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ABSTRACT 

In this paper, we consider a cooperative Zero-padding 
orthogonal frequency division multiplexing (ZP-ODFM) 
communication with multiple carrier frequency offsets (CFOs) 
and multipath channel, and propose a space time frequency 
coding (STFC) scheme to exploit the linear convolutional 
structure of the ZP-OFDM. Theoretical analysis of the 
proposed STFC is provided based on the analytical upper 
bound of the channel orthogonality deficiency. To reduce the 
system complexity, low-complexity linear equalizers, such as 
zero-forcing (ZF) and minimum mean square error (MMSE) 
equalizers are often adopted. We also show that with only 
linear receivers, the proposed code achieves the full 
cooperative diversity and improves the system capacity. 

I. INTRODUCTION 

Recently, cooperative diversity in wireless networks has 
received great interest and is regarded as a promising 
technique to mitigate multi-path fading, which causes 
fluctuations in the amplitude of the received signal. The basic 
idea behind cooperation is that several users in a network pool 
their resources in order to form a virtual antenna array which 
creates spatial diversity [1]. This cooperative diversity leads 
to an increased exponential decay rate in the error probability 
with increasing signal-to-noise ratio (SNR) [2].  

A multiband (MB) ZP-OFDM based approach to design 
Ultra Wide Band (UWB) transceivers has been recently 
proposed in [3] for the IEEE Standard. In Dec. 2008, the 
European Computer Manufacturers Association (ECMA) 
adopted ZP-OFDM for the latest version of High Rate UWB 
Standard [4]. Because of its advantage in the low power 
transmission, ZP-OFDM has potentials to be used in other 
low power wireless communications systems [5]. 

To quantify the performance of different communication 
systems, two important criteria are the average bit-error rate 
(BER) and capacity. The BER performance of wireless 
transmissions over fading channels is usually quantified by 
two parameters: diversity order and coding gain. The 
diversity order is defined as the asymptotic slope of the BER 
versus signal-to-noise ratio (SNR) curve. It describes how fast 
the error probability decays with SNR, while the coding gain 
measures the performance gap among different schemes when 
they have the same diversity. The higher the diversity, the 
smaller the error probability at high-SNR regimes, to cope 
with the deleterious effects of fading on the system 
performance, diversity-enriched transmitters and receivers 
have well-appreciated merits. Most of the existing diversity-
enabled schemes adopt maximum-likelihood equalizers 
(MLEs) or near-MLEs at the receiver to collect full diversity 
[6]. Although MLE enjoys the maximum diversity, its 
exponential decoding complexity makes it infeasible for 
certain practical systems. In order to reduce the system 

complexity, one may apply linear equalizers (LEs), when the 
system model is linear. The capacity is another important 
criterion to quantify the performance of a certain transmission 
strategy, and describes the maximum information rate for a 
transmission system with a certain equalizer employed at the 
receiver. Generally, besides diversity loss, LEs also lose 
capacity relative to systems with MLEs. 

The channel orthogonality deficiency (od) [6] determines 
the fundamental condition when LEs collect the same 
diversity as the MLE. In other words, LEs usually have 
inferior performance relative to MLEs due to loss of diversity. 
According to [6], to collect the same diversity as MLE does 
and to improve the capacity, the equivalent channel matrix 
needs some “modification” to upper bound of od by a 
constant less than 1. In this paper, based on the od and some 
new results proposed in [6], we illustrate how to design a 
space time frequency code (STFC) to achieve full diversity, 
maximal capacity and with LEs to enable low system 
complexity. 

The rest of the paper is organized as follows. Section II 
presents the system model of the cooperative ZP-OFDM 
system, and proposes a STFC for CFOs and multipath 
channel. Linear equalizer, ML equalizer and channel 
orthogonality deficiency are discussed in Section III. In 
Section IV, we present the cooperative diversity, capacity and 
complexity of the proposed STFC. Simulation results are 
illustrated in Section V to corroborate the theoretical claims, 
and finally Section VI concludes the paper. 

