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Chapter 1

Introduction

In the past decades, communication systems have been undergoing a fundamental
revolution. One of the most spectacular events is that the traditional wired connec-
tion is, to a great extent if not completely, being replaced by the wireless connection
at an exponential speed.

Wireless communication systems gained enormous popularity over wired sys-
tems mainly because they are in many applications much cheaper to implement.
Besides, in places where the environment hampers cable deployment, radio connec-
tion remains the only means for communication. Last but not least, wireless commu-
nication systems allow for mobile users. On the other side, it is more challenging for
a system engineer to maintain reliable communications over wireless (radio signal)
channels than over wired channels. The propagation paths are in most situations
hostile and unpredictable, and susceptible to even a small change in the environ-
ment. Signal processing techniques are therefore playing an extremely important
role to overcome these problems.

One of the most profound achievements of signal processing on the physical
layer might be orthogonal frequency division multiplexing (OFDM), which will be
the major research subject in this thesis. OFDM proved to be a superior solution
against multipath propagation, and is adopted in many contemporary communi-
cation protocols. Despite its numerous merits, the performance of OFDM is far less
satisfactory in a high mobility communication scenario, where the so-called Doppler
effect plays a significant role. In that case, traditional techniques, which are success-
fully utilized for channel estimation or equalization in a static environment, will
function incompetently or inflict more hardware expenses. Seeing the rapidly in-
creasing demand for high mobility communications, it is the imperative target of
this thesis to provide some effective and yet affordable solutions for these problems.

In the coming sections, we will first give a brief description of the radio character-
istics of the channel, with focus on the Doppler effect due to mobility. Afterwards, a
quick overview of the OFDM system will be given. At last, we will sketch the scope
of this thesis.
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Figure 1.1: A typical transmission scenario.

1.1 Wireless Fading Channels

1.1.1 Mobile Radio Propagation Characteristics

Mobile communication channels are characterized by two types of fading: large-
scale fading and small-scale fading. The latter is also simply referred to as ‘fading’
[77].

Large-scale fading represents the average signal power attenuation of the path
loss, which is mainly affected by prominent terrain contours, e.g., hills, forests, etc.,
between the transmitter and receiver. The statistics of large-scale fading provide a
means to compute an estimate of path loss as a function of distance. They are in
general relatively constant over time.

Small-scale fading is the major research interest in this thesis, which refers to
the dramatic changes in signal amplitude and phase over a short period of time.
Usually, the same radio wave sent by the transmitter travels in multiple paths, and
reaches the receiver at different time with different attenuation. As a result, the re-
ceived signal is a combination of these so-called multipath signals, which is very
sensitive for changes in the environment. For instance, depending on the distri-
bution of the intensity and relative propagation time of the radio waves and the
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bandwidth of the transmitted signal, even a slight variation in the spatial position-
ing between the transmitter and receiver can give rise to interference. Statistically,
the envelope of signals experiencing small-scale fading can be described by either
the Rayleigh probability density function (PDF) or the Rician PDF [76]. The former
is used when there are a large number of multiple reflective paths, and there is no
line-of-sight (LOS) component, while the latter is used when there is a dominant
non-fading component present, such as an LOS path.

Three basic mechanisms impact the signal propagation in a wireless communi-
cation system: reflection, diffraction and scattering. The channel undergoing these
physical phenomena manifests itself in the form of multipath. A typical transmis-
sion scenario is illustrated in Fig. 1.1.

As suggested in the figure, reflection occurs when a propagating electromagnetic
wave impinges upon an object, which has very large dimensions compared to the
wavelength of the propagating wave. Reflection occurs from the surface of the earth
and from buildings and walls.

Diffraction occurs when the radio path between the transmitter and receiver is
obstructed by a surface that has sharp irregularities. Thanks to diffraction, the radio
waves can still get propagated even when an LOS path between the transmitter
and the receiver is obstructed by an obstacle. At high frequencies, diffraction, like
reflection, depends on the geometry of the object as well as the amplitude, phase
and polarization of the incident wave at the point of diffraction.

Scattering occurs when the medium through which the wave travels consists of
objects with dimensions that are small compared to the wavelength, and where the
density of such small obstacles is high. Scattered waves are produced by rough
surfaces, small objects, or by other irregularities in the channel. In practice, foliage,
street signs and lamp posts induce scattering in a mobile communication system.

1.1.2 Channel Variation due to the Doppler Effect

Many physical factors in the radio propagation path influence channel fading. These
include:

• Multipath propagation - Due to the presence of reflections, diffraction and
scattering in the channel, the transmitted signal often produces multiple ver-
sions, which undergo different paths before arriving at the receive antenna.
These multiple versions are displaced with respect to one another in time and
spatial orientation, and thereby induce fluctuations and/or distortion when
added together at the receiver. Another important effect of multipath that
constantly plagues communication engineers is that it often takes longer for
the baseband signal to reach the receiver: the later version of the previous
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Figure 1.2: The Doppler shift.

symbol is added onto the early version of the next symbol, giving rise to as
inter-symbol interference (ISI).

• Velocity of the mobile - The relative motion between the base station and the
mobile results in a Doppler frequency shift, which can be positive or negative
depending on whether the mobile receiver is moving toward or away from the
transmitter. An example is given as follows

Example 1.1. Consider a mobile moving at a constant velocity v, along a path seg-
ment of length d between points X and Y. At the same time, it receives signals from
the transmitter S, as illustrated in Fig. 1.2.

The difference in path length ∆l, traveled by the wave from the base station S to the
mobile at points X and Y is

∆l = d cos θ = v∆t cos θ,

where ∆t is the time required for the mobile to travel from X to Y, and θ is assumed
to be identical at points X and Y since the transmitter is assumed to be far away. The
phase change in the received signal due to the difference in path length is

∆φ =
2π∆lfc

c
=

2πv∆tfc

c
cos θ,

with fc standing for the carrier frequency of the wave, and c the speed of light. The
Doppler shift, fd, defined as the rate of the phase change can be computed as

fd =
∆φ

2π∆t
=

v cos θ

c
fc. (1.1)
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Due to the Doppler effect, the carrier frequency of the signal is shifted. Besides,
if there are multiple Doppler shifts due to multipath, the spectrum of the signal
will therefore be expanded. We will see that this presents a serious problem in
OFDM.

• Velocity of surrounding objects - If objects in the channel are in motion, they
induce a Doppler shift as well. It is worth mentioning that the moving sur-
rounding objects bring a different behavior on the channel variation than a
moving mobile. This is reflected in the diverse shapes of the Doppler spec-
trum. For instance, if only the mobile is in motion, the Doppler spectrum will
be bathtub-shaped, while if there is a moving reflector in the environment, and
the receiver and transmitter are still, the Doppler spectrum will become bell-
shaped [106]. Note that for the same velocity, the maximum Doppler shifts due
to the moving surrounding objects can be twice as high as due to the moving
receiver (transmitter) alone.

• The bandwidth of transmitted signal - If the transmitted signal bandwidth is
greater than the coherence bandwidth of the channel, the received signal will
be distorted, but its power will not fluctuate too much. Here, the coherence
bandwidth is defined as the range of frequencies over which the channel can
be considered ‘flat’ [77]. Otherwise, if the transmitted signal has a narrow
bandwidth compared to the coherence bandwidth of channel, the power of
the received signal will change rapidly, but will not be distorted in time.

1.1.3 Impulse Response Model of the Channel and Its Approxima-
tion

The small-scale variations of the signal can be directly related to the impulse re-
sponse of the channel. The channel impulse response is the output of the channel
when a very brief signal, an impulse, is transmitted. Although this is impossible in
a real system since an impulse has an infinitely short duration, it is a useful concept
and contains all information necessary to simulate and analyze any radio transmis-
sion through the channel.

More specifically, we will model the channel as a time-varying (TV) finite im-
pulse response (FIR) filter. The filtering nature is due to multipath: different signals
arriving at the receiver at the same time are mixed together. The filter is assumed
to be of finite order because the transmitted signal in practice does not have infi-
nite duration, which means that the channel response ultimately settles to zero. The
time-variation is due to the Doppler effect as we discussed in the previous section.



6 1. Introduction

In the sequel, we will use delay spread to characterize the relative delay of the
last multipath component arriving at the receiver with respect to the first compo-
nent. As a dual, we will use Doppler spread to characterize the maximum Doppler
shift with respect to the carrier frequency. A combination of different situations of
the delay and Doppler spread leads to four types of channels:

• AWGN channel - an idealized situation where both the delay and Doppler
spread are zero.

• Time-selective channel - a channel with zero delay spread and non-zero Doppler
spread.

• Frequency-selective channel - a channel with non-zero delay spread but zero
Doppler spread.

• Doubly-selective channel - a channel that is non-zero in both the delay and
Doppler spread.

Although the TV FIR filter model provides a quite precise perception of a realistic
channel, in practice, it can be still too cumbersome to utilize especially in the con-
text of channel estimation. To this end, a parsimonious model that can capture the
channel time-variation proves often useful. For instance, [116, 27] uses a first-order
Markovian Model to approximate Rayleigh fading channels. For a block-wise trans-
mission scheme like OFDM as dealt with in this thesis, a block model such as the
basis expansion model (BEM) [110] can be more suitable. The BEM fits the channel
taps with a superimposition of weighted basis expansion functions. The weighting
parameters, referred to as the BEM coefficients in this these, remain constant within
the duration of the block, and are usually much fewer in number than the channel
taps. Some widely used BEMs will be introduced in the next chapter.

1.2 Orthogonal Frequency-Division Multiplexing

The mobile channel is characterized by multipath, giving rise to ISI at the receiver.
To prevent a significant performance degradation, one solution is to deploy a prop-
erly designed filter at the receiver that counteracts ISI. On the other hand, from a
practical point of view, it is desired that the receiver (in many situations the mobile
handheld) be designed as simple as possible, and that the transmitter (in many sit-
uations the base station) should cover most of the hardware expenses. Orthogonal
frequency-division multiplexing (OFDM) is devised for this purpose.

Due to its robustness against ISI and simplicity in hardware implementation,
OFDM has found widely applications in numerous communication systems. Amongst
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Figure 1.3: Comparison of FDM and OFDM: (a) conventional FDM, and (b) OFDM.

others, these include digital audio broadcasting (DAB), terrestrial digital video broad-
casting (DVB-T), wireless LAN systems such as IEEE 802.11 and ETSI HiperLAN/2.
In cable access networks, OFDM is also adopted for asymmetrical digital subscriber
lines (ADSL) and very high bit rate digital subscriber lines (VDSL). In a future wire-
less access standard, IEEE 802.16, which is also referred to as worldwide interoper-
ability microwave access (WIMAX), OFDM is adopted in the definition of the phys-
ical and medium access control (MAC) layers.

1.2.1 Overview of OFDM

OFDM is a special case of multicarrier transmission, where several signals are trans-
mitted simultaneously at a lower rate over separate channels, or in other words sub-
carriers. These subcarriers are supposed not to interfere with each other, and thus
we are able to recover the transmitted signal individually from each subcarrier. This
leverages a great hardware complexity reduction at the receiver.

In addition, OFDM increases the robustness against frequency-selective fading.
In a single-carrier system, where the transmitted signals share the same frequency
band, just one fade can cause the entire link to fail, but in a multicarrier system, only
a small percentage of the subcarriers will be affected. Although this could imply that
the signals transmitted through these subcarriers are corrupted, it is still possible to
recover them from the other transmitted signal by means of error-correction coding
for instance.

The concept of using parallel data transmission can be dated back to the 1960s,
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Figure 1.4: Block diagram of OFDM.

when frequency-division multiplexing (FDM) emerged [83]. In the classical FDM
scheme, the total frequency band is divided into N non-overlapping frequency sub-
channels, as shown in the upper panel of Fig. 1.3, where each subchannel is mod-
ulated with a separate signal. Spectral redundancy is introduced in FDM to avoid
interchannel interference, but leads to spectrum inefficiency. In contrast, the sub-
carriers in OFDM are allowed to overlap, as shown in the lower panel of Fig. 1.4,
thereby making use of the spectrum much more efficiently. In spite of overlapping,
the subcarriers in OFDM can still be free from mutual interference. This is achieved
by designing the position and shape of the subcarriers properly such that they are
mathematically orthogonal to each other.

Fig. 1.4 illustrates the process of an OFDM system. In the figure, (I)FFT stands for
(inverse) fast Fourier transform, and CP for cyclic prefix. Inserting a CP is an indis-
pensable step in combating the ISI. It boils down to appending the last Lz symbols
of the transmitted stream to the beginning. At the receiver, the CP is discarded by
cutting off the first Lz symbols of the received stream. To eliminate ISI completely, it
is required that Lz is not shorter than the FIR length of the channel. Besides CP, it is
also possible to introduce other forms of transmitter redundancy, e.g., zero padding
(ZP) [35, 86, 87, 117] or known symbol padding (KSP) [25, 79].

One of the major disadvantages of OFDM is the high peak-to-average power
ratio (PAR) at the transmitter due to the fact that an OFDM symbol is a summation
of a large number of modulated subcarriers. Even with a low level modulation such
as quaternary phase shift keying (QPSK) on each subcarrier, the PAR can still be
far beyond the dynamic range of a practical transmitter power amplifier. A single-
carrier system with a frequency-domain equalizer can avoid this problem, and at the
same time eliminate ISI without inducing a large complexity increase. We will call
such a scheme simply a single-carrier system in the thesis, but bear in mind that its
channel equalization is implemented in the frequency domain. The block diagram
of such a single-carrier system is depicted in Fig. 1.5, where, compared to Fig. 1.4,
one can easily observe that the IFFT is shifted from the transmitter to the receiver.
Although this will inevitably increase complexity at the receiver, it is still attractive
since the IFFT can nowadays be very efficiently implemented. Other advantages
and differences of the single-carrier system with respect to OFDM can be found in
[118, 72].
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Figure 1.5: Block diagram of the single-carrier system.

1.2.2 Challenges due to the Fast Fading Channel in OFDM

In this thesis, we will primarily consider the following problems due to the fast
fading channel, which undermines the reliability of the OFDM transmission.

Intercarrier Interference

In a time-invariant (TI) channel, the signals modulated on different subcarriers will
not interfere with each other due to the orthogonality among the subcarriers. In a
time-varying (TV) channel, the Doppler spread expands the signal frequency band,
and ruins this orthogonality, resulting in inter-carrier interference (ICI).

The existence of ICI prevents the use of a simple equalizer at the receiver. Since
each subcarrier is contaminated by the signals from neighboring subcarriers, it is
not possible to recover the transmitted signals by simply inverting the channel on
each subcarrier. A similar problem arises in the single-carrier system if we want to
equalize the channel in the frequency domain. The cost required for a traditional
equalizer to annihilate the ICI completely will be at least cubic in the total number
of subcarriers, which is too expensive if they are numerous.

Limited Coherence Time

Another important constraint as a consequence of the Doppler spread is the much
reduced channel coherence time. In a low-mobility situation, it is often reasonable
to assume a constant channel during the transmission of at least one block, which
means that the ICI is almost negligible, but this assumption becomes invalid for
channels that vary faster.

Besides the increased complexity for equalization, ICI inflicts more difficulties in
channel estimation. First, more channel parameters need to be estimated. Because
the TV channel has a different realization at every time instance, it is not uncommon
that the number of channel unknowns can supersede the number of observation
samples. Although this problem can be alleviated by applying some parsimonious
model on the channel as we will introduce in the next chapter, TV channel estima-
tion remains far more problematic compared to TI channel estimation. Besides, if
we use pilots in OFDM systems for channel estimation, due to ICI, it is practically
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impossible to find those observation samples that are solely dependent on pilots
and thus not contaminated by unknown data symbols.

