)fct + w(t) (4.3)

where r̄(t) = <{r(t)ej2πfct} and w̄(t) = <{w(t)ej2πfct}, while hl = h̄le
−j2πτlαlfc .

By substituting (4.1) into (4.3), we can rewrite r(t) as

r(t) =
L∑

l=0

hl
√

αl

(
1√
KT

K−1∑

k=0

bke
j2πfkαl(t−τl)u(αl(t− τl))

)
ej2π(αl−1)fct + w(t)

=
1√
KT

K−1∑

k=0

bkhk(t)ej2πfkt + w(t), (4.4)
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where

hk(t) =
L∑

l=0

hl
√

αle
−j2πfkαlτlej2π(αl−1)(fc+fk)tu(αlt− αlτl), (4.5)

which stands for the time-varying channel frequency response seen by the
kth subcarrier. From the definition of hk(t), we notice that the kth subcarrier
experiences a frequency offset of (αl − 1)(fc + fk) over the lth path.

Remark 4.1. The cyclic prefix is assumed to be longer than the delay spread
and the cyclic postfix has a duration long enough to ensure signal continu-
ity in the observation window for t ∈ [0,KT ]. Specifically, it is required
that u(αlt − αlτl) = 1 within this window for all paths. In other words, be-
cause u(αlt−αlτl) gives a time support on t ∈

[−Tpre+αlτl

αl
,

KT+Tpost+αlτl

αl

]
, we

should then always satisfy −Tpre+αlτl

αl
≤ 0 and also KT+Tpost+αlτl

αl
≥ KT for

any l ∈ {0, 1, · · · , L}. This leads to

Tpre ≥ αmaxτmax, (4.6)

Tpost ≥ (αmax − 1)KT. (4.7)

When the above conditions are satisfied, we are allowed to drop the no-
tation of the rectangular pulse u(t) embedded in hk(t) in the sequel for the
sake of notational ease.

4.2.2 Discrete Data Model

For MSML channels, discretizing the received signal and achieving time-
frequency synchronization is not trivial [29, 30]. We illustrate such difficulty
in Fig. 4.1, where we assume the transmit signal propagates via three paths.
Since the received symbol is the summation of these three paths, it invites
the following questions:

1. Which point should we consider as the starting point of the OFDM
symbol (time synchronization)?

2. What sampling rate should we adopt to discretize the received signal
over MSML channels (rescaling)?
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Figure 4.1: Illustration of the synchronization and resampling problem; αl stands
for the scaling factor due to the lth path, and β for the rescaling factor adopted by
the receiver during resampling.

3. What frequency shift should we apply to remove the residual carrier
frequency offset (frequency synchronization)?

These problems can mathematically be described by determining β, φ

and σ in the following expression

r(β,φ,σ)(t) =
√

1
β

r(
t

β
− σT )ej2πfcφt/β, (4.8)

where β is a positive number within [1, αmax] and βT represents the sam-
pling rate at the receiver; σ is the time shift factor, which is used to represent
time synchronization; and likewise, φ is the phase shift factor used for fre-

quency synchronization.
√

1
β is a normalization factor. Later on, we will

show that a different choice of (β, φ, σ) can influence the energy distribution
of the channel matrix significantly. For the moment, we leave the values of
these parameters open to allow for a general treatment of the problems. It is
clear that when (β, φ, σ) = (1, 0, 0), there is no resampling operation carried
out.

After resampling, the noiseless sample obtained at the nth time instance
in the time domain is given by (see Appendix 4.A for the detailed derivation)

r(β,φ,σ)
n = r(β,φ,σ)(nT )

=
L∑

l=0

h
(β,σ)
l e

j2πω
(αl−1+φ)

β
n
K ×

(
K−1∑

k=0

bke
j2π

αl
β

nk
K

)
e−j2παl(λl+σ) k

K , (4.9)
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where we use
ω =

fc

∆f

to denote the normalized carrier frequency and

λl =
τl

T

to denote the normalized delay of the lth path; and the discrete channel co-
efficient is given by

h
(β,σ)
l =

√
αl

βKT
h̄le

−j2πfc(αlτl+(αl−1)σT ).

In (4.9), the term e
j2πω

(αl−1+φ)

β
n
K corresponds to the residual CFO related with

the lth path after resampling; the term e−j2πfαl(λl+σ) k
K corresponds to the

phase changes due to the time shift along the lth path; and the summation∑K−1
k=0 bke

j2π
αl
β

nk
K is the adapted version of the transmitted OFDM signal due

to the channel time variation in the lth path.
Let us now stack the received samples r

(β,φ,σ)
n , for n = 0, · · · ,K−1, into a

vector r(β,φ,σ)
T = [r(β,φ,σ)

0 , · · · , r
(β,φ,σ)
K−1 ]T , and similarly let b = [b0, · · · , bK−1]T .

In the noiseless case, it follows that

r(β,φ,σ)
T =

L∑

l=0

h
(β,σ)
l D(β,φ)

l FH
αl/βΛ

(σ)
l b, (4.10)

where Fα denotes a fractional normalized discrete Fourier transform (DFT)
matrix, whose (m, k)th entry is defined as

[
FH

α

]
m,k

=
1√
K

ej2πα mk
K . (4.11)

Obviously, F1 reduces to a regular normalized DFT matrix. In addition,

Λ(σ)
l = diag([1, ej2παl(λl+σ) 1

K , · · · , ej2παl(λl+σ)K−1
K ]T ), (4.12)

and
D(β,φ)

l = diag([1, ej2πω
αl−1+φ

β
1
K , · · · , e

j2πω
αl−1+φ

β
K−1

K ]T ), (4.13)

where the superscript (β, φ) in D(β,φ)
l and (σ) in Λ(σ)

l reflects the dependence
on the specific resampling parameters. This convention will hold throughout
this chapter.
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4.3 Interference Analysis

Normally speaking, equalization of an OFDM channel is implemented in the
frequency domain. To this end, the received signal r(β,φ,σ)

T is first transformed
into the frequency domain by means of the DFT, which in the absence of
noise yields

r(β,φ,σ)
F = F1r

(β,φ,σ)
T = H(β,φ,σ)

F b, (4.14)

where H(β,φ,σ)
F stands for the frequency-domain (FD) channel matrix, which

is defined as

H(β,φ,σ)
F =

L∑

l=0

h
(β,σ)
l F1D(β,φ)

αl
FH

αl/βΛ
(σ)
λl

=
L∑

l=0

h
(β,σ)
l H(β,φ)

F,l Λ(σ)
λl

, (4.15)

with H(β,φ)
F,l = F1D

(β,φ)
λl

FH
αl/β being its lth component, whose (m, k)th entry

is specified as

[
H(β,φ)

F,l

]
m,k

=
1
K

K−1∑

n=0

e−j2π mn
K e

j2πω
αl−1+φ

β
n
K e

j2π
αl
β

nk
K

=
1
K

K−1∑

n=0

e−jn 2π
K

((m−k)−(ξl,F1k+ξl,F2))

= e−j
(K−1)π

K ((m−k)−(ξl,F1k+ξl,F2))×
sinc ((m− k)− (ξl,F1k + ξl,F2))

sinc( 1
K ((m− k)− (ξl,F1k + ξl,F2)))

, (4.16)

where ξl,F1 = αl−β
β and ξl,F2 = αl−1+φ

β ω with sinc(t) = sin(πt)
πt .

It is obvious from (4.16) that in the absence of Dopper effects, i.e., αl = 1
for l = 0, 1, · · ·L, no rescaling and frequency synchronization is necessary,
hence β = 1 and φ = 0, which leads to a diagonal H(1,0)

F,l with
[
H(β,φ)

F,l

]
m,k

=

δm−k. In another special case where αl ≡ α for l = 0, 1, · · ·L, we can also en-
force a diagonal H(β,φ)

F,l by letting β = α and φ = 1−α, a scenario considered
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in, e.g., [28]. For a realistic wideband LTV channel, however, the channel en-
ergy distribution in H(β,φ)

F,l is governed by a Dirichlet kernel, where the center
of this Dirichlet kernel is offset by

∆(β,φ)
F,l (k) =< ξl,F1k + ξl,F2 > . (4.17)

Clearly, such an offset is not only dependent on the Doppler spread α and
the carrier frequency fc, but also on the subcarrier frequency fk = k∆f . The
dependence of the signal energy offset on the subcarrier index is unique to
wideband channels, and is also referred to as nonuniform Doppler shifts in
[28]. In contrast, the frequency offset for narrowband channels is statistically
identical for all the subcarriers [59].

The Dirichlet kernel in (4.16) also suggests that the signal energy is mostly
concentrated in subcarrier k + ∆(β,φ)

F,l (k) and its nearby subcarriers, and de-
cays fast in subcarriers farther away. To appreciate how fast the signal en-
ergy decays, let us introduce B

(β,φ)
F,l (k) to quantify the number of subcarriers

where most of the energy of bk is located, which can thus be viewed as the
bandwidth of H(β,φ)

F,l along its kth column. B
(β,φ)
F,l (k) is obtained as the small-

est B for which

k+∆
(β,φ)
F,l (k)+B∑

m=k+∆
(β,φ)
F,l (k)−B

∣∣∣[H(β,φ)
F,l ]m,k

∣∣∣
2

> γ

K−1∑

m=0

∣∣∣[H(β,φ)
F,l ]m,k

∣∣∣
2

⇔
k+∆

(β,φ)
F,l (k)+B∑

m=k+∆
(β,φ)
F,l (k)−B

∣∣∣∣
sinc(π ((m− k)− (ξl,F1k + ξl,F2)))
sinc( π

K ((m− k)− (ξl,F1k + ξl,F2)))

∣∣∣∣
2

> γ
K−1∑

m=0

∣∣∣∣
sinc(π ((m− k)− (ξl,F1k + ξl,F2)))
sinc( π

K ((m− k)− (ξl,F1k + ξl,F2)))

∣∣∣∣
2

, (4.18)

where γ is a positive threshold no larger than 1. In the left plot of Fig. 4.2, the
relationship between maxkB

(β,φ)
F,l (k) and γ for the case β = 1 and α = 0 (no

resampling and frequency synchronization) is plotted. It is clear that most of
the signal energy of bk is captured within a limited bandwidth. For example,
with a bandwidth maxkB

(1,0)
F,l (k) = 5, roughly 98% of the signal energy of bk

is captured. Notably, this bandwidth is almost independent of ξl,F1 and ξl,F2

as suggested by the left plot of Fig. 4.2.
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Figure 4.2: Bandwidth of H(β,φ)
F,l and H(β,σ)

T,l

Since each H(β,φ)
F,l is roughly banded, it is therefore reasonable to approx-

imate H(β,φ,σ)
F , which is a weighted sum of different H(β,φ)

F,l matrices, also as

banded. As an example, we plot in Fig. 4.3 the structure of H(β,φ)
F,l , where we

assume that there are in total two paths. Obviously, the approximate band-
width of H(β,φ,σ)

F at the kth column, denoted as B
(β,φ)
F (k), is

B
(β,φ)
F (k) =

max
l

(
k + ∆(β,φ)

F,l (k) + B
(β,φ)
F,l (k)

)
−min

l

(
k + ∆(β,φ)

F,l (k)−B
(β,φ)
F,l (k)

)

≈ max
l

(
∆(β,φ)

F,l (k)
)
−min

l

(
∆(β,φ)

F,l (k)
)

+ 2max
l

(
B

(β,φ)
F,l (k)

)
, (4.19)

which is independent of σ. We refer the reader to Fig. 4.3 for the physical
meaning of the notations. It is important to underscore that since the band-
width B

(β,φ)
F (k) is dependent on the subcarrier index k, the boundaries of the

band are not parallel to each other as in the narrowband case. A banded ap-
proximation of the channel matrix is crucial to many low-complexity equal-
izers, e.g., [2,3,5,41]. The equalizer considered in this chapter will also adopt
this approximation to reduce the complexity. More specifically, we first de-
fine a matrix B(β,φ)

F , whose (m, k)th entry is equal to 1 if min
l

(
k + ∆(β,φ)

F,l (k)−B
(β,φ)
F,l (k)

)
≤
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Figure 4.3: Illustration of the FD matrix H(β,φ,σ)
F for two paths

m ≤ max
l

(
k + ∆(β,φ)(k)

F,l + B
(β,φ)
F,l (k)

)
, and 0 otherwise, and we then consider

the matrix
H̄(β,φ,σ)

F = B(β,φ)
F ¯H(β,φ,σ)

F (4.20)

as the banded approximation of H(β,φ,σ)
F .

With the banded approximation, let us rewrite (4.14) as

r(β,φ,σ)
F = H̄(β,φ,σ)

F b + v̄(β,φ,σ)
F , (4.21)

where v̄(β,φ,σ)
F =

(
H(β,φ,σ)

F − H̄(β,φ,σ)
F

)
b.

The above analysis can also be applied in the time domain in an analo-
gous manner. See Appendix 4.B for the details. Here we only want to high-
light that, different from the energy distribution in the FD channel matrix
which is influenced by the rescaling factor β and the phase-shift factor φ [c.f.
ξl,F1 and ξl,F2 in (4.16)], the energy distribution in the TD channel matrix is
affected by the rescaling factor β and the time-shift factor σ [c.f. ξl,T1 and ξl,T2

in (4.39)]. However, similarly as the FD channel matrix, we can also under-
stand from the right subplot of Fig. 4.2 that H(β,σ)

T,l is roughly banded along
the lth path in the time domain, and so is the overall time-domain channel
matrix H(β,φ,σ)

T .

4.4 Channel Equalization Scheme

Let us now focus on the channel frequency-domain equalization, which is
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Figure 4.4: Illustration of our equalization scheme.

depicted in Fig. 4.4. In this figure, it is clear that, prior to the equaliza-
tion, we propose an optimum resampling operation to achieve (β, φ, σ) =
(βF,?, φF,?, σF,?), which is different from [29, 76] as mentioned previously.
Specifically, the resampling method proposed in [29] only considers the rescal-
ing parameter β while [76] ignores the time-shift parameter σ. Afterwards,
the banded matrix H̄(βF,?,φF,?,σF,?)

F is adopted to approximate H(βF,?,φF,?,σF,?)
F

according to the approach mentioned in the last section. Our banded method
induces a non-parallel bandwidth structure which is different from the banded
approach used in narrowband OFDM systems [2, 3, 5, 66]. In order to speed
up the convergence of the iterative equalization, we then design a diagonal
preconditioner to improve the condition of this banded matrix. It is notewor-
thy here that our preconditioner design is adapted from [41, 75] to enhance
its suitability for our MSML scenario. Finally, iterative equalization is pro-
posed on the preconditioned channel matrix. Although we choose the CG
method in this chapter, other iterative methods can also be applied, such as
the LSQR algorithm [78].

Additionally, we would like to highlight that just as a single-carrier chan-
nel can be equalized in the frequency domain, it is also possible to equalize
an OFDM channel in the time domain. Due to the similarity, we again re-
fer the reader to Appendix 4.B for a detailed mathematical derivation of the
time-domain method. The question in which domain the wideband channel
should be equalized, shall be addressed in the next section.

4.4.1 Iterative Equalization

To better motivate the other components of our equalization scheme, we first
introduce the channel equalization method itself. A zero-forcing equalizer in



4.4. Channel Equalization Scheme 75

the frequency domain is considered, given by

b̂ =
(
H̄(β,φ,σ)H

F H̄(β,φ,σ)
F

)−1
H̄(β,φ,σ)H

F r(β,φ,σ)
F , (4.22)

where b̂ is the obtained estimate of b. Because the original channel matrix
H(β,φ,σ)

F is a full matrix, its inversion inflicts a complexity of O(K3) and is
thus not desired for a practical system. To lower the complexity, H(β,φ,σ)

F has
been replaced by the banded approximation H̄(β,φ,σ)

F in (4.22).
Besides, the matrix inversion in (4.22) will be implemented iteratively us-

ing the CG algorithm. An advantage of using CG rather than inverting the
matrix directly is that the resulting data estimates yielded by CG are always
constrained in the Krylov subspace, making its performance less susceptible
to the spectral distribution of H̄(β,φ,σ)

F . In practice, a truncated CG, which
halts the algorithm after a limited number of iterations, is desired to further
reduce the complexity. It is well-known that the convergence of the CG algo-
rithm can be accelerated by applying preconditioning on H̄(β,φ,σ)

F [74,75,79].
With CF denoting such a preconditioner, the I/O relationship given in (4.21)
in the noiseless case can be rewritten as

r(β,φ,σ)
F =

(
H̄(β,φ,σ)

F CF

) (
C−1

F b
)

= H̄(β,φ,σ)
FC bC (4.23)

from which an estimate of bC = C−1
F b is first obtained by applying CG on

the preconditioned matrix H̄(β,φ,σ)
FC = H̄(β,φ,σ)

F CF. Afterwards, b̂ = CFb̂C

is computed to obtain the final data estimates. For details about our CG
equalization, see Appendix 4.C.

The optimal design of CF can be exhaustive [79]. Inspired by [75], we find
our preconditioner by minimizing a cost function based on the Frobenius
norm, which clusters most of the eigenvalues of H̄(β,φ,σ)

F CF around 1 with the
exception of a few outliers. Further, observing that the design of CF itself,
as well as the operation of H̄(β,φ,σ)

F CF, inflicts an additional complexity, a
common approach is to impose a sparse structure on CF, e.g., diagonal [75]
as

CF = diag{[cF,0, cF,1 · · · , cF,K−1]T }. (4.24)
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4.4.2 Diagonal Preconditioning

In this subsection, we will show that the normal approach to design the diag-
onal preconditioner as described in [75] will not necessarily cluster eigenval-
ues around one. To realize this, let us consider the diagonal preconditioner
CF,? that minimizes the cost function in the Frobenius norm [75] given by

CF,? = arg min
CF

∥∥∥H̄(β,φ,σ)
F CF − IK×K

∥∥∥
2

Fro

which leads to

cF,k,? = arg min
cF,k

‖H̄(β,φ,σ)
F cF,kek − ek‖2

2,

=
[H̄(β,φ,σ)

F ]∗k,k

‖H̄(β,φ,σ)
F ek‖2

2

, (4.25)

where ek is the kth column of the identity matrix.
One problem of the above diagonal preconditioner designed by (4.25) is

that the eigenvalues may, in some situations, tend to cluster around zero in-
stead of one, with the consequence that the condition number of the precon-
ditioned channel matrix increases considerably. To understand this, assume
there exists a ε1 > 0 such that

‖H̄(β,φ,σ)
F ekcF,k − ek‖2

2 ≤ ε21, (4.26)

for k = {0, 1, · · · ,K−1}. At the same time, assume there exists a ε0 > 0 such
that

‖H̄(β,φ,σ)
F ekcF,k‖2

2 ≤ ε20 (4.27)

for k ∈ {0, · · · ,K − 1}.
If we denote the kth eigenvalue of the preconditioned channel matrix

H̄(β,φ,σ)
F CF as µk, (4.27) indicates that (for details see Appendix 4.D)

K−1∑

k=0

|µk|2 ≤ Kε2
0
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which means that all µk’s lie inside a disk of radius
√

Kε0 centered around
zero. Similarly, from (4.26) we have

K−1∑

k=0

|µk − 1|2 ≤ Kε2
1

which implies that all µk’s at the same time lie inside a disk of
√

Kε1 centered

around one. It is clear that if ε0 < ε1, then minimizing
∥∥∥H̄(β,φ,σ)

F CF − IK×K

∥∥∥
2

Fro

will at the same time minimize the Frobenius norm
∥∥∥H̄(β,φ,σ)

F CF

∥∥∥
2

Fro
itself,

making the eigenvalues more clustered around zero rather than one.
With cF,k,? defined in (4.25), we can show that

ε1 = max
k

∑K−1
m=0 | [H̄(β,φ,σ)

F ]m,k|2 − |[H̄(β,φ,σ)
F ]k,k|2∑K−1

m=0 |[H̄(β,φ,σ)
F ]m,k|2

, (4.28)

and

ε0 = max
k

|[H̄(β,φ,σ)
F ]k,k|2∑K−1

m=0 |[H̄(β,φ,σ)
F ]m,k|2

. (4.29)

Obviously, if |[H̄(β,φ,σ)
F ]k,k|2 <

∑K−1
m=0 | [H̄(β,φ,σ)

F ]m,k|2, for k = 0, · · · ,K − 1,
then the optimal diagonal preconditioner will cluster the eigenvalues in a
“wrong” area. This case arises when the sum of the off-diagonal power in
each column is higher than the power on the diagonal. Such a situation could
occur in multi-scale channels where significant channel power is located on
off-diagonal entries as we argued in the previous section (see Fig. 4.3 for
instance). In the upper-left plot of Fig. 4.5, the eigenvalues of such a ma-
trix, with and without preconditioning, are displayed on a complex plane.
It can be seen that diagonal preconditioning indeed clusters the eigenvalues
around zero rather than one.

To evaluate the impact of such a preconditioner on the convergence of
CG, we compute the mean squared error (MSE) as

MSE =
‖b− b̂(i)‖2

‖b̂‖2
, (4.30)

with b̂(i) being the result obtained at the ith iteration of our CG equalization
as mentioned in Appendix 4.C. In the top-right plot of Fig. 4.5, it is clear
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that the CG convergence with such a diagonal preconditioner is even worse
than without any preconditioning. This illustrates that the diagonal precon-
ditioning defined in (4.25) may not always yield a better performance than
without preconditioning, as opposed to what is claimed in [41, 75]. Using a
more complex structured preconditioner can avoid this, which is, however,
not desired due to complexity and implementation considerations.