Notations: Superscripts ( ) ( ) ( )1 T H−⋅ ⋅ ⋅， ， ，( )†⋅ represent inverse, 
transpose, Hermitian and pseudo inverse, respectively, 

( )diag ⋅  is diagonal matrix with main diagonal ( )⋅ .The 

notation ⋅ denotes the absolute value of a scalar or cardinality 

of a set, and ⋅  denotes the 2-norm of a vector/matrix. 

II. COOPERATIVE ZP-OFDM AND STFC 

A. System model of the Cooperative ZP-OFDM 
We consider a cooperative ZP-OFDM system as shown in the 
Fig. 1. The Decode-and-forward (DF) protocol is adopted in 
the cooperative communication model. Relays can fully 
decode the information, and participate in the cooperation, 
and occupy different frequency bands to transmit data to the 
destination. Each relay-destination link undergoes multipath 
Rayleigh fading. For the relay r , [ ]1,2, ,r R∈ ⋅⋅⋅ , R is the 
number of relays, the received signal ry  can be formulated as 

,
H

r P P r r ZP N= +y F D H T F x n                         (1) 

where [ ]0 1, , T
Nx x −⋅ ⋅ ⋅x is the vector of the so called 

frequency transmitted information signal, which is forwarded 
by R relays. N is the signal length. The subscript r in this 
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paper indicates the variables or operators related to the r-th 
relay. To simplify the exposition, the noise term is denoted as 
n, which stands for independently and identically distributed 
(i.i.d) complex white Gaussian noise with zero mean and 
variance 2

nσ . FN and FP stand for the N-point and P-point FFT 
matrix, respectively. 

Q1

QrS D

···
···

Q DF relay

Q2

Qr+1

QR

Q1

QrS D

···
···

Q DF relay

Q2

Qr+1

QR  
Figure 1: Cooperative ZP-OFDM system architecture, (S: Source, D: 

Destination, Qr: r-th Relay). 
The matrix  

0
N

ZP
P N×

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

I
T                                  (2) 

performs the zero-padding on the transmitted signal with V 
zeros, where NI is N × N identity matrix, and P = N + V. 

The matrix Hr is a P × P lower triangular matrix with its 
first column vector is

1, ,, , ,0 0
T

r L rh h⎡ ⎤⋅⋅ ⋅ ⋅ ⋅ ⋅⎣ ⎦ , and its first row 
vector is

1, ,0 0rh⎡ ⎤⋅⋅ ⋅⎣ ⎦ , and ,L rh denotes the L-th path gain over 
the r-th relay and destination link. Without loss of generality, 
we assume that the channel lengths of different relay-
destination links are all L. To avoid inter-symbol interference 
(ISI), we should have L ≤ V, and we assume L = V in this 
paper. DP,r is a diagonal matrix representing the residual 
carrier frequency error over the r-th relay and destination link 
and is defined in terms of its diagonal elements as 

( )1
, diag 1, , , P

P r r rα α −= ⋅⋅⋅D , with ( )exp 2 /r rj q Nα π= Δ , and rqΔ is 
the normalized carrier frequency offset of r-th relay with the 
symbol duration of ZP-OFDM. Here, we notice that 

,T r r ZP=H H T  is a full column rank tall Toeplitz matrix, and 
its correlation matrix always guaranteed to be invertible. 
Consequently, (1) can be rewritten as 

, ,
H

r P P r T r N= +y F D H F x n                           (3) 
In this paper, we consider a frequency division system for 

each relay, i.e., arranging transmitted symbols in different 
frequency bands according to the corresponding relay, as 
shown in the Fig. 2. By doing so, we can exploit the linear 
structure of ZP-OFDM to achieve the full cooperative 
diversity and improve the system capacity with linear receiver 
regardless of the existence of CFOs. 
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Q DF relay

Q2 Qr+1 QR· · ·

· · · · · ·

Band 1 Band 2 Band r Band r +1 Band R

Frequency domain

Q1 Qr· · ·

Q DF relay

Q2 Qr+1 QR· · ·

· · · · · ·

Band 1 Band 2 Band r Band r +1 Band R

Frequency domain

 
Figure 2: Frequency division cooperative ZP-OFDM system. 

We take x  as the information symbols correctly received 
at the r-th relay nodes involved in the DF-cooperative scheme. 