Another problem related to the limited coherence time is that it is hard to gather
a large amount of observation samples that are relevant to channel estimation. Such
a large amount of relevant observation samples are extremely useful to increase the
estimation precision. For instance, they are used in subspace-based blind channel
estimation to reconstruct a reliable subspace where the channel resides [68, 1, 125].
In TV channels, such methods are more difficult to apply [55].

Inter-symbol Interference

OFDM is devised to combat ISI. In the context of this thesis where the channel equal-
ization is implemented in the frequency domain for both the OFDM and single-
carrier systems, ISI can still emerge in disguise of ICI and inter-block interference
(IBI). The former is caused by the Doppler spread or frequency offset [66], while the
latter often arises when the channel is fairly long, and it is not affordable to accom-
modate a sufficiently long CP due to bandwidth constraints.

Apart from the above research challenges, there are also other issues that are inter-
esting but are not treated in this thesis.

Diversity due to Time-Selectivity

As a knife has two blades, the Doppler spread can also be exploited to improve the
performance of a communication system. With the frequency band expanded, the
information of the transmitted signal is spread out, and is therefore less suscepti-
ble to failure if the fading only hits part of the frequencies. This phenomenon is
well known as diversity. Compared to the diversity offered by space [4], frequency-
selectivity [118], or both (see [52] and the references therein), the Doppler diversity
is less commonly put in the spotlight except in [85, 60, 61].

MIMO Setup

Multi-input multi-output (MIMO) systems have received enormous attention re-
cently thanks to the feature that they are able to provide a more reliable or higher
capacity link under the same total transmit power constraint.

The issue of MIMO can be related to diversity as how to optimally distribute in-
formation among multiple transmit antennas. In spite of its robustness, the MIMO
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system requires often a high-complexity channel equalizer and estimator. Also, syn-
chronization of the received signals from different transmit antennas is a huge chal-
lenge for system designers.

1.3 Thesis Survey and Contributions

The remainder of this thesis is organized as follows.
In Chapter 2, we present the background knowledge that is going to be used

throughout the thesis. We first introduce wireless setups and show how the channel
models and input-output (I/O) relationships are derived. Subsequently, we intro-
duce the idea of a BEM to approximate the TV channel, and its different realizations.
In the last part of Chapter 2, we present different OFDM and single-carrier schemes
that will be investigated as well as their data models.

In Chapter 3, we show how to construct a low-complexity channel equalizer for
OFDM. We will exploit the fact that under a realistic Doppler spread, most of the
ICI stems from the adjacent subcarriers. This implies that the channel matrix in the
frequency domain is approximately banded. Utilizing this banded structure, we
can lower the complexity of the channel equalizer by employing some numerical
techniques. The out-of-band entries that are neglected by the equalizer give rise to
a high noise floor in performance. In order to maximally suppress their impact, a
receiver window is deployed.

The publication that is associated to this chapter are the following:

• Z. Tang and G. Leus, “A Novel Receiver Architecture for Single-Carrier Trans-
mission over Time-Varying Channels”, manuscript submitted to IEEE Journal
on Selected Areas in Communications (JSAC), 2007.

Constructing the channel equalizer requires channel state information (CSI), which
is attained in this thesis by means of pilot-aided channel estimators. This subject is
treated in Chapter 4. Although the pilots can be interleaved with data in the fre-
quency domain, it is impossible to find observation samples that are solely depen-
dent on the pilots and free from the interference induced by the unknown data sym-
bols. It is thus of great significance to select observation samples wisely. It turns out
that different types of channel estimators call for different approaches to optimally
select the observation samples.

The publications that are associated to this chapter are the following:

• Z. Tang, R. C. Cannizzaro, G. Leus and P. Banelli, “Pilot-Assisted Time-Varying
Channel Estimation for OFDM Systems”, in IEEE Transactions on Signal Process-
ing, Page(s):2226 - 2238, Volume 55, Issue 5, May 2007.
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• Z. Tang, R. C. Cannizzaro, G. Leus and P. Banelli, “Pilot-Assisted Time-Varying
OFDM Channel Estimation”, in Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP 2006), Page(s):IV-133 - IV-
136, Volume 4, May 2006.

The channel estimation in Chapter 4 is based on a single OFDM symbol. De-
spite the short coherence time of the TV channel, it can be still beneficial to apply
channel estimation based on multiple OFDM symbols. An issue then arises as to
what the best strategy is to distribute the pilots along the frequency axis as well as
the time axis. Diverse pilot placement schemes are studied and compared in Chap-
ter 5. Besides, Chapter 4 does not consider channel identifiability. This issue is also
discussed in Chapter 5, which is generalized to a multiple OFDM symbol case.

The publications that are associated to this chapter are the following:

• Z. Tang, G. Leus and P. Banelli, “Time-Varying Channel Estimation - A Block
Approach”, Chapter in Wireless Communications over Rapidly Time-Varying Chan-
nels (F. Hlawatsch and G. Matz ed.) approved by Academic Press.

• Z. Tang and G. Leus, “Pilot Schemes for Time-Varying Channel Estimation
in OFDM Systems”, in Proceedings of the IEEE Workshop on Signal Processing
Advances in Wireless Communications (SPAWC 2007), June 2007.

• Z. Tang, G. Leus and P. Banelli, “Pilot-Assisted Time-Varying OFDM Chan-
nel Estimation Based on Multiple OFDM Symbols”, in Proceedings of the IEEE
Workshop on Signal Processing Advances in Wireless Communications (SPAWC 2006),
June 2006.

Chapter 6 discusses how to build a frequency-domain (FD) equalizer for a single-
carrier system, which is plagued by both ICI and IBI. In principle, the band assump-
tion with aid of windowing can also be employed here to lower the complexity, as
discussed for OFDM in Chapter 3. In addition, we propose in this chapter to in-
troduce some receiver redundancy, which is unique to the single-carrier system and
allows the FD equalizer to benefit from a better resolution of the Doppler spread. As
a result, the out-of-band interference can be further considerably reduced. Because
the redundancy is introduced at the receiver, the data rate is not compromised.

The publications related to this chapter are the following:

• Z. Tang and G. Leus, “A Novel Receiver Architecture for Single-Carrier Trans-
mission over Time-Varying Channels”, manuscript submitted to IEEE Journal
on Selected Areas in Communications (JSAC), 2007.

• Z. Tang and G. Leus, “Receiver Design for Single-Carrier Transmission over
Time-Varying Channels”, in Proceedings of the IEEE International Conference on
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Acoustics, Speech and Signal Processing (ICASSP 2007), Page(s):III-129 - III-132,
Volume 3, April 2007.

In Chapter 7, we discuss how to attain the CSI in a single-carrier system. Pilots
are interleaved with data symbols in the time domain. In the traditional approaches,
because the time-domain (TD) channel matrix is strictly banded due to the FIR as-
sumption, only those observation samples that are exclusively dependent on pilots
are selected for channel estimation. However, it is also possible to deliberately in-
troduce some interference by including more observation samples. In this way, the
noise can be better averaged out, while the interference can be suppressed by em-
ploying appropriate channel estimators. Note that this is especially significant to TV
channel estimation, for which usually a much larger number of channel unknowns
need to be estimated. Further, channel identifiability for a single-carrier system is
discussed in this chapter.

The publication that is associated to this chapter are the following:

• Z. Tang, G. Leus and P. Banelli, “Time-Varying Channel Estimation - A Block
Approach”, Chapter in Wireless Communications over Rapidly Time-Varying Chan-
nels (F. Hlawatsch and G. Matz ed.) approved by Academic Press.

Like in OFDM, the pilot structure also plays an important role to the channel
estimation performance in a single-carrier system. In Chapter 8, we try to find an
optimal pilot structure for a simpler situation, the time-selective channel. We prove
that the mean squared error (MSE) of the channel estimator is a convex function
of the pilot powers but not in the pilot positions. The problem can be resolved
by optimizing the pilot powers and positions iteratively. To expedite the searching
time, we propose to impose a symmetric constraint on the pilot structure, which is
inspired by the BEM structure that is used to approximate the TV channel.

The publication that is associated to this chapter is the following:

• Z. Tang and G. Leus, “Time-Multiplexed Training for Time-Selective Chan-
nels”, accepted for publication in IEEE Signal Processing Letters, 2007.

Besides the above topics that are presented in this thesis, other contributions
have been made in the following publications:

• Z. Tang and G. Leus, “Low-Complexity Equalization of Time-Varying Chan-
nels with Precoding”, in IEEE Transactions on Signal Processing, Page(s):3642 -
3648, Volume 54, Issue 9, September 2006.

• Z. Tang and G. Leus, “A Receiver Architecture for Maximum Diversity Trans-
missions over Doubly-Selective Channels”, in Proceedings of IEEE Workshop on
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Signal Processing Advances in Wireless Communications (SPAWC 2005), Page(s):
171 - 175, June 2005.

• Z. Tang and G. Leus, “RLS Direct Equalizer Estimation with Assistance of Pi-
lots for Transmissions over Time-Varying Channels”, in Proceedings of the Eu-
ropean Signal Processing Conference (EUSIPCO), September 2005.



Chapter 2

Preliminaries

Prior to presenting the main contributions of the research, we first introduce in this
chapter some background concepts and ideas, which will be used throughout the
remainder of the thesis.

In Section 2.1, we first briefly describe how wireless transceivers are built up,
and then introduce the mathematical model of the channel, which takes the filtering
characteristics of the transmitter and receiver into account. Special attention is paid
to the time-varying feature of the channel.

In Section 2.2, we introduce the idea of using parsimonious channel models,
namely the basis expansion model (BEM), to approximate TV channels. The model-
ing performance of various BEMs is compared.

Block transmission techniques and their corresponding data models are pre-
sented in Section 2.3, which consists of two parts: the OFDM and single-carrier
systems. It is also shown that depending on the specific forms of redundancy at the
transmitter, we can obtain different variants of OFDM and single-carrier systems.

2.1 A Digital Wireless Communication System Archi-
tecture

In this section, we will take a brief tour going through the major elements of a
wireless communication system. This implies that not each step of the transmis-
sion/reception will be cast to spotlight. For instance, we will begin our tour directly
from the point where the data stream is fed to the transmit filter. Before reaching
that point, the original information stream, which is usually in binary form, may
have already undergone several steps such as channel encoding, interleaving, and
mapping [9]. These steps, despite their significance to the overall system perfor-
mance, will not be reviewed here in light of their irrelevance to the results that will
be presented in this thesis. For the same consideration, we will end our tour at
the decimator, thus skipping the subsequent procedures such as channel decoding,
de-interleaving and demapping.
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Figure 2.1: A typical transmitter structure.

2.1.1 Transmitter Structure

A typical transmitter structure is illustrated in Fig. 2.1. Let us use xn to denote the
sequence of data symbols that have been mapped to a certain constellation. This
(discrete-time) data sequence is fed through a pulse-shaping transmitter filter with
impulse response gtr(t), resulting in the (continuous-time) complex baseband signal
x(t):

x(t) =
∞∑

n=∞
gtr(t− nT )xn, (2.1)

where 1/T stands for the data rate. The bandwidth occupied by x(t) depends on the
specific choice of the pulse gtr(t), which is required to have a minimum bandwidth
W = 1/T in order to allow for an error-free reconstruction of xn from the signal
x(t) according to the Nyquist criterion. In many practical systems, the raised-cosine
pulse is adopted [76]:

gtr(t) =
sin(πt/T )

πt/T

cos(απt/T )
1− (2αt/T )2

, (2.2)

where the parameter α is called the roll-off factor that takes a value between 0 and
1. The bandwidth of gtr(t) is determined by α as W = (1 + α)/T . Although a pulse
with a small bandwidth is desired from the point of view of bandwidth efficiency,
other problems can arise in practice. For instance, the sidelobes of the pulse in the
time domain will be higher and attenuate more slowly for a smaller α as exhibited in
Fig. 2.2. Correspondingly, the signal power will be further dissipated to neighboring
time intervals, which makes the system more susceptible to ISI degradation for just
a small timing error.

The complex baseband signal is next modulated on the carrier frequency fc. In
mathematics, it is multiplied by a complex exponential ej2πfct. This multiplication
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Figure 2.2: Impulse response of the raised-cosine pulse.
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Figure 2.3: A typical receiver structure.

shifts the spectrum of the complex baseband signal from DC to fc. The real part of
the resulting signal is transmitted by the antenna over the air interface.

2.1.2 Receiver Structure

It is the task of the receiver to recover the baseband signal x(t) from the received
signal y(t). In general, y(t) contains not only the desired information transmitted
at the carrier frequency fc, but also information from other applications and users
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operating at other carrier frequencies. To minimize interference, one solution is pre-
sented in Fig. 2.3, where the spectrum of the incoming signal is first shifted to the
left by multiplying the received signal with a complex exponential e−j2πfct. By this
means, the spectrum of the desired baseband signal will be located in a bandwidth
W centered around DC. In order to remove the interference beyond the desired
bandwidth, we feed the signal next to a low-pass filter. The resulting signal stream
y(t) is related with yc(t) as

y(t) =
∫ ∞

−∞
grec(t− τ)yc(τ)e−j2πfcτ dτ, (2.3)

where grec(t) stands for the low-pass filter at the receiver.

2.1.3 Channel and Discrete Baseband Model

Due to the multipath mechanism as described in Chapter 1, radio waves impinge
upon the receiving antenna in different angles, and experience different phase shifts
and attenuation. Let us group the radio waves that arrive with the same delay in one
cluster, with each component of the same cluster characterized by its own complex
gain and phase shift [45]. As a result, the physical channel can be modeled as an
aggregate of several such clusters:

gch(t, τ) =
∑

c

δ(τ − τc)
∑
w

Gc,wej2πfc,wt, (2.4)

where τc stands for the delay of the cth cluster, and Gc,w and fc,w represent the
complex gain and frequency offset of the wth ray of the cth cluster, respectively.