To alleviate this problem, we adapt the diagonal preconditioner in (4.24)
and (4.25) as follows

cF,k,? =





[H̄
(β,φ,σ)
F ]∗k,k∥∥∥H̄(β,φ,σ)
F ek

∥∥∥
2

2

, if ζ
(β,φ,σ)
FC (k) ≥ 1

1, otherwise
(4.31)

where

ζ
(β,φ,σ)
FC (k) =

∣∣∣∣
[
H̄(β,φ,σ)

F

]
k,k

∣∣∣∣
2

K−1∑
m=0,m6=k

∣∣∣∣
[
H̄(β,φ,σ)

F

]
m,k

∣∣∣∣
2 . (4.32)

In Section 4.4.3, we will show how to enhance (4.32) with a higher probability
by means of optimal resampling.

4.4.3 Optimal Resampling

From the previous subsections, we understand that the effectiveness of a di-
agonal preconditioner depends on the energy distribution of the channel ma-
trix. It is desired that the channel matrix should have most of its energy con-
centrated on the main diagonal. The analysis in Section 4.2.2 learns that the
resampling operation (β, φ, σ) plays an important role in governing the en-
ergy distribution of the channel matrix, and so far we have left (β, φ, σ) open
for choice. Recall that resampling is a standard step taken in many wide-
band LTV communication systems to compensate for the Doppler effect. For
example, optimizing β is considered in [29], while β and φ are jointly opti-
mized in [66]. In this sense, the optimal resampling proposed in this chapter
can be considered as a generalization of [29, 66].



4.4. Channel Equalization Scheme 79

Next, we shall discuss how to jointly optimize the resampling parameters

(β, φ, σ). Focusing on the FD matrix H(β,φ,σ)
F , we desire

∣∣∣∣
[
H(β,φ,σ)

F

]
k,k

∣∣∣∣
2

>

∑
m6=k

∣∣∣∣
[
H(β,φ,σ)

F

]
m,k

∣∣∣∣
2

for all k ∈ {0, 1, · · · ,K − 1}. However, satisfying the

above condition for each index k individually is expensive. As a relaxation,

we practically seek
∑
k

∣∣∣∣
[
H̄(β,φ,σ)

F

]
k,k

∣∣∣∣
2

>
∑
k

∑
m6=k

∣∣∣∣
[
H̄(β,φ,σ)

F

]
m,k

∣∣∣∣
2

.

To this end, let us denote the diagonal energy ratio as

ρ
(β,φ,σ)
F =

K−1∑
k=0

∣∣∣∣
[
H(β,φ,σ)

F

]
k,k

∣∣∣∣
2

K−1∑
k=0

K−1∑
m=0

∣∣∣∣
[
H(β,φ,σ)

F

]
m,k

∣∣∣∣
2 , (4.33)

and define our resampling operation by solving

(βF,?, φF,?, σF,?) = arg max
β,φ,σ

ρ
(β,φ,σ)
F , (4.34)

which leads to the maximal ratio ρ
(βF,?,φF,?,σF,?)
F . One can also explain this

resampling as minimizing the total amount of ICI in the frequency domain.
Since the energy governing mechanism is determined by the sinc func-

tion as indicated in (4.16), we can equivalently rewrite (4.34) by only maxi-
mizing the diagonal energy of H(β,φ,σ)

F as

(βF,?, φF,?, σF,?) = arg max
β,φ,σ

K−1∑

k=0

∣∣∣∣
[
H(β,φ,σ)

F

]
k,k

∣∣∣∣
2

= arg max
β,φ,σ

K−1∑

k=0

∣∣∣∣∣
L∑

l=0

h
(β,σ)
l e−j

(K−1)π
K (ξl,F1k+ξl,F2)×

sinc (ξl,F1k + ξl,F2)
sinc( 1

K (ξl,F1k + ξl,F2))
× ej2π(λl+σ) k

K

∣∣∣∣∣
2

, (4.35)

where again ξl,F1 = αl−β
β and ξl,F2 = αl−1+φ

β ω. It is noteworthy that all three
parameters, β , φ and σ, play a role in (4.35), indicating that separately con-
sidering one or two parameters as in [29,66] might lead to a local maximum.



80 4. Wideband OFDM Systems

Table 4.1: Channel I: Frequency-Domain Approach
Channel I path scale αl delay λl path gain h̄l

( T = 0.2ms l = 0 1.0150 0.00 0 dB
ω = 256 l = 1 1.0154 10.15 −3 dB
K = 128) l = 2 1.0201 20.40 −5 dB
Resampl. Orig. (β, φ, σ) (1, 0, 0)

Para. (βF,?, φF,?, σF,?) (1.0150,−0.0150,−15.00)
Orig. / no precond. 4.26× 105

Cond. Num. Orig. / with precond. 1.19× 106

for FD Resampl. / no precond. 23.36
Resampl. / with precond. 7.17

FD Orig. ρ
(1,0,0)
F = 0.0021

Ratio Resampl. ρ
(βF,?,φF,?,σF,?)
F = 0.9279

To illustrate our resampling approach in the frequency domain, we con-
sider the channel example specified in Table 4.1, where we also compare the
properties of the resampled FD channel (i.e., the condition number and diag-
onal power ratio of the channel matrix) with the original MSML FD channel.
A geometric interpretation may help to understand our resampling opera-
tion since β rotates the FD matrix through ξl,F1 = αl−β

β , φ shifts the FD matrix

through ξl,F2 = αl−1+φ
β ω in (4.16), and σ influences the phase of each element

in (4.35). The joint effect of these actions maximizes the matrix diagonal
energy. The yielded resampling (βF,?, φF,?, σF,?) = (1.015,−0.015,−15.00)
corresponds to a maximal diagonal power ratio ρ

(βF,?,φF,?,σF,?)
F = 0.9279.

We underscore that the condition number is already significantly reduced,
solely by the optimum resampling, from 4.26× 105 to 23.36. In comparison,
the resampling method proposed in [29] yields (β, φ, σ) = (1.016, 0, 0) and
ρ
(1.016,0,0)
F = 0.3623. Its corresponding condition number is 432.78, which is

larger than our condition number after resampling. This is not surprising
since the criterion adopted in [29] focuses only on minimizing the aggregate
errors between the multi-scale channel and its single-scale approximation,
which is different from our criterion.

In the lower plots of Fig. 4.5, we show the effectiveness of diagonal pre-
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Figure 4.5: Left plots: eigenvalues with and without preconditioning; Right plots:
convergence performance with and without preconditioning; FD matrix for top two
plots corresponds to the original channel, FD matrix for bottom two plots is obtained
after our optimum resampling; The MSML channel is set according to Table 4.1.

conditioning applied to the resampled channel in Table 4.1. It is clear that, af-
ter our resampling procedure, the diagonal preconditioner clusters the eigen-
values of the preconditioned FD channel matrix closer to one than without
preconditioning, which further reduces the condition number from 23.36 to
7.17. In contrast, without optimal resampling, the preconditioner “wrongly”
pushes the eigenvalues closer to zero. In this case, the matrix condition num-
ber increases from 4.26 × 105 to 1.19 × 106, and hence the CG equalizer per-
forms even worse than without preconditioning as shown in the top two
plots of Fig. 4.5.

Similarly, we can show that optimal resampling can also improve the per-
formance of the CG in the time domain, for which we just provide Table 4.2
and Fig. 4.6 here due to space limitations. From them, we can make the same
observations as from Table 4.1 and Fig. 4.5 for the frequency domain case.
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Table 4.2: Channel II: Time-Domain Approach
Channel II path scale αl delay λl path gain h̄l

( T = 0.2ms l = 0 1.0161 1.00 0 dB
ω = 640 l = 1 1.0180 0.80 −3 dB
K = 128) l = 2 1.0244 3.00 −5 dB
Resampl. Orig. (β, φ, σ) (1, 0, 0)

Para. (βT,?, φT,?, σT,?) (1.0160,−0.0210,−1.00)
Orig. / no precond. 2.54× 104

Cond. Num. Orig. / with precond. 7.37× 104

for TD Resampl. / no precond. 50.78
Resampl. / with precond. 15.03

TD Orig. ρ
(1,0,0)
F = 0.0021

Ratio Resampl. ρ
(βF,?,φF,?,σF,?)
F = 0.9168

4.5 Frequency-Domain or Time-Domain Equalization?

In the previous sections, we showed that the equalization of an OFDM chan-
nel can be implemented in either the frequency or the time domain. With
the CG algorithm specified in Appendix 4.C, it is clear that the cost of equal-
ization in the frequency domain will be upper-bounded by O(B(β,φ)

F K) with
B

(β,φ)
F = maxk B

(β,φ)
F (k) for each CG iteration. Likewise, the cost of equaliza-

tion in the time domain will be upper-bounded byO(B(β,σ)
T K) with B

(β,σ)
T =

maxm B
(β,σ)
T (m). By assuming that the number of CG iterations is predeter-

mined and identical in both domains, we can use the ratio B
(β,φ)
F /B

(β,σ)
T as a

criterion to choose in which domain the equalization will be realized in order
to minimize the complexity.

However, the evaluation of B
(β,φ)
F /B

(β,σ)
T is cumbersome and lacks the

insight of the channel physics. For simplicity reasons, we equivalently con-
sider the proportion given by

ε =
B

(β,φ)
F − 2Brul

B
(β,σ)
T − 2Brul

=
max

k

(
max

l
(∆(β,φ)

F,l (k))−min
l

(∆(β,φ)
F,l (k))

)

max
m

(
max

l
(∆(β,σ)

T,l (m))−min
l

(∆(β,σ)
T,l (m))

) , (4.36)
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Figure 4.6: Left plots: eigenvalues with and without preconditioning; Right plots:
convergence performance with and without preconditioning; TD matrix for top two
plots corresponds to the original channel, TD matrix for bottom two plots is ob-
tained after our optimum resampling; The MSML channel is set according to Ta-
ble 4.2.

where we reasonably assume Brul = max
l,k

BF,l(k) ≈ max
l,m

BT,l(m) [see Fig. 4.2].

One may argue that the above evaluation is still cumbersome. However, if a
realistic channel allows us to assume, for all l ∈ {1, 2, · · · , L}, that

|αl − βF,?|/βF,? ¿ 1/(K − 1),
|αl − βT,?|/βT,? ¿ 1/(K − 1),

which indicates that the Doppler scale spread is well-limited, it follows that
max

l,k
(|ξl,F1|k) ¿ 1 and max

l,m
(|ξl,T1|m) ¿ 1. In other words, ∆(βF,?,φF,?)

F,l (k) ≈

〈ξl,F2〉 and ∆(βT,?,σT,?)
T,l (m) ≈ 〈ξl,T2〉, both of which are independent of the
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symbol index. With these assumptions, ε can further be simplified as

ε ≈ maxl(〈ξl,F2〉)−minl(〈ξl,F2〉)
maxl(〈ξl,T2〉)−minl(〈ξl,T2〉)

=

〈
(max

l
(αl)− 1 + φF,?) ω

βF,?

〉
−

〈
(min

l
(αl)− 1 + φF,?) ω

βF,?

〉

〈
max

l
(αl(λl + σT,?))

〉
−

〈
min

l
(αl(λl + σT,?))

〉

which suggests that if the maximum difference between the Doppler shifts of
each path (i.e., αl−1

β ω) is smaller than the maximum difference between the
time shifts of each path (i.e., αlλl), then equalization should be realized in the
frequency domain; otherwise, a time-domain approach will be preferred. A
similar conclusion has been made for narrowband systems [80], though its
extension to wideband systems is not straightforward as shown above.

To illustrate the above idea, we again use the channel examples specified
in Table 4.1 and Table 4.2 respectively. We use Brul = 5 to roughly capture
γ = 98% of the channel energy in both domains where γ is introduced in
(4.18). In this way, we have ε ≈ 0.10 < 1 for the channel in Table 4.1, while
for the channel in Table 4.2, we have ε ≈ 2.00 > 1.

For both channels, we compare the equalization performance in differ-
ent domains. OFDM with K = 128 subcarriers using QPSK is transmitted
and the receiver is assumed to have perfect channel knowledge. We exam-
ine the bit error rate (BER) results of our CG equalization with a fixed CG
iteration number (e.g., iF,max = iT,max = 100). We use different bandwidths
for the banded approximation H̄(βF,?,φF,?,σF,?)

F and H̄(βT,?,φT,?,σT,?)
T during the

equalization and the values for (βF,?, φF,?, σF,?) and (βT,?, φT,?, σT,?) have
also been given in Table 4.1 and Table 4.2, respectively. After our optimal
resampling in either domain, the CG equalization is carried out using the
appropriate preconditioner design.

The left subplot of Fig. 4.7 plots the BER performance as a function of
signal-to-noise ratio (SNR) for Channel I. Note that

(βF,?, φF,?, σF,?) = (1.015,−0.015,−15)

and
(βT,?, φT,?, σT,?) = (1.015,−0.016, 0.00)
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Figure 4.7: BER vs. SNR for the two channels given in Table 4.1 and Table 4.2

for this channel. It can be seen that the performance of the FD equalizer
(FDE) based on H̄(βF,?,φF,?,σF,?)

F outperforms the TD equalizer (TDE) based
on H̄(βT,?,φT,?,σT,?)

T using the same bandwidth B
(βF,?,φF,?)
F = B

(βT,?,σT,?)
T . In

other words, FDE is more attractive than TDE in this case.

The BER performance for Channel II is illustrated in the right subplot of
Fig. 4.7, where the optimal resampling parameters are

(βT,?, φT,?, σT,?) = (1.016,−0.021,−1)

and

(βF,?, φF,?, σF,?) = (1.016,−0.016,−3).

In this case, it is evident that the TD equalizer is more appealing.

These observations made for the channels in Table 4.1 and Table 4.2 con-
firm our metric ε for determining which domain is more suitable for channel
equalization. Additionally, we like to point out that, in either domain, with
a larger bandwidth the BER performance of our CG equalization will be in-
creased.
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Table 4.3: Channel parameters
Case 1: ε < 1 Case 2: ε > 1

K = 128, ω = 256 K = 128, ω = 640

L αmax τmax/T L αmax τmax/T

5 1.008 30.00 5 1.010 4.00

4.6 Numerical Results

In this section, we randomly generate two different types of wideband chan-
nels as specified in Table 4.3: ε < 1 (Case I) represents wideband LTV chan-
nels where the Doppler differences among the multipath are more pronounced
than the delay differences; and ε > 1 (Case II) is the case where the Doppler
differences among the multipath are less pronounced than the delay dif-
ferences. For all simulations, OFDM with K = 128 subcarriers is consid-
ered with QPSK. The wideband channels are assumed to have L = 5 paths,
whose channel gains (i.e., h̄l’s) are modeled to be identically and indepen-
dently distributed. The path delay (τl) is chosen as a random variable that
has a uniform distribution within the range [0, τmax]. Likewise, the path
scale (αl) is chosen as a random variable that obeys a uniform distribution
within the range [1, 1+αmax]. For both cases, the receiver is assumed to have
perfect channel knowledge and the cyclic extensions at the transmitter are
Tpre = 32T and Tpost = 10T which satisfy (4.6) and (4.7). In all simulations,
a banded approximation of the channel matrix is adopted in both domains
with the same bandwidth (e.g., B

(βF,?,φF,?)
F = B

(βT,?,σT,?)
T = 11).

In Fig. 4.8, the convergence of the CG equalization is plotted in terms
of the bit error rate (BER) against the number of iterations at SNR = 30dB
for Case I. Since ε < 1, frequency-domain equalization (FDE) is carried out.
It is clear that the receiver, which simply adopts a diagonal preconditioner
in (4.25) without resampling, performs worst. The performance is already
considerably improved if optimal resampling is applied. Moreover the use
of our preconditioner given by (4.31) boosts the performance even further.

The proposed resampling and preconditioning method can also benefit
from other Krylov-based algorithms. For instance, the LSQR algorithm ex-
ploiting a full channel matrix is studied in [41]. Note that [41] focuses on
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Figure 4.8: BER vs. number of iterations for Case I channels at SNR = 30dB
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Figure 4.9: BER vs. SNR for Case I channels

a narrowband LTV system where no resampling is required. Further, the
perconditioner given in [41] is based on a truncated basis expansion model
(BEM) which is usually used for the approximation of a narrowband time-
varying channel. Because it is not clear whether such a truncated BEM is still
suitable for a wideband LTV channel, in order to emulate a similar approach
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as in [41] for constructing the preconditioner, we utilize a (trivial) full-order
critically-sampled complex exponential BEM (the CCE-BEM [37]) in the sim-
ulation. The preconditioner in [41] then boils down to the inverse of the
diagonal of the frequency-domain channel matrix, which is obviously sub-
optimal in the Frobenius norm sense. Consequently, it is no surprise that di-
rectly applying the equalizer of [41] to wideband LTV channels yields a bad
performance as shown in Fig. 4.8. In comparison, the LSQR algorithm bene-
fiting from the optimal resampling and our preconditioner renders the fastest
convergence rate and lowest BER amongst all the equalization schemes. Of
course, such an improved BER performance is achieved by leveraging the
full channel matrix at the cost of a higher complexity, compared to our pro-
posed method using banded matrices.

Fig. 4.9 exhibits the BER versus SNR for the CG-based equalization schemes,
where a truncated CG is used which halts at the 5th iteration. It can be seen in
the figure that the equalizer leveraging the full channel matrix gives the best
BER performance but inflicts more complexity. When using a banded chan-
nel matrix approximation, the frequency-domain approach performs much
better than the time-domain approach because we have ε < 1 for this type
of channel. Additionally, the equalization approach in [29] is carried out and
its performance is also shown in Fig. 4.9. As we discussed earlier, the resam-
pling operation in [29] is solely focused on the rescaling parameter ignoring
the impact of frequency and time synchronization, which is therefore sub-
optimal. Besides, the equalizer in [29] approximates the channel matrix to be
diagonal (i.e., using a bandwidth of one for the banded matrices), and thus
its performance becomes inferior in the presence of higher scale differences
among the multipath as in the tested channel here.

The performance of the equalizers for Case II is depicted in Fig. 4.10,
where the significance of optimal resampling and our adapted precondi-
tioner is again illustrated just like in Fig. 4.8. Similarly, we can see that the
LSQR algorithm in [41] also works well for this type of channel if optimal
resampling and preconditioning are included.

Different from Case I, the channels of Case II are subject to a larger de-
lay spread than a Doppler spread (i.e., ε > 1). In this case, a time-domain
equalizer will be more effective than its frequency-domain counterpart as
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Figure 4.10: BER vs. number of iterations for Case II Channels at SNR = 30dB.
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Figure 4.11: BER vs. SNR for Case II channels

validated in Fig. 4.11. The equalizer in [29] yields a much worse perfor-
mance than ours since the Doppler scale spread differences in this case are
even higher than for Case I.
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4.7 Summary

In this chapter, we have discussed iterative equalization of wideband chan-
nels using the conjugate gradient (CG) algorithm for OFDM systems. The
channel follows a multi-scale multi-lag (MSML) model, and suffers there-
fore from interferences in both the frequency domain and time domain. To
lower the equalization complexity, the channel matrices are approximated to
be banded in both domains. A novel method of optimal resampling is pro-
posed, which is indispensable for wideband communications. A diagonal
preconditioning technique, that accompanies the CG method to accelerate
the convergence, has also been adapted to enhance its suitability. Experimen-
tal results have shown that our equalization scheme allows for a superior
performance to those schemes based on a single-scale resampling method,
without any resampling operation, or using a traditional preconditioning
procedure. In addition, we gave a simple criterion to determine whether to
use a frequency-domain or time-domain equalizer, depending on the chan-
nel situation, to obtain the best BER performance with the same complexity.
Such a criterion is also validated by experiments.
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Appendix 4.A Detailed Derivation of the Discrete Data
Model

Here we give the derivation of (4.9), assuming no noise is present. We start
from (4.8) given by

r(β,φ,σ)
n = r(β,φ,σ)(nT )

=
1√

βKT

K−1∑

k=0

bkhk(
nT

β
− σT )ej2π(φfc+fk)nT

β e−j2πfkσT

where hk(t) is defined in (4.5) and the embedded u(t) in hk(t) is considered
to be one for the concerned observation window as clarified in Remark 4.1.

Now, we substitute hk(t) to obtain

r(β,φ,σ)
n =

1√
βKT

K−1∑

k=0

bk

L∑

l=0

h̄l
√

αle
−j2π(fc+fk)αlτle

j2π(αl−1)(fc+fk)(nT
β
−σT )

× e
j2π(φfc+fk)nT

β e−j2πfkσT

=
1√

βKT

K−1∑

k=0

bk ×
L∑

l=0

h̄l
√

αl

×
(
e−j2πfcαlτle

j2π(αl−1)fc(
nT
β
−σT )

e
j2πφfc

nT
β

)

×
(
e−j2πfkαlτle

j2π(αl−1)fk(nT
β
−σT )

e
j2πfk

nT
β e−j2πfkσT

)

=
L∑

l=0

(√
αl

βKT
h̄le

−j2πfc(αlτl+(αl−1)σT )

)
e
j2πfc

(αl−1+φ)nT

β

×
(

K−1∑

k=0

bke
j2πfk

αlnT

β

)
e−j2πfkαl(τl+σT )

=
L∑

l=0

h
(β,σ)
l e

j2πfc
(αl−1+φ)nT

β ×
(

K−1∑

k=0

bke
j2πfk

αlnT

β

)
e−j2πfkαl(τl+σT ),

where the channel coefficient is given by

h
(β,σ)
l =

√
αl

βKT
h̄le

−j2πfc(αlτl+(αl−1)σT )
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Now, if we denote

ω =
fc

∆f

for the normalized carrier frequency and

λl =
τl

T

for the normalized delay of the lth path, we have

r(β,φ,σ)
n =

L∑

l=0

h
(β,σ)
l e

j2πω
(αl−1+φ)

β
n
K ×

(
K−1∑

k=0

bke
j2π

αl
β

nk
K

)
e−j2παl(λl+σ) k

K

which gives (4.9).