After full decoding, x is assigned to the corresponding r-th 
frequency band as shown in the Fig. 2, and forwarded to the 
destination. 
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Figure 3: Structures of the FFT matrices, CFOs matrix and channel matrix for 

2-relay cooperative system, left top: FFT matrix ,P RF , right top: CFOs 

matrix D , left bottom: channel matrix: H , right bottom: FFT matrix ,
H
N RF . 

Blank parts are all 0’s, others are non-zero values 
Considering the frequency division system, the received 

signal at the destination of all R relay nodes yield 
                               , ,

H
P R N R= +y F DHF x n                        (4) 

where ( ), diag , , ,P R P P P= ⋅⋅⋅F F F F , ( ),1 ,2 ,diag , , ,P P P R= ⋅⋅⋅D D D D ,

( ),1 ,2 ,diag , , ,T T T R= ⋅⋅⋅H H H H , ( ), diag , , ,H H H H
N R N N N= ⋅⋅⋅F F F F are 

all diagonal matrices with R relay’s components on their 
diagonals. For instance, we consider a 2-relay cooperation 
system, i.e., R = 2, the structures of ,P RF , D , H and ,

H
N RF can 

be illustrated as Fig. 3. In (4) , , ,
TT T T⎡ ⎤= ⋅⋅ ⋅⎣ ⎦x x x x denotes the 

forwarded signal from R relays occupying R different 
frequency bands. 
B. STFC for the Cooperative ZP-OFDM  
We also design a linear structure STFC, which guarantees the 
full cooperative spatial diversity. By right multiplying a 
matrix [ ]1 2, , , T

R= ⋅⋅⋅G I I I with H
NF x , where rI is an N × N 

identity matrix, [ ]1,2, ,r R∈ ⋅⋅⋅ , the received signal at the 
destination from all R relay nodes can be rewritten in another 
form 
                                  ,

H
P R N= +y F DHGF x n                        (5) 

where ,P RF , D  and H are the same as (4). We denote 
ˆ= THG H and H

t N=x F x , here ,1 ,2 ,
ˆ , , ,

TT T T
T T T T R⎡ ⎤= ⋅⋅⋅⎣ ⎦H H H H  is a 

linear Toeplitz matrix, or tall Toeplitz matrix, and with 

1,1 ,1 1,2 ,2 1, ,
ˆ , , , , , , , , , , , ,

T

n L L R L Rh h h h h h⎡ ⎤= ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅⎣ ⎦h 0 0 0  being ˆ
TH ’s 

first column, tx is the time domain signal. ˆ
TH  can also be 

regarded as a tall Toeplitz channel matrix, with the channel 
length ( )1TL P R L= × − + . 

We notice that matrix G spreads the R copies of the time 
domain signal tx according to the corresponding R cooperative 
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relays, and forms a cooperative frequency division system, 
since the relays perform the forwarding in the different bands, 
as shown in the Fig.2. Therefore, Matrix G can be regarded as 
a coding on the time domain signal, for different relays and 
difference bands, and so called space time frequency code. 
Then, (5) becomes 

ˆ H
P T N= +y F DH F x n                            (6) 

If we denote ˆ H
P T N= F DH FH  as the equivalent channel 

matrix, we get 
= +y x nH                                   (7) 

H in (7) is regarded as the overall equivalent channel. In 
the section IV, we will exploitH to show that our STFC and 
tall Toeplitz channel design can achieve the full cooperative 
and multipath diversity and combat the CFOs, with only LEs. 

III. EQUALIZATION AND ORTHOGONALITY DEFICIENCY  

Given the equivalent channel model in (7), there are various 
ways to decode x from the observation y . One often used and 
also optimal method (if there is no prior information on the 
symbols or symbols are treated as deterministic parameters) is 
the MLE, which is given as 

2arg min
N

ml
S∈

= −
x

x y xH                         (8) 

where S is the finite alphabet of the transmitted symbols. On 
the other hand, LEs, such as ZF equalizer and MMSE 
equalizer are favored for their low decoding complexity. 

The ZF equalizer is defined as 
†

zf =x yH                                  (9) 

where ( )-1† H H=H H H H denotes the Moore-Penrose pseudo-
inverse of the channel matrixH . 