With this physical channel model, we can associate the transmitted discrete sym-
bol stream xn in (2.1) with the received signal y(t) in (2.3) as

y(t) =
∞∑

l=−∞
h(t, t− lT )xl + v(t), (2.5)

where v(t) represents the additive noise; h(t, τ) stands for the composite channel
that takes the transmitter filter, the physical channel, and the receiver filter into ac-
count:

h(t, τ) :=
∫ ∞

−∞

∫ ∞

−∞
grec(s)gtr(τ − θ − s)gch(t− s, θ) ds dθ. (2.6)

By assuming that the physical channel remains static during the span of the receive
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filter grec(t), we can replace gch(t− s; θ) by gch(t; θ) in the above, which leads to

h(t, τ) =
∫ ∞

−∞

(∫ ∞

−∞
grec(s)gtr(τ − θ − s) ds

)
gch(t, θ) dθ,

=
∫ ∞

−∞
ψ(τ − θ)gch(t, θ) dθ,

=
∑

c

ψ(τ − τc)
∑
w

Gc,wej2πfc,wt, (2.7)

where ψ(t) represents the convolution of gtr(t) with grec(t).
In the sequel, we will simply use “channel” to refer to the joint effect of the

transmitter filter, the physical propagation channel and the receiver filter. Suppose
that the bandwidth of the channel is smaller than 1/T , then sampling at the symbol
rate T is sufficient to avoid aliasing in terms of the Nyquist criterion (otherwise, we
need to increase the sampling rate). In that case, the discrete-time received signal yn

can be defined as
yn = y(nT ), (2.8)

and the discrete channel input/output (I/O) relationship can be expressed as

yn =
∞∑

l=−∞
hn,n−lxl + vn, (2.9)

where vn is similarly defined as yn. The baseband discrete-time channel is repre-
sented by hn,l, where the subscript n stands for the time index, and the subscript l

corresponds to the delay of the filter:

hn,l =
∑

c

ψ(lT − τc)
∑
w

Gc,wej2πfc,wnT . (2.10)

In practice, it is more convenient to use hn,l directly as an abstraction of the
channel rather than use its cumbersome structure on the right-hand side (RHS) of
(2.10). This is especially true seeing that in a realistic communication system, most
of the channel power is concentrated within a limited time interval, which implies
that the channel has a limited support, say L+1. In addition, by taking the causality
of the transmission process into account, we can further simplify the channel to an
FIR filter with hn,l = 0 if l < 0 or l > L. As a result, (2.9) can be written as

yn =
L∑

l=0

hn,lxn−l + vn. (2.11)

The notation hn,l is typically used to denote doubly-selective channels, which can
be viewed as a generalized description of various channel situations. For instance,
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time-selective channels correspond to the special case where L = 0, resulting in

hn,l = hn, (2.12)

while the notation of frequency-selective channels degrades to

hn,l =
L∑

m=0

δl−mhl, (2.13)

where δn denotes the Kronecker delta, which equals one if n = 0, or zero otherwise.

2.2 Channel Time-Variation and BEM Approximation

It is understood that TV channels occur when the communicating parties and/or the
scatterers in the environment are moving. This is reflected in (2.10), where hn,l varies
with the time index n due to the non-zero Doppler frequency shifts fc,w. Recall
from (1.1) that fc,w is linear function of the velocity v, and the carrier frequency fc.
To characterize how fast the channel varies, we use in the sequel the normalized
Doppler spread νD, which is defined as

νD = fmaxT (2.14)

with fmax denoting the maximum absolute Doppler frequency shift

fmax := max
c,w

|fc,w|. (2.15)

Statistically, TV channels can be described by their Doppler spectrum defined as

Eh{hp,lh
∗
p−n,l} = σ2

l γn, (2.16)

where
σ2

l := Eh{hp,lh
∗
p,l}, (2.17)

and γn characterizes the shape of the Doppler spectrum. For instance, if the Doppler
spectrum is bathtub-shaped,

γn = J0

(
2π

fcv

c
T |n|), (2.18)

where J0(·) is the zero-order Bessel function of the first kind. Such a bathtub-shaped
Doppler spectrum is better known as Jakes’ spectrum. If the Doppler spectrum is
bell-shaped [106], then

γn =
∫ ∞

0

J2
0

(
2π

fcv

c
T |n|)p(v) dv, (2.19)
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where p(v) is the distribution function of the scatterer velocity v. In practice, one
might observe a mixture of the above two spectrum. The statistics assumed in these
channel models are uniquely determined by physical propagation parameters such
as the path delays, frequencies and complex attenuation etc [45]. Despite their accu-
racy, these statistical models are generally bulky and difficult to handle. Therefore,
many existing works resort to a parsimonious channel model such as the basis ex-
pansion model (BEM).

The BEM is especially useful to reduce the number of channel parameters in the
context of block transmission as we will address in the next section. For a block
transmission that spans N symbol times, the whole channel will be uniquely char-
acterized by N(L + 1) parameters with L denoting the channel order because each
channel tap has a different realization at each time instance. Suppose hl stands for
an N × 1 vector that collects the time-variation of the lth channel tap from the 1st
until the N th time instance:

hl := [h0,l, · · · , hN−1,l]T , (2.20)

then each hl, for l = 0, · · · , L, can be expressed in terms of a BEM as

hl =
[
b0 · · · bQ

]
Q︸ ︷︷ ︸

B




c0,l

...
cQ,l




︸ ︷︷ ︸
cl

+δl, (2.21)

where the N×1 vector bq is termed as the qth expansion basis; cq,l is the correspond-
ing BEM coefficient. δl stands for the BEM modeling error. Note that the definition
above is a bit different than in the literatures due to the presence of a (Q+1)×(Q+1)
matrix Q. It is added here to make the columns of B orthonormal to each other∗:

BHB = IQ+1. (2.22)

Despite Q, we will follow the tradition in the sequel and call bq as the qth basis
expansion function. By introducing the BEM in (2.21), we are able to decompose
the TV channel into an ideal “BEM channel” and its corresponding error. The BEM
channel is comprised of the BEM matrix B, which can in principle be designed to
be independent of the channel, and the BEM coefficients cq,l, whose values are de-
termined by the specific channel realizations. Apparently, if N > Q + 1, B will be
a “tall” matrix, and the BEM modeling error δl will seldom be zero. However, by

∗This step is optional, and basically will not influence the BEM modeling error.
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optimally designing the BEM matrix, we can yet reduce the BEM modeling error to
a negligible level such that

hl ≈ Bcl. (2.23)

Note that apart from the BEM, it is also possible to use a Gauss-Markov pro-
cess to simulate the channel dynamics [27]. Such a model is interesting for sequen-
tial time-domain processing. When we deal with block transmission/precoding
schemes as in this thesis, it is often more convenient to use a block-based channel
model like a BEM.

Discrete Karhunen-Loève BEM (DKL-BEM)

The DKL-BEM is optimal in terms of the mean squared error (MSE) [114, 120, 41,
105] of the BEM. To generate the DKL-BEM, we first construct a kernel matrix C,
which is the normalized covariance matrix of any channel tap:

C = Eh{hlhH
l }/σ2

l . (2.24)

Afterwards, we select bq as the qth most significant eigenvector of C,

Cbq = λqbq, (2.25)

where λq stands for the qth eigenvalue of C, which are sorted in a descendent order.
The DKL-BEM is in essence a reduced-rank decomposition of the Doppler spectrum,
which could be the bathtub-shaped or bell-shaped spectrum.

Discrete Prolate Spheroidal BEM (DPS-BEM)

A weakness of the DKL-BEM is that it relies on the knowledge of the channel statis-
tics. If the assumed knowledge deviates from the true scenario, which is highly
likely in the case of TV channels, the DKL-BEM will perform sub-optimally. As a
compromise, one can derive a BEM that is based on a general approximation for
all kinds of channel statistics. For instance, the DPS-BEM corresponds to the DKL-
BEM with a rectangular spectrum assumption [122]. To be more specific, the kernel
matrix C for the DPS-BEM is defined as

[C]m,n = Eh{hm,lh
∗
n,l}/σ2

l ≈
sin

(
2π(m− n)νD

)

π(m− n)
, (2.26)

from which bq is retained as the qth most significant eigenvector of C. Note that by
adopting such a kernel matrix, the resulting bq is actually a finite-length approxima-
tion of an infinite-length Slepian sequence [95] denoted as b̃q := [b̃−∞, · · · , b̃∞]. b̃q

enjoys the merit that most of its power is concentrated within the interval 0, · · · , N−
1, and it is strictly band-limited to the maximum Doppler bandwidth νD.
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Complex Exponential BEM (CE-BEM)

From (2.10), it is clear that the TV channel can also be viewed as a summation of
Q + 1 paths, each path consisting of a TI component and a TV component in the
form of a complex exponential [110, 19]:

hn,l =
Q∑

q=0

ejωqncq,l, (2.27)

and hence the qth expansion basis admits the expression as

bq = [1, · · · , ejωqn, · · · , ejωq(N−1)]T . (2.28)

In the above, ωq stands for the Doppler frequency associated with the qth path. We
observe that this CE-BEM falls not in our flavor of BEM designs in that the basis
function itself depends on the channel. Although the Doppler frequency is further
approximated in [36] as

ωq ≈ 2π
νD

T
cos(2π

q + 1
Q + 1

), (2.29)

it is still not convenient to use in practice. Besides, (2.27) is based on the assumption
that there are a large number of scatterers, which implies that to enable a precise
model, the number of paths Q in the CE-BEM must be very high (more than ten).
Some more practical variants of the CE-BEM will be discussed as below.

Critically-sampled CE-BEM [(C)CE-BEM]

The (C)CE-BEM uses complex exponentials, whose period equals the block size N ,
to construct the BEM matrix [39, 60, 59, 55, 47]. By defining its qth expansion basis
as

bq = [1, · · · , ej 2π
N n(q−Q

2 ), · · · , ej 2π
N (N−1)(q−Q

2 )]T , (2.30)

we understand that the (C)CE-BEM is in essence the truncated Fourier expansion,
which picks up the first Q + 1 frequency elements in the Doppler spectrum that are
located symmetrically around the zero frequency (DC).

Note that it is also possible to interpret the basis expansion functions of the
(C)CE-BEM as the most significant eigenvectors of a covariance matrix C, just like
the case of the DKL-BEM and DPS-BEM. In this case, C must obviously be some
circulant matrix, which is not realistic of course. This intuitively explains why the
modeling performance of the (C)CE-BEM is inferior to that of the DKL-BEM and the
DPS-BEM.

Despite the fact that it is not always a tight model, the (C)CE-BEM is one of the
BEMs that were initially studied for modeling simplifications. It gained most of its
popularity due to the following property.
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Property 2.1. Let Eq denote a permutation matrix, which is obtained from an identity
matrix by shifting its columns circularly q-times to the right; WN stands for the N -point
DFT matrix [WN ]m,n = 1/

√
Nej 2π

N mn, It can be shown that the qth expansion basis vector
bq of the (C)CE-BEM satisfies

WND{bq}WH
N = Eq−Q

2
, (2.31)

where D{bq} denotes a diagonal matrix with bq as its diagonal.

Proof. With the definition in (2.30), bq corresponds to one of the rows (columns)
of WN . Due to its circularity, each row of WN , when right multiplied by D{bq},
becomes just another row, and hence WND{bq} is related with WN with all the
rows permuted,

WND{bq} = Eq−Q
2
WN . (2.32)

Substituting the above in the left-hand side (LHS) of (2.31), and understanding that
WN is a unitary matrix, we complete the proof. ¤

Oversampled CE-BEM [(O)CE-BEM]

A major weakness of the (C)CE-BEM is its poor modeling performance. As an im-
provement, the CE-BEM that is used in [107, 53, 21] is obtained by selecting the
complex exponentials with a period that is larger than the block size, i.e.,

bq = [1, · · · , ej 2π
K n(q−Q

2 ), · · · , ej 2π
K (N−1)(q−Q

2 )]T , (2.33)

with K > N . Such a BEM is called as an oversampled CE-BEM in the thesis.
Compared to the (C)CE-BEM, the (O)CE-BEM uses 2π(q − Q

2 )/K as a better ap-
proximation of ωq in (2.28), which renders a much tighter fit. However, Property 2.1
loses its validity.

Polynomial BEM (P-BEM)

In the world of numerical analysis, the most conventional approximation method
consists of using polynomials [22]. The underlying consideration is that if the chan-
nel time-variation is smooth enough (in continuous form), it can be represented by
the leading derivative terms using e.g., a Taylor series expansion. This idea is re-
flected in the BEM design of [10] and its application can be found in [11, 108]. In
discrete form, the P-BEM matrix is constructed as

bq = [(−N − 1
2

)q, · · · , (
N − 1

2
)q]T . (2.34)
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Figure 2.4: BEM Modeling Performance

Like the (O)CE-BEM, which can also be viewed as a special polynomial in trigono-
metric form, the P-BEM serves purely as an approximation/interpolation method,
and does not really admit a physical interpretation related to the Doppler frequency.

Other BEM Options

Other BEM designs than the above are also reported in various works. For instance,
[121] uses a spline approach. Besides, it is also possible to combine the above BEMs
for different purposes [96, 70, 38].

BEM Modeling Performance Comparison

To conclude this section, we compare in Fig. 2.4 the modeling performance of the
DKL-, DPS-, (C)CE-, (O)CE- and P-BEM. For the simulation, we generated TV chan-
nels following Jakes’ model [124]. The other simulation parameters are N = 256,
Q = 4, and K = 512 for the (O)CE-BEM, which is twice the block size. As a per-
formance criterion, we use the normalized mean squared error (NMSE), which is
defined as

NMSE =
Eh{‖hl −Bcl‖2}

Nσ2
l

. (2.35)
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It is easy to observe from Fig. 2.4 that the DKL-BEM yields the best modeling per-
formance while the (C)CE-BEM yields the worst. The P-BEM is tight for slowly
varying channels but loses track if the channel varies faster. As a good compromise,
the DPS-BEM and the (O)CE-BEM render a relatively robust modeling performance.

2.3 Block Transmission Techniques

2.3.1 CP-OFDM System Model

In OFDM transmissions, the data symbol sequence† sn is grouped in blocks of size
N , producing

s(i) := [siN , · · · , s(i+1)N−1]T (2.36)

for the ith block. Prior to transmission, s(i) is first applied to an IFFT, and afterwards
a cyclic-prefix (CP) of length Lz is added. This results in an (N + Lz)× 1 vector

x(i) := [xi(N+Lz), · · · , x(i+1)(N+Lz)−1]T , (2.37)

which is related to s(i) as
x(i) := TcpWH

N s(i), (2.38)

where Tcp denotes the (N + Lz)×N matrix

Tcp :=

[
0Lz×(N−Lz) ILz

IN

]
. (2.39)

Tcp accounts for the operation of adding the CP, which appends the last Lz symbols
of WH

N s(i) to the beginning of it.
At the receiver, the received samples yn are grouped into blocks of size N + Lz ,

with the ith block

yt(i) := [yi(N+Lz), · · · , y(i+1)(N+Lz)−1]T . (2.40)

Conform the FIR assumption of the channel, we can rewrite the channel I/O rela-
tionship in (2.11) in a block form as

yt(i) = H(i)[xT
IBI(i),x

T (i)]T + vt(i), (2.41)

where we use vt(i) to denote the noise, which is similarly defined as yt(i); further

xIBI(i) := [xi(N+Lz)−L, · · · , xi(N+Lz)−1]T (2.42)

†Usually, the data symbols are the output of an error-control encoder. Despite the significance of
channel encoding to OFDM, we will not look at this aspect in the thesis and only concentrate on the
uncoded case.
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stands for the inter-block interference (IBI), which is comprised of the last L symbols
from the previous block x(i − 1); H(i) represents the convolutive operation of the
channel:

H(i) :=




hi(N+Lz),L · · · hi(N+Lz),0 0
. . .

...
. . .

0 h(i+1)(N+Lz)−1,L · · · h(i+1)(N+Lz)−1,0


 . (2.43)

Let us decompose the matrix H(i) into two parts, where Ht(i) consists of the last
N + Lz columns of H(i) corresponding to the present transmitted block x(i):

Ht(i) :=




hi(N+Lz),0

...
. . .

hi(N+Lz)+L,L · · · hi(N+Lz)+L,0

. . .
...