Appendix 4.B System Model in the Time Domain and
Time-domain Equalization

To derive the time-domain model, let us rewrite (4.10) as

r(β,φ,σ)
T = H(β,φ,σ)

T s, (4.37)

where s = F−1
1 b, and H(β,φ,σ)

T stands for the time-domain (TD) channel ma-
trix

H(β,φ,σ)
T =

L∑

l=0

h
(β,σ)
l D(β,φ)

αl
H(β,σ)

T,l (4.38)

with H(β,σ)
T,l = FH

αl/βΛ
(σ)
λl

F1 being its lth component. The (m, k)th entry of

H(β,σ)
T,l is given by

[
H(β,σ)

T,l

]
m,k

=
1
K

K−1∑

n=0

e
j2π

αl
β

mn
K ej2παl(λl+σ) n

K e−j2π nk
K

= e−j
(K−1)π

K ((k−m)−(ξl,T1m+ξl,T2))×
sinc(π ((k −m)− (ξl,T1m + ξl,T2)))
sinc( π

K ((k −m)− (ξl,T1m + ξl,T2)))
, (4.39)

where ξl,T1 = αl−β
β and ξl,T2 = αl(λl + σ).
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Observing the analogy between (4.16) and (4.39), a similar interference
analysis can be made on HT. By defining

∆(β,σ)
T,l (m) =< ξl,T1m + ξl,T2 >, (4.40)

we can introduce the symbol B
(β,σ)
T,l (m) defined as [c.f. (4.18)]

B
(β,σ)
T,l (m) = min{B},

s.t.

m+∆
(β,φ)
T,l (m)+B∑

k=m+∆
(β,σ)
T,l (m)−B

∣∣∣∣
sinc(π ((k −m)− (ξl,T1m + ξl,T2)))
sinc( π

K ((k −m)− (ξl,T1m + ξl,T2)))

∣∣∣∣
2

> γ

K−1∑

k=0

∣∣∣∣
sinc(π ((k −m)− (ξl,T1m + ξl,T2)))
sinc( π

K ((k −m)− (ξl,T1m + ξl,T2)))

∣∣∣∣
2

, (4.41)

which determines the index set of the data symbols that contribute the most
to the mth received signal [r(β,φ,σ)

T ]m via the lth path. Note that B
(β,φ)
F,l (k) in

(4.18) depends on the resampling factor β and the frequency shift factor φ,
whereas B

(β,σ)
T,l (m) in (4.41) depends on the resampling factor β and the time

shift factor σ.
Similarly as in the frequency domain, we obtain a banded approximation

of H(β,φ,σ)
T by introducing

B
(β,σ)
T (m) ≈ max

l

(
∆(β,σ)

T,l (m)
)
−min

l

(
∆(β,σ)

T,l (m)
)

+ 2max
l

(
B

(β,σ)
T,l (m)

)

(4.42)

and a selection matrix B(β,σ)
T , whose (m, k)th entry is equal to 1 if

min
l

(
m + ∆(β,σ)

T,l (m)−B
(β,σ)
T,l (m)

)
≤ k ≤ max

l

(
m + ∆(β,σ)(m)

T,l + B
(β,σ)
T,l (m)

)
,

and 0 otherwise. Then the banded approximation of H(β,φ,σ)
T is obtained by

H̄(β,φ,σ)
T = B(β,σ)

T ¯H(β,φ,σ)
T . (4.43)

We can then rewrite (4.37) as

r(β,φ,σ)
T = H̄(β,φ,σ)

T s + v̄(β,φ,σ)
T , (4.44)
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where v̄(β,φ,σ)
T =

(
H(β,φ,σ)

T − H̄(β,φ,σ)
T

)
s.

The time-domain equalization can be presented in an analogous manner
as in the frequency domain. Similar to its FD counterpart in (4.23), we here
rewrite the noiseless case for (4.44) as

r(β,φ,σ)
TC = CTr(β,φ,σ)

T =
(
CTH̄(β,φ,σ)

T

)
s

= H̄(β,φ,σ)
TC s = H̄(β,φ,σ)

TC FH
1 b (4.45)

where s = FH
1 b, CT is the preconditioner applied in the time domain and

H̄(β,φ,σ)
TC = CTH̄(β,φ,σ)

T . We first estimate s by applying the CG algorithm on
r(β,φ,σ)
TC to invert H̄(β,φ,σ)

TC iteratively, and afterwards we obtain b̂ = FH
1 ŝ.

We highlight that the adopted diagonal preconditioner

CT,? = diag{[cT,0,?, cT,1,?, · · · , cT,K−1,?]T }

is defined in a similar manner as in the frequency domain. Specifically, we
use

cT,m,? =





[H
(β,φ,σ)
T ]∗m,m

‖eT
mH

(β,φ,σ)
T ‖22

, if ζ
(β,φ,σ)
TC (m) ≥ 1

1, otherwise
(4.46)

where

ζ
(β,φ,σ)
TC (m) =

∣∣∣∣
[
H(β,φ,σ)

T

]
m,m

∣∣∣∣
2

K−1∑
k=0,k 6=m

∣∣∣∣
[
H(β,φ,σ)

T

]
m,k

∣∣∣∣
2 . (4.47)

To enhance the suitability of the preconditioner, the optimal resampling
operation is needed as given by

(βT,?, φT,?, σT,?) = arg max
β,φ,σ

K−1∑

m=0

∣∣∣∣∣
L∑

l=0

h
(β,σ)
l e

j2πω
αl−1+φ

β
m
K×

e−j
(K−1)π

K (ξl,T1m+ξl,T2) × sinc (ξl,T1k + ξl,T2)
sinc( 1

K (ξl,T1m + ξl,T2))

∣∣∣∣∣
2

.

(4.48)
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Appendix 4.C Equalization using the Conjugate Gra-
dient Algorithm

If we consider to solve the preconditioned system in (4.23) in a similar man-
ner as (4.22), we have

b̂C = M̄(β,φ,σ)−1

FC H̄(β,φ,σ)H

FC r(β,φ,σ)
F

where M̄(β,φ,σ)
FC = H̄(β,φ,σ)H

FC H̄(β,φ,σ)
FC , and b̂C is the estimate of bC = C−1

F b.
Its implementation using CG is described in the frequency domain as

follows

1. Define dF = H̄(β,φ,σ)H

F r(β,φ,σ)
F and i = 0;

2. Define a(0) = g(0) = dF, u(0) = ‖dF‖2
dH

F M̄
(β,φ,σ)
FC dF

and b̂(0)
C = u(0)dF.

3. Perform the following iterations:

Loop

g(i) = dF − M̄(β,φ,σ)
FC b̂(i)

C ,

a(i) =
‖g(i)‖2

Fro

‖g(i−1)‖2
Fro

a(i−1) + g(i),

u(i) =
‖g(i)‖2

Fro

a(i)H
M̄(β,φ,σ)

FC a(i)
, (4.49)

b̂(i)
C = b̂(i−1)

C + u(i)a(i)

End Loop;

4. Perform b̂(i) = CFb̂(i)
C , which is the ith output of the equalization pro-

cess, and the index i is incremental from 0 to imax where imax is the
iteration number when the stopping criterion of the CG is satisfied.

Notably, the optimal stopping criterion for CG can be case dependent, e.g.,
as discussed in [73, 79], and is not included in this chapter. When our CG
iterations stop, we finally have b̂ = b̂(imax), which is the data estimate.

It is worthy to note that the computational complexity of each CG iter-
ation above is determined by the complex multiplication (CM) of M̄(β,φ,σ)

FC
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with a vector (e.g. b̂(i)
C or a(i)), e.g., as in (4.49). When C(β,φ,σ)

F is a diagonal
preconditioner as considered in this chapter, the bandwidth of the precondi-
tioned H̄(β,φ,σ)

FC equals that of H̄(β,φ,σ)
C , and consequently M̄(β,φ,σ)

FC is banded
with a bandwidth 2B

(β,φ)
F where B

(β,φ)
F = maxk B

(β,φ)
F (k) with B

(β,φ)
F (k) de-

fined in (4.19). In this case, the computational complexity of each iteration is
upper-bounded by O(B(β,φ)

F K) which is linear in the vector size K.
One can also repeat the above derivations using the TD notations for the

TD CG equalization.

Appendix 4.D Eigenvalue Locations

We consider the diagonal matrix CF = diag{[cF,0, cF,1 · · · , cF,K−1]T }, and
denote the eigenvalues of H̄(β,φ,σ)

FC = H̄(β,φ,σ)
F CF as {µ1, µ2, · · · , µK−1}.

Let UWU be a Schur decomposition of H̄(β,φ,σ)
FC such that UUH = IK×K

and the diagonal elements of W equal {µ1, µ2, · · · , µK−1}. Then

K−1∑

k=0

|µk|2 = ‖diag{W}‖2
2 ≤ ‖W‖2

Fro

= ‖H̄(β,φ,σ)
FC ‖2

Fro = ‖H̄(β,φ,σ)
F CF‖2

Fro.

Note that H̄(β,φ,σ)
F ekcF,k = H̄(β,φ,σ)

F CFek, where ek stands for an all-zero
vector except for its kth entry which equals 1, as defined in (4.25) for k =
0, 1, · · · ,K. We then recall (4.27), which holds for any k ∈ {0, 1, · · · ,K − 1},
and thus upper-bounds the above expressions as

K−1∑

k=0

|µk|2 ≤ K‖H̄(β,φ,σ)
F ekcF,k‖2

Fro ≤ Kε2
0.

Similarly, we can also prove that
∑K−1

k=0 |µk − 1|2 ≤ Kε2
1 associated with

(4.26).



Chapter 5

Multi-Layer Transceiver

The aim of exact science is to reduce the problems of
nature to the determination of quantities by operations
with numbers.

James C. Maxwell

Chapter 4 described an OFDM system design over wideband time-varying
channels. It indicated the increased complexity of the receiver design com-
pared to a narrowband OFDM system which was the focus of Chapter 3. In
this chapter, we propose new transmission schemes instead of OFDM with
the purpose of obtaining a simplified receiver scheme similarly as experi-
enced by the narrowband OFDM transmissions. The benefit of this similarity
is to make existing low-complexity equalizers, previously used in narrow-
band systems, still viable for wideband communications.

5.1 Introduction

As shown in the previous chapters, wideband linear time-varying (LTV)
channels exhibit some key fundamental differences [15] relative to the more
commonly considered narrowband channels. Though a standard signaling
scheme is proposed for wideband channels based on orthogonal frequency
division multiplexing (OFDM) in the last chapter, the intercarrier interfer-
ence (ICI) of OFDM systems due to wideband time-variation is generally
cumbersome. It is thus expected that certain novel transceiver scheme can
be designed such that low-complexity equalizers widely adopted for nar-
rowband LTV systems (e.g., as considered in Chapter 3) can still be allowed
for wideband LTV communications.

The success of OFDM over narrowband channels is that its transmis-
sion admits a uniform sampling in the lag and Doppler shift domain, which
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aligns with the uniform time-frequency (T-F) lattice of narrowband time-
varying channels. In contrast, the wideband channel is characterized by a
non-uniform T-F lattice [22, 28, 30]. To counteract this mismatch, a multi-
band OFDM scheme is proposed in [72], wherein the wideband LTV channel
is split into sub-channels with a sufficiently small bandwidth such that each
of the sub-channels can be modeled as a narrowband LTV channel. Other
often adopted approaches are based on a single-scale multi-lag (SSML) as-
sumption for wideband LTV channels (see e.g., [28, 30, 81]). Such a SSML
channel can be converted to a narrowband channel subject to a single car-
rier frequency offset (CFO) by means of resampling. However, we observe
that this assumption is suboptimal in the presence of multiple scales [29,76].
In this chapter, we consider MSML models appropriate for wideband LTV
channels, signaling tailored to this model, and equalizers for this joint de-
sign of a channel model and signaling scheme.

The concept of an MSML model has been previously presented in [21,22,
33]. These works exploit the transmission of a single pulse/symbol in isolation,
develop the MSML model, and typically consider the associated matched-
filter for the demodulation of this single pulse/symbol. In particular, in [21],
information symbols are modulated onto a single-scale orthogonal wavelet-
based pulse at the transmitter, and the channel is mathematically described
by a discretized time-scale model based on the characteristics of the adopted
wavelet. A crucial assumption adopted in [21] is that the time-scale channel
model should not corrupt the scale-orthogonality of the transmit pulse, but
it is not clear under which conditions this assumption remains valid. As an
improvement, [33] combines direct-sequence spread-spectrum (DSSS) mod-
ulation with a wavelet-based pulse to enforce the scale-orthogonality of the
transmit pulse. Common to these works is that both channel modeling and
signaling is assumed to occur in baseband, but on the other hand, a special
(wavelet-based) pulse is employed that has a bandpass property. In our own
work [82], we consider a much more general system, where we use a low-
pass pulse, which is up-converted to a carrier frequency before transmission
over an MSML channel. The challenge is that, at the receiver the passband
to baseband conversion must be carefully treated in MSML channels.

A unique feature of the MSML channel is that one can increase the spec-
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tral efficiency by communicating simultaneously over multiple scales ( [21,
22, 33, 82] employ single-scale signaling); for clarity, we shall refer to such
signaling as multi-layered. In fact, multi-layered signaling for narrowband
channels has been considered in [53] with variants of such orthogonal wavelet
division multiplexing provided in [56,58,83,84], and it is already known [58,
84] that such a multi-layered transmission scheme based on a wavelet modu-
lation can achieve the same spectral efficiency as that of a traditional method,
e.g., OFDM. A challenge with these signaling schemes is that wavelet orthog-
onality is not maintained after transmission over the MSML channel. In [85],
we designed a multi-layer signal for MSML channels. The resulting channel
was banded in nature, allowing for the use of low-complexity equalizers for
banded narrowband channels [2, 3, 5]. However, it is not clear how to adapt
the all-baseband processing scheme in [85] to a passband transmission. In
the current work, we endeavor to fill this gap.

The main contributions of this work are 1) a novel parameterization of the
continuous MSML passband channel; we show that the associated discrete
baseband data model is subject to inter-scale interference without proper
transmit signal design; 2) proposing a transmit and receive pulse design
which aims to eliminate this inter-scale interference and induces a multi-
branch receiver structure which can leverage channel diversity; 3) a multi-
layer signal design matched to the parameterized channel model which in-
creases spectral efficiency; 4) a new block transmission scheme with a novel
guard interval to eliminate inter-block interference, enabling the use of low-
complexity equalizers due to the resulting signal structure.

5.2 Wideband LTV Systems

Let us consider a wideband LTV system in (2.7) as

r̄(t) =

τmax∫

0

αmax∫

1

h̄(α, τ)
√

αs̄(α(t− τ))dαdτ + w̄(t), (5.1)

where s̄(t) and r̄(t) are respectively the actual transmitted and received sig-
nal (normally in passband), h̄(α, τ) is known as the wideband spreading
function [20] w̄(t) stands for the additive noise, which is assumed to be a
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white Gaussian process with mean zero and variance σ2. Additionally, we
assume that τ and α are limited to τ ∈ [0, τmax] and α ∈ [1, αmax] due to phys-
ical restrictions, where the parameters τmax > 0 and αmax > 11 represent the
maximal delay spread and maximal scale spread, respectively. Further, the trans-
mitted signal considered in this chapter is assumed to be a passband signal
with carrier frequency fc and effective bandwith W?, and therefore

s̄(t) = <{s(t)ej2πfct}, (5.2)

where s(t) denotes the baseband counterpart of s̄(t), which is hence band-
limited within [−W?

2 , W?
2 ). We note that in this chapter, we will use the nota-

tions with and without “ ¯ ” for the signal in the passband and in the base-
band, respectively, unless explicitly defined. For instance, r̄(t) and s̄(t) are
always referred to the transmitted and received signal in passband, respec-
tively, while r(t) and s(t) are their corresponding complex baseband equiva-
lent.

In the remainder of the section, we will first seek a parameterized repre-
sentation for the I/O relationship in (5.1) in passband, and then try to derive
a discrete data model in baseband. To derive a discrete baseband data model,
one may follow from (2.9) to (2.13) in Chapter 2 (see [21, 22] for more details
of this method), which is performed based on a single central frequency at
the receiver. However, such a baseband discrete data model is always sub-
ject to multiple central frequency offsets (CFO) [c.f. (2.13)], which is different
to handle. In fact, due to the scaling effect, the original signal can have sev-
eral differently scaled versions simultaneously at the receiver, each having
a disparate effective carrier frequency deviating from fc as well as a distinct
bandwidth. In this chapter, we shall propose a novel method for deriving its
parameterized data model by taking the passband nature of the transmitted
single into account when discretizing the channel as follows.

1As a matter of fact, the case of dilation with αmax < 1 can be converted to a case of com-
pression by means of proper resampling at the receiver. This justifies us to simply consider a
compressive scenario without loss of generality.
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5.2.1 Parameterized Passband Data Model

Our first step is to parameterize the continuous channel h̄(α, τ) in (5.1) along
the scale dimension. This can be achieved by employing the results of [21],
giving rise to the following approximation

r̄(t) ≈ r̄S(t) =
R?∑

r=0

∫ τmax

0
h̄r(τ)ar/2

? s̄(ar
?(t− τ))dτ, (5.3)

where a? is referred to as the basic scaling factor in [21], or dilation spacing
in [22, 33], whose physical interpretation will be discussed in detail in the
Remark 5.1; in particular, according to [21], R? = dlnαmax/ ln a?e and

h̄r(τ) =

∞∫

−∞
h̄(α′, τ)sinc

(
ln ar

? − lnα′

ln a?

)
dα′, (5.4)

represents the scale-smoothed version of h̄(α, τ) that is evaluated at the scale
ar

?.
Note that in (5.3), we have used a superscript “S” to underscore that so

far only the scale parameter is discretized (later, the superscript “L” will refer
to lag discretization, and superscript “SL” for joint scale and lag discretiza-
tion). In light of the finite summation in (5.3), we can interpret r̄S(t) resulting
from a time-invariant multiple-input single-output (MISO) system, where the
signal transmitted via the rth virtual channel is a

r/2
? s̄(ar

?t); the effective asso-
ciated channel is h̄r(t), and the rth component of the received signal can be
denoted as

r̄S
r (t) =

∫ τmax

0
h̄r(τ)ar/2

? s̄(ar
?(t− τ))dτ. (5.5)

Equation (5.3) represents a passband data signal, and our objective is
eventually to establish a baseband model. Towards this end, we first find
an expression for the rth component of the signal in terms of its baseband
counterpart of the transmit signal a

r/2
? s̄(ar

?t) = <{ar/2
? s(ar

?t)e
j2πar

?fct}. It is
clear from this expression that the baseband signal a

r/2
? s(ar

?t) is up-converted
to an effective carrier frequency ar

?fc and has an effective bandwidth ar
?W?.

Accordingly, we can also obtain the baseband version for r̄S
r (t) by observing
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that

r̄S
r (t) =

∫ τmax

0
h̄r(τ)ar/2

? <
{

s(ar
?(t− τ))ej2πfcar

?(t−τ)
}

dτ,

= <
{

ej2πfcar
?t

∫ τmax

0

(
h̄r(τ)e−j2πfcar

?τ
)
a

r/2
? s(ar

?(t− τ))dτ

}
,

= <
{

ej2πfcar
?t

∫ τmax

0
hr(τ)ar/2

? s(ar
?(t− τ))dτ

}
, (5.6)

where we have introduced the notation hr(t) in the last equality to represent

hr(t) = h̄r(t)e−j2πfcar
?t, (5.7)

which can be interpreted as the continuous baseband channel for the rth
component signal. Let rS

r (t) represent the baseband counterpart of r̄S
r (t), i.e.,

r̄S
r (t) = <{rS

r (t)ej2πfcar
?t}.

From (5.6), it then follows that

rS
r (t) =

∫ τmax

0
hr(τ)ar/2

? s(ar
?(t− τ))dτ. (5.8)

Now, we are able to exploit the results of [21] again to seek a discrete
approximation of hr(t) in (5.7). Due to the fact that the rth scaled version
s(ar

?t) is band-limited to ar
?W?, we can approximate (5.8) as

rS
r (t) ≈ rSL

r (t) =
L?(r)∑

l=0

hr,la
r/2
? s(ar

?t− lT?), (5.9)

where T? is referred to as the translation spacing in [22, 33], and L?(r) =
dar

?τmax/T?e denotes the number of channel taps, which is clearly dependent
on the component index r; further,

hr,l = hL
r (lT?/ar

?), (5.10)

with hL
r (τ) being the lag-smoothed version of hr(τ):

hL
r (τ) =

∫ τmax

0
hr(τ ′)sinc

(
ar

?

τ − τ ′

T?

)
dτ ′. (5.11)
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Figure 5.1: A parameterized passband data model

Substituting (5.9) into (5.3) yields

r̄SL(t) = <
{

R?∑

r=0

ej2πfcar
?trSL

r (t)

}

= <




R?∑

r=0

ej2πfcar
?t

L?(r)∑

l=0

hr,la
r/2
? s(ar

?t− lT?)