The MMSE equalizer is defined as 

( ) 12H H
mmse n Nσ

−
= +x I yH H H                    (10) 

Here, we notice that, with the definition of an extended 
system 

n Nσ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦I
HH  and 

1N×

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

y
y

0
                    (11) 

The MMSE equalizer in (8) can be rewritten as 
†

mmse =x yH , which indicates that ZF equalizer and MMSE 
equalizer are both LEs, and share the linear properties. To 
show the performance gap between LEs and MLEs, we adopt 
a parameter, orthogonality deficiency (od) of the channel 
matrix H as in [6]. 

Definition 1 (Orthogonality Deficiency): For an equivalent 
channel matrix [ ]1 2, , , N= ⋅⋅ ⋅h h hH , with nh being H ’s n-th 

column, its orthogonality deficiency ( )od H is defined as 

                              ( )
( )

2

1

det
1

H

N
nn

od
=

= −
∏ h

H H
H                      (12) 

If H is singular, ( ) 1od =H . The smaller ( )od H is, the 

more orthogonalH is. Given the model in (7), if ( ) 0od =H , 

i.e., HH H is diagonal. 

IV. DIVERSITY, CAPACITY AND COMPLEXITY OF STFC 

A. The Full Cooperative Diversity of STFC 
In this section, we will show how LEs are only required to 
achieve full cooperative diversity order of RL. We first cite 
the following theorem from [6]: 

Theorem 1: Consider a linear system in (7), The LEs 
collect the same diversity as MLE does, i.e., achieve the full 
diversity, if there exists a constant ( )0,1ε ∈ such 

that∀ H , ( )od ε≤H . 
In what follows, we will show that, the proposed STFC 

satisfies the condition in Theorem 1, and can achieve full 
diversity with LEs. Note that here the full diversity order is 
RL. 

We notice that PF , PD  and H
NF are all unitary matrices. 

Therefore, we have 
   ( ) ( )ˆ ˆdet detH H H

N T T N= F H H FH H  

   ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆdet det det detH H H
N N T T T T= =F F H H H H      (13) 

where ( ) ( )det det 1H
N N =F F . Since ˆ

TH  is a tall Toeplitz 

matrix, then ( )ˆ ˆdet 0H
T T >H H for any nonzero channel response, 

i.e., ,l rh ’s are not equal to zero simultaneously, 
where [ ]1,2, ,l L∈ ⋅⋅⋅ , [ ]1,2, ,r R∈ ⋅⋅⋅ , [7]. 

Consequently, we have ( )det 0H >H H . For any practical 

channel, 2

1
0N

nn=
>∏ h is always satisfied. Thus, we can verify 

that there exists a constant ( )0,1ε ∈ such 

that∀ H , ( )od ε≤H , and the proposed STFC can achieve 
full cooperative and multipath diversity. 

In order to provide the further insight into the channel 
factors that affect the cooperative transmission performance, 
we consider orthogonality deficiency of the pure channel 
effect, and denote ˆ

T= DHH . The orthogonality deficiency of 
the pure channel effect can be represented as 

    ( ) ( ) ( )
2 2

1 1

ˆ ˆdetdet
1 1

HH
T T

N N
n nn n

od
= =

= − = −
∏ ∏

H H

h h

H H
H           (14) 

where nh is H ’s n-th column. For the tall Toeplitz channel 
matrix ˆ

TH , suppose 2

[1, ]arg max
t T tl L lm h∈= , and then 2 0mh > , 

the tall Toeplitz channel matrix ˆ
TH can be split into three 

submatrices as , 1 , , 2
ˆ ˆ ˆ ˆ, ,

TT T T
T T o T m T o

⎡ ⎤= ⎣ ⎦H H H H , where matrix 

, 1
ˆ T

T oH consists of the first ( )1m − rows of ˆ
TH , , 2

ˆ T
T oH has the 

last ( )TL m− rows, and ,
ˆ T

T mH  is of size N × N with mh on the 
diagonal entries. Therefore, we 
have , 1 , 1 , , , 2 , 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆH H H T H T
T T T o T o T m T m T o T o= + +H H H H H H H H . It is easy to 

show that ( ) ( )2
, ,

ˆ ˆdet
N

H T
T m T m mh=H H when N L> . Thus, we 

bound ( )det HH H as 
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   ( ) ( ) ( )( )2