. . .
h(i+1)(N+Lz)−1,L · · · h(i+1)(N+Lz)−1,0




,

(2.44)
and HIBI(i) consists of the first L columns of H(i) corresponding to the IBI xIBI(i):

HIBI(i) :=




hi(N+Lz),L · · · hi(N+Lz),1

. . .
...

hi(N+Lz)+L−1,L

0(N+Lz−L)×L




. (2.45)

In this way, (2.41) can be written as

yt(i) = Ht(i)x(i) + HIBI(i)xIBI(i) + vt(i). (2.46)

If we assume perfect block and symbol synchronization, a pre-processing will be
applied at the receiver, which contains the operation of discarding the CP and ap-
plying an FFT. The output of this pre-processing step, which is defined as

yf (i) := [yf,iN , · · · , yf,(i+1)N−1]T , (2.47)

will admit the expression

yf (i) = WNRcpr(i)

= WNRcpHt(i)x(i) + WRcpHIBI(i)xIBI(i) + vf (i) (2.48)

where
vf (i) := WNRcpv(i) (2.49)
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and
Rcp :=

[
0N×Lz IN

]
(2.50)

stands for the operation of removing the CP, which discards the first Lz samples
of Ht(i)x(i) and HIBI(i)xIBI(i). For the latter, we understand that only the first L

elements may not be zero [c.f. (2.45)]. This implies that if the CP is sufficiently long,
i.e., Lz ≥ L, the IBI term will vanish,

RcpHIBI(i)xIBI(i) = 0. (2.51)

As a result and taking (2.38) into account, we obtain

yf (i) = WNHt,cp(i)WH
N s(i) + vf (i)

= Hf,cp(i)s(i) + vf (i), (2.52)

where
Ht,cp(i) := RcpHt(i)Tcp (2.53)

stands for the time-domain (TD) channel and

Hf,cp(i) := WNHt,cp(i)WH
N (2.54)

for the frequency-domain (FD) channel. More specifically, Ht,cp(i) takes on a pseudo-
circulant form as

Ht,cp(i) =




hi(N+Lz)+Lz,0 hi(N+Lz)+Lz,L · · · hi(N+Lz)+Lz,1

...
. . . . . .

...

hi(N+Lz)+Lz+L,L

. . . hi(N+Lz)+Lz+L−1,L

. . . . . .
. . . . . .

h(i+1)(N+Lz)−1,L · · · h(i+1)(N+Lz)−1,0




(2.55)
If the channel is static, or only slowly changing such that the time-variation of the
channel within the OFDM symbol can be neglected, Ht,cp(i) will become truly cir-
culant. In other words, the entries of Ht,cp(i) are constant along each diagonal (in a
circulant sense). In the frequency domain, this results in a diagonal Hf,cp(i):

Hf,cp(i) = D{
√

NWN [h0, · · · , hL]T }, (2.56)

where we have dropped the time index n in the subscript of the channel tap hn,l [c.f.
(2.13)]. The columns (rows) of the diagonal Hf,cp(i), which are better known as the
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Figure 2.5: Entry powers of Hf,cp(i) for N = 64 and νD = 10−5

subcarriers of the OFDM symbol, are obviously orthogonal to each other. Fig. 2.6
shows such an example, where the x-axis and y-axis correspond to the rows and
columns of Hf,cp(i), respectively, and the z-axis corresponds to the entry power.

However, when the channel is varying faster, the circularity of Ht,cp(i) is de-
stroyed, which is therefore not diagonalizable by the (I)FFT operations. In principle,
Hf,cp(i) becomes a full matrix. The non-zero off-diagonal entries inflict inter-carrier
interference (ICI). As we understand from the previous chapter, the Doppler shifts
due to mobility will cause a frequency expansion of the signal bandwidth. This
effect is reflected in the FD channel matrix as the power of Hf,cp(i) will not be con-
centrated on the diagonal alone, but spread out. Fortunately, for realistic Doppler
spreads, it is reasonable to assume the following.

Assumption 2.1. The frequency-domain channel matrix Hf,cp(i) is roughly banded‡, which
means that the channel power is mainly located in the entries close to the main diagonal, and
reduces gradually in an anti-diagonal direction.

This assumption is advocated in [96, 14], and can be observed from Fig. 2.6,
which is obtained for νD = 0.004. Of course, if the channel varies even faster, the

‡Strictly speaking, we actually mean “circularly-banded” here. However, we will use the term
“banded” in the sequel for the sake of brevity.



30 2. Preliminaries

10
20

30
40

50
60

10
20

30
40

50
60

10
−4

10
−3

10
−2

10
−1

10
0

10
1

row indexcolumn index

en
tr

y 
po

w
er

Figure 2.6: Entry powers of Hf,cp(i) for N = 64 and νD = 0.004

channel power will be distributed further away from the diagonal, and thus the
band assumption will be more critical. In such a case, we need to enlarge the as-
sumed bandwidth to account for more off-diagonals. Throughout the thesis, we
will exploit this band property of the FD channel matrix, but the thereby induced
band approximation error will also be taken into account.

2.3.2 Other OFDM System Models

In the previous section, transmitter redundancy in the form of CP is introduced to
counteract the IBI. As a matter of fact, other transmitter redundancy form are also
applicable. We will briefly explain them next.

ZP-OFDM

ZP-OFDM is characterized by a slightly different system model than CP-OFDM. We
will illustrate this by assuming an adequately long guard interval Lz = L. The ith
data block s(i) undergoes first an IFFT and next a precoder Tzp, which leads to an
(N + L)× 1 vector x(i),

x(i) = TzpWH
N s(i), (2.57)
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where the precoder

Tzp :=
[

IN

0L×N

]
(2.58)

is used to append L zeros (guard interval) at the end of the vector WH
N s(i). With x(i)

transmitted, we obtain at the receiver y(i), which has the same I/O relationship as
defined in (2.46). A two-step pre-processing is applied at the receiver, which is com-
prised of a decoder Rzp and an FFT, leading to the received block in the frequency
domain yf,zp(i)

yf,zp(i) = WNRzpHt(i)x(i) + WRzpHIBI(i)xIBI(i) + vf,zp(i), (2.59)

where the noise term here is defined as vf,zp(i) := WNRzpv(i), and the decoder
Rzp is defined as

Rzp :=

[
IN

IL

0(N−L)×L

]
(2.60)

which adds the last L entries to the first L entries of the vector H(i)x(i).
Because the precoder is applied to each transmitted block, this means that xIBI(i) =

0. As a result, and if we take (2.57) into account, (2.59) can be rewritten as

yf,zp(i) = WNHt,zp(i)WH
N s(i) + vf (i)

= Hf,zp(i)s(i) + vf (i) (2.61)

where
Ht,zp(i) := RzpHt(i)Tzp (2.62)

stands for the TD channel matrix, and and Hf,zp(i) for its FD counterpart

Hf,zp(i) := WNHt,zp(i)WH
N . (2.63)

For the channel matrix H(i) defined in (2.44), we can easily show that

Ht,zp(i) =




hi(N+Lz)+Lz,0 hk(N+Lz)+Lz,L · · · hi(N+Lz)+Lz,1

...
. . . . . .

...

hi(N+Lz)+Lz+L,L

. . . hi(N+Lz)+Lz+L−1,L

. . . . . .
. . . . . .

h(i+1)(N+Lz)−1,L · · · h(i+1)(N+Lz)−1,0




(2.64)



32 2. Preliminaries

which is exactly the same as the channel matrix of CP-OFDM Ht,cp(i) that is defined
in (2.55).

It is noteworthy that there is another way to implement ZP-OFDM by employing
an (N + L)-point FFT directly at the receiver. By this means, we will obtain a larger
FD channel with N + L subcarriers, whose orthogonality remains in TI channels.
This practice is especially significant to diversity gain. Recall in the CP-OFDM, it
is possible that a channel zero falls on one of the subcarriers. As a result, the data
symbol transmitted at that subcarrier will not be detectable if no channel coding is
applied leading to a diversity loss. Using ZP instead of CP and employing a larger-
scaled FFT can avoid this problem [35, 86, 87, 117].

NZP-OFDM

In ZP-OFDM, zeros are used as guard interval. Actually, this can be generalized
to the case where some pre-defined symbols are inserted between the transmitted
blocks, which is also referred to as the known symbol padding (KSP) in [25, 79]. In
this case, the kth transmitted block x(i) can be expressed as

x(i) = P
[
WH

N s(i)
t(i)

]
(2.65)

where t(i) stands for an Lz × 1 vector that is inserted in between the blocks, and

P = IN+Lz . (2.66)

Note that the precoding expressed in the above can also account for the CP and ZP
case, where in case of ZP, we have

t(i) = 0Lz×1,

P = IN+Lz , (2.67)

while in case of CP, t(i) consists of the last Lz entries of WH
N s(i) and

P =
[
0L×N IL

IN 0N×L

]
.

By assuming some non-zero values, the guard interval t(i) can also serve for
channel estimation, which can be of interest for the sake of bandwidth efficiency
[25, 79]. We will not discuss the system model of the NZP-OFDM in depth, but
reiterate some important properties here.
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1. In case of TI channels, the resulting channel matrix will be circulant provided
that the KSP is sufficiently long (Lz ≥ L) and the KSP between each transmit-
ted blocks are identical, i.e.,

t(i) = t(i′), (2.68)

for i 6= i′. This will lead to a diagonal FD channel matrix

2. This diagonality will, however, in case of TV channels, be destroyed just as in
the CP- and ZP-OFDM cases.

2.3.3 Single-carrier Transmission

Compared to OFDM, the transmitter in a single-carrier system does not need to
go through the IFFT. Except for this, we can establish the channel I/O relationship
analogously to the OFDM system: the kth data symbol block is first precoded to

x(i) = Ts(i), (2.69)

by e.g., inserting the CP or ZP (NZP). It is next sent over the channel. The same
channel I/O relationship as in the OFDM case (2.46) can be applied here. At the
receiver, an N × (N + L) decoding matrix R is deployed, which produces yt(i) as :

yt(i) = RHt(i)x(i) + RHIBI(i)xIBI(i) + Rvt(i)

= RHt(i)T︸ ︷︷ ︸
Ht,sc(i)

s(i) + Rvt(i), (2.70)

where in the last equality, we omit the IBI term by assuming an adequately long
guard interval. In the above, the precoder T and decoder R correspond to Tcp and
Rcp, respectively if a CP is inserted, whereas T and R correspond to Tzp and Rzp,
respectively if ZP is inserted. Both cases lead to the same channel matrix

Ht,sc(i) = Ht,cp(i) = Ht,zp(i). (2.71)

It is in practice more common to transform the data model of the single-carrier
system into the frequency domain as

yf (i) = WNy(i)

= Hf,sc(i)WNs(i) + vf (i), (2.72)

where Hf,sc(i) stands for the FD channel matrix

Hf,sc(i) = WNHt,sc(i)WH
N . (2.73)



34 2. Preliminaries

Equation (2.72) is especially significant to low-complexity equalization. If the
channel stays stable within the block, Hf,sc(i) will be diagonal, which enables a
simple one-tap equalizer [30]. For TV channels, it can be still appealing to equalize
the channel in the frequency domain, though the diagonality cannot be relied upon
any more. In that case, we can make use of Assumption 2.1, which views the FD
channel matrix as banded. Supposing the bandwidth is smaller than the channel
delay spread, it is still cheaper to implement an FD equalizer. This idea will be
explored in Chapter 6.



Chapter 3

Channel Equalization in an OFDM System

3.1 Introduction

In a high-mobility scenario, where the channel time-variation within one OFDM
symbol period cannot be neglected, the orthogonality among the subcarriers will
be destroyed by the induced Doppler spread, which results in a FD channel matrix
that is full instead of diagonal. This implies that a reliable equalizer must take into
account not only the frequency response of the channel at each subcarrier, but also
the inter-carrier interference (ICI), leading to a high complexity.

To enable a cheap equalizer, pre-processing at the receiver is indispensable. For
instance, in [7, 8], an FIR filter is adopted in an endeavor to restore the diagonal-
ity of the channel matrix by ‘flattening’ the channel’s fluctuation. Such a technique
works well for channels that are moderately spread in delay and Doppler dimen-
sions. Practically, a strictly diagonal FD channel matrix is too difficult to achieve.
We have mentioned in the previous chapter that for a practical Doppler spread, the
FD channel matrix has most of its power concentrated in the vicinity of the diagonal
in a circular sense, with those entries that are far away from the diagonal reducing
fast [96, 14]. This implies that in practice, we can assume the FD channel matrix to be
circularly banded. Many other existing works exploit this banded (rather than diag-
onal) structure when designing the equalizer, e.g., the block zero-forcing (ZF) equal-
izer in [46], the block minimum mean square error (MMSE) equalizer in [81, 82], the
serial iterative MMSE equalizer in [90], the maximum likelihood (ML) equalizer in
[71, 49], etc. It can be imagined that to enhance the equalization performance, es-
pecially at a moderate to high signal-to-noise ratio (SNR), the band approximation
error must be reduced as much as possible. One solution can be the FIR filter of
[8], but it generally requires a multiple antenna assumption and can be considered
‘over-designed’ since it aims to achieving a diagonal FD channel matrix. In compar-
ison, for a banded assumption as will be adopted in the following, a reduced-order
FIR filter with just a single tap could be adequate. Such a filter is referred to as a
receiver window in [90, 82, 44], which is essentially an element-wise multiplication

Part of the results of this chapter appeared in [100].
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Figure 3.1: The transceiver block diagram

of the window entries with the received signal.
In the following, we will present an equalization scheme that utilizes a strictly

banded channel matrix assumption to lower the complexity. However, unlike [90,
82, 44] where a strictly banded matrix is obtained by simply copying the significant
diagonals from the original FD channel matrix, the band approximation problem in
this chapter is tackled in a different way: we will devise a strictly banded matrix that
is close to its full counterpart only in terms of the Frobenius norm. Although this
leads eventually to the same solution as in [90, 82, 44], we can by this means trans-
late the band approximation error in the frequency domain into a basis expansion
modeling (BEM) error in the time domain. More specifically, we can establish the
link between the band approximation with the (C)CE-BEM. This will serve an en-
lightening purpose when we design a low-complexity equalizer for a single-carrier
system in Chapter 6.

3.2 System Model

Let us consider a CP-OFDM system with N subcarriers, as illustrated in Fig. 3.1.
Following a similar approach as described in Sec. 2.3.1 but introducing a windowing
operation in front of the FFT, we can readily establish the channel I/O relationship
for the ith OFDM symbol s(i) as follows

yt(i) = D{w}Ht(i)WH
N s(i) + D{w}vt(i), (3.1)

where D{w} stands for the windowing operation, which is a diagonal matrix with

w := [w0, . . . , wN−1]T (3.2)

as its diagonal. vt(i) stands for the corresponding noise in the time domain. Ht(i)
denotes the TD channel matrix without windowing. If we define hn,l as the lth
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channel tap at the nth time-instance, and assume that hn,l has finite order L, i.e.,
hn,l = 0 for l < 0 or l > L, then hn,l is related to Ht(k) as

[Ht(i)]p,q = hi(N+Lz)+Lz+p,mod(p−q,N), (3.3)

where mod(m,n) in the subscript stands for the residue of m divided by n, which
corresponds to the “circulant” nature of the channel matrix Ht(i) as a result of in-
serting and removing the CP.

The received samples in yt(i) are afterwards demodulated by the DFT matrix
WN , resulting into

yf (i) = WNyt(i)

= Hf (i)s(i) + vf (i), (3.4)

with
Hf (i) := WND{w}Ht(i)WH

N (3.5)

and
vf (i) := WND{w}vt(i)

denoting the channel matrix and noise in the frequency domain, respectively. Note
that in Chapter 2, we have introduced the system model for CP-OFDM in (2.52).
That is actually a special case of (3.4) here, which assumes a rectangular window

w = 1N×1. (3.6)

Because the equalization discussed in this chapter will be implemented upon
each OFDM symbol independently, we will drop the symbol index i in the sequel
for the sake of brevity.