 , (5.12)

where the continuous channel h̄(α, τ) in passband is expressed in terms of
the baseband channel parameters hr,l that are discretized in both the scale
and lag dimension. Combining (5.4) and (5.11), we obtain

hr,l =
∫ τmax

0

∫ αmax

1
h̄(α, τ)e−j2πfcar

?τ sinc
(

r − lnα

ln a?

)
sinc

(
l − ar

?τ

T?

)
dαdτ.

(5.13)
A schematic overview of the passband model in (5.12) is given in Fig. 5.1.

Remark 5.1. In the above data model, the continuous channel is approxi-
mated by a finite number of discrete channel coefficients, which inevitably
induces an approximation error. To enable a good fit, it is desired that the
scale and lag resolution should be as high as possible. These resolutions are
determined, respectively, by the dilation spacing a? and the translation spacing
T?. On the other hand, too high of a resolution will give rise to a channel
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model with a large order, which is undesirable from a receiver design point
of view.

In practice, one approach to seek a proper a? is linked to the wideband
ambiguity function (WAF) of s̄(t) in the passband [22, 33]:

χ̄(α, τ) =
∫

s̄(t)
√

αs̄(α(t− τ))dt; (5.14)

similarly, T? is linked to the WAF of s(t) in baseband

χ(α, τ) =
∫

s(t)
√

αs(α(t− τ))dt. (5.15)

Under the assumption that χ̄(α, τ) decays rapidly in the scale dimension, a?

is defined as the first zero-crossing of χ̄(α, 0). Likewise, under the assump-
tion that χ(α, τ) decays rapidly in the lag dimension, T? is defined as the
first zero-crossing of χ(1, τ). An alternative approach [21] assumes that s̄(t)
has a limited effective bandwidth W? and Mellin support M?

2. It is well-
known that in the Fourier domain the Nyquist sampling theorem dictates
that T? = 1/W? to ensure perfect signal reconstruction. We can apply an
adapted Nyquist sampling result in the Mellin domain to obtain a? = e1/M? .

That these two approaches render a good approximation is derived and
motivated in [22, 33] and [21], respectively. We will show, in a subsequent
numerical example, that these two approaches produce similar values of T?

and a?. The first approach is easier to use, but relies on the rapid decay
assumption of the WAFs. In this sense, the second approach is more robust.

5.2.2 Related Works

A comparison between the parameterization of wideband LTV channels and
that of narrowband LTV channels (see for the latter e.g., [10, 36]) has been
thoroughly treated in [21, 22] and also discussed in Chapter 2. Here, we

2The Mellin support is the scale analogy of the Doppler spread for narrowband LTV chan-
nels. Specifically, the Mellin support of a signal s̄(t) is the support of the Mellin transform of
s̄(t) which is given by

∫∞
0

s̄(t)tx−1dt. More details about the Mellin transform can be found
in [34, 35], and we will give in Appendix 5.C a numerical example to show how the Mellin
transform can be implemented.
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Figure 5.2: Time-frequency (T-F) tile diagram of the proposed discretized channel
model for Wideband LTV channels

just recall the fact that the parameterized narrowband LTV channel is arith-
metically uniform in both the lag (time) and frequency dimension, while the
parameterized wideband LTV channel is arithmetically uniform in the lag
(time) dimension but geometrically uniform in the scale (frequency) dimen-
sion, resulting in a different T-F tiling diagram.

Compared to the wideband scale-lag canonical models in [21, 22, 33], in
the derivation towards our channel model, we first parameterize the channel
in the scale dimension in passband, and then convert the channel to base-
band where it is further parameterized in the lag dimension. Such a conver-
sion between passband and baseband is not taken into account by [21,22,33]
in the parameterization process. We use Fig. 5.2 to describe our parameter-
ization process. The circles in this figure indicate the positions where the
channel is sampled in the time-frequency (T-F) plane. In the figure, we as-
sume a single symbol is transmitted at time 0 and carrier frequency fc, whose
location is represented by a dark circle, while the open circles show the loca-
tions of signal leakage. It is clear that the lags are parameterized using the
baseband parameter T?. For comparison, the method used in [21,22,33] does
not consider a passband-to-baseband conversion, and thus leads to the T-F
plane as shown in Fig. 2.2, where a passband parameter T̄? is adopted. Al-
though these two figures show a minor difference with regards to the lags,
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In the proposed model

In the model of [21]

Figure 5.3: Decomposition of the received signal

their detailed derivations are fundamentally different as described above.
More important, our model also indicates that the wideband LTV channel
has a distinct behavior with regards to the parameterization process com-
pared with its narrowband counterpart. Specifically, the parameterized nar-
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rowband LTV channel is arithmetically uniform in both the lag (time) and
frequency dimension, while the parameterized wideband LTV channel is
arithmetically uniform in the lag (time) dimension but geometrically uni-
form in the scale (frequency) dimension [c.f. Fig. 5.2 vs. Fig. 2.2].

The key of the parameterization process for the channel lies in the choice
of the transmit (and receive) pulse denoted as p(t). This chapter follows the
convention of most communication systems by assuming a general low-pass
waveform for p(t). To make it suitable for transmission, p(t) is converted to
passband by multiplying it with ej2πfct prior to transmission. In compari-
son, [21] uses a Haar wavelet and [33] uses a second-order derivative pass-
band Gaussian chip (a Ricker wavelet) for p(t), which are bandpass signals
in nature. The pulse p(t) can therefore be directly transmitted without an
extra step of conversion to passband. The transmit pulse and the data model
in this chapter will have a more general application than those in [21, 33].

In light of our MISO view, each component of the received signal in our
model, denoted as r̄S

r (t) in (5.3), can be represented in the T-F plane by a
block centered around a distinctive carrier frequency ar

?fc as illustrated in
Fig. 5.3. Because there lacks an explicit conversion between passband and
baseband, the data models in [21, 33] are, strictly speaking, derived in base-
band for a general definition of p(t). Therefore, the T-F representation of
the received signal in [21, 33] is depicted by Fig. 5.3, where each component,
r̄S
r (t), is represented by a block around DC in a nested manner.

5.2.3 Parameterized Baseband Data Model

The passband signal model (5.12) clearly establishes the challenges of deriv-
ing a baseband signal representation. As shown in Fig. 5.3, each component
of the received signal, r̄S

r (t), is characterized by a unique carrier frequency
ar

?fc. There exists no universal carrier frequency for down-conversion of all
the components. Similarly, since each component of the received signal has a
distinct bandwidth ar

?W?, which is dependent on the component index r, this
invites the question of which sampling rate we should adopt to discretize the
received signal3.

3We notice that a similar problem (finding an optimal single sampling rate) is considered
in [29].



108 5. Multi-Layer Transceiver

In particular, suppose we let the receiver be synchronized with the kth
component of the received signal. After down-conversion, the resulting base-
band signal can be expressed as

zSL
k (t) = r̄SL(t)e−j2πfcak

?t

=
L?(k)∑

l=0

hk,la
k/2
? s(ak

?t− lT?)

+
R?∑

r=0,r 6=k

ej2πfc(ar
?−ak

?)t

L?(r)∑

l=0

hr,la
r/2
? s(ar

?t− lT?). (5.16)

For this baseband signal, if we choose a sampling period T?/ak
? for discretiza-

tion, it is only optimal for the kth component (the first summand above).
In addition, the other channel coefficients hr,l, for r 6= k, are obtained by
sampling the channel in the lag domain with T?/ar

? rather than T?/ak
? [c.f.

(5.13)]. This means that once the signal in (5.16) is discretized, the result-
ing discrete baseband model will be subject to a nuisance embedded in the
second term on its right-hand side, which will inevitably give rise to a per-
formance penalty on a practical receiver.

In this chapter, we will tackle the above problem through the design of
the transmit and receive pulse. As will become evident soon, if the trans-
mit and receive pulse can smartly be designed, we are able to annihilate the
nuisance from the discrete baseband model.

5.3 Transmit Signal Design

Prior to proceeding, we first assume that there exists a real pulse p(t) of unit
energy that is strictly band-limited with baseband bandwidth W?. In other
words, if P (f) denotes the Fourier transform of p(t), then P (f) has non-zero
elements only within [−W?/2,W?/2).

For a pulse p(t), we denote its scaled version as

pk′(t) = ak′/2p(ak′t), (5.17)

where a is referred to as the base scale. The effective bandwidth of pk′(t)
equals ak′W?. If we use pk′(t) as a transmit pulse to modulate symbols sk′,n,
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then the baseband transmit signal sk′(t) can be written as

sk′(t) =
∑

n

sk′,npk′(t− nT/ak′), (5.18)

where T is referred to as the base lag. The above expression suggests that
sk′(t) has symbol period T/ak′ . The value of a and T will be soon determined
in Section 5.3.1.

For the sake of clarity, we first derive a single-layer signaling scheme,
where a single-rate pulse pk′(t) is used to modulate the transmit symbols,
and then generalize it to a multi-layer signaling scheme.

5.3.1 Single-Layer Signaling

In the single-layer signaling scheme, the transmit signal is sk′(t), which is next
up-converted to the carrier frequency ak′fc resulting in the passband signal

s̄k′(t) = <{sk′(t)ej2πak′fct}.

A critical element of our design is the assumption that we can properly match
the scales and delays of our signaling to that of the channel. This boils down
to matching the parameters as follows:

a = a?, and T = ak′T?, (5.19)

which corresponds to a Nyquist sampling scheme using a and T in the Mellin
domain and in the Fourier domain, respectively, for the received signal on
the k′th layer (see [21] for more details). Note that the above requirements
are not always easy to satisfy because a? and T? themselves are in turn de-
termined by pk′(t). We will return to this issue in Section 5.3.2, but for now
assume that (5.19) is perfectly achieved.

At the receiver, we down-convert the received signal using a center fre-
quency akfc (note that k is not necessarily equal to k′). After down-conversion,
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Figure 5.4: Components of the received signal are non-overlapping in the frequency
domain thanks to Theorem 5.1

the baseband representation given by (5.16) can be rewritten as

zSL
k,k′(t) =

Rk′∑

r=0

ej2πfc(ak′+r−ak)t

Lk′ (r)∑

l=0

h
(k′)
r,l ar/2sk′(art− lT/ak′)

=
Rk′∑

r=0

δk−r−k′

L(k′+r)∑

l=0

h
(k′)
r,l ar/2sk′(art− lT/ak′)

+
Rk′∑

r=0,r 6=k−k′
ej2πfc(ak′+r−ak)t

L(k′+r)∑

l=0

h
(k′)
r,l ar/2sk′(art− lT/ak′)

︸ ︷︷ ︸
Cr+k′ (t): CROSSTALK

. (5.20)

Comparing (5.20) to (5.16), we have added k′ in the subscript of zSL
k,k′(t) to

emphasize the dependence of this signal on the specific carrier frequency,
ak′fc, used for up-conversion. Later, we will see that in a multi-layer signal-
ing scheme, k′ represents the k′th transmission layer. In (5.20), the number
of scales Rk′ is equal to

Rk′ = dlnαmax/ ln ae ≡ R. (5.21)
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Because Rk′ is independent of k′, we will drop this subscript in the sequel for
the sake of notational ease. The number of lags Lk′(r) in (5.20) is determined
by

Lk′(r) = dar+k′τmax/T e = L(r + k′), (5.22)

with L(r) = darτmax/T e; h
(k′)
r,l is similarly defined as in (5.13), but taking

(5.19) into account:

h
(k′)
r,l =

∫ τmax

0

∫ αmax

1
h̄(α, τ)e−j2πfcak′+rτ

× sinc
(

r − lnα

ln a

)
sinc

(
l − ak′+rτ

T

)
dαdτ. (5.23)

We next seek to nullify the crosstalk term in (5.20) by taking the following
steps. We first deploy a receive filter pk(t) on zSL

k,k′(t), and then discretize the
resulting signal by sampling at rate T/ak. The resulting sample obtained at
the mth sampling instant, denoted as yk,k′,m, can be expressed as

yk,k′,m = p∗k(−t) ~ zSL
k,k′(t)|t=mT/ak

=
∫

pk

(
t− mT

ak

)
zSL
k,k′(t)dt (5.24)

=
∫

pk

(
t− mT

ak

) R∑

r=0

δk−r−k′

L(k)∑

l=0

hr,l
(k−r)ar/2sk−r(art− lTk−r)dt

+
∫

pk

(
t− mT

ak

) R∑

r=0,r 6=k−k′
Cr+k′(t)dt. (5.25)

The following theorem will be useful to the ensuing derivations (see Ap-
pendix 5.A for a proof).

Theorem 5.1. If the base scale a satisfies both (5.19) and

a ≥ 2fc + W?

2fc −W?
, (5.26)

then
∫ ∞

−∞

√
akak′p(akt−mT )ej2πfcaktp(ak′t− nT )e−j2πfcak′ tdt = δk−k′gn−m,

(5.27)
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where
gn =

∫
p(t)p(t− nT )dt. (5.28)

With the aid of Theorem 5.1, we are able to eliminate the crosstalk term
in (5.20) since (see Appendix 5.B for a proof)

∫
pk

(
t− mT

ak

) R∑

r=0,r 6=k−k′
Cr+k′(t)dt = 0. (5.29)

As a result of (5.29), we can simplify (5.25) to

yk,k′,m =
R∑

r=0

δk−r−k′

∫
pk

(
t− mT

ak

) ∑
n

sk−r,n

L(k)∑

l=0

h
(k−r)
r,l ak/2p

(
akt− (n + l)T

)
dt

=
R∑

r=0

δk−r−k′
∑

n

sk−r,n

L(k)∑

l=0

h
(k−r)
r,l

∫
akp

(
akt− (n + l)T

)
p(akt−mT )dt

=
R∑

r=0

δk−r−k′
∑

n

sk−r,n

L(k)∑

l=0

hr,l
(k−r)gm−n−l (5.30)

where gm−n−l in the last equality is defined in (5.28).
To avoid information loss, we will repeat the above operations for k =

0, · · ·K − 1 with K ≥ R + 1 in the single-layer transmission. This means
that a multi-branch structure is imposed on the receiver, where each branch
is aimed at processing one component of the received signal. Such a receiver
structure is schematically depicted in Fig. 5.5. In Section 5.4, we will show
how to combine the results from each branch optimally to estimate the data
symbols.

Remark 5.2. As mentioned earlier, corresponding to the paramerized chan-
nel model, we have effectively decomposed the received signal into several
components, each one occupying a different position in the frequency do-
main. As a matter of fact, Theorem 5.1 ensures that these components will
not be overlapping with each other. This idea is suggested by Fig. 5.4, where
the equality in (5.27) is assumed. Accordingly, the receive filter pk(t) serves
as a low-pass filter eliminating the crosstalk term.

In comparison, the components of the received signal in [21,33] are nested
within each other in the frequency domain [see Fig. 5.3]. To eliminate the
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Figure 5.5: The proposed receiver architecture with K receive branches

crosstalk term, [21,33] resort to the scale-orthogonality of the transmit wave-
form, i.e., ∫

pk(t)pk′(t)dt = δk−k′ . (5.31)

It is not specified by [21] how to guarantee the above equality. A more
solid treatment is given by [33], which, however, relies on a particular direct-
sequence spread-spectrum construction of the signal.

5.3.2 Pulse Design

In this subsection, we give a heuristic illustration of the design of the pulse
p(t), Without loss of generality, we consider the case of k′ = 0, for which the
transmit pulse in passband admits an expression of p(t)ej2πfct. Usually, the
carrier frequency fc is a system parameter, and therefore our design freedom
is the pulse type and its effective bandwidth W?.

For a given pulse type, once we have chosen a certain bandwidth W? for
the baseband pulse p(t), resulting in its passband pulse <{p(t)ej2πfct}, the
dilation spacing a? and translation spacing T? are accordingly determined (see
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Remark 5.1 for more details). Then, matching these parameters with the base
scale a and base lag T of the transmit signal means that a = a? and T = T?

[c.f. (5.19)]. We next determine whether the resulting a satisfies (5.26) in
Theorem 5.1. If so, the design is complete. Otherwise, one should select a
different bandwidth for the pulse or even a different pulse type to repeat the
above steps.

Here, we give a specific example of p(t), which is a sinc function defined
as

p(t) = W 1/2sinc(Wt), (5.32)

whose effective bandwidth is exactly W? = W . It is known that<{p(t)ej2πfct}
belongs to the Shannon wavelets [86] if we choose W = 2

3fc in (5.32), and in
this case a dilation spacing of a? = 2 is yielded. This is corroborated by Fig. 5.6
and Fig. 5.6, which depicts the results based on a Mellin approach and a WAF
approach, respectively. Additionally, the corresponding translation spacing is
given by T? = 1/W? = 1/W . For the parameter matching, we have a = a?

and T = T?. In this case, a = 2 and W? = W = 2
3fc satisfy the equality of

(5.26). In this manner, this specific example is a suitable pulse design.

As a comparison, we note that the Haar wavelet used in [21] as the pass-
band pulse, for which p(t) corresponds to a rectangular function, is not a
suitable pulse design for our purposes. Although it gives the same a? = 2 as
shown in Fig. 5.6, it has a much larger effective bandwidth than the Shannon
wavelet due to the spectrum leakage as shown in Fig. 5.7. As a result, af-
ter parameter matching, the (in)equality in (5.26) cannot hold, which implies
that the cross-talk in (5.20) is non-negligible. This effect is further studied in
more details in Section 5.6.

Another interesting consequence of using a Shannon wavelet is that the
resulting sampled correlation function gn defined in (5.28) is

gn = W?

∫
sinc(W?t) sinc(W?t− n)dt = sinc(n) = δn. (5.33)
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As a result, we are able to simplify (5.30) further to

yk,k′,m =
R∑

r=0

δk−r−k′
∑

n

sk−r,n

L(k)∑

l=0

hr,l
(k−r)δ(m− n− l)

=
R∑

r=0

δk−r−k′

L(k)∑

l=0

hr,l
(k−r)sk−r,m−l, (5.34)

which enables the design of a low-complexity equalizer in the sequel.
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Figure 5.7: Spectrum of the Haar and Shannon mother wavelets

5.3.3 Multi-Layer Signaling

Recall that in OFDM, the maximum spectral efficiency can be achieved by
partitioning the available bandwidth into several orthogonal sub-bands. Anal-
ogously, we can also design a multi-layer transmission scheme, where in
the k′th layer, the transmit data symbols are modulated by a different pulse
pk′(t), and up-converted to a carrier frequency ak′fc for k′ = 0, · · · ,K ′ − 1.
Thanks to Theorem 5.1, the sub-bands occupied by each layer will not over-
lap with each other. When the (in)equality in (5.26) holds, these sub-bands
will be contiguous, resulting in a maximum spectral efficiency. In contrast
to OFDM, the sub-bands have unequal bandwidth. The proof of the above
ideas is rather trivial by straightforwardly applying Theorem 5.1. Here, we
can just reuse Fig. 5.4 to illustrate the idea schematically.

With multiple layers, the actually transmitted signal x̄(t) in passband can
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be expressed as

x̄(t) =
K′−1∑

k′=0

x̄k′(t)

=
K′−1∑

k′=0

∑
n

<{ak′/2sk′,np(ak′t− nT )ej2πfcak′ t}. (5.35)

Accordingly, at the kth receive branch, the resulting sample obtained at the
mth time-instant, denoted as yk,m, is just a superposition of yk,k′,m derived
in (5.34) for k′ = 0, · · · ,K ′ − 1, i.e.,

yk,m =
K′−1∑

k′=0

yk,k′,m

=
K′−1∑

k′=0

R∑

r=0

δk−r−k′

L(k)∑

l=0

hr,l
(k−r)sk−r,m−l

=
R∑

r=0

L(k)∑

l=0

hr,l
(k−r)sk−r,m−l. (5.36)

The above indicates that the received signal at each branch is subject to both
inter-symbol interference (ISI) and inter-layer interference (ILI) as a conse-
quence of the MSML channel model.

We conclude this subsection with the following remark.

Remark 5.3. With W? and a obtained as indicated in the previous subsection,
we can impose an upper-bound on the number of transmit layers K ′. Like
the base frequency fc, usually the total available transmission bandwidth of
a communication system B is fixed, and therefore

B ≥
K′−1∑

k′=0

ak′W?, (5.37)

from which an upper-bound for K ′ can be attained.

Remark 5.4. The T-F tiling diagram of the proposed multi-layer transmission
scheme is shown in Fig. 5.8, where each black circle indicates the T-F position
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Figure 5.8: T-F tiling diagram of a multi-layer transmission signaling scheme

where one transmit data symbol is located. One can immediately observe the
resemblance to the T-F tiling diagram of the parameterized channel plotted
in Fig. 5.2. By this means, we match the transmit signal to the channel in the
T-F plane.

Remark 5.5. The transmit signal described in (5.35) belongs to the multi-scale
wavelet modulation (MSWM) family proposed in [58, 84] if <{p(t)ejπfct} is
an orthogonal wavelet. One difference between this chapter and [58, 84] is
that the latter works only examine a wavelet signal over a flat fading chan-
nel, while we tailor our signal by intelligently designing the pulse to the
MSML channel model. Despite this difference, one can still use the same
arguments in [58, 84] to show that the transmit signal given in (5.35) will
have the same spectral efficiency4 as traditional transmission schemes such
as OFDM if the equality in (5.26) is satisfied (we refer readers to [58, 84] for
a detailed proof). If only the inequality in (5.26) is satisfied, there will be
some frequency gap between adjacent transmit layers, and the bandwidth
efficiency will be reduced. Similarly, such a frequency gap can also emerge
in practical multi-carrier systems, where spectrum gaps are introduced to

4Spectral efficiency refers to the available information rate for a given transmission band-
width [27].
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reduce the inter-carrier interference induced by Doppler, e.g., in [10, 87, 88].