, , [1, ]
ˆ ˆdet det = max

t T t

N
H H T

T m T m l L lh∈≥ H HH H (15) 

For the CFOs matrix, we notice 
that

2
1p

rα = , [ ]0,1, , 1p P∈ ⋅⋅⋅ − . In this case, we can show the 
upper bound of the (14) as 

( )
( )( )

( )
( )( )
( )( ) ( )

2 2

[1, ] [1, ]

2 2

[1, ]1

max max 11 1 1
max

t T t t T t

T

t t T tt

N N

l L l l L l

N N NL
l l L ll

h h
od

RLh RL h

∈ ∈

∈=

≤ − ≤ − = −
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
H  

(16) 
Note that RL  is the full diversity order, If we keep RL as a 
constant, and reduce the upper bound of ( )od H by decreasing 
N, i.e., the channel becomes more orthogonal, the upper 
bound of BER also becomes smaller, which indicates that LEs 
may achieve better BER performance with the full diversity 
order. Later, we will verify this theoretical claim by 
simulations. 
B. Capacity Analysis of the STFC  
To depict the capacity, one not only needs the capacity, but 
also the outage capacity, i.e. thC , a capacity threshold indicate 
the outage behaviour. In this section, we compare the outage 
capacity of ZF equalizer with that of MLE. The results can be 
easily extended to other LEs. Let us first consider the capacity 
when no channel state information is available at the 
transmitter, and the MLE is adopted at the receiver. Given the 
linear equivalent channel model in (7), the capacity achieved 
by MLE, i.e., mlC  is given as  

( ) ( )( )2
2log det 1 H

ml N nC I σ⎡ ⎤= +⎣ ⎦H H H         (17) 

When ZF equalizer is adopted at the receiver, the capacity 
of ZF equalizer givenH can be expressed as [8] 

( ) ( )( )2 1
2log det 1zf N nC I σ −⎡ ⎤= +⎣ ⎦H N           (18) 

where 2
nσ N is called the covariance matrix of the equivalent 

noise vector with 1,1 2,2 ,diag , , , N Nk k k⎡ ⎤= ⋅⋅⋅⎣ ⎦N , and ,i ik being 

the ( ),i i -th entry of matrix ( ) 1H −
=k H H . It is well known 

that ( ) ( )zf mlC C≤H H is always satisfied, and the difference 

between ( )zfC H and ( )mlC H for each realization ofH can be 
shown as  

( ) ( ) ( )( )( )†
2log 1

H

ml zfC C od− ≈ − −H H H          (19) 

This expression shows that the capacity difference between 
ZF and MLEs is also related to the od of the channel matrix. 
Similar to the discussion in the previous Section, we also 
consider the pure channel effect H here. We observe that 

as ( )( )† H
od H decreases, i.e., the inverse of the channel 

matrix is more orthogonal, the capacity gap between the ML 
and ZF equalizers decreases. 

In what follows, we will show that, with the ZF equalizer, 
the proposed STFC collects the same outage diversity as that 
of MLEs. The outage diversity order oG is defined as 

( )( )
( )SNR

log Prob  < 
lim

log SNR

th

o

C C
G

→∞
= −   ,            (20) 

If two cumulative density functions (CDFs) of channel 
capacities are in parallel, it can be shown that they have the 
same outage diversity [6]. In order to prove the proposed 
STFC of this paper with ZF equalizer achieves the same 
outage diversity as MLEs, we cite the results from [6] in the 
following theorem: 

Theorem 2: Given the system model in (7) with channel 
state information at the receiver but not at the transmitter, 
if ( )od ε≤H ,∀ H , and ( )0,1ε ∈ , then at high-SNR regime, 
ZF equalizers collect the same outage diversity as that of 
MLEs. 