3.3 A Low-Complexity Equalization Scheme

We will in this section present a block linear minimum mean square error (LMMSE)
equalizer, which is constructed based on a banded channel matrix approximation.
As a matter of fact, most other equalization schemes than the LMMSE equalizer can
also benefit from this idea to lower the complexity, e.g., those equalizers that are
mentioned in the introduction of this chapter.

The following assumptions will be useful.

Assumption 3.1. We assume that the TV channel is a wide-sense stationary uncorrelated
scattering (WSSUS) process, for which

Eh{hp,lhp−m,l−n} = σ2
l γmδn. (3.7)



38 3. Channel Equalization in an OFDM System

Here, δn denotes the Kronecker delta, σ2
l the variance of the lth channel tap, and γm the

normalized temporal correlation.

Assumption 3.2. We assume the data symbols to be zero-mean white with unit variance,
i.e.,

Es{sps
∗
p−m} = δm, (3.8)

and the noise prior to windowing to be zero-mean white with variance σ2, i.e.,

Ev{vpv
∗
p−m} = σ2δm. (3.9)

Starting from the I/O relationship in (3.4) and conform Assumption 3.2, the
block LMMSE equalizer can be constructed following the similar approach as de-
scribed in [56], which results in the data estimates ŝ as

ŝ = HH
f (HfHH

f + Rv)−1yf , (3.10)

where Rv denotes the noise covariance matrix. Under the zero-mean white assump-
tion of the noise and with the window taken into account, it can be shown that

Rv := E{vfvH
f } = σ2WND{w ¯w∗}WH

N . (3.11)

It is easy to understand that most computational efforts in (3.10) are invested in in-
verting the covariance matrix, which are high considering that Hf is in principle a
full matrix. In order to lower the complexity, we will adopt Assumption 2.1 and ap-
proximate the full matrix Hf in (3.10) by a strictly banded matrix Ĥf . The resulting
LMMSE equalizer becomes

ŝ ≈ ĤH
f (ĤfĤH

f + Rv)−1yf . (3.12)

In the above, Ĥf is strictly banded with bandwidth Q + 1, which means that it has
only non-zero entries on the main diagonal, the Q/2 super- and Q/2 sub-diagonals
in a circular sense. Here, Q is a design parameter that can be chosen as a trade-off
between complexity and performance. The resulting equalizer will be made cheaper
with a smaller Q, but accordingly suffer from more out-of-band interference. In
reality, the minimum value of Q is often related to the maximal Doppler spread.

It is noteworthy that a similar approach (band approximation and windowing)
is reported in [90, 82, 44]. However, the difference is subtle: in [90, 82, 44], Ĥf

is obtained by simply taking the significant diagonals from Hf , while in this thesis,
this is not necessarily the case. As a matter of fact, we use the following cost function
to design the non-zero diagonals of Ĥf ,

arg min
{Ĥf}

‖Hf − Ĥf‖2,

s.t. Ĥf = Ĥf ¯TQ. (3.13)
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Figure 3.2: The “V-shape” structure of G. The shaded part corresponds to non-zero entries.

where TQ is a matrix of appropriate dimension, which has ones on the main diago-
nal, the Q/2 super- and Q/2 sub-diagonals, and zeros on the remaining entries. We
will discuss this matter in more detail in Remark 3.2.

Another important feature in (3.12) is that we also require the noise covariance
matrix Rv to be strictly banded with a bandwidth 2Q + 1, just like the product
ĤfĤH

f . If this is achieved as we will see later on, we can apply the Cholesky factor-
ization [37] on the covariance matrix

ĤfĤH
f + Rv = GGH , (3.14)

where the upper-triangular matrix G will assume a sparse “V-shape” structure as
illustrated in Fig. 3.2. By this means, the inverse of ĤfĤH

f + Rv can be achieved by
inverting G and GH separately using Gaussian elimination.

For an overview of the total invoked complexity, we make a list of each step that
is involved in computing (3.12) in the left panel of Table 3.1.

Taking the band structure of Ĥf into account, we understand that step 1 requires
N(Q + 1)(1.5Q + 1) complex multiply and accumulate operations (MACs). Step 2
is realized by applying the Cholesky factorization, which entails N( 7

8Q2 + 13
4 Q +

2) − 1
6Q3 − 3

2Q2 + 5
6Q MACs [44]. Due to the sparse “V-shape” structure of G, the

Gaussian elimination required in steps 3 and 4 need N(2Q + 1) − 2Q2 − Q MACs
each. Step 5 needs another N(2Q + 1) MACs. The complexity of each step is listed
in the right panel of Table 3.1. In summary, the considered block LMMSE equalizer
has a complexity of O(NQ2), which is linear in N and quadratic to Q.

We understand that the equalizer in (3.12) uses a banded Ĥf to approximate
Hf . The complexity and performance of such an equalizer are determined by Q,
the bandwidth of Ĥf . The question arises that whether it is possible to enhance
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Table 3.1: Complexity of block LMMSE equalization for OFDM

Steps in (3.12)

1. M = ĤfĤH
f + Rv ;

2. M = GGH ;

3. ρ = G−1yf ;

4. l = G−Hρ;

5. x := ĤH
f l;

MACs required per step

N(Q + 1)(1.5Q + 1)

N( 7
8Q2 + 13

4 Q + 2)− 1
6Q3 − 3

2Q2 + 5
6Q

N(2Q + 1)− 2Q2 −Q

N(2Q + 1)− 2Q2 −Q

N(2Q + 1)

the equalization performance for a fixed complexity (Q). In other words, can we
minimize the band approximation error ‖Hf − Ĥf‖. From the definition of Hf in
(3.5), we understand that this minimization problem is a function of the window. In
addition, we need to design the window such that the noise covariance matrix Rv

in (3.11) will also be banded. These issues will be discussed next.

3.4 Window Design

Before we address the window design, let us first introduce the notation B to denote
the (C)CE-BEM matrix with scale Q + 1, which is defined in (2.30). Besides, we
present the following lemma, which will be useful not only for the ensuing part, but
also for Chapter 6.

Lemma 3.1. Any N ×N strictly banded matrix M with bandwidth Q + 1 can be viewed
as the Fourier transform of a sum of Q + 1 matrices, where each term is a circulant matrix
weighted by a special diagonal matrix. In mathematics, this can be expressed as

M = WN

Q
2∑

q=−Q
2

D{Beq}CqWH
N , (3.15)

where eq stands for the qth column of an identity matrix, and Cq for a circulant matrix with

cq = [cq,0, · · · , cq,N−1]T (3.16)

as its first column.
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Proof. Let us use an N×1 vector mq to denote each diagonal of M, for q = −Q
2 , · · · , Q

2 .
As a result,

M =
∑

q

EqD{mq}, (3.17)

where Eq represents a shift matrix defined in (2.31). Due to Property 2.1, we have

WND{Beq}WH
N = Eq−Q

2
. (3.18)

Further, it is easy to understand from (2.56) that if

cq = WH
Nmq, (3.19)

the diagonal matrix D{mq} can be related with a circulant matrix Cq, which uses cq

as its first column:
D{mq} = WNCqWH

N . (3.20)

By substituting (3.17) and (3.20) in (3.17), and swapping the DFT matrix and the
summation, we reach (3.15). ¤

To begin with the window design, we first study the noise shaping behavior of
the window. The approach of [82] is adopted in this thesis, which is summarized in
the following proposition.

Proposition 3.1. The noise covariance matrix Rv will be strictly banded with bandwidth
2Q + 1 if we let the window w be a weighted sum of Q + 1 complex exponentials:

w = Bd. (3.21)

Proposition 3.1 (see Appendix 3A for a proof) tells us that we can structure the
window as a weighted sum of Q+1 complex exponentials. In (2.56), we have shown
that the subcarriers of OFDM over a time-invariant channel are related with the
time-domain (TD) channel taps in the same way as (3.21). Hence, it is not difficult to
understand that the windowing operation, which is an element-wise multiplication
of the window with the received signal in the time domain, can also be interpreted
as a filtering operation of the received signal in the frequency domain with an FIR
filter. To be specific, this FIR filter is equipped with Q + 1 taps, which are collected
in the vector d. As a result, the window design boils down to the design of an FIR
filter. We will come back to this later on.

Next, we will show how to minimize the band approximation error ‖Hf − Ĥf‖.
To this end, we need to design the window and the banded matrix Ĥf jointly. The
following theorem proves to be important (see Appendix 3B for a proof).
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Theorem 3.1. The band approximation error ‖Hf − Ĥf‖, which is expressed in the fre-
quency domain, can be transformed in the time domain as the error resulting from the (C)CE-
BEM. In mathematics, this can be expressed as

‖Hf − Ĥf‖ = ‖D{w}H−BC‖. (3.22)

In the above, ‖ · ‖ stands for the Frobenius norm of a matrix; H stands for an N × (L + 1)
matrix collecting all the channel taps [H]n,l = hn,l, and C for a (Q + 1)× (L + 1) matrix
collecting all the coefficients [C]q,l = cq,l.

The right-hand side (RHS) of (3.22) resembles those works that use a BEM, B in
this context, to fit to the (windowed) TV channel D{w}H [c.f. (2.23)]. In this sense,
the band approximation error can be interpreted as a BEM modeling error (we will
use these two terms in the sequel interchangeably), and thus cq,l is also referred to
as a BEM coefficient. In particular, with the entries defined as

[B]p,q =
1√
N

e−j 2π
N p(q−Q

2 ), (3.23)

this BEM corresponds to the classical definition of the (C)CE-BEM in (2.30), whose
exponential period equals the BEM window size N .

In line with Theorem 3.1, we can now come up with the following design prob-
lem:

min
{w}

Eh

{
min
{C}

‖D{w}H−BC‖2},

s.t. w = Bd and ‖w‖2 = N. (3.24)

Note that the first constraint above is due to Proposition 3.1, and the second con-
straint is imposed to avoid a trivial all-zero window. We solve (3.24) first for C:

C = B†D{w}H. (3.25)

Defining

PB := I−BB†,

RH := Eh{HHH}, (3.26)

we can show that the cost function then becomes

Eh{‖D{w}H−BC‖2} = tr
(PBD{w}RHD{wH}PH

B

)

=
N−1∑
n=0

eT
nPBD{w}RHD{wH}PH

Ben. (3.27)
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Under the WSSUS channel property of Assumption 3.1, it is easy to see that

[RH]m,n =
L∑

l=0

σ2
l γm−n. (3.28)

For two vectors a and b of the same size,

aT D{b} = bT D{a}. (3.29)

Applying this property to the second equality of (3.27) leads to

Eh{‖D{w}H−BC‖2} = wT
(N−1∑

n=0

D{eT
nPB}RHD{PH

Ben}
)
w∗. (3.30)

If we substitute (3.21) in (3.30), the design problem in (3.24) can thus be equivalently
rewritten as

min
{d}

dT Xd∗,

s.t. ‖d‖2 = N, (3.31)

with

X := BT
(N−1∑

n=0

D{eT
nPB}RHD{PH

Ben}
)
B∗. (3.32)

Hence, d can be computed as the eigenvector corresponding to the least significant
eigenvalue of X ∗.

A few remarks are in order now.

Remark 3.1.

In view of (3.22), we are able to interpret the band approximation error between Hf and Ĥf

in the frequency domain as the (C)CE-BEM modeling error in the time-domain. It is thus
not difficult to realize that the equalization performance is influenced by the (C)CE-BEM
modeling performance. This effect will be explored in Chapter 6.

Remark 3.2.

With C obtained in (3.25), we can show that the strictly banded matrix Ĥf indeed takes the
Q + 1 most significant diagonals of Hf , i.e.,

Ĥf = Hf ¯TQ. (3.33)

where TQ denotes a selection matrix that is defined in (3.13). Accordingly, the discrepancy
‖Hf − Ĥf‖ is actually the out-of-band interference
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The proof of (3.33) is given in Appendix 3C. It is worth underlining that although this
observation coincides with the canonical band approximation approach that is adopted in
[90, 82, 44], the underlying difference is not trivial. In this thesis, Ĥf is sought using the
criterion in (3.14). In Chapter 6 where single-carrier systems are treated, we will see that
this criterion leads to a different band approximation than (3.33).

Remark 3.3.

A similar windowing strategy is presented in [90], which maximizes the signal to inter-
ference (band approximation error) and noise ratio directly in the frequency domain. As a
matter of fact, the band approximation error considered in [90] can also be translated into a
(C)CE-BEM modeling error just like in this thesis. Indeed, in the noiseless case we can show
that the window of [90] will admit the same expression as the window here (see Appendix 3D
for a proof). As a result, the performances of these two windows will be very close to each
other if the same equalizer is employed.

3.5 Simulation Results

We consider an OFDM system with N = 256 subcarriers. To test the proposed
algorithms over a TV channel following Jakes’ Doppler profile [45], we use the TV
channel generator that is given in [124]. The channel is assumed to have L + 1 = 6
channel taps with the lth tap having a variance σ2

l = c e−
l
10 . Here, c denotes a

normalization constant such that
∑

l σ
2
l = 1. QPSK modulated data symbols are

transmitted.
We first examine the proposed equalizer for TV channels with normalized Doppler

spread νD = 0.0008. To lower the equalization complexity, we approximate the FD
channel matrix as a banded matrix. Windows that are optimally designed for band-
widths Q = 4, 8, 20 are exhibited in the upper plot of Fig. 3.3. For equalization,
we test the windows for Q = 4 and Q = 8. Their BER performances are plotted
in Fig. 3.4. In addition, we include the performance of the equalizer based on the
same band approximation but without windowing. Eventually, we use the equal-
izer based on the full FD channel matrix as the performance benchmark (denoted
as “full block” in Fig. 3.4). It is clear that with respect to the full block equalizer,
the equalizers without windowing suffer from a large performance gap, and a high
noise floor emerges at high SNR. In contrast, the equalizers with windowing renders
a close performance to the full block equalizer.

The same simulations are carried out for TV channels with νD = 0.004, where the
windows for Q = 4, 8, 20 are depicted in the lower plot of Fig. 3.3. The equalization
performance is shown in Fig. 3.5, from which similar remarks can be made as in the
slower channel case.
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3.6 Summary

In this chapter, we have discussed how to equalize a time-varying channel in an
OFDM system. Due to the time-variation, the channel matrix in the frequency do-
main is not diagonal but full.

To enable a low-complexity equalizer, we have explored the fact that for realistic
Doppler spreads, most of the channel power is concentrated in the vicinity of the
diagonal, such that the FD channel matrix can be approximated as banded. We have
shown that the out-of-band interference can be transformed into the modeling error
of the (C)CE-BEM in the time domain, which can be further reduced by applying a
window at the receiver.

We used the block LMMSE equalizer to equalize the channel. Thanks to the
“banded” structure, the inversion of the covariance matrix, which is most complex
part of the block LMMSE equalizer, can be simplified using structured Cholesky fac-
torization. We have shown that the proposed block LMMSE equalizer can yield a
satisfactory performance with a complexity that is linear in the number of subcarri-
ers, just like that is for time-invariant channels. To compare, traditional techniques
inflict a complexity that is cubic in the number of subcarriers in order to achieve a
similar performance.
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For the approaches proposed in this chapter, the channel knowledge is indis-
pensable. Channel estimation will be discussed in the next two chapters.