5.4 Block-Wise Transceiver Design

For the sake of clarity, let us recap the results in (5.36) here as

yk,m =
R∑

r=0

L(k)∑

l=0

hr,l
(k−r)sk−r,m−l + vk,m, (5.38)

where we have also added the noise term vk,m, whose expression can be
obtained by

vk,m =

+∞∫

−∞
ak/2w̄(t)e−j2πfcaktp(mT − akt)dt, (5.39)

where the continuous time noise w̄(t) is introduced in (5.1). Equation (5.38)
shows that the discrete samples at the kth receiver branch are related to the
transmitted information symbols via a 2-D time-varying discrete finite im-
pulse response (FIR) filter. This feature will be exploited by considering a
block-wise transmission, where the transmitted symbols on each layer are
partitioned into successive blocks, each containing N + Z data symbols. The
data symbols contained in such a block from all the K ′ layers can be collec-
tively expressed as

K′−1∑

k′=0

N+Z−1∑

n=0

<{ak′/2sk′,np(ak′t− nT )ej2πfcak′ t}. (5.40)

To avoid inter-block interference (IBI), we introduce a cyclic prefix (CP) of a
length of Z symbols along each layer, such that

sk′,n =

{
bk′,n−Z , for Z ≤ n < N + Z

bk′,N+n−Z , for 0 ≤ n < Z
, (5.41)

where bk′,n stands for the nth information symbol transmitted at the k′th
transmit layer.



120 5. Multi-Layer Transceiver

0NT0ZT
0ZT 0NT

L
ay

er

time
0NT0ZT

Block 2Block 1 Block 3

' 1 KNT
' 1 KZT ' 1 KNT

' 1 KZT ' 1 KNT
' 1 KZT

 

 

/ k

k
T T a!

max
"

max
"

max
"

k

Multi-layer transmission

0
NT

0
ZT

0
ZT 0

NT

S
u
b
c
a
rr

ie
r

time
0

NT
0

ZT

Block 2Block 1 max
 

max
 

 

 

Block 3max
 

OFDM transmission

Figure 5.9: Structure of transmitted data blocks in the T-F plane

At the receiver, we will consider a filter bank with K = R + K ′ − 1
branches, whose structure is depicted in Fig. 5.5, with the received samples
on the kth branch given by (5.38). Obviously, IBI can be completely annihi-
lated if Z ≥ L(k) for all k ∈ {0, 1, . . . , R + K ′ − 1}, or in other words,

Z ≥ daR+K′−1τmax/T e = daR+K′−1L(0)e. (5.42)

All the data blocks are treated in this way. Here, it is interesting to note
that because of the disparate scale at each transmit layer, the representations
of the different blocks in the T-F plane are not parallel to each other as for
OFDM. This effect is schematically illustrated in Fig. 5.9, where the shaded
area indicates the area in the T-F plane where information symbols reside,
and the blank area represents that of the CPs. It is noteworthy that the use
of these CP symbols is another difference distinguishing our work from that
of [58, 84], where it is not clear how to add a guard interval to the MSWM
signal. We show that adding these CPs is not trivial as shown in Fig. 5.9. For
comparison, the case of OFDM block transmission is also sketched in Fig. 5.9.

To design a block equalizer, we stack the information symbols sent through
the k′th transmission layer in a vector bk′ = [bk′,0, · · · , bk′,N−1]T , and bk = 0
if k < 0 or k > K ′ − 1. Likewise, we stack the received samples from the kth
receiver branch, with CP stripped off, in a vector yk = [yk,Z , · · · , yk,Z+N−1]T .
It follows from (5.38) that

yk =
R∑

r=0

H(k−r)
r bk−r + vk, (5.43)
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where vk is similarly defined as yk, and H(k−r)
r denotes an N × N circu-

lant matrix with first column [h(k−r)
r,0 , h

(k−r)
r,1 , · · · , h

(k−r)
r,L(k), 0, · · · , 0]T . If we next

stack the bk′ ’s from all the transmit layers into one vector b = [bT
0 , · · · ,bT

K′−1]
T ,

and the yk’s from all receive branches into one vector y = [yT
0 , · · · ,yT

K′+R−1]
T ,

it then follows from (5.43) that

y = Hb + v (5.44)

where v is similarly defined as y, and H stands for the (K ′+R− 1)N ×K ′N
matrix specified as

H =




H(0)
0 0
...

. . .

H(0)
R

. . .
. . . H(K′−1)

0
. . .

...
0 H(K′−1)

R




(5.45)

We conclude this section with the following remarks.

Remark 5.6. The 2-D FIR filter structure is clearly revealed in (5.45), where the
block element H(k)

r can be viewed as the block tap of a time-varying outer FIR
filter (note the varying superscript). Each H(k)

r yields an FIR filter with scalar
tap hk

r,l, which is time-invariant inducing the circulant structure of Hk
r .

Remark 5.7. With K ′ = 1, the proposed transceiver scheme reduces to a
single-layer approach. We can then interpret the I/O relationship in (5.44) as
a SIMO-OFDM system with R + 1 receive antennas. Further, if the Doppler
effect is absent with R = 0, then the I/O relationship in (5.44) can be inter-
preted as a multi-band OFDM system [72] with K ′ − 1 bands.

5.5 Frequency-Domain Equalization

The circulant structure of H(k)
r suggests that it is possible to equalize the

channel in the frequency domain, as in traditional OFDM systems for nar-
rowband time-invariant channels, to lower the equalization complexity. This
is achieved in two steps.
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In the first step, let us transform the received signal to the frequency
domain by ỹ = (IK′+R−1 ⊗ F)y, where [F]n,m = 1√

N
e−j2π nm

N denotes the
normalized discrete Fourier transform (DFT) matrix. The frequency-domain
expression of (5.44) can then be expressed as

ỹ = H̃b̃ + ṽ, (5.46)

where b̃ = (IK′ ⊗ F)b, and ṽ is similarly defined as b̃. Furthermore,

H̃ =




H̃(0)
0 0
...

. . .

H̃(0)
R

. . .
. . . H̃(K′−1)

0
. . .

...
0 H̃(K′−1)

R




(5.47)

where H̃(k)
r = FH(k)

r F−1 denotes an N ×N diagonal matrix whose nth diag-
onal is

h̃(k)
r,n =

L(k)∑

l=0

h
(k)
r,l ej 2π

N
nl. (5.48)

Observe that H̃ has a banded structure on the block level with each block
entry being a diagonal matrix. There exists a (K ′+R− 1)N × (K ′+R− 1)N
permutation matrix PK′+R−1 and a K ′N × K ′N permutation matrix PK′

matrix 5, such that we can permute (5.46) to

y̌ = Ȟb̌ + v̌, (5.49)

where y̌ = PK′+R−1ỹ; b̌ = PK′b̃; v̌ = PK′+R−1ṽ, and Ȟ = PK′+R−1H̃PT
K′ .

It is straightforward to show that Ȟ is a block diagonal matrix, where each
diagonal block is a (K ′ + R − 1) × K ′ strictly banded matrix with a band-
width of R+1. The structure of Ȟ is illustrated in Fig. 5.10. Denoting the kth

5We use PK to represent a permutation matrix of a proper dimension with depth K.
Specifically, consider a vector a = [a0, a1, · · · , aNK−1]

T , then PKa = [aT
0 ,aT

1 , · · · ,aT
K−1]

T

with ak = [ak, aK+k, a2K+k · · · , a(N−1)K+k]T for k = 0, 1, · · · , K − 1.
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y̌N−1
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ȞN−1
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...

...

K
′ +R− 1

K
′

Figure 5.10: Illustration of the matrix-vector form for (5.49)

diagonal block as Ȟn, for n ∈ {0, · · · , N − 1}, we can split y̌ into N subvec-
tors, where the nth subvector y̌n, which is comprised of the nK ′th through
[(n + 1)K ′ − 1]st entries of y̌, is given by

y̌n = Ȟnb̌n + v̌n, (5.50)

where b̌n and v̌n are defined similarly to y̌n. The strictly banded structure
of Ȟn enables us to employ the low-complexity LMMSE equalizer designed
in [3] or the low-complexity turbo equalizer in [5] to equalize each Ȟn, one
by one.

Remark 5.8. The derivations throughout the chapter do not exploit any as-
sumption about the noise statistics of vk,m. For the low-complexity LMMSE
equalizer of [3] or the low-complexity turbo equalizer of [5], it is desirable
that the noise should be zero mean and uncorrelated. In Appendix 5.D, we
show that this is guaranteed if the continuous-time noise w̄(t) is white and
zero mean, and if an ideal pulse p(t) can be designed as in Section 5.3.2.

5.6 Numerical Results

In this section, we provide some simulation results to demonstrate the per-
formance of the proposed wideband system. We will use a discrete path
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model to emulate the real wideband LTV channel

h̄(α, τ) =
P∑

p=0

h̄pδ(α− αp)δ(τ − τp), (5.51)

with P = 10; h̄p is modeled as an i.i.d. Gaussian variable with zero mean
and unit variance. Without loss of generality, we assume that τp is equal to 0
if p = 0; otherwise it is modeled to have a uniform distribution over [0, τmax).
Likewise, we assume that αp is equal to 1 if p = 0; otherwise it is modeled
to have a uniform distribution over [1, αmax). Although the values of hp,
τp and αp are assumed to stay constant during several transmitted blocks,
they result in a wideband channel whose channel response varies with time.
Consequently, the I/O relationship in (5.1) can be written as

r̄(t) =
P∑

p=0

h̄p
√

αps̄(αp(t− τp)), (5.52)

For the transmission, we use

p(t) = sinc(t/T )/
√

T , (5.53)

as the transmission waveform with the base lag T equal to 10−3s (W = 1kHz).
The carrier frequency fc is chosen to be 1.5kHz. As a result, the base scale a

of p(t)ej2πfct is equal to 2. Refer to Section 5.3.2 for more details about these
parameters.

5.6.1 Channel Model Validation

To examine the accuracy of the proposed channel model, we follow a sim-
ilar channel sounding approach as used in [21]: we send a single infor-
mation symbol s0,0 modulated on p(t) in order to examine the channel in
terms of the impulse response function. The normalized mean squared-error
(NMSE) between r̄(t) in (5.52) and r̄SL(t) evaluated at the output of the re-
ceiver branches is computed as

NMSEMSML =

R∑
k=0

L(k)∑
l=0

∣∣∣
∫

pk(t− lT
ak )

(
r̄(t)− r̄SL(t)

)
e−j2πfcaktdt

∣∣∣
2

R∑
r=0

L(k)∑
l=0

∣∣∫ pk(t− lT
ak )r̄(t)e−j2πfcaktdt

∣∣2
. (5.54)



5.6. Numerical Results 125

1 1.01 1.02 1.03 1.04 1.05 1.06
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

α
 max

N
M

S
E

 

 

Haar, MSML

Shannon, MSML

Shannon, SSML

Figure 5.11: Channel modeling performance. The solid line corresponds to the
NMSE of the proposed model; the dash-dotted line to the NMSE of the channel
model in [21], and the dashed line to the NMSE of the channel model based on an
SSML assumption.

We now compare three NMSEs in Fig. 5.11, corresponding to the follow-
ing situations: a MSML model using a pulse design with parameter match-
ing (“Shannon, MSML”), a MSML model using a pulse design without pa-
rameter matching (“Haar, MSML”), and a SSML model (“Shannon, SSML”).
We underscore that, using the transmit pulse given in (5.53) satisfies the
equality in Theorem 5.1 (“Shannon, MSML”). The second curve (“Haar, MSML”)
corresponds to the the case where a Haar wavelet is used as the transmit
pulse, which is characterized by the same parameters T , a and fc. We derive
a channel model following the approach of [21], and calculate the NMSE
of this channel model in the same way as (5.54). Note that because the Haar
wavelet has a considerable power leakage outside the considered bandwidth
[see Fig. 5.7], Theorem 5.1 is violated, implying that the crosstalk in (5.16)
cannot be entirely eliminated. The resulting cross-talk, which can be viewed
as a modeling error, results in the performance degradation seen in Fig. 5.11
(“Haar, MSML”). The third NMSE curve (“Shannon, SSML”) is motivated by
the fact that the wideband LTV channel is often modeled using an SSML as-
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sumption [28,30,81], or assuming a single rate to sample the channel [29,76].
In these works, a single-scale signal, denoted as r̄single(t), is coined to approx-
imate the received signal. This signal r̄single(t) can be expressed as

r̄single(t) =
P∑

p=0

h̄p
√

asingles̄ (asingle(t− τp) , (5.55)

where asingle can be found by e.g., [29]

asingle = arg min
α

∣∣∣∣∣∣
r̄(t)−

P∑

p=0

h̄p

√
αs̄ (α(t− τp))

∣∣∣∣∣∣

2

. (5.56)

The corresponding channel modeling error is computed by adapting (5.54)
as

NMSESSML =

L(k)∑
l=0

∣∣∣
∫

psingle(t− lT
αsingle

) (r̄(t)− r̄single(t)) e−j2πfcαsingletdt
∣∣∣
2

L(k)∑
l=0

∣∣∣
∫

psingle(t− lT
αsingle

)r̄(t)e−j2πfcαsingletdt
∣∣∣
2

,

(5.57)
where psingle(t) = a

1/2
singlep(asinglet). It can be seen that the modeling per-

formance yielded by the SSML channel model is similar to the proposed
MSML model for a low-to-moderate Doppler spread αmax, but deteriorates
fast when the Doppler spread gets higher.

5.6.2 Equalization Performance

Supported by the results in Fig. 5.11, we will assume in the ensuing simula-
tions that our model (5.12) has negligible errors and therefore, r̄SL(t) ≈ r̄(t).
For equalization, three types of channels are tested, whose channel parame-
ters are specified in Table 5.1. A multi-layer transmission is deployed with
K ′ = 3 transmit layers. Accordingly, K = R + K ′ − 1 receiver branches are
employed at the receiver. Each transmit block contains N = 128 binary phase
shift keying (BPSK) symbols, and is preceded by a CP of length Z = 16.

Fig. 5.12 shows the bit-error-rate (BER) performance of the proposed transceiver
architecture using an LMMSE equalizer. As can be seen, the LMMSE equal-
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Table 5.1: Parameters for the adopted wideband channels

Channel τmax αmax L(0) R

the maximal data

rate of a single-layer

transmission *

the data rate

of our multi-layer

transmission *

A 0.6 ms 1.00 1 0 3.76× 103 bps 6.59× 103 bps

B 1.2 ms 1.02 2 1 3.76× 103 bps 6.59× 103 bps

C 1.8 ms 1.04 2 1 3.76× 103 bps 6.59× 103 bps
* using BPSK, N = 128, K = 3, Z = 16 and T = 1.0ms. The data rate is given by 1

L(0)T
for

the work of [21], N
N+Z

aK−1

T
for a single-layer transmission, and N

N+Z
aK−1
(a−1)T

for a multi-layer
transmission, where a = 2.
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Figure 5.12: BER performance using an LMMSE equalizer

izer renders a similar performance irrespective of the channel spread in de-
lay and scale. As a comparison, we have also provided the performance of a
matched-filter (MF) equalizer, which is used in [21], which is inferior due to
a high modeling error and indicates the necessity of channel equalization in
the presence of inter-symbol/inter-scale interference.
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Figure 5.13: BER performance using a banded turbo equalizer [5]

As mentioned before, since the proposed transceiver architecture results
in a banded channel matrix (see (5.49)), many techniques designed for nar-
rowband systems, with suitable adaptation, can be employed for our trans-
mission scheme over wideband MSML channels. For instance, the matrix
inversion required for the LMMSE equalizer can be achieved using the low-
complexity algorithm given in [3]. Further, we can employ the banded turbo
equalizers proposed in [5], which rely also on the banded structure of the
channel matrix, to improve the BER performance even further along more
equalization iterations. The results of the banded turbo equalizers for chan-
nel B are illustrated in Fig. 5.13. These simulation results indicate the suit-
ability of these low-complexity algorithms designed in [3,5] for narrowband
systems.

5.6.3 Single-Layer or Multi-Layer

In this subsection, we compare the multi-layer transmission scheme with re-
spect to the single-layer transmission scheme, where we use the parameters
of Channel C that are summarized in Table 5.1, and the multi-layer trans-
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Figure 5.14: BER comparison between the multi-layer transmission and the single-
layer transmission
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Figure 5.15: Goodput ratio between the multi-layer transmission and the single-
layer transmission

mitter consists of K ′ = 3 layers. The BER performance is compared with
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the results given in Fig. 5.14. One can see that the single-layer transmission
results in a better equalization performance. This is not a surprise, since the
receiver for the multi-layer transmission has the more demanding task of
resolving the interference among the different layers sent from the transmit-
ter. On the other hand, the multi-layer transmitter results in a much higher
spectral efficiency. To make a more fair comparison, we utilize the “goodput
ratio” as a criterion, which is defined as

Goodput Ratio =
(1− BERM)βM

(1− BERS)βS
,

where βM and βS denote the maximal data rate of the multi-layer transmis-
sion and the single-layer transmission, respectively, and BERM and BERS

denote the BER of the multi-layer transmission and the single-layer transmis-
sion, respectively. The goodput gives an index of the effective throughput of
a system. The goodput ratio is plotted in Fig. 5.15, where we observe that
the multi-layer transmission always has a larger goodput than the single-
layer transmission, and this advantage is even more pronounced when the
number of layers increases.

5.6.4 OFDM vs. Multi-Layer Block Transmission

In this subsection, we compare the performance of the multi-layer block
transmission (MLBT) scheme with respect to the traditional OFDM trans-
mission scheme over a wideband channel (i.e., Channel C in Table 5.1). The
multi-layer scheme consists of K = 3 layers, with the blocks on each layer
containing N = 128 symbols. Accordingly, we let the OFDM scheme em-
ploy 224 subcarriers, within a duration of 128ms, to fill the same effective
transmission bandwidth as our multi-layer scheme. In order to allow for a
fair uncoded performance comparison, we precode OFDM with a discrete
Fourier transform at the transmitter, and use BSPK modulation as in our
MLBT scheme. In addition, both schemes are equipped with the same guard
interval of 16ms (i.e., Z = 16 for our MLBT or 28 samples for OFDM), such
that the spectral efficiencies are identical (i.e., 16

128+16 ≈ 0.89). To equalize
such an OFDM channel, we follow the widely used approach in practical
OFDM systems, by first obtaining a uniform sampling rate [29] and then
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Figure 5.16: BER comparison between the multi-layer transmission and OFDM

performing a banded channel equalization [3,5,72] in the frequency domain.
The adopted matrix bandwidth here is 3. Note that, in this manner, the
equalization of the OFDM channel has the same complexity as the frequency-
domain equalization of our MLBT scheme, since they both induce a banded
channel matrix with the same bandwidth. As shown in Fig. 5.16, the MLBT
schemes yield a better performance than OFDM, because the transmit sig-
nal in the MLBT schemes is specially designed for MSML channels while the
OFDM transmit signal is only optimized for SSML channels. By assuming an
SSML model to approximate the actual MSML channel, a large channel mod-
eling error is inevitable in the presence of a profound Doppler scale spread
as shown in Fig. 5.11. Note that in Fig. 5.16, we have depicted the per-
formance of the multi-layer scheme based on two pulses for p(t): one is the
sinc function as given in (5.32) that has been used so far, and the other is the
root-raised cosine (RRC) function given by

p(t) =
sin(π(1− β)Wt) + 4βWt cos(π(1 + β)Wt)

π
√

Wt(1− (4βWt)2)
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with β = 0.25 being the roll-off factor. For both pulses, the same base scale
a = 2 and base lag T = 1ms is applied. We have argued in Section 5.3.2 that
these parameters are chosen to match the dilation spacing a? and translation
spacing T? of the sinc function. For the RRC function, it can be computed that
the corresponding a? is larger than 2 and the corresponding T? is less than
1ms (because its effective bandwidth (1 + β)W is more than W = 1kHz).
It indicates that the use of a = 2 and T = 1ms does not match the channel
parameters tightly, which inflicts a performance penalty on the multi-layer
scheme based on the RRC pulse.