Note that the condition in the Theorem 2 is the same as the 
condition in the Theorem 1. Similar to the verification for the 
full cooperative diversity, by taking advantage of the linear 
Toeplitz structure of the proposed STFC, it is ready to show 
that by utilizing the proposed STFC, ZF equalizers have the 
same outage diversity as that of MLEs. 
C. Complexity comparison between LEs and MLEs  
To quantify the complexity of different equalizers, we count 
the average number of arithmetic operations needed to 
estimate in (7). Using ZF equalizer in (9) as an example, the 
complexity results from computing ( )-1† H H=H H H H using the 

QR decomposition and calculating †yH .As shown in [9], if 
we considerH as a M × N matrix, ( )M R N L= × + , the number 
of real multiplications for ZF equalizer is 
( ) ( ) ( )3 2 2O N O N M O NM+ +   while the number of real 

additions is also ( ) ( ) ( )3 2 2O N O N M O NM+ + , ( )O ⋅ denotes the 
Landau notation. The optimum equalizer, MLE in (8), while 
enjoys the best performance, requires the highest complexity 
as well. As shown in [9], the number of arithmetic operations 
for the MLE in (8) is ( )NO MNx . 

V. SIMULATION 

To show the effect of the proposed STFC and ( )od H on the 
performance, we consider the N subcarriers ZP-OFDM 
systems with ZP accounts for 25% of the OFDM symbol 
duration undergoes Rayleigh channel. 

Fig. 4 shows the BER vs. Eb/N0 performance with R = 1, 2, 
respectively, under the same CFO, 0.3rqΔ = . The frequency-
selective channel order L is fixed to be 2. MMSE equalizer is 
adopted at the receiver. We observe that, without the 
proposed STFC, i.e., direct combining the 2-relays signals in 
the same frequency band at the destination, the 2-relays 
system only yields 3 dB power gain. The 2-relays BER vs. 
Eb/N0 curve without STFC is parallel to the 1-relay case, 
indicating no diversity is achieved. After adopting the 
proposed STFC, ( ) 1od ε≤ <H , the full cooperative diversity 
is achieved. We also notice that when ε is smaller as the N 
decreases, the BER performance of the proposed STFC gets 
better. This is consistent with the analysis, as shown in (16), 
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( )od H decreases with the decrease of N. When ε is smaller, 
the channel is more orthogonal, the upper bound of the BER 
performance also becomes smaller. In general, for LEs, a 
smaller ( )od H bound indicates higher coding gain while the 
diversity is the same. 
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Figure 4. Performance of MMSE equalizer for STFC cooperative ZP-OFDM 
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Figure 5: Average capacity for STFC cooperative ZP-OFDM 

Fig. 5 shows the average capacity of Rayleigh channel with 
and without proposed STFC for two relays cooperation, and N 
= 8. As shown in the figure, the proposed STFC slightly 
improves the system capacity, because of exploiting the linear 
structure of the channel. We notice that the ( )od H  gets 
smaller as the channel length decreases, and thus the capacity 
gets higher. This confirms the observation in (19) that, the 
capacity not only depends on SNR but also the channel 
orthogonality. The CDFs of the capacity ( )Prob  < thC C  with 
ZF and ML equalizer are depicted in Fig.6, with SNR = 25 
dB. We notice that, for the ZF equalizer (ZFE) case without 
STFC, the curve is not in parallel with the one of the MLE 
case, which means loss of outage diversity. By adopting the 
proposed STFC, the curve of the ZFE becomes parallel with 
that of MLE, which indicates that the proposed STFC 

achieves the same outage diversity as MLE. This is consistent 
with the Theorem 2 and our analysis in Section IV. B. 
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Figure 6: CDF of the capacity with and without the proposed STFC 

VI. CONCLUSIONS 

In this paper, we first designed an STFC for the cooperative 
ZF-OFDM system, with CFO and multipath channel, i.e., 
doubly time-frequency selective channel. Then, we showed 
the analytical upper bound of the channel orthogonality 
deficiency with the proposed STFC system, and illustrated 
how the change of channel factors affects the system 
performance in terms of the cooperative diversity and 
capacity. The proposed STFC improves the system capacity, 
by taking advantage of the linear structure of the cooperative 
ZP-OFDM system. According to the theoretical analysis and 
simulation results, only with linear equalizers, the proposed 
STFC achieved the same cooperative and outage diversity as 
those of MLEs, while significantly reduced the system 
complexity.  
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