Appendix 3A: Proof of Proposition 3.1

Let us rewrite the noise covariance matrix in (3.11) as

Rv = σ2 WND{w}WH
N︸ ︷︷ ︸

W

WND{w∗}WH
N︸ ︷︷ ︸

WH

. (3.34)

Obviously, Rv will be banded if

W := WND{w}WH
N (3.35)

is banded. Using Lemma 3.1, we express it in a general form as

W = WN

∑
q

D{Beq}CqWH
N . (3.36)

Comparing (3.36) with (3.35), we require that

∑
q

D{Beq}Cq = D{w}, (3.37)

which can be accomplished by e.g., letting D{Beq}Cq be a diagonal matrix. For the
circulant Cq , this is possible if we let its first column cq be equal to

cq =
[
[d]q,01×(N−1)

]T
. (3.38)

Substituting the above in (3.37), and looking only at the non-zero main diagonal
leads to (3.21).

Appendix 3B: Proof of Theorem 3.1

Let us use
Ĥt := WH

N ĤfWN , (3.39)

to denote the time-domain counterpart of H̃f . Following Lemma 3.1, we can easily
derive that

Ĥt =
∑

q

D{Beq}Cq, (3.40)
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and hence the band approximation error can be expressed in the time domain as

‖Hf − Ĥf‖ = ‖D{w}Ht −
∑

q

D{Beq}Cq‖. (3.41)

The above holds because the Frobenius norm is considered here, which will not be
affected by the existance of the unitary matrix WN . For the same reason, we can
reshape D{w}Ht by stacking each of its diagonals in the columns of the following
matrix

D{w}Ht ∼ D{w} [H 0N×(N−L+1)

]
. (3.42)

Similarly, we coin a new matrix out of
∑

q D{Beq}Cq

∑
q

D{Beq}Cq ∼ B
[C C⊥]

, (3.43)

where C⊥ stands for an (Q+1)× (N −L+1) matrix with entries [C⊥]n,l = cq,L+l+1.
As a result, we obtain from (3.41) that

‖Hf − Ĥf‖ = ‖D{w} [H 0N×(N−L+1)

]−B
[C C⊥] ‖. (3.44)

Since we ultimately want to minimize the difference above, as a first step, we can
already let

C⊥ = 0N×(N−L+1), (3.45)

which leads to (3.22).

Appendix 3C: Proof of (3.33)

We have defined the BEM matrix B to be the first Q/2 + 1 and the last Q/2 columns
of the unitary DFT matrix WN . Let us use B⊥ to denote an N × (N −Q− 1) matrix,
which is comprised of the remaining columns of WN , and thus spans the noise
subspace of B. Obviously, the (C)CE-BEM modeling error resulting from (3.25) can
be expressed as

D{w}H−BC = B⊥C⊥, (3.46)

where the (N −Q− 1)× (L + 1) matrix C⊥ has entries [C⊥]m,l = cQ+1+m,l. For the
time-domain channel matrix D{w}Ht, we thus have

D{w}Ht =
Q∑

q=0

D{Beq}Cq

︸ ︷︷ ︸
Ĥt

+
N∑

q=Q+1

D{B⊥eq−Q−1}Cq

︸ ︷︷ ︸
Ĥ⊥

t

, (3.47)
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where Cq is a circulant matrix with the first column defined as

Cqe0 = [cq,0, · · · , cq,L,01×(N−L−1)]T . (3.48)

The BEM modeling error transformed in the frequency domain

WNĤ⊥
t WH

N =
N∑

q=Q+1

WND{B⊥eq−Q−1}WH
NWNCqWH

N (3.49)

is a summation of N − Q − 1 matrices, where each factor WNCqWH
N is a diagonal

matrix, and
WND{B⊥eq−Q−1}WH

N = Eq (3.50)

due to Property 2.1. Hence, WNĤ⊥
t WH

N will occupy the (Q/2 + 2)nd until (N −
Q/2)th super-diagonals of Hf in a circular sense, which thus does not overlap with
Ĥf .

Appendix 3D: Equivalence of the Proposed Window and
the Window of [90]

We rewrite the cost function in (3.27) as

w = arg min tr
(PBD{w}RHD{wH}),

s.t. ‖w‖2 = N. (3.51)

where we have used the fact that

PBPH
B = PB. (3.52)

It is straightforward to understand that

PB = B⊥B⊥H , (3.53)

where the N × (N − Q − 1) matrix B⊥ is defined in Appendix 3.6, and thus has
entries

[B⊥]m,n =
1√
N

ej 2π
N m(n+ Q

2 +1). (3.54)

Hence, the cost function in (3.51) becomes

tr
(
B⊥HD{w}RHD{wH}B⊥)

= wT
(N−Q−2∑

k=0

D{B⊥∗ek}RHD{B⊥ek}
︸ ︷︷ ︸

Γ

)
w∗. (3.55)
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For each entry of Γ, we have

[Γ]m,n =
1
N

[RH]m,n

N−Q−2∑

k=0

ej 2π
N (k+ Q

2 +1)(n−m). (3.56)

Because

N−Q−2∑

k=0

ej 2π
N (k+ Q

2 +1)(n−m) =





N −Q− 1 if m = n,

− sin
(
π(Q+1)(n−m)/N

)

sin
(
π(n−m)/N

) otherwise,
(3.57)

we can show after some algebra that

Γ =
1
N

RH ¯ IN −RH ¯A, (3.58)

with A being an N ×N matrix with entries

[A]m,n =
sin

(
π(Q + 1)(n−m)/N

)

Nsin
(
π(n−m)/N

) . (3.59)

Substituting (3.58) in (3.55), we can rewrite the minimization problem as

w = arg min
1
N

wT (RH ¯ IN )w∗ −wT (RH ¯A)w∗,

s.t. ‖w‖2 = N. (3.60)

Under the WSSUS channel property in Assumption 3.1, we know that RH has equal
diagonal elements and thus RH ¯ IN is a scaled identity matrix. As a result, the
above minimization problem can be equivalently rewritten as

w = arg max wT (RH ¯A)w∗,

s.t. ‖w‖2 = N. (3.61)

which is exactly the same cost function as in [90] in the absence of noise and IBI.



Chapter 4

Channel Estimation Based on a Single OFDM
Symbol

4.1 Introduction

In order to design an equalizer for OFDM, the channel state information (CSI), or
specifically, the value of the FD channel matrix Hf , is indispensable, which can be
acquired using the methods presented in this and the next chapter.

What is common to the channel estimators that will be described in the following
is that they are aimed at first acquiring in the time domain the channel tap hn,l in
(3.3). This means that there will be N(L + 1) channel unknowns with N the OFDM
size and L the channel order in the time domain, which are generally too many
to allow for an efficient channel estimator. The idea of the BEM will be adopted
here such that the number of channel unknowns can be reduced from N(L + 1) to
(L + 1)(Q + 1), where Q stands for the BEM scale. Assuming that the BEM only
induces a negligible modeling error by choosing a proper Q, the channel estimation
boils down to estimating the BEM coefficients.

The works in [55, 19, 111] belong to the few that focus on blind BEM channel
estimation, which rely on a large number of observation samples. In the context of
TV channels, the channel coherence time is much shorter, which implies that a large
number of relevant observation samples might not be always available. [10, 94, 59]
propose pilot-assisted channel estimators for single-carrier transmission systems,
where pilots are clustered in the time domain such that the channel estimation can
be realized without interference from neighboring data symbols. For frequency-
domain communication systems such as OFDM, it is not clear what is the best strat-
egy to place the pilots. Because of ICI, the FD channel matrix is in principle full,
which makes it impossible to find an observation sample that is solely dependent
on pilots and thus not contaminated by data symbols. For this reason, many exist-
ing works view the frequency-domain channel matrix either as diagonal [69, 5, 122]
thus ignoring ICI completely, or strictly banded like [47] that relies on a (C)CE-BEM

The results of this chapter appeared in [103, 97].
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assumption. These approaches suffer from a large estimation error for faster chan-
nels (as we know that the (C)CE-BEM is not a tight model). An opposite approach
is to respect the full property of the FD channel matrix and let the pilots occupy a
whole OFDM symbol [18, 38, 21]. Since in this approach, the data has to be sent in
other OFDM symbols, where the channel is obviously not the same, some extra- or
interpolation techniques must be employed. The latter implies that multiple pilot
OFDM symbols need to be deployed for channel estimation, an idea that will be
discussed more in detail in the next chapter.

In this chapter, we discuss how to acquire the CSI within one OFDM symbol,
where pilots will be clustered and interleaved with data symbols in the frequency
domain. We will view the FD channel matrix as approximately banded, which
means that we still consider a full channel matrix, but take the fact into account
that the channel power is mostly concentrated around the main diagonal and get-
ting smaller in the anti-diagonal direction. This view complies with the observations
made in [96, 14] and can be represented by most BEMs discussed in Chapter 2 except
for the (C)CE-BEM (the last will result in an exactly banded matrix). However, the
bandwidth of such an approximately banded channel matrix is ambiguous to de-
fine, and if we artificially select a clear-cut bandwidth, the out-of-band entries will
give rise to interference. We will show that by taking the out-of-band interference
smartly into account in traditional estimator designs, such as the LMMSE estima-
tor or the best linear unbiased estimator (BLUE), we can improve the estimation
accuracy. This is in contrast to the least squares (LS) estimator, which requires the
interference to be kept as small as possible. In other words, the amount of interfer-
ence we take into account has a significant impact on each individual estimator. This
effect will be analyzed and a criterion to select the optimal amount of interference
for different types of channel estimators will be proposed.

4.2 System Model

4.2.1 OFDM System Model

The same system model that was presented in the previous chapter will be used.
For the sake of self-completeness, we summarize the main points here. In the time
domain, the received samples in the ith block are first stripped off from the CP
and subsequently windowed. The resulting signals are related to the transmitted
symbols as

yt(i) = D{w}Ht(i)WH
N s(i) + D{w}vt(i), (4.1)

where D{w} represents the windowing operation at the receiver; vt(i) stands for
the corresponding noise in the time domain. Ht(i) stands for the TD channel matrix
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without windowing. If we use hn,l to represent the lth channel tap at the nth time-
instance, and assume that it has a finite order L, i.e., hn,l = 0 for l < 0 or l > L, then
hn,l is related to the TD channel matrix H(i) as

[Ht(i)]p,q = hi(N+Lz)+Lz+p,mod(p−q,N). (4.2)

In the above, Lz stands for the length of the CP; the notation mod(a, b) in the sub-
script stands for the residue of a divided by b, which is used to account for the
‘circulant’ nature of Ht(i). More details can be found in Section 2.3.1.

The received samples in yt(i) are afterwards demodulated by the DFT matrix
WN , resulting in

yf (i) = WNyt(i)

= Hf (i)s(i) + vf (i), (4.3)

with
Hf (i) := WND{w}Ht(i)WH

N (4.4)

denoting the FD channel matrix, and vf (i) the FD noise which is similarly defined
as yf (i).

4.2.2 BEM Model in the Presence of a Window

Because the low-complexity equalizer discussed in the previous chapter relies on a
windowed channel, it can be convenient to estimate the windowed channel directly,
which is approximated first in this section by using a BEM. To this end, let us in-
troduce an N × 1 vector hl(i), which collects the realization of the lth channel tap
within the period of the ith OFDM symbol after windowing as

hl(i) := [w0hi(N+Lz)+Lz,l, · · · , wN−1h(i+1)(N+Lz)−1,l]T . (4.5)

It admits an expression as

hl(i) = B[c0,l(i), · · · , cQ,l(i)]T + εl(i), (4.6)

where B is an N×(Q+1) BEM matrix, and cq,l(i) represents the qth BEM coefficient
for the lth channel tap in the kth OFDM symbol. εl(i) represents an N × 1 vector
corresponding to the BEM modeling error, which is assumed to be minimized in
the Mean Squared Error (MSE) sense. Stacking all the channel taps within the ith
observation block in one vector

h(i) := [w0hi(N+Lz)+Lz,0, · · · , w0hi(N+Lz)+Lz,L, · · · ,

wN−1h(i+1)(N+Lz)−1,0, · · · , wN−1h(i+1)(N+Lz)−1,L]T , (4.7)
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we obtain

h(i) = (B⊗ IL+1)c(i) + ε(i), (4.8)

where

c(i) := [c0,0(i), · · · , c0,L(i), · · · , cQ,0(i), · · · , cQ,L(i)]T , (4.9)

and ε(i) is similarly defined as h(i).
With abuse of notation, let us here use the notation Bcanonical to represent the var-

ious canonical BEM designs that have been described in Chapter 2. These canonical
BEMs were actually designed for approximating TV channels without windowing.
The question arises whether Bcanonical is still a good BEM design now that a window
is present. Basically, we have two options

B =

{
Bcanonical (i),

D{w}BcanonicalQ (ii).
(4.10)

In the above, we introduce a square matrix Q to ensure that the columns of B are
orthonormal, just like Bcanonical. Its usage is in general not mandatory but can sim-
plify the analysis as will be clear later on. We observe in (4.10) that option (i) ignores
the window in the BEM design and sticks to the traditional ‘unwindowed’ BEMs
to model the windowed channels whereas option (ii) includes the knowledge of the
window in the BEM design. We will show in Section 4.5 that option (ii) generally
yields a tighter fit. This is because the window itself brings some additional time-
variation on top of the unwindowed channel, which probably requires more basis
functions for the canonical “unwindowed” BEM to maintain a tight fit. However,
the time-variation due to the window is totally predictable and hence can be coun-
teracted by simply absorbing it in our BEM design. The (C)CE-BEM is an exception
especially for channels with high Doppler spreads, in which case it is better to use
option (i). This is because the window is usually designed to make the frequency-
domain channel matrix as banded as possible, and the (C)CE-BEM channel matrix
is already perfectly banded in the frequency domain. Therefore, it is not necessary
to include the window in the (C)CE-BEM design.

4.2.3 OFDM System Model in Light of BEM

From now on, we will describe the OFDM system model derived above in light of
the BEM, and drop the symbol index i in the remainder of the chapter since all the
algorithms in this paper will be based on a single OFDM symbol. Substituting (4.8)
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in (4.3), we obtain after some algebra that

yf = Hfs + vf

=
Q∑

q=0

Dq∆qs + vf + δ. (4.11)

In the second equality above, we have used a BEM expression
∑

q Dq∆q to replace
the FD channel matrix Hf , and put the effect of the corresponding BEM fitting error
in the vector δ. It can be shown that in the BEM channel expression, Dq is a circulant
matrix with as first column the frequency response of the qth basis function

Dq := WND{bq}WH
N , (4.12)

and ∆q is a diagonal matrix with as diagonal the frequency response of the BEM
coefficients corresponding to the qth basis function

∆q := D{GL[cq,0, · · · , cq,L]T }. (4.13)

Here, GL stands for the first L + 1 columns of the matrix
√

NWN .
Note that (4.11) subsumes the expression for TI channels, in which case Q = 0

and Dq becomes a scaled identity matrix. For TV channels, the non-diagonal entries
of Dq are in general not zero any more. This leads to a loss of orthogonality among
the subcarriers known as ICI.

Before going on further, we will make the following assumption

Assumption 4.1. The BEM approximation holds perfectly, i.e., ε = 0 or δ = 0.