5.7 Summary

Multi-scale multi-lag (MSML) channel models are appropriate for a variety
of wideband time-varying channels such as underwater acoustic systems or
terrestrial ultra-wideband radio systems. In this work, we have provided a
novel parameterization of the continuous time multi-scale multi-lag (MSML)
channel by taking the passband nature of the propagating signal explicitly
into account. The associated baseband signal is evaluated and shown to re-
sult in inter-scale and inter-symbol interference. We have proposed a novel
multi-layer transceiver for such MSML channels. At the transmitter, the in-
formation symbols are placed at different non-overlapping sub-bands to en-
hance the spectral efficiency, where each sub-band has a distinctive band-
width, and therefore, the transmission in each sub-band is characterized
by a different data rate. Our multi-layer transmission is a special case of
the known multi-scale wavelet modulation (MSWM), and can thus achieve
the same spectral efficiency as traditional transmissions, e.g., OFDM. Dif-
ferent from a traditional MSWM signal, we have built a block transmission
scheme and introduced a guard interval to eliminate inter-block interference.
To combat the multi-scale multi-lag effect of the channel, a filterbank is de-
ployed at the receiver, where each branch of the filterbank will resample the
received signal in a different way. By selecting a proper transmitter pulse,
we have shown that the effective I/O relationship in the discrete domain can
be captured by a block-diagonal channel, with each diagonal block being a
banded matrix. As a result, the low-complexity equalizers that have been



5.7. Summary 133

intensively used for narrowband systems become also applicable here. For
a comparison, without a proper pulse design, the multi-layer transmission
is subject to inter-layer interference and performance loss is thus inevitable.
We have argued that the key to the success of the proposed scheme lies in
a proper choice of the transmit pulse such that the channel parameters will
have a tight match with the parameters of the transmit pulse. Optimal trans-
mit pulse design remains an interesting topic for future work.
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Appendix 5.A Proof of Theorem5.1

Let

a(t) =

√
ak

T
p(akt−mT )ej2πfcakt,

b(t) =

√
ak′

T
p(ak′t− nT )ej2πfcak′ t,

whose Fourier transform is denoted as A(f) and B(f), respectively. With
these notations, the left-hand side of (5.27) can be rewritten as

∫ ∞

−∞

√
akak′

T
p(akt−mT )ej2πfcaktp(ak′t− nT )e−j2πfcak′ tdt

=
∫ ∞

−∞
a(t)b∗(t)dt =

∫ ∞

−∞
A(f)B∗(f)df,

where the last equality holds due to Parseval’s theorem. We understand that
A(f) is defined within the range

Sa = [akfc − ak W

2
, akfc + ak W

2
) ∪ [−akfc − ak W?

2
,−akfc + ak W?

2
),

and B(f) is defined within the range

Sb = [ak′fc−ak′W?

2
, ak′fc+ak′W?

2
)∪[−ak′fc−ak′W?

2
,−ak′fc+ak′W?

2
). (5.58)

With a chosen as in (5.26), Sa ∩ Sb = ∅ if k 6= k′. When k = k′, we have

gn−m =
∫

akp(akt−mT )p∗(akt− nT )dt, (5.59)

=
∫

p(t)p∗(t− (n−m)T )dt. (5.60)

Because p(t) is real, we obtain (5.28).
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Appendix 5.B Proof of (5.29)

The crosstalk term in (5.25) can be fully written as

∫
pk(t− mT

ak
)

R∑

r=0,r 6=k−k′
Cr+k′(t)dt

=
∫

pk(t− mT

ak
)

R∑

r=0,r 6=k−k′
ej2πfc(ar+k′−ak)t

L(k′+r)∑

l=0

h
(k′)
r,l ar/2sk′(art− lT )dt

=
R∑

r=0,r 6=k−k′

L(k′+r)∑

l=0

∑
n

h
(k′)
r,l sk′,nT

×
∫ √

akar+k′

T
ej2πfc(ar+k′−ak)tp(t− mT

ak
)p(ak+rt− (l + n)T

ak′ )dt.

It is then sufficient to prove that

∫ √
akar+k′

T
ej2πfc(ar+k′−ak)tpk(t− mT

ak
)p(art− (l + n)T

ak′ )dt = 0, (5.61)

for r 6= k − k′. Note that pk(t − mT
ak ) = ak/2p(akt −mT ). This enables us to

rewrite (5.61) as

∫ √
akar+k′

T
ej2πfc(ar+k′−ak)tpk(t− mT

ak
)p(art− (l + n)Tk′)dt

=
∫ (√ak

T
p(akt−mT )ej2πfcakt

)∗
√

ar+k′

T
p(ar+k′t− (l + n)T )ej2πfcar+k′ tdt,

= δr+k′−kgk,m−l−n,

where the last equality is due to Theorem 5.1. This concludes the proof.

Appendix 5.C The Basic Scaling Factor of the Shannon
Wavelet

Here, we examine the signal p̄(t) =
√

W sinc(Wt)ej2πfct, which yields a Shan-
non wavelet with fc = 1.5W . We resort to two approaches to determine
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the basic scaling factor of the Shannon wavelet. The first approach, which is
adopted in [21], utilizes the Mellin transform, while the second approach,
which is adopted in [33], utilizes the wideband ambiguity function.

For the first approach, we use a general Mellin variable $ = c − j2πβ,
where c is a real constant and β is a real variable. It can be derived that the
Mellin transform of p̄(t) can be expressed as

M(β) =
∫ ∞

0
p̄(t)t$−1dt =

∫ ∞

0
tc−j2πβ p̄(t)

dt

t
,

=
∫ ∞

0
p̄(t)ec ln(t)e−j2πβ ln(t) dt

t
.

If we take a geometrically time-warped version of p̄(t), i.e., x̄(t) := p̄(et)ect,
we can rewrite the above equation as

M(β) =
∫ ∞

−∞
x̄(u)e−j2πβudu,

which actually shows that the Mellin transform is inherently a logarithmic-
time Fourier transform. Consequently, the discrete (inverse) Mellin trans-
form can also be implemented by an inverse discrete Fourier transform (IDFT)
but in the geometric sampling domain, which is obtained by interpolating
the uniform domain [89]. In this chapter, we follow the scale-representation [35]
for the Mellin transform and use c = 1/2 instead of c = 1. The latter is used
for the discrete Mellin transform in [34]. Therefore, we can adopt the DFT
on the geometric samples to examine the Mellin bandwidth of p̄(t), which is
shown in Fig. 5.6, indicating that M? ≈ ln(1/2), and thus a? ≈ 2.

For the second approach, we use the wideband ambiguity function χ̄p̄(α, τ) =∫
p̄(t)

√
αp̄(α(t − τ))dt and select a? according to a? = min|α| subject to

χ̄(α, 0) = 0. This yields also a? = 2 as suggested by Fig. 5.6.

Appendix 5.D Noise Statistics

From (5.39), it is easy to show that E (vk,m) = 0 if E (w̄(t)) = 0.
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For the second-order moment of vk,m, it follows that

E (
vk,mvk′,m′

)

= E
(∫

ak/2w̄(t)e−j2πfcaktp(akt−mT )dt

∫
ak′/2w̄∗(t)ej2πfcak′ tp(ak′t−m′T )dt

)

= T

∫ ∫
E (

w̄(t)w̄∗(t′)
) √akak′

T
e−j2πfcaktp(akt−mT )ej2πfcak′ t′p(ak′t′ −m′T )dtdt′.

With the assumption that E (w̄(t)w̄∗(t′)) = σ2δ(t−t′), the above can be further
simplified as

E (
vk,mvk′,m′

)

= σ2T

∫ √
akak′

T
e−j2πfcaktp(akt−MT )ej2πfcak′ tp(ak′t−m′T )dt

a= σ2Tδk−k′gk,m−m′

b= σ2Tδk−k′δm−m′ ,

where a= holds per Theorem 5.1, and b= holds due to (5.33).





Chapter 6

Robust Semi-blind Transceiver

Intelligence is the ability to adapt to change.

Stephen W. Hawking

Chapter 4 and Chapter 5 both describes the wireless transmissions over
wideband time-varying channels although the transmit schemes were differ-
ent. They were common in assuming a perfect knowledge of the wideband
channel coefficients at the receiver, which however is normally difficult to
achieve. This chapter describes the adaptive multi-layer turbo equalization
at the receiver, where the channel estimation is bypassed. Its adaptive ability
to track the channel changes gives the robustness to the receiver design for
various prevailing environmental conditions.

6.1 Introduction

As mentioned in last two chapters, a wideband time-varying channel is of-
ten represented by a multi-scale multi-lag (MSML) model [15, 20–22, 32, 33],
which corresponds to the multipath nature of a wideband communication
channel: the time-of-arrival differences among the propagation paths give
rise to multi-lag while the angle-of-arrival differences, and thereby the dif-
ferent Doppler effects from each path give rise to multi-scale.

The receiver design based on such an MSML channel model is challeng-
ing, and has only been reported in limited literature such as [21, 33]. A more
common practice is to assume that the Doppler effect is uniform to all the
propagation paths, which equivalently amounts to a single-scale multi-lag
(SSML) assumption [28, 30, 81]. It is well-known that an SSML channel can
be turned into a narrowband channel subject to a single carrier frequency
offset (CFO) by means of resampling, after which many existing equalization
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methods can be applied. Although an SSML model greatly simplifies the re-
ceiver design, the performance of the receiver is, to a great extent, hampered
by the corresponding modeling error with respect to the actual MSML nature
of the channel. In this sense, an optimal resampler plays an extremely impor-
tant role [29, 76]. In addition, an optimal multiple-rate resampling structure
is proposed in [90] instead of a single-rate resampling rate used in the pre-
vious works. However, it is worth mentioning that both the SSML-based
receiver and these optimal resampling methods require perfect knowledge
of the WLTV channel, which is very difficult to attain in practice.

For narrowband systems, it has been shown that if the transmit/receiver
pulse is properly designed, the receiver can be made more robust against the
channel dispersion, thereby reducing the complexity of the receiver design.
The importance of pulse design for wideband systems has recently also been
recognized in [21,82,85]. Especially in the latter two works, it is shown that if
the pulse shape and bandwidth satisfy certain orthogonality conditions, then
the continuous MSML channel in the passband, can be parameterized in such
a way that the corresponding discrete baseband channel can be represented
by a time-invariant finite impulse response (FIR) filter.

Inspired by the results in [85], we will use a root raised-cosine pulse at
the transmitter, which is commonly used in existing communication systems.
This root raised-cosine pulse is designed to have a very small bandwidth for
two reasons: 1) the orthogonality condition that is essential to parameteriz-
ing the channel can be satisfied; 2) an underwater acoustic channel usually
has a very long delay spread. By letting the transmit pulse assume a small
bandwidth, we are able to reduce the number of FIR taps in the effective
discrete channel model.

There are two major differences between this chapter and [85] in the
transceiver design. Firstly, although both works has a multi-band transmit-
ter structure to fill up the available bandwidth, the subbands in [85] are con-
tiguous to each other and have a different bandwidth. Due to the inter-band
interference resulting from the Doppler effect, the corresponding baseband
channel becomes a 2D FIR, requiring a more complex equalizer structure. In
comparison, the subbands in this work have equal bandwidth, and are suf-
ficiently separated from each other such that the inter-band interference can
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be avoided. This facilitates a simpler equalizer design, but the bandwidth
efficiency is obviously sacrificed.

Secondly, the parameterization of the channel in [85] is transparent to the
channel conditions: the sampling of the channel always starts from 0 in the
time plane and from fc, the carrier frequency of the transmitted signal, in the
frequency plane. In this work, we allow for a multitude of different channel
parameterization schemes. In each scheme, the beginning of the sampling
positions is aligned with the lag and scale of one certain path by starting
from τq in the time plane and from αqfc in the frequency plane, where τq and
αq stand for the lag and scale of the qth path, respectively. Suppose that there
are Q resolvable propagation paths. We can therefore generate Q discrete
versions of the received (continuous) signal, each related with a distinctive
channel model. This means that a single-input multiple-output (SIMO) sys-
tem is actually established, for which we can call for a multi-branch frame-
work at the receiver. By this means, we are able to achieve a more accurate
discrete representation of the MSML channel while at the same time lever-
age the channel diversity. Interestingly, we notice a similar “multichannel”
receiver structure in [91], where Q asynchronous CDMA users are present:
the signal generated at the qth sub-channel is a differently delayed version of
the received signal, which aligns with the qth CDMA user. If we view each
path in the MSML channel as an asynchronous “user”, then our receiver
structure is in this sense a generalization of that in [91] in both the time and
frequency domain.

Despite a different sampling grid of the channel in the time-frequency
plane than that in [85], we can show that for each receiver branch, the corre-
sponding discrete channel can still be modeled by a time-invariant FIR. This
allows us to impose a time-invariant FIR structure for the equalizer on each
receiver branch. The equalizer taps will be obtained adaptively in this work
using a recursive least-squares (RLS) filter. In addition, a phase-locked loop
(PLL) is combined with the RLS filter to combat the residual CFO. The latter
results from a synchronization error because when we sample the channel in
the frequency direction, the starting position might not be perfectly aligned
with the actual scale of the path in practice. We notice that such a receiver
scheme is just identical to that in [92], but the underlying mechanism is com-
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pletely different: the multi-channel framework in [92] corresponds to the
multiple antennas deployed at the receiver; further, the time-invariant FIR
equalizer structure in [92] is based on the assumption that the channel im-
pulse response stays constant during a short interval of time, while in our
work this structure is viable thanks to an optimally designed pulse shape,
and does not rely on the constant channel assumption.

6.2 System Model Based on an MSML Channel

6.2.1 Transmit Signal

For the reasons mentioned in the introduction, we employ a multi-band
transmission scheme, where the transmit signal s̄(t) is comprised of K sig-
nals, each transmitted over a different carrier frequency:

s̄(t) =
K−1∑

k=0

∑
n

sk(t)e2πfkt, (6.1)

where fk stands for the carrier frequency for the the kth subband around a
central frequency fc as fk = fc +(k− K−1

2 )∆f . Here, ∆f denotes the distance
between the center frequencies of two adjacent subbands. Additionally,

sk(t) = sk,np(t− nT ), (6.2)

where sk,n stands for the nth data symbol transmitted in the kth subband,
and p(t) for the transmit pulse, for which we use a root raised cosine function
in this chapter given by

p(t) = C · sinc(t/T )
cos(πκt/T )

1− 4κ2t2/T 2
, (6.3)

with κ being the rolloff in the range [0, 1]; T the symbol period, and C is a
constant such that p(t) has unit energy. As a result, the bandwidth occupied
by each subband is B = (1 + κ)/T . In order to reduce the interference be-
tween the subbands, we insert an adequately wide guard band between the
subbands such that ∆f > B, and therefore, the overall bandwidth of s(t)
equals B + (K − 1)∆f .
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Figure 6.1: An example of the proposed multi-band transmission scheme

We assume that the data symbols are transmitted in blocks, and inter-
block interference (IBI) has already been eliminated by means of, e.g., zero
padding such that it is sufficient to just focus on individual transmit blocks.
Let us use sk = [sk,0, sk,1, · · · , sk,N−1]T to denote the data symbols that are
gathered in one such transmit block through the kth subband. It is assumed
to consist of NP pilot symbols and ND information-carrying symbols, whose
positions are given by NP and ND, respectively. In this work, we consider
only time-multiplexed pilots and ND ∪NP = {0, 1, · · · , N − 1}.

An example of the transmission scheme as described above is given by
Fig. 6.1.

6.2.2 Received Signal Resulting from an MSML Channel

We consider a wideband linear time-varying channel as mentioned in (2.5)
but with a finite path number of Q. Its noiseless case can be formulated as

r̄(t) =
Q−1∑

q=0

h̄q
√

αq s̄(αq(t− τq)), (6.4)

where s̄(t) and r̄(t) are respectively the actual transmitted and received sig-
nal (normally in passband).
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6.3 Receiver Design

6.3.1 Multi-Branch Framework

Corresponding to the MSML feature of the channel, we design a multi-branch
receiver, where each branch is obtained based on the parameters of one path
of the channel. For the qth branch in particular, let us define the receive filter
as

pq(t) = α1/2
q p(αqt) (6.5)

which is obviously a low-pass filter with bandwidth Bq = αqB [c.f. (6.3)].
Before applying this filter, we first down-convert the received signal such

that the component of the kth subband is located at baseband. After the
receive filter, the output can be expressed as

y
(q)
k (t) =

∫
p∗q(t− t′)r̄(t′ +

τq

αq
)e−2παqfkt′dt, (6.6)

which, after discretization, renders the following signal

y
(q)
k [n] = y

(q)
k (n

T

αq
), (6.7)

for n = 0, · · · , N−1. In the above expressions, the parameters αq and τq stem
from the scale and delay of the qth propagation path.

At this stage, we introduce the following proposition (see Appendix 6.A
for a proof), which will be crucial to our equalizer design.

Proposition 6.1. Let a? denote the basic scaling factor of p(t)ej2πfkt, whose mean-
ing will be clear in Appendix 6.A. For channels with realistic scales ( |αmax−
1| ¿ 1 ), if

a? ≥ 2fk + B

2fk −B
, (6.8)

then we have

y
(q)
k [n] ≈

Lq∑

l=0

g
(q)
k,l sk,n−l. (6.9)

where g
(q)
k,l defines the taps of a time-invariant FIR filter of order Lq.
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Proposition 6.1 suggests that if the transmit and receiver filter are de-
signed properly (such that the inequality in (6.8) is satisfied), the discrete
baseband I/O relationship can be described by a time-invariant FIR system.
To leverage sufficient statistics, we can apply Proposition 6.1 for all the paths
present in the channel with the resulting signal y

(q)
k [n] for q ∈ {0, · · · , Q}

forming the output of one branch of the receiver. By this means, we ef-
fectively create a single-input multiple-output (SIMO) system. The multi-
branch operation is schematically depicted in Fig. 6.2.

Now that we are dealing with a multi-branch framework, and for each
branch the effective channel embedded in (6.9) is a time-invariant FIR, this
enables in theory a time-invariant FIR equalizer on each branch such that
the effective (composite) channel can be perfectly inverted. To establish the
taps of such a time-invariant FIR requires, however, the knowledge of g

(q)
k,l ,

which is in turn determined by the path coefficients hq, αq and τq. In practice,
estimating these path coefficients can be very challenging, especially for hq.
Besides, all significant paths of the channel must be estimated, which can in-
flict a high computational burden in many situations. In this work, we avoid
the necessity of estimating all the channel coefficients, but train the equalizer
taps adaptively by means of a recursive least-squares filter (RLS). An appar-
ent advantage is that for an individual branch, we only need to estimate the
scale and delay of a single path. Another advantage is that we can leverage
channel diversity by exploiting the multi-branch structure. Note though that
the number of branches is allowed to be smaller than the actual number of
paths in the channel.

The delay and scale estimates can be obtained by using a preamble se-
quence together with a matched-filter bank at the receiver, which should
have a good resolution in both scale and time. See e.g., [33] for such a se-
quence design and the filter bank design. In reality, a mismatch in the scale
estimate is more serious than a mismatch in the delay estimate.

Proposition 6.2. When the estimation error γq = αq − α̂q is sufficiently small,
we can easily incorporate this estimation error in the discrete model of (6.9),
and adapt it to (see Appendix 6.B for a proof)

y
(q)
k [n] ≈ e2πfknTγq/αq

Lq∑

l=0

g
(q)
k,l sk,n−l, (6.10)
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Figure 6.2: A multi-branch block scheme

which suggests that y
(q)
k [n] will be subject to a carrier frequency offset (CFO).

6.3.2 Soft Iterative Equalizer

Corresponding to the multi-band transmission scheme and the multi-branch
framework at the receiver, we apply for each subband and each branch of
the receiver a distinctive equalizer, whose taps will be attained adaptively
by means of an RLS scheme. Compared to the ordinary approach, there are
two differences in the RLS scheme used in this work: 1) a phase shift is first
applied to the received signal to correct the inherent CFO due to the scale
mismatch in (6.10); 2) the RLS filter sweeps the received signal forward and
backward for several times. This step is especially useful for an underwa-
ter environment, where the channel conditions can sometimes be extremely
volatile, and as a result, the channel model given in (6.4) is only valid for
a very limited duration. To enable robust communication, it is typical that
messages are transmitted in short bursts, which imposes a huge pressure on
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the convergence rate of the RLS filter. An effective countermeasure is to let
the equalizer run over the same received sequence several times until con-
vergence [93, 94].

To describe the above mathematically, let us introduce the vector

y(q)
k,n =




y
(q)
k [n− (Ltap−1)

2 ]
y

(q)
k [n− (Ltap−3)

2 ]
...

y
(q)
k [n + (Ltap−3)

2 ]
y

(q)
k [n + (Ltap−1)

2 ]




(6.11)

to denote the input at the nth time interval to the equalizer for the kth sub-
band and qth branch, where Ltap stands for the number of equalizer taps.
Then the output of the qth equalizer obtained during the forward sweep is
computed as

ŝ
(q)
k,n,p = c(q)H

k,n−1,py
(q)
k,ne−jθ

(q)
k,n−1,p , (6.12)

where ŝ
(q)
k,n,p stands for the estimate of the n-th symbol transmitted over the

kth subband obtained at the qth branch during the p-th sweep; likewise, c(q)
k,n,p

stacks the corresponding equalizer taps, and θ
(q)
k,n,p denotes the phase shift

applied to the signal y(q)
k,n. We assume that the sweep index p is even for a

forward sweep, during which the symbol index n increases from 0 to N − 1
when p = 0 and from 1 to N − 1 in the subsequent forward sweeps. In the
backward sweep (with an odd sweep index p), the output of the qth equalizer
is computed as

ŝ
(q)
k,n,p = c(q)H

k,n+1,py
(q)
k,ne−jθ

(q)
k,n+1,p , (6.13)

where the symbol index n decreases from N − 2 to 0. For the sake of simplic-
ity, we borrow the notation from [94], and combine the operations in (6.12)
and (6.13) in one expression as

ŝ
(q)
k,n,p = c(q)H

k,n±1,py
(q)
k,ne−jθ

(q)
k,n±1,p , (6.14)

where + is selected in ± for the forward sweep, and − is selected for the
backward sweep. Finally, the estimate of sk,n attained at the pth sweep is
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obtained as the average of the outputs of all the branchs as

ŝk,n,p =
Q−1∑

q=0

ŝ
(q)
k,n,p. (6.15)

In the sequel, we will describe the steps to update c(q)H
k,n,p and θ

(q)
k,n,p. This is

achieved with the aid of a soft-input soft-output (SISO) decoder [95], where
the equalizer provides not only the hard information, i.e., the symbol esti-
mates, but also the soft information, i.e., the a posteriori log-likelihood ratios
(LLR) to the decoder. For binary phase-shift keying (BPSK) symbols1, the a
priori LLR is computed as

LLR(in)
k,n,p = ln

(
e−(Re[ŝk,n,p]−µ)2

/2σ2

e−(Re[ŝk,n,p]+µ)2
/2σ2

)
, (6.16)

where µ and σ2 are obtained by exploiting knowledge of the pilot BPSK sym-
bols as

µ =
1

Np

∑

n∈NP

K−1∑

k=0

Re[ŝk,n,p]sk,n, (6.17)

and

σ2 =
1

Np − 1

∑

n∈NP

K−1∑

k=0

|Re[ŝk,n,p]− µsk,n|2 . (6.18)

In deriving the above, we have assumed that the symbol estimates during the
pth sweep have a normal distribution with mean ±µ and variance σ2 on the
real axis. Such an assumption is made not only for the sake of convenience
but also due to the fact that the distribution of random variables at the output
of a linear Wiener filter are known to be quite close to Gaussian [96]. In
addition, due to the time-invariance FIR assumption on the effective channel
(see Proposition 6.1), we have assumed that such statistics obtained at the
positions of the pilot symbols will hold for the whole signal sequence, which
is approximately true when a sufficient number of pilots are distributed over
the signal.

1The extension to a higher-order constellation is straightforward, and will not be repeated
here due to space restrictions.
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Figure 6.3: The block scheme of the adaptive turbo equalizer

In turn, the SISO decoder will generate, besides decoded bits, soft infor-
mation in the form of an a posteriori LLR, which is fed back to the equalizer
to derive the probabilities of ŝk,n,p belonging to 0 or 1, respectively given by
γk,n,p(0) and γk,n,p(1), with

γk,n,p(0) =
eLLR

(out)
k,n,p

1 + eLLR
(out)
k,n,p

, (6.19)

and
γk,n,p(1) = 1− γk,n,p(0). (6.20)

Note that γk,n,p(0) and γk,n,p(1) indicate the reliability of the estimate ŝk,n,p.
The block scheme of the proposed equalizer design is depicted in Fig. 6.3.

Adaptive RLS Filtering Since we have converted the WLTV channel into
a branch of time-invariant FIR channels, an ordinary RLS filtering, which
takes a possible CFO at each receiver branch into account, can be applied. A
difference in this chapter is that in the decision-directed mode, the updating
only takes place if the reference symbols, which will be defined soon, are suf-
ficiently reliable. This is achieved by comparing the soft information γk,n,p−1

provided by the SISO decoder during the previous sweep with a predefined
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threshold Γ. With the following definitions

c̄k,n,p = [c(0)T
k,n,p, · · · , c(Q−1)T

k,n,p ]T ,

x(q)
k,n,p = y(q)

k,ne−jθ
(q)
k,n±1,p ,

x̄k,n,p = [x(0)T
k,n,p, · · · ,x(Q−1)T

k,n,p ]T , (6.21)

the updating process is described in Table 6.1.

IF n ∈ NP or γk,n,p−1 > Γ

ḡk,n,p =
P̄k,n±1,px̄

∗
k,n,p

λ+x̄T
k,n,pP̄k,n±1,px̄

∗
k,n,p

,

P̄k,n,p = λ−1
[
P̄k,n±1,p − ḡk,n,px̄T

k,n,pP̄k,n±1,p

]
,

c̄k,n,p = c̄k,n±1,p + εk,n,pḡk,n,p

ELSE
ḡk,n,p = ḡk,n±1,p,
P̄k,n,p = P̄k,n±1,p,
c̄k,n,p = c̄k,n±1,p

END

Table 6.1: The ordinary RLS algorithm

In Table 6.1, λ denotes the common RLS forgetting factor; ḡk,n,p is the
Kalman gain vector; P̄k,n,p is the error covariance matrix and the error signal
is given by

εk,n,p = ŝk,n,p − sk,n,p,ref , (6.22)

where in the training mode, n ∈ NP, the reference symbols are given by the
pilots

sk,n,p,ref = sk,n; (6.23)

while in the decision-directed mode, n ∈ NP, the reference symbols are given
by

sk,n,p,ref =





−1 if γk,n,p−1(1) > Γ,

+1 if γk,n,p−1(0) > Γ,

sgn{Re[ŝk,n,p]} otherwise.
(6.24)
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The adaptive filter is initialized with c̄k,0,0 = [1,01×(QLtap−1)]T and P̄k,0,0 =
IQLtap . At the signal boundaries of consecutive forward and backward sweeps,
the following convention is adopted as c̄k,N,p = c̄k,N,p−1 and P̄k,N,p = P̄k,N,p−1

for odd p (from forward sweep to backward sweep), otherwise c̄k,1,p = c̄k,1,p−1

and P̄k,1,p = P̄k,1,p−1.
As we mentioned before, short-burst messaging is typical to underwater

communications, which imposes a huge pressure on the convergence rate
of the RLS filter. To accelerate the convergence, let us approximate that the
effective channel from each branch is uncorrelated. Accordingly, we can en-
force a block diagonal structure on the error covariance matrix as

P̄k,n,p =



P(0)

k,n,p
. . .

P(Q−1)
k,n,p ,


 (6.25)

where P(q)
k,n,p is an Ltap × Ltap matrix with P(q)

k,0,0 = ILtap . It is then easy to
simplify the ordinary RLS algorithm as in Table 6.2.

IF n ∈ NP or γk,n,p−1 > Γ

g(q)
k,n,p =

P
(q)
k,n±1,px

(q)∗
k,n,p

λ+
Q−1∑
q′=0

x
(q′)T
k,n,pP

(q′)
k,n±1,px

(q′)∗
k,n,p

,

P(q)
k,n,p = λ−1

[
P(q)

k,n±1,p − g(q)
k,n,px

(q)T
k,n,pP

(q)
k,n±1,p

]
,

c(q)
k,n,p = c(q)

k,n±1,p + εk,n,pg
(q)
k,n,p

ELSE
g(q)

k,n,p = g(q)
k,n±1,p,

P(q)
k,n,p = P(q)

k,n±1,p,

c(q)
k,n,p = c(q)

k,n±1,p

END

Table 6.2: The simplified RLS algorithm

We notice that a similar approach is adopted in [97] though in a different
context. In [94], the same simplified RLS is used but a motivation lacks.
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Adaptive Carrier Recovery Following the derivations given in [98], the op-
timum θ

(q)
k,n,p is achieved when

Im{ŝ(q)
k,n,ps

∗
k,n,p,ref} = 0. (6.26)

Note that the CFO contained in (6.10) is caused by a mismatch between the
actual channel scale and its estimate. Such a mismatch is distinctive for each
branch of the receiver but common to all the subbands. This means that in
the steady state, θ

(q)
k,n,p should equal 2πfknTγq/αq [c.f. (6.10)], which equiv-

alently leads to
θ
(q)
0,n,p

f0
= · · · =

θ
(q)
K−1,n,p

fK−1
. For this reason, the second-order

digital phase-locked loop (PLL) used in [92, 98, 99], can be adapted for the
multi-band scheme in this work as

Θ(q)
n,p =

1
K

K−1∑

k=0

Im

{
ŝ
(q)
k,n,p

(
sk,n,p,ref −

∑
q′,q′ 6=q

ŝ
(q′)
k,n,p

)∗}

fk
, (6.27)

η
(q)
n±1,p = η(q)

n,p + (−1)pΘ(q)
n,p, (6.28)

β
(q)
n±1,p = β(q)

n,p + K1Θ(q)
n,p + (−1)pK2η

(q)
n±1,p, (6.29)

θ
(q)
k,n,p = fkβ

(q)
n,p, (6.30)

where K1 and K2 denote the proportional and integral phase-tracking con-
stants, respectively. The initial values of η

(q)
n,p and β

(q)
n,p are set to zeros for

n = p = 0. Compared to the adopted PLL in [92,98,99], another difference is
the existence of (−1)p, which is inserted here due to the existence of a back-
ward sweep.

6.4 Experimental Results

We start from a noisy version of (6.4):

r̄(t) =
Q−1∑

r=0

h̄qα
1/2
q s (αq(t− τq)) + n̄(t), (6.31)

where the scale αq is modeled to be uniformly distributed between [0.99, 1.01);
the delay τq is modeled to be uniformly distributed between [0, 200)ms and



6.4. Experimental Results 153

0 10 20
−15

−10

−5

0

5

10

15
Branch 0

P
ha

se
 C

or
re

ct
io

n 
(r

ad
ia

ns
)

0 10 20
−15

−10

−5

0

5

10

15
Branch 1

0 10 20
−15

−10

−5

0

5

10

15

Iteration Indx.

Branch 2

0 10 20
−15

−10

−5

0

5

10

15
Branch 4

0 10 20
−15

−10

−5

0

5

10

15
Branch 5

Figure 6.4: Phase corrections at each branch

the path gain h̄q is modeled as an i.i.d. Gaussian variable with mean zero
and variance σ2

q , where σ2
q follows an exponential power delay profile as

σ2
q = e−τq/50. The values of h̄q, τq and αq are assumed to stay constant during

the transmission. In addition, the noise is assumed to be a white Gaussian
process with mean zero and variance σ2. The signal-to-noise ratio (SNR) in
this chapter is defined as

SNR =
∫ |r̄(t)− n̄(t)|2 dt∫ |n̄(t)|2 dt

.

For the transmitted data signal, we choose K = 38 subbands. Each sub-
band has a bandwidth B = 60Hz, and the distance between the center fre-
quencies of two adjacent subbands is ∆f = 100Hz. Therefore, the overall
bandwidth is 3790 Hz, which spans the spectrum [4105Hz, 7895Hz].

In each subband, a sequence of N = 117 symbols is transmitted: 70 data
symbols are equally partitioned into four blocks, with pilot symbols inserted
in between. The remaining 47 pilot symbols are arranged in such a fashion
that the initial pilot block consists of 31 pilot symbols and each of the other
four pilot blocks has 4 pilot symbols. We refer to Fig. 6.1 for the transmitter
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Figure 6.5: Convergence of equalizer taps (subband 0)

structure. The data symbols are based on BPSK modulation and generated in
the following way: 1330 information bits are encoded by a standard 1/2-rate
convolutional encoder with the generator polynomial (5, 7). The resulting
bits are randomly interleaved and then allocated to each subband.

The transmit pulse is defined in (6.3), which uses a symbol rate of 1/T =
60Hz and a rolloff factor κ = 1/2. It can be shown that with parameters cho-
sen as such, the inequality in (6.8), which is crucial to the validity of Propo-
sition 6.1, is satisfied.

For the receiver, we let the equalizer on each branch have Ltap = 3 taps;
the forgetting factor of the RLS filter is λ = 0.99; the probability threshold is
Γ = 0.8, and the PLL parameters are chosen as K1 = 2× 10−2 and K2 = 4×
10−2. The equalizer performs P = 20 iterations sweeping over the received
signal forward and backward.

For the sake of illustration, let us first look at one particular realization
of such a channel for SNR = 5 dB, which comprises Q = 20 paths. The
parameters of the 10 most significant paths are given in Table 6.3.

Out of the 20 path,s the channel estimator, which corresponds to a scale-
lag filter-bank used as in [33], has only detected 5 paths whose delay and
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Figure 6.6: Constellation of equalized BPSK symbols: (a) after the 1st sweep; (b)
after the 10th sweep; (c) after the 20th sweep; (d) using a single-branch receiver and
after the 20th sweep.

−10 −5 0 5 10
10

−4

10
−3

10
−2

10
−1

10
0

SNR, dB

B
E

R

 

 

uncoded, P=1

uncoded, P=3

uncoded, P=10

coded, P=1

coded, P=3

coded, P=10

Figure 6.7: Uncoded and coded BER performance of our proposed equalizer v.s.
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Table 6.3: A channel example
Channel State Information Estimation

path gain scale delay (ms) scale delay (ms)
q = 0 0.4422 0.9968 162.1 0.9965 162.5
q = 1 0.4267 0.9991 78.8 0.9995 78.8

SNR: q = 2 0.4252 1.0048 0 1.0050 0.02
5dB q = 3 0.3968 0.9963 80.2

q = 4 0.2916 1.0004 27.7 1.0005 27.7
q = 5 −0.2707 0.9987 111.6 0.9985 111.6
q = 6 −0.1964 0.9977 73.5
q = 7 −0.1767 0.9991 32.2
q = 8 0.1234 0.9967 105.4
q = 9 −0.1109 1.0029 87.3

Table 6.4: Performance

BER prior to decoding
P = 1 P = 5 P = 10 P = 15 P = 20
0.25 0.093 0.0417 0.0368 0.0281

BER after decoding
P = 1 P = 5 P = 10 P = 15 P = 20
0.3516 0.0039 0 0 0

scale estimates are given in the corresponding rows in Table 6.3 (note that the
3rd path is not detected). Accordingly, five branches are established at the
receiver corresponding to each detected path. Fig. 6.4 illustrates the phase
correction in radians generated by the PLL for these 5 branches, respectively
during the P = 20 sweeps, from which we can make the following observa-
tions: 1) the slope of the phase correction in the forward sweeps is opposite
to that in the downward sweeps because the order of the input samples is
reversed; 2) for each branch, the larger the scale mismatch of the qth path,
the steeper the slope of the phase correction curve at the qth receiver branch.
This could suggest that the qth path has the most significant contribution to
the signal obtained at the qth receiver branch.

In Fig. 6.5, the amplitude of the equalizer taps for subband 0 obtained
during different iterations is plotted. One can see that when convergence is
reached, the equalizer taps only have a small oscillation. This, together with
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Figure 6.8: Uncoded BER performance v.s. SNR, using soft-guided RLS updating
and unconditional RLS updating.

Fig. 6.4, indicates that the effective channel at each receiver branch is approx-
imately a time-invariant FIR subject to a CFO as Proposition 6.1 suggests.

The bit-error rate (BER) after a certain number of iterations is given in
Table 6.4 where we can see, especially from the BER prior to decoding, that
multiple (forward and backward) sweeps allow for more time for the equal-
izer to converge. This is also corroborated by Fig. 6.6(a) through Fig. 6.6(c),
which show a compacter constellation cloud with more sweeps.

In Fig. 6.6(d), we show the constellation of the equalized symbols, which
are obtained by a single-branch receiver. In this case, the receiver is aligned
with path 0, which has the strongest gain, and which uses α̂0 to resample the
received signal. Such a receiver is commonly used in the field, e.g., in [94] or
in [92] with a single receive antenna. It is obvious from Fig. 6.6(d) that when
the multi-scale effect of the channel is very pronounced as in the example,
such a single-branch receiver will become inferior of symbol detection.

We generalize the above observations by running a Monte Carlo simu-
lation. During each run, a different realization of the channel, data sym-
bols and noise is created at random. Fig. 6.7 illustrates the BER performance
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Figure 6.9: Uncoded BER performance v.s. SNR, using our multi-layer equalizer
and a single-layer equalizer.

against the SNR both prior to and after decoding, for the 1st, 3rd and 10th
sweeps. It is clear that the BER performance improves with the number of
iterations as well as the SNR.

As discussed in the previous section, the proposed receiver uses soft in-
formation not only for decoding purposes but also in the decision-directed
mode the updating stage of the equalizer taps : the soft information deter-
mines which reference symbol is to be used as well as whether or not to up-
date the equalizer taps. As shown in Fig. 6.8, which depicts the BER prior to
decoding, utilizing soft information makes the adaptive equalizer converge
much faster than utilizing just hard information.

The great performance improvement of our multi-branch equalizer with
respect to that of a single-branch equalizer is quantitatively illustrated by
Fig. 6.9.
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6.5 Summary

A multi-band transmitter combined with an adaptive multi-branch equalizer
is proposed for communications over an MSML channel. The multi-band
transmission is designed to reduce the equalization complexity, while main-
taining a high data rate. Thanks to a carefully designed transmit/receive
pulse, the signal obtained at each receiver branch can be described by a time-
invariant FIR subject to a CFO. A semi-blind equalizer is applied for such a
channel, which comprises a PLL, followed by a time-invariant FIR filter. The
updating of both the PLL and the filter taps are achieved by means of a SISO
turbo decoder. Simulation results show that the proposed transceiver yields
a robust performance for the MSML channels.
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Appendix 6.A Proof of Proposition 6.1

Because we assume that the guard bands between adjacent subbands are
large enough such that the inter-band interference due to Doppler can be
neglected, it suffices therefore to just focus on a single-band case (K = 0) in
the proof, i.e., s̄(t) = s0(t)ej2πf0t.

For analytical purposes, let us use rewrite (6.4) in a more generalized way
as

r̄(t) =
∫ αmax

1

∫ τmax

0
h̄(α, τ)

√
αs̄(α(t− τ))dαdτ, (6.32)

where h̄(α, τ) is also known as the wideband spread function (WSF) of the
channel [20], which has a support for α ∈ [1, αmax] and τ ∈ [0τmax]. Actually,
(6.4) can be viewed as a special case of (6.32) as h̄(α, τ) =

∑
q ḡqδ(α−αq)δ(τ−

τq).
We first introduce two parameters a? and T?, which are called as the dila-

tion spacing and translation spacing, respectively. These two parameters are
uniquely determined by the transmit pulse p(t). With the bandwidth of p(t)
being B, we have T? = 1/B = T ; further, if the Mellin support2 of p(t)ej2πf0t

being M?, then a? = e1/M? . With aid of a? and T?, it is shown in [85] that
the continuous WSF h̄(α, τ) can be approximated by a smoothed version of
discrete samples, and accordingly, the integrals in (6.32) be replaced by finite
summations such that

r̄(t) ≈
R?∑

r=0

ej2πf0ar
?t

L?(r)∑

l=0

gr,la
r/2
? s(ar

?t− lT?), (6.33)

where

gr,l =
∫ τmax

0

∫ αmax

1
h̄(α, τ)e−j2πf0ar

?τ sinc
(

r − lnα

ln a?

)
sinc

(
l − ar

?τ

T?

)
dαdτ,

(6.34)
and R? = dlnαmax/ ln a?e and L?(r) = dar

?τmax/T?e.
The expression in (6.33) suggests that the continuous channel h̄(α, τ) is

approximated by a series of discrete coefficients gr,l’s, which are obtained by
sampling the channel in the scale (frequency) direction at positions

{f0, a?f0, · · · , aR?
? f0}

2See [34] for the definition of the Mellin support.
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and sample in the lag (time) direction at positions

{0, T?/ar
?, · · · , L?T?/ar

?}.

Actually, we can sample the channel on a different set of grids. To realize
this, let us consider an auxiliary signal

r̃(q)(t) =

√
a
− d

D
? r̄

(
a
− d

D
? (t +

d′

D′T?)
)

, (6.35)

which is obtained by time-shifting the original received signal r̄(t) with a

factor of − d′
D′T?, and then scaling with a factor of a

− d
D

? . Here, d, D, d′ and D′

are such chosen integers that

αq = a
d
D
? and τq =

d′

D′T?, (6.36)

for q = 0, · · · , Q. For this auxiliary signal, we can find an expression by
adapting (6.32) to

r̃(q)(t) =

√
a
− d

D
?

∫ ∫
h̄(α, τ)

√
α


αa

− d
D

? s(t− τ − a
− d

D
?

d′
D′T?

a
− d

D
?

)


 dαdτ.

By letting α′ = αa
− d

D
? and τ ′ = τa

d
D
? − d′

D′T?, we obtain that

r̃(q)(t) =
∫ ∫

h̄

(
α′a

d
D
? ,

τ ′ + d′
D′T?

a
d
D
?

)√
α′s

(
α′(t− τ ′)

)
dα′dτ ′. (6.37)

Obviously, the function

h̃(q)(α, τ) = h̄

(
αa

d
D
? ,

τ + d′
D′T?

a
d
D
?

)
(6.38)

defines the WSF corresponding this scaled/delayed version r̃(q)(t), on which
we can apply the same smoothing operation just like in (6.33) leading to the
following approximation

r̃(q)(t) ≈
R?∑

r=0

ej2πf0ar
?t

L?(r)∑

l=0

g̃
(q)
r,l a

r/2
? s(ar

?t− lT?), (6.39)
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where we can show that

g̃
(q)
r,l =

∫ ∫
g̃(q)(α, τ)e−j2πf0ar

?τ sinc
(

r − lnα

ln a?

)
sinc

(
l − ar

?τ

T?

)
dαdτ,

=
∫ ∫

h̄

(
αa

d
D
? ,

τ + d′
D′T?

a
d
D
?

)
e−j2πf0ar

?τ

× sinc
(

r − lnα

ln a?

)
sinc

(
l − ar

?τ

T?

)
dαdτ,

= ej2πf0ar
?

d′
D′ T?g

r+ d
D

,l+ d′
D′

= ej2πf0ar
?

d′
D′ T?g

(q)
r,l ,

where [c.f. (6.34) and (6.36)]

g
(q)
r,l = g

r+ d
D

,l+ d′
D′

=
∫ ∫

h̄(α, τ)e−j2πf0a
r+ d

D
? τ

× sinc
(

r +
d

D
− lnα

ln a?

)
sinc


l +

d′

D′a
r
? −

a
r+ d

D
? τ

T?


 dαdτ.

The above relationship will be important when we realize that

r̄(t) =

√
a

d
D
? r̃(q)

(
a

d
D
? t− d′

D′T?