This assumption is motivated by the fact that we will mainly focus on BEMs
that allow for a very good fit. For other BEMs that fail to capture the time-variation
adequately, such as the (C)CE-BEM for instance, we should actually take the mod-
eling error into account. This topic is partly treated in [80]. However, even if we
include this error term to derive the best estimator possible, we still do not have a
reliable channel estimate simply because the BEM itself is not capable of fitting the
true channel. This suggests that it makes not much sense to take the modeling error
into account and explains why we apply Assumption 4.1 for all possible BEMs.

4.3 Data Model for Channel Estimation

Instead of estimating the true bulky FD channel matrix Hf , we will estimate the
(L + 1)(Q + 1) BEM coefficients collected in c with the aid of pilots. We assume that
there are M pilot clusters of length D + 1, with the mth pilot cluster denoted as tm
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t0 t1 tM−1

. . .
D + 1

Figure 4.1: The pilot placement pattern

for m = 0, 1, · · · ,M − 1. The pilot structure is indicated in Fig. 4.1. All these pilot
clusters stacked together form the pilot vector

t = s{T } := [t0, · · · , tM−1]T , (4.14)

where T is used to denote the set collecting the positions of the pilots. Here, we
use the notation a{Sr}(A{Sr}) to represent the elements of the vector a (the rows
of the matrix A), whose indices are collected in the set Sr. Likewise, we use D to
denote the set of all the data symbol positions, and hence all the data symbols can
be collectively represented by s{D}. For frequency-multiplexed pilot scheme (where
a null subcarrier will be viewed as carrying a zero pilot), this means obviously that
T ∩ D = ∅.

It is not clear in terms of the channel estimation MSE what is the optimal pi-
lot structure, e.g., the value and position of each pilot. The implication of the pi-
lot structure on the channel identifiability will be discussed in more detail in the
next chapter. Despite its significance, we will not discuss this issue here but allow
our receiver design to be applicable to any frequency-multiplexed pilot placement
scheme.

For a certain frequency-multiplexed pilot placement scheme, it is up to the re-
ceiver to decide which of the received samples must be used for channel estimation.
This is crucial for a TV OFDM system since, due to ICI (or in other words, the non-
zero off-diagonal entries of Dq), the training power is spread out over the whole
frequency band. A judicious choice of the observation samples will enhance the
channel estimation performance.

Generally speaking, Dq is approximately (circularly) banded suggesting that the
ICI primarily comes from adjacent subcarriers [96, 14]. An extreme case occurs in
the case of a (C)CE-BEM channel model, where the corresponding Dq is an identity
matrix but circularly shifted over q − Q

2 columns, which implies that only the Q

neighboring subcarriers give rise to interference.
To clarify the notations that will be used, we plot the structure of Dq in Fig. 4.2,

where the columns of Dq are related to the positions of the pilots and data, which
operate on Dq through the diagonal matrix ∆q. The rows of Dq are related to the
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Figure 4.2: The partitioning of Dq . Its rows corresponds to the positions of the received
samples; its columns to the positions of the pilots and data.

observation samples. For the mth pilot cluster

tm = s{Tm}, (4.15)

with
Tm := {Pm, · · · , Pm + D}, (4.16)

where Pm stands for the position of the first pilot in tm, let us consider the following
vector consisting of D − 2Bc + 1 observation samples:

y{Om}
f :=

[
[yf ]Pm+Bc , . . . , [yf ]Pm+D−Bc

]T
, (4.17)

where Bc is a parameter that controls the amount of observation samples used for
channel estimation. Here, Om denotes the set that collects the positions of the mth
observation sample cluster:

Om := {Pm + Bc, · · · , Pm + D −Bc}. (4.18)

To explain the function of the parameter Bc, we understand that if Dq were strictly
banded with only 2Bc+1 non-zero diagonals, y{Om}

f would be the vector of maximal
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length that exclusively depends on the pilot cluster tm. In this sense, Bc could be
interpreted as the fictive bandwidth of Dq , as suggested in Fig. 4.2. However, we
must be cautious with this interpretation, because Dq is not really banded for most
BEMs. As a matter of fact, Bc just provides a handle on the amount of interference
that we want to take into account. More importantly, Bc is not confined to positive
values as we will see later on, in which case a negative Bc cannot account for the
bandwidth physical interpretation any more. It has only meaning for (4.17).

To formulate the above discussion in mathematical expressions with notations
indicated in Fig. 4.2, we obtain

y{Om}
f =

Q∑
q=0

D{Om,T }
q ∆{T ,T }

q s{T } +
Q∑

q=0

D{Om,D}
q ∆{D,D}

q s{D}

︸ ︷︷ ︸
dm

+v{Om}
f , (4.19)

where we use the notation A{Sr,Sc} to denote the intersection of the rows and columns
of the matrix A, where the row indices are collected in the set Sr and the column
indices are collected in the set Sc. Conform such a definition, we understand that
D{Om,T }

q is a (D − 2Bc + 1) ×M(D + 1) matrix, representing the hatched parts of
Dq in Fig. 4.2. Likewise, ∆{T ,T }

q is an M(D +1)×M(D +1) diagonal matrix, which
is carved out of ∆q corresponding to the pilot-carrying subcarriers; D{Om,D}

q is a
(D − 2Bc + 1) × (N − M(D + 1)) matrix, representing the shaded parts of Dq in
Fig. 4.2; ∆{D,D}

q is an (N −M(D + 1)) × (N −M(D + 1)) diagonal matrix, which
is carved out of ∆q corresponding to the data-carrying subcarriers; finally, v{Om}

f

stands for the noise related to y{Om}
f .

In (4.19), we have thus uncoupled the effect of the data from the pilots, and put
it in a separate term dm. This term, which poses a nuisance to channel estimation, is
in general not zero since Dq is not strictly banded. Let us rewrite (4.19) as a function
of the BEM coefficients c:

y{Om}
f = D{Om,T }Uc + dm + v{Om}

f , (4.20)

with

D{Om,T } := [D{Om,T }
0 , · · · ,D{Om,T }

Q ],

U := IQ+1 ⊗D{s{T }}G{T }
L . (4.21)

Here, G{T }
L collects the rows of GL corresponding to the positions of the pilots.

Further, we want to underline that the interference term dm carries also channel
information c as can be seen from

dm = D{Om,D}(IQ+1 ⊗D{s{D}}G{D}
L

)
c, (4.22)
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where
D{Om,D} := [D{Om,D}

0 , · · · ,D{Om,D}
Q ], (4.23)

and G{D}
L collects the rows of GL corresponding to the positions of the data sym-

bols.
We repeat the above operations for all the observation vectors and stack the re-

sults together in a vector y{O}f , where the symbol O in the superscript denotes the
set that collects the positions of all the observation samples

O := O0 ∪ · · · ∪ OM−1. (4.24)

Accordingly, we have

y{O}f := [y{O0}T
f , · · · ,y{OM−1}T

f ]T . (4.25)

By introducing further the notations

d := [dT
0 , · · · ,dT

M−1]
T ,

v{O}f := [v{O0}T
f , · · · ,v{OM−1}T

f ]T ,

we can express y{O}f as :

y{O}f = Pc + d + v{O}f , (4.26)

where
P := ZU, (4.27)

with

Z = [D{O0,T }T , · · · ,D{OM−1,T }T ]T

=




D{O0,T }
0 · · · D{O0,T }

Q
...

. . .
...

D{OM−1,T }
0 · · · D{OM−1,T }

Q




and U defined in (4.21). Likewise, we can express the interference term d as

d = Γ
(
IQ+1 ⊗D{s{D}}G{D}

L

)
c, (4.28)

with

Γ := [D{O0,D}T , · · · ,D{OM−1,D}T ]T

=




D{O0,D}
0 · · · D{O0,D}

Q
...

. . .
...

D{OM−1,D}
0 · · · D{OM−1,D}

Q


 .
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The above interference analysis is not restricted to any specific BEM. However,
note that for the (C)CE-BEM Dq is strictly banded, and thus

D{Om,D}
q = 0,

if Bc ≥ Q/2. This case is considered in [47].

4.4 Channel Estimation and Bc Optimization

In this section, we will discuss channel estimation based on the data model that has
been established in the previous section. We make the following assumptions:

Assumption 4.2. The time-domain noise prior to windowing is assumed to be zero-mean
white with variance σ2.

Note that the same assumption is also adopted in the previous chapter. Further,
we require that

Assumption 4.3. The data symbols s{D} are assumed to be zero-mean white with variance
σ2

s , and uncorrelated with the noise vf , i.e.,

E{s{D}vH
f } = 0. (4.29)

We will propose three channel estimators in this section: the LMMSE estima-
tor relies on the statistics of c, while the LS estimator and the BLUE treat c as a
deterministic variable. The performance of each channel estimator is sensitive to
Bc. This can be understood from (4.26) and (4.28), where the pilot-related Z is an
M(D − 2Bc + 1) × (Q + 1)M(D + 1) matrix, and the interference-related Γ is an
M(D − 2Bc + 1) × (Q + 1)(N − M(D + 1)) matrix. Intuitively, one would reduce
the interference term by setting Bc as large as possible. The same idea is adopted in
[96] though the authors address the problem from a different point of view. To ex-
plain this using the physical interpretation of Bc: a larger Bc corresponds to a more
accurate band approximation of Dq , and thus to a smaller interference. On the other
hand, a larger Bc give rise to a “fatter” Z, which is often detrimental for a linear
channel estimator. We will examine the effect of Bc individually for each estimator.

4.4.1 The LMMSE Estimator

The LMMSE estimator treats c as a stochastic variable. To be more specific, we
introduce the following assumption:
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Assumption 4.4. The channel vector c is assumed to be uncorrelated with the noise vf and
the information symbols s{D}, i.e.,

E{cvH
f } = 0, (4.30)

and
E{cs{D}H} = 0. (4.31)

We seek a linear filter F such that the MSE between the estimated BEM coeffi-
cients

ĉ = Fy{O}f (4.32)

and the true BEM coefficients c is minimal. In other words, we solve

FLMMSE = arg min
{F}

tr {Ec,s{D},vf
{(Fy{O}f − c)(Fy{O}f − c)H}}. (4.33)

Substituting (4.26) in the above, we obtain

Ec,s{D},vf
{(Fy{O}f − c)(Fy{O}f − c)H}

= F
(PRcPH + Rd + R{O}

v + 2<{
ΓEc,s{D}{(IQ+1 ⊗D{s{D}}G{D}

L )Rc}PH
})

FH

− 2<{
RcPHFH + Ec,s{D}{Rc(IQ+1 ⊗D{s{D}∗}G{D}H

L )}ΓHFH
}

+ Rc. (4.34)

In the above, we have introduced the covariance matrix notations

Rc := Ec{ccH},
Rd := Ec,s{D}{ddH},

R{O}
v := E

v
{O}
f

{v{O}f v{O}Hf }, (4.35)

whose computations are given in Appendix 4A. Making use of Assumption 4.3 and
4.4, we can simplify (4.34) to

Ec,s{D},vf
{(Fy{O}f − c)(Fy{O}f − c)H}

= F(PRcPH + Rd + R{O}
v )FH − 2<(RcPHFH) + Rc, (4.36)

Taking the derivative on the RHS of (4.36) with respect to F, and setting the result
to zero, we get

F(PRcPH + Rd + R{O}
v ) = RcPH . (4.37)

Assuming that the covariance matrix in the above is non-singular, we can find the
LMMSE estimator as

FLMMSE = RcPH(PRcPH + Rd + R{O}
v )−1

= RcPH(PRcPH + RI)−1. (4.38)
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with
RI := Rd + R{O}

v . (4.39)

Note that although (4.38) bears a similar form to the classical LMMSE estimator [48],
it has the extra task to process the interference term d, which contains the informa-
tion of c itself. For this purpose, the proposed LMMSE treats d as a random vector
resorts to the assumed statistics of c and s{D}. However, the statistics of c are diffi-
cult to retrieve in practice and not always reliable. For instance, the Doppler spread
could only be roughly known or the assumed Doppler spectrum deviates from the
true value. In such cases, the proposed LMMSE estimator is sub-optimal. We will
show some examples in Section 4.5.

We want to use ĉ to reconstruct the BEM channel, and examine how close it is to
the best BEM fit of the real channel. To this end, we adopt the MSE criterion as

MSE := E
c,s{D},v

{O}
f

{‖(B⊗ IL+1)ĉ− (B⊗ IL+1)c‖2}
= tr{(B⊗ IL+1)Ec,s{D},v

{O}
f

{(ĉ− c)(ĉ− c)H}(B⊗ IL+1)H}
= tr{E

c,s{D},v
{O}
f

{(ĉ− c)(ĉ− c)H}}, (4.40)

where tr{A} stands for the trace of the matrix A. The last equality above holds since
we have designed B to have orthonormal columns [c.f.(4.10)]. (4.40) suggests that
the channel fitting MSE equals the MSE of the estimated BEM coefficients. There-
fore, the MSE resulting from the LMMSE channel estimator can be expressed as:

MSELMMSE = tr{(PHR−1
I P + R−1

c )−1}. (4.41)

MSELMMSE is a function of the chosen bandwidth Bc because it determines the size
and content of P and RI . Later on, we will show how to find the optimal Bc to
minimize MSELMMSE.

4.4.2 The Least Squares Estimator

The Least Squares (LS) estimator FLS treats c as a deterministic variable. It is straight-
forward to obtain

FLS := P† (4.42)

such that
ĉLS = c + P†(d + v{O}f ). (4.43)

The LS estimator is the most robust estimator, requiring no knowledge about the
channel and noise statistics. However, it performs inferior when the interference is
prominent: we will show in the simulation part that the LS estimator suffers from a
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large performance gap in comparison with the Cramer-Rao Bound (CRB) (derived
in Appendix 4B). In addition, the performance of the LS estimator relies heavily on
the condition number of P as we can see from the resulting MSE

MSELS := E
c,s{D},v

{O}
f

{tr{P†(d + v{O}f )(d + v{O}f )HP†H}}

= tr{P†E
c,s{D},v

{O}
f

{(d + v{O}f )(d + v{O}f )H}P†H}
= tr{P†RIP†H}, (4.44)

which is again a function of Bc.

4.4.3 An Iterative BLUE

From (4.26), we can find an expression for the BLUE following similar steps as in [48,
Appendix 6B] by treating the interference d and noise v{O}f as a single disturbance
term such that

ĉBLUE = FBLUEy
{O}
f ,

FBLUE =
(PHR̃−1

I (c)P)−1PHR̃−1
I (c), (4.45)

where R̃I(c) denotes the covariance matrix of the disturbance. Here, c is again
viewed as a deterministic variable and therefore

R̃I(c) := E
s{D},v

{O}
f

{(d + v{O}f )(d + v{O}f )H}. (4.46)

Due to Assumption 4.3, we have

R̃I(c) = R̃d(c) + R{O}
v , (4.47)

with
R̃d(c) := Es{D}{ddH}, (4.48)

whose derivation can be found in Appendix 4A.
However, (4.45) is not implementable in closed form since its computation en-

tails the knowledge of c itself. A recursive approach can therefore be applied. Sup-
pose at the kth iteration, an estimate for c is available denoted as ĉ(k)

BLUE. Next, we
use this estimate to update the covariance matrix R̃I(c), which in turn is used to
produce the BLUE for the next iteration and so on:

F(k+1)
BLUE =

(PHR̃−1
I (ĉ(k)

BLUE)P)−1PHR̃−1
I (ĉ(k)

BLUE),

ĉ(k+1)
BLUE = F(k+1)

BLUE y{O}f .
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Note that a similar idea is adopted in [33] though applied in a different context. To
initialize, we can set

ĉ(0)
BLUE = 0, (4.49)

which results in the following expression for the first iteration:

F(1)
BLUE =

(PH(R{O}
v )−1P)−1PH(R{O}

v )−1. (4.50)

Conform Assumption 4.2, the above expression is actually the maximum likelihood
estimator (MLE) [48] that is obtained by ignoring the interference d. The resulting

ĉ(1)
BLUE = F(1)

BLUEy
{O}
f (4.51)

is the least squares fit as obtained in the previous section but weighted by the noise
covariance. If d is small, which is often the case by carefully selecting Bc, ĉ(1)

BLUE is
already very close to c.

Assuming that ĉ(k)
BLUE → ĉBLUE, we use (4.45) to find the MSE of the channel

estimator

MSEBLUE = E
c,s{D},v

{O}
f

{tr{FBLUE(d + v{O}f )(d + v{O}f )HFH
BLUE}}

= Ec{tr
(
FBLUER̃I(c)FH

BLUE
)}

= Ec{tr
(
(PHR̃−1

I (c)P)−1
)}. (4.52)

The above expression provides a lower-bound on the performance of the iterative
BLUE. This MSE is, however, difficult to evaluate in closed form due to the inversion
of R̃I(c), which forces us to resort to the Monte Carlo method. As will be evident
later on, the MSE resulting from the BLUE dependents also on the choice of Bc.

The LS estimator and BLUE produce both unbiased estimate of c. Their perfor-
mances are hence lower bounded by the Cramer-Rao bound (CRB), which is derived
in Appendix 4B. We will compare them in the simulation part.

4.4.4 Optimization of Bc

In this section, we will optimize the number of observation samples used for channel
estimation, or in other words seek the optimal Bc that will minimize the estimator
variance given in (4.41), (4.44) and (4.52) for the LMMSE, LS estimator and BLUE,
respectively:

Bc = arg min
{Bc}

MSE. (4.53)

It is difficult to find a closed-form solution for the above equation, especially for
the BLUE. An alternative is to evaluate (4.53) exhaustively, which is feasible since
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Figure 4.3: The FD channel matrix Hf , whose power degradation is represented by the tints.
The rows of Hf corresponds to the positions of the observation samples and its columns to
the positions of the data and pilots. Left plot Bc > 0. Right plot Bc < 0.

there is only a limited range of possible values for Bc. First of all, the number of
observation samples M(D − 2Bc + 1) cannot exceed the number of subcarriers N .
This leads to

D + 1
2

− N

2M
≤ Bc. (4.54)

Second, we desire that the M(D − 2Bc + 1) × (L + 1)(Q + 1) matrix P be of full
rank, which is essential for the channel estimators to have a good performance in
the absence of interference and noise. We will discuss this topic in detail in the next
chapter. Here, we suffice with a necessary condition for P to have full column-rank:
it should be tall or at least square, which yields

D + 1
2

− (L + 1)(Q + 1)
2M

≥ Bc. (4.55)

Combining (4.54) and (4.55), we obtain the possible range of Bc:

D + 1
2

− N

2M
≤ Bc ≤ D + 1

2
− (L + 1)(Q + 1)

2M
, (4.56)

Fortunately, even the exhaustive search might be avoided as will become evident
from the simulations, where the MSE-versus-Bc curves for each channel estimator
exhibit a monotonous track: the LS channel estimator yields the best performance
when Bc is maximized, i.e.,

Bc =
D + 1

2
− (L + 1)(Q + 1)

2M
,
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whereas the LMMSE estimator and BLUE perform best when Bc is minimized, i.e.,

Bc =
D + 1

2
− N

2M
.

To explain these, we recall that a larger Bc leads to a more accurate band as-
sumption of the channel matrix and hence to a smaller out-of-band interference.
This effect is depicted in the left plot of Fig. 4.3, where the FD channel matrix Hf

is drawn. It can be seen that for a larger Bc, the number of observation samples is
typically smaller than the number of pilots. A smaller out-of-band interference is
beneficial to the LS estimator, which is not good at suppressing it due to the lack of
statistical knowledge.

Opposed to the LS estimator, the LMMSE estimator and BLUE require the Bc

to be as small as possible. For practical setups, this often implies a negative Bc, in
which case the observation samples outnumber the pilots as illustrated in the right
plot of Fig. 4.3. We can see that some of the observation samples, e.g., in the two
boundary areas, will suffer a very low signal to interference and noise ratio (SINR)
because for these observation samples the unknown data are magnified by the high-
power diagonals of the channel matrix and are hence much more prominent than
the pilots. However, this casts no serious problems to the LMMSE estimator and
BLUE since both of them can take the interference into account in a positive way.
We will come back to this issue in the next section.

4.5 Simulations

We build up an OFDM system with N = 256 subcarriers, where roughly 80% of
the subcarriers are used for transmitting data symbols. The remaining subcarriers
are reserved for pilots, which are grouped in M = 6 equidistant clusters, each con-
taining D + 1 = 9 pilot tones. Inside each cluster, we adopt a scheme referred to
as “Frequency-Domain Kronecker Delta” (FDKD) in [47], where a non-zero pilot is
located in the middle of the cluster with zero guard bands on both sides.

The TV channel following the Jakes’ Doppler spectrum [45] can be generated
following the methods in [124]. To be able to approximate the TV channel by a BEM,
we set the BEM scale to Q = 4. Further, we assume the channel to be an FIR filter
with L + 1 = 6 taps, which are independent random variables with an exponential
power intensity profile. More specifically, we set the variance of the lth channel tap
to be σ2

l = c · e−l/10, where c denotes a normalization constant. In short, we can
characterize the TV channel with (L + 1)(Q + 1) = 30 BEM coefficients.

Test Case 1. The (Windowed) BEM Justification.
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Figure 4.4: Justification of (windowed) BEM

We first study the modeling performance (e.g., the channel fitting performance
in the absence of noise) of the DKL-BEM, (C)CE-BEM, (O)CE-BEM, and P-BEM for
a range of normalized Doppler spreads νD. The DKL-BEM is constructed based on
the Jakes’ Doppler spectrum assumption but fixed at νD = 0.002, which is thus sub-
optimal for other νD’s. The BEM-modeled channel is compared to the true channel
after windowing in terms of the modeling error Eht

{‖ε‖2}. For the window design,
we adopt the window presented in the previous chapter, which is a sum of 3 com-
plex exponentials (Proposition 3.1). In Section 4.2.2, we have argued about two BEM
designs in the presence of the windowing: the first BEM design follows option (i)
in (4.10), which is the traditional BEM design ignoring the windowing; the second
BEM design follows option (ii) in (4.10), and is adapted to the windowing. From the
results that are sketched in Fig. 4.4, we can observe that by taking the windowing
into account, the BEMs following option (ii) yield in general a tighter fit with the
windowed channel, with the only exception of the (C)CE-BEM, which, by follow-
ing option (i), performs better within the tested Doppler frequency range. Further,
it can be seen that the DKL-BEM and P-BEM have the smallest modeling error at
low Doppler frequencies but lose track if the channel varies faster. Apparently for
the DKL-BEM, the mismatch due to an underestimated Doppler frequency is much
more harmful than the mismatch due to an overestimated Doppler frequency. The
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Figure 4.5: MSE vs. Bc for the LMMSE estimator. Solid curves νD = 0.004; Dashed curves
νD = 0.0008.

(O)CE-BEM that is virtually independent of the Doppler frequency is more robust
in this sense.

For the following simulations, we will concentrate on TV channels at two Doppler
spreads: (1) νD = 0.0008, (2) νD = 0.004. We will use the DKL-BEM when construct-
ing the LMMSE estimator because both of them rely on the knowledge of channel
statistics. For both the DKL-BEM and the LMMSE estimator, we will allow for a sta-
tistical mismatch by assuming a fixed νD = 0.002 for all the Doppler spreads under
test. For the LS estimator and the BLUE, we will just use the (O)CE-BEM since both
the channel estimators and the BEM are independent of the channel statistics. In
addition, we will also compare our results with the channel estimation method for
the (C)CE-BEM presented in [47]. Note that this method resembles our proposed
LMMSE estimator (without mismatch) but uses a data model that is only applicable
to the (C)CE-BEM, i.e., the channel matrix is viewed as strictly banded.

Test Case 2. Seeking the optimal Bc.
First, we need to find an optimal Bc for the different channel estimators. From

(4.56), Bc is bounded by
−16 ≤ Bc ≤ 2. (4.57)

For these values, we evaluate the MSE of the LMMSE estimator (4.41) for SNR =
10, 20, 30, 40 dB, and depict the results in Fig. 4.5. We observe that at low SNR, the
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Figure 4.6: MSE vs. Bc for the LS estimator. Solid curves νD = 0.004; Dashed curves νD =

0.0008.

effect of Bc is not pronounced, whereas at high SNR, a smaller Bc corresponds to a
smaller MSE. This is especially true for νD = 0.004, where the ICI is still severe in
spite of windowing. Tuning Bc is of greater importance in that case. Therefore, we
choose Bc = −16 as the optimal value, which implies that the whole OFDM symbol
will be invoked for channel estimation.

The results for the LS estimator are plotted in Fig. 4.6, where we observe that Bc

must be chosen as large as possible, i.e., Bc = 2.
For the BLUE in Fig. 4.7, a smaller Bc always yields a lower MSE just like the

LMMSE estimator and we should also take Bc = −16. However, complexity plays
a crucial role in this case, because the BLUE has to be computed recursively and the
procedure must be repeated for every OFDM symbol (note that the LMMSE estima-
tor is in essence time-invariant and can thus be precomputed and stored off-line). In
practice, a smaller Bc often requires more iterations to reach convergence, and dur-
ing each iteration, it inflicts a larger computational effort because more observation
samples have to be processed. Observing that the MSE curve descends only slowly
for Bc < −3, we select Bc = −3 as a good compromise between complexity and
performance for the BLUE.

Test Case 3. The estimator performance.
Having determined Bc = −16 for the LMMSE estimator, Bc = 2 for the LS esti-
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Figure 4.7: MSE vs. Bc for the BLUE. Solid curves νD = 0.004; Dashed curves νD = 0.0008.

mator, and Bc = −3 for the BLUE, we inspect their channel estimation performance
for a wide range of SNRs. Next to the MSE defined in (4.40), which we will refer
to as the “BEM MSE”, we will also look at the so-called “channel MSE” which we
define by

MSE-CH := Eht{‖ht − (B⊗ IL+1)ĉ‖2}. (4.58)

Note that the channel MSE differs from the BEM MSE in that it explicitly takes the
BEM modeling error into account, whereas the BEM MSE merely indicates how
close the estimated channel is to the best possible BEM fit. Fig. 4.8 depicts the per-
formance in terms of the BEM MSE, whereas Fig. 4.9 depicts the performance in
terms of the channel MSE. We observe that these two performances are in general
very close to each other, which suggests that Assumption 4.1 brings no harm to
channel estimation. Further, we remark that the LMMSE estimator, which is sub-
optimal due to the Doppler frequency mismatch, performs much better under TV
channels with νD = 0.0008 than with νD = 0.004. This suggests that underestimating
the Doppler frequency is more harmful than overestimating it.

The BEM MSE is also compared with the CRB (see the derivation in Appendix 4B)
in Fig. 4.8. The CRB is based on Bc = −16 and obtained using the Monte Carlo
method, thereby exploring the channel statistics. We observe that the performance
of the BLUE is very close to the CRB.
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Figure 4.8: MSE of the BEM vs. SNR. Solid curves νD = 0.004; Dashed curves νD = 0.0008.

Test Case 4. Equalization performance based on the estimated channel
For this test case, we will transmit QPSK modulated data symbols, and use the

low-complexity block LMMSE equalizer that is presented in the previous chapter.
For the sake of complexity, the FD channel matrix will be approximated as a banded
matrix with nine non-zero diagonals∗.

To examine the influence of the channel estimation error on the equalization, we
construct the equalizer utilizing the estimated channel obtained from our LMMSE
estimator, LS estimator and BLUE, respectively. As a comparison, we also list the
equalization performances, which are based on the estimated (C)CE-BEM channel
and the perfect CSI. It can be seen that due to the Doppler diversity the equalizer
renders a better performance for faster TV channels, but it is plagued by a higher
BER floor. Comparing the results in Fig. 4.9 with those in Fig. 4.10, one can remark
that the equalization performance is consistent with the corresponding channel esti-
mation performance for each Doppler frequency. Take the DKL-BEM and the (C)CE-
BEM at νD = 0.004 for instance, the channel estimation for the (C)CE-BEM is better
at low SNR but worse at high SNR than that for the DKL-BEM. A corresponding

∗In the previous chapter, we used Q to represent the number of diagonals we take into account in
the equalization design. However, that must not be confused with the BEM scale Q here, which is only
meant for channel estimation
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Figure 4.9: Channel MSE vs. SNR. Solid curves νD = 0.004; Dashed curves νD = 0.0008.

observation can be made from Fig. 4.10.

4.6 Summary

In this chapter, we discussed how to estimate the TV channel in the OFDM system
with aid of pilots. The pilots are interleaved with data in the frequency domain.
The TV channel is approximated by an arbitrary BEM, which must be very tight
with respect to the true channel. Channel estimation is achieved by estimating the
BEM coefficients.

Due to the Doppler spread, the channel matrix in the frequency domain is not di-
agonal but full. This means that even if it is approximately banded, we cannot find
any observation sample that is only contributed by the pilots and free from interfer-
ence. Note that by employing more observation samples for channel estimation, we
can benefit from more pilot information to suppress the noise, but at the same time
we have to deal with more interference.

Three channel estimators were discussed, the LMMSE estimator, the LS estima-
tor and the BLUE. The LMMSE estimator and the BLUE can both explicitly take the
interference into account. The former requires more statistical knowledge than the
latter, but can be attained in one shot. Simulation results show that for the LMMSE
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Figure 4.10: BER vs. SNR. Solid curves νD = 0.004; Dashed curves νD = 0.0008.

estimator and the BLUE, the whole OFDM symbol must be employed to achieve
the optimum performance, while for the LS estimator, the optimum performance is
achieved when the number of observation samples is kept to the minimum. These
effects can be accounted for by the amounts of information and interference that are
cast to the channel estimator, and the different capabilities of the channel estimators
to suppress the interference.

Channel estimation is carried out in this chapter within a single OFDM sym-
bol. Two questions arise: first, how many pilots are needed to make the channel
identifiable; second, with the same amount of pilots (bandwidth efficiency), can we
further improve the channel estimation performance? These two questions will be
answered in the next chapter, where the channel estimation will be based on multi-
ple OFDM symbols.

Appendix 4A: Derivation of Covariance Matrices R
{O}
n ,

Rd and R̃d(c)

In this section, we will give the computations of the covariance matrices that are
used in Section 4.4. Let us start with the covariance matrix of the noise term v{O}f ,
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i.e.,
R{O}

v := Evf
{v{O}f v{O}Hf }. (4.59)

It is clear that R{O}
v is extracted from a larger matrix

Rv = Evf
{vfvH

f }, (4.60)

which can be easily obtained from Assumption 4.2 by taking the windowing and
demodulation into account:

Rv = σ2WND{w}D{wH}WH
N . (4.61)

Hence, R{O}
v is comprised of the rows and columns of Rv corresponding to the

positions of y{O}f .
Since the interference term d depends on the BEM coefficients c, we can make

a distinction between