)
, (6.40)

and by substituting (6.39) we have

r̄(t) ≈
R?∑

r=0

e
j2πf0ar

?

(
a

d
D
? t− d′

D′ T?

)
L?(r)∑

l=0

g̃
(q)
r,l

√
a

r+ d
D

? s

(
ar

?(a
d
D
? t− d′

D′T?)− lT?

)
,

=
R?∑

r=0

ej2πf0a
r+ d

D
? t

L?(r)∑

l=0

g
r+ d

D
,l+ d′

D′

√
a

r+ d
D

? s

(
a

r+ d
D

? t− (l +
d′

D′a
r
?)T?

)
.

(6.41)

Compared with (6.33), we understand that the continuous channel h̄(α, τ)
can also be sampled in a different set of grids. To realize this, we can rewrite
(6.41) further as

r̄(t) ≈
∑

r= d
D

,1+ d
D

,···
ej2πf0ar

?t
∑

l= d′
D′ a

r
?,1+ d′

D′ a
r
?,···

g
(q)
r,l

√
ar

?s(a
r
?t− lT?).
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In light of (6.36), the above suggests that the channel is sample at the scale
(frequency) direction at positions

{αqf0, αqa?f0, · · · }

and sampled in the lag (time) direction at positions

{0 · T?

αqar
?

+
τq

αq
,
1 · T?

αqar
?

+
τq

αq
, · · · }.

Obviously, the beginning of the sampling position is aligned with the scale/lag
of the q path if we use a discrete path model in (6.32) to define the channel.

We resume from (6.41), and find one baseband counterpart of r̄(t) as

r̄(t +
τq

αq
)e−j2πf0αqt = r(q)(t) + ∆(q)

r (t), (6.42)

with
r(q)(t) =

∑

l

g
(q)
0,l

√
αqs(αqt− lT?), (6.43)

and

∆(q)
r (t) =

∑

r 6=0

ej2πf0αq(ar
?−1)t

∑

l

g
(q)
r,l

√
αqar

?s (αqa
r
?t− lT?) , (6.44)

where we have used a new symbol g
(q)
r,l := g

r+ d
D

,l+ d′
D′

not only to simplify the

notation, but also underline its relationship with the qth path.
Due to (??) and the fact T = T?, it follows that

∆(q)
r (t) =

∑

r 6=0

ej2πf0αq(ar
?−1)t

∑

l

g
(q)
r,l

√
αqar

?

∑
n

s0,np (αqa
r
?t− lT? − nT?) .

Now that the bandwidth of p (αqa
r
?t) equals αqa

r
?B, the above implies that

the lower-bound of ∆(q)
r (t) in the frequency domain is αq(a?−1)f0−αqa?B/2.

As a result, by apply a matched filter pq(t) on r̄(t+ τq

αq
)e−j2πf0αqt, we are able

to remove the nuisance term ∆(q)
r (t) if the higher-bound of pq(t) in the fre-

quency domain, equal to αqB/2, is smaller than the lower-bound of ∆(q)
r (t),

or equivalently,

a? ≥ 2f0 + B

2f0 −B
. (6.45)
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In that case, the output of the matched filter becomes

y
(q)
0 (t) =

∫
p∗q(t− t′)r̄(t′ +

τq

αq
)e−j2πf0αqt′dt′,

=
∫

pq(t′ − t)
∑

l

g
(q)
0,l

√
αqs(αqt

′ − lT?)dt′, (6.46)

where the last equality is obtained by substituting (??) and using the property
that p(t) as defined in (6.3) is real and symmetric. If we sample y

(q)
0 (t) with

a sampling rate αq/T , the resulting sample obtained at the mth sampling
instant can be expressed as

y
(q)
0 [m] =

∫
p∗q(t−

mT?

αq
)
∑

l

g
(q)
0,l

√
αq

∑
n

s0,np(αqt− lT? − nT?)dt,

=
∑

l

h
(q)
0,l

∑
n

s0,n

∫
αqp(αqt−mT?)p(αqt− lT? − nT?)dt

a=
∑

l

g
(q)
0,l

∑
n

s0,nδm−n−l

=
∑

l

g
(q)
0,l s0,m−l, (6.47)

where in a=, we have made use of the property that for a root raised cosine
function p(t) as given in (6.3), it holds that

∫
αqp(αqt−mT )p(αqt− nT )dt =

δm−n. By (6.47), we conclude the proof of Proposition 6.1.

Appendix 6.B Proof of Proposition 6.2

We follow (6.41) in Proposition 6.1 to provide the proof for Proposition 6.2.

We only focus on the mismatch of the scale parameters. Instead of αq = a
d
D
?

in (6.36), the scale estimate gives α̂q = αq − γq, for q = 0, · · · , Q − 1. In this
case we build (6.42) in practice as

r̄(t + τ̂q/α̂q)e−j2πf0α̂qt = r̄(t + τq/αq + ∆t)e−j2πf0α̂qt,
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where ∆t = τ̂q/α̂q−τq/αq. We ignore the timing shifts for analysis simplicity
reasons, and thus consider the following equation alternatively as

r̄(t + τq/αq)e−j2πf0α̂qt

= e−j2πf0(αq−γq)t
R?∑

r=0

ej2πf0a
r+ d

D
? t

×
L?(r)∑

l=0

g
r+ d

D
,l+ d′

D′

√
a

r+ d
D

? s

(
a

r+ d
D

? t− (l +
d′

D′a
r
?)T?

)

=
R?∑

r=0

ej2πf0ar
?γqtej2πf0αq(ar

?−1)t

L?(r)∑

l=0

g
(q)
r,l

√
αqar

?s

(
αqa

r
?t− (l +

d′

D′a
r
?)T?

)

= r̂(q)(t) + ∆̂(q)
r (t) (6.48)

where
r̂(q)(t) = ej2πf0γqt

∑

l

g
(q)
0,l

√
αqs(αqt− lT?)

and

∆̂(q)
r (t) =

∑

r 6=0

ej2πf0ar
?γqtej2πf0αq(ar

?−1)t
∑

l

g
(q)
r,l

√
αqar

?s (αqa
r
?t− lT?) .

Similarly as clarified in Proposition 6.1, to eliminate the term ∆̂(q)
r (t).

Specifically, r̂(q)(t) is higher-bounded by the frequency component αqB/2 +
f0γq, while ∆̂(q)

r (t) is lower-bounded by the frequency component f0α̂q(a? −
1)+f0a?γq−αqa?B/2. Thus, we herein require in the frequency domain that

αqB/2 + f0γq ≤ f0α̂q(a? − 1) + f0a?γq − αqa?B/2

= f0αq(a? − 1) + f0γq − αqa?B/2,

and in this manner, we have the same condition given by (6.45).
It indicates that the output of the matched filter becomes

y
(q)
0 (t) =

∫ √
α̂qp

∗(α̂q(t− t′))r̄(t′)e−j2πf0α̂qt′dt′,

=
∫ √

α̂qp
∗(α̂q(t− t′))r̂(q)(t)dt′,

=
∫ √

α̂qαqp
∗(α̂q(t′ − t))ej2πf0γqt′

∑

l

g
(q)
0,l s(αqt

′ − lT?)dt′,
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which is an adapted version of (6.46). If we sample y
(q)
0 (t) with a sampling

rate α̂q/T by assuming T? = T , the resulting sample obtained at the mth
sampling instant can be expressed as

y
(q)
0 [m] =

∫
p∗(α̂qt−mT?))

∑

l

g
(q)
0,l

√
α̂qαq

∑
n

s0,np(αqt− lT? − nT?)dt,

=
∑

l

h
(q)
0,l

∑
n

s0,n

∫ √
α̂qαqe

j2πf0γqt

× p((αq − γq)t−mT )p(αqt− lT − nT )dt

≈
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l

h
(q)
0,l

∑
n

s0,n

∫
αqe

j2πf0γqtp(αqt−mT )p(αqt− lT − nT )dt

=
∑

l

h
(q)
0,l

∑
n

s0,n

∫
ej2πf0(t−mT )γq/αqp(t)p(t− (l + n−m)T )dt

= e−j2πf0mTγq/αq
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l

h
(q)
0,l

∑
n

s0,n

×
∫

ej2πf0tγq/αqp(t)p(t− (l + n−m)T )dt

where we argue that the scale estimate error γq is sufficiently small such that
γq/αq ¿ 1. Similarly due to the fact that γq is sufficiently small such that

∫
ej2πf0tγq/αqp(t)p(t− (l + n−m)T )dt ≈

∫
p(t)p(t− (l + n−m)T )dt,

we are allowed to proceed with

y
(q)
0 [m] ≈ e−j2πf0mTγq/αq

∑

l

h
(q)
0,l

∑
n

s0,n
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h
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0,l s0,m−l (6.49)

In other words, if we consider a generalization of (6.49) on the kth subband,
we have

y
(q)
k [n] ≈ e−j2πfknTγq/αq

∑

l

h
(q)
k,l sk,n−l,

which concludes the proof of Proposition 6.2.



Chapter 7

Conclusions and Future Work

To acknowledge what is the known and the unknown is
knowledge.

Confucius

7.1 Conclusions

Future wireless communication systems are required to offer a high data
transfer rate between fast moving terminals. The resulting time-varying
channels will bring great challenges to transceiver designs. Especially when
a wideband transmission is introduced in, e.g., underwater acoustic commu-
nications and ultra wideband radar systems, the Doppler scaling factors can
severely deteriorate the performance of the communication system.

Corresponding to the research questions raised in Chapter 1, this thesis
proposed the following answers:

• For an orthogonal frequency-division multiplexing (OFDM) transmis-
sion over a narrowband time-varying channel, we investigated effi-
cient architectures to implement channel estimation and equalization
based on a basis expansion model (BEM) employed to model the time-
varying channel. Among several BEM options, we found in particu-
lar that the critically-sampled complex exponential BEM (CCE-BEM)
allows for a more efficient hardware architecture than other choices,
while still maintaining a high modeling accuracy. Moreover, a small
BEM order is appealing since it can provide a sufficiently high accuracy
for the symbol detection while avoiding costly hardware utilization.

• The amount of interference resulting from wideband channels, which
we have assumed to follow the multi-scale/multi-lag (MSML) model,
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has been analyzed in the frequency domain and the time domain, re-
spectively. The wideband channels result in full channel matrices in
both domains. However, banded approximations are still possible,
leading to a significant reduction in the equalization complexity. We
found that optimal resampling is indispensable for wideband OFDM
communications, and then proposed to use the conjugate gradient (CG)
algorithm to equalize the channel iteratively which allows to further re-
duce the overall complexity by using a truncated CG in practice. The
suitability of the CG equalization with a diagonal preconditioner has
also been discussed. Measures for determining whether time-domain
or frequency-domain equalization should be undertaken were provided
to obtain the best BER performance with the same complexity.

• The traditional single-rate transmission scheme, e.g., OFDM, has an in-
herent match with the uniform time-frequency (T-F) lattice of narrow-
band time-varying channels. When multiple Doppler scales emerge
in a wideband channel, a non-uniform T-F lattice is introduced and
thus novel transmission schemes can be developed. A new parame-
terized data model was first proposed, where the continuous MSML
channel is approximated by discrete channel coefficients. We have pro-
posed a novel multi-layer transceiver for such MSML channels. At
the transmitter, the information symbols are placed at different non-
overlapping sub-bands or layers to enhance the spectral efficiency, where
each layer has a distinctive bandwidth, and therefore, the transmis-
sion in each layer is characterized by a different data rate. To com-
bat the multiscale multi-lag effect of the channel, a filterbank is de-
ployed at the receiver, where each branch of the filterbank resamples
the received signal in a different way. By selecting a proper transmit-
ter pulse, we have shown that the effective input/output (I/O) rela-
tionship in the discrete domain can be captured by a block-diagonal
channel, with each diagonal block being a banded matrix. As a re-
sult, the low-complexity equalizers that have been intensively used for
narrowband systems become also applicable here. This novel multi-
layer transmission scheme can achieve the same bandwidth efficiency
as a traditional transmission scheme, e.g., OFDM, while allowing for
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an improved bit-error-ratio (BER) performance especially when a large
scale spread is present.

• To bypass the exact estimation of wideband channel coefficients, a multi-
band transmitter combined with an adaptive multi-branch equalizer
has been proposed for communications over a wideband MSML chan-
nel. At the transmitter, a multi-band transmission is used, which re-
duces the receiver complexity while still maintaining a high data rate.
At the receiver, a multi-branch framework is adopted, where each branch
is aligned with the scale and delay of one path in the propagation chan-
nel. By intelligently designing the transmit and receive filter, the dis-
crete signal at each branch can be characterized by a time-invariant
finite impulse response (FIR) system subject to a carrier frequency off-
set (CFO). This enables a simple equalizer design: a phase-locked loop
(PLL), which aims to eliminate the CFO is followed by a time-invariant
FIR filter. The updating of both the PLL and the filter taps is achieved
by leveraging the soft-input soft-output (SISO) information yielded by
a turbo decoder. The proposed transceiver has been validated to render
a more robust performance for the MSML channels than conventional
methods.

Consequently, we can conclude the thesis as follows. For a narrowband
time-varying OFDM system, an OFDM receiver using a simple BEM design
(i.e., the CCE-BEM) and a small BEM order is sufficient to support mobile
users at a realistic velocity as discussed in Chapter 3. If wideband trans-
missions are adopted, Doppler scales emerge when communication termi-
nals are moving rapidly and thus the channel is time-varying. When a large
Doppler scale spread is present, a single-scale assumption at the receiver
introduces a remarkable performance penalty, and thus the multi-scale be-
havior of the channel should be considered. In this case, previous methods
of designing narrowband OFDM receivers are not viable. In addition to an
optimum resampling operation, many extra efforts are needed to be taken
to reduce the complexity of equalizing a wideband time-varying channel,
compared with a narrowband OFDM receiver. This part has been discussed
in Chapter 4. As an alternative, in Chapter 5, a novel block transmission
scheme, which supports multiple data rates on different frequency subbands
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or layers, has been proposed instead of the traditional OFDM transmission
that adopts a single data rate at all subcarriers. The benefits of this multi-
layer transmission scheme include the re-use of previous equalization struc-
tures designed for narrowband time-varying channel, as well as a perfor-
mance improvement for the wideband time-varying channels. However, if
the exact channel information is not available which is usually the case in
the wideband regime, an adaptive equalization approach is required. Using
a multi-band transmission and a multi-branch receiver structure, the multi-
layer turbo equalization proposed in Chapter 6 bypasses the precise chan-
nel estimation and provides a robust performance for the wideband MSML
channels.

7.2 Future Work

Filed Testing In this thesis, we did not mention any experiment based on
realistic data. However, we have already examined our transceiver described
in Chapter 6 using some sea trial data, and the tested results validate our pro-
posed scheme. In the future, more sea trials can be carried out, e.g., within an
European research project called “RACUN” (i.e., Robust Acoustic Commu-
nications in Underwater Networks), and the results from these experiments
may be included in our future paper which is currently being prepared. For a
real-time testing in practice, we have already initialized the conversion from
the Matlabr codes into suitable C/C++ codes to run our signal-processing
algorithm on a specific digital signal processor (DSP) embedded in the hard-
ware platform. This part of work also needs to be finalized in the future.

Hardware Prototyping In most existing works on time-varying communi-
cation systems, how to prototype the transceiver in hardware is rarely stud-
ied. We have discussed an efficient hardware architecture for the channel
estimator and channel equalizer of OFDM systems over narrowband time-
varying channels. However, this is still far from a hardware prototype design
of the whole system. For wideband time-varying systems, researches on the
hardware prototyping are even more scarce.
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Compressive Sensing Compressive sensing allows for an efficient recon-
struction of sparse signals from sub-Nyquist-rate samples. Compared to the
conventional approach based on the Nyquist sampling theory, this technique
can exploit the sparsity of the channel in the time and frequency domain,
thereby significantly reducing the power consumption of analog-to-digital
converters. Hence it is particularly useful for wideband signals, which are
usually sparse in nature and the corresponding Nyquist sampling rate can be
too high to be practical. It could be interesting to combine compressive sens-
ing techniques with our proposed processing procedures for MSML chan-
nels, which may further simplify the receiver designs proposed in this thesis.

Cooperative Networks In this thesis, we focus on a point-to-point com-
munication link instead of cooperative networking. In fact, a future wireless
communication terminal will likely not operate alone but jointly work with
many other users. Therefore, how to efficiently cooperate with each other,
particularly in wideband MSML channels, and how to build a reliable com-
munication network could be a worthwhile research topic.
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Samenvatting

Dit proefschrift is gewijd aan transceiver ontwerpen voor draadloze commu-
nicatiesystemen met hoge transmissiesnelheden en snel bewegende zenders
of ontvangers. De uitdagingen zijn tweeledig. Enerzijds hebben toekomstige
draadloze systemen meer spectrale bandbreedte nodig om hogere datasnel-
heden te halen, hetgeen kan resulteren in frequentie-selectiviteit van het com-
municatiekanaal. Anderzijds ontstaan bij hoge mobiele snelheden Doppler-
effecten, hetgeen kan resulteren in tijd-selectiviteit van de communicatiekanalen.
Daarom is het waarschijnlijk dat toekomstige draadloze communicatiesyste-
men moeten werken met dubbel-selectieve kanalen. Dit veroorzaakt velerlei
problemen in het ontwerp van transceivers. In dit proefschrift onderzoeken
we deze uitdagingen in de volgende vier scenario’s, en stellen een aantal
bijbehorende oplossingen voor.

OFDM voor smalbandige kanalen:
Orthogonale frequentie-division multiplexing (OFDM) is een transmissi-
etechniek die gebruik maakt van een reeks draaggolven. In een smal-
band scenario worden Doppler-effecten goed benaderd door frequen-
tieverschuivingen. Hierdoor kan een smalband dubbel-selectief kanaal
voor OFDM systemen bij benadering gekarakteriseerd worden als een
bandmatrix, vooral wanneer een basis-expansie model (BEM) wordt
benut om het kanaal te modelleren. Dit laat een lagere complexiteit van
de kanaalegalisatie toe. Er zijn echter verschillende BEMs beschikbaar.
We kiezen een bepaalde BEM die leidt tot een efficientere hardware ar-
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chitectuur dan andere keuzes, met behoud van een hoge nauwkeurigheid
van het model.

OFDM voor breedband kanalen:
Het Doppler effect manifesteert zich als een iets ander verschijnsel voor
breedband kanalen in vergelijking met smalbandige kanalen. In het
bijzonder wordt de golfvorm voor breedband signalen meetbaar ver-
breed of gecomprimeerd wanneer Doppler aanwezig is, en niet alleen
verschoven in frequentie. Dit gedrag vraagt om nieuwe ontwerpen
voor breedband OFDM systemen. Eerst kwantificeren we de verstor-
ing als gevolg van breedband dubbel-selectieve kanalen die volgt uit
het multi-scale/multi-lag (MSML) model. Daarna bespreken we een
egalisatiemethode voor breedband kanalen zowel in het frequentiedomein
als in het tijdsdomein. Een nieuw optimaal herbemonsteringsproces
wordt ook geintroduceerd, welke gewoonlijk niet nodig is voor smal-
bandige systemen.

Multi-Rate transmissie over breedband kanalen:
Traditionele transmissie met meerdere draaggolven, zoals OFDM, ge-
bruiken een uniforme datarate voor elke hulpdraaggolf, die inherent
niet goed aansluit op breedband tijdsafhankelijke kanalen. In feite
suggereert de tijdvariatie van breedband kanalen, dat wil zeggen de
Doppler schalen, het gebruik van een niet-uniform bemonsteringsmech-
anisme. Om dit te beperken stellen we een nieuwe multi-rate transmissie-
methode voor waarin informatie-symbolen op verschillende niet-overlappende
subbanden geplaatst worden, met voor elke subband een andere band-
breedte. Om het MSML effect van het kanaal te bestrijden wordt een
filterbank ingezet bij de ontvanger, waarbij elke tak van de filterbank
het ontvangen signaal op een corresponderende snelheid bemonstert.
Door het selecteren van een goede zend/ontvangst-puls kan de effec-
tieve ingangs-uitgangsrelatie worden gekarakteriseerd door een blok-
diagonale matrix, waarbij elk diagonale blok een bandmatrix is, net
als voor smalband OFDM systemen. Het voordeel hiervan is dat de
bestaande lage-complexiteit egalisators ook kunnen worden gebruikt
voor breedband communicatie.
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Robuuste multi-band transmissie over breedband kanalen:
Nauwkeurige kanaalschatting is voor breedband dubbel-selectieve kanalen
uitdagend en lastig. Adaptieve kanaalegalisatie is dus aantrekkelijk
omdat precieze kanaalinformatie niet nodig is, en omdat het robuust
is in verschillende omgevingen. Wanneer het MSML effect ontstaat
in breedband kanalen is het niet verstandig om bestaande adaptieve
egalisatiemethoden te gebruiken die ontworpen zijn voor andere sce-
nario’s, bijvoorbeeld smalbandige kanalen. Wij kiezen voor een multi-
band frequentie-division multiplexing (FDM) modulatie bij de zender
om de egalisatiecomplexiteit te verminderen, en tegelijkertijd een hoge
data rate mogelijk te maken. Door een zorgvuldig ontwerp van de
zendpuls is onze voorgestelde meerlaags turbo-egalisatiemethode, bestaand
uit een fasevergrendelde regeling (PLL) gevolgd door een time-invariant
eindige impulsresponsie (FIR) filter, in staat dergelijke MSML kanalen
te egaliseren.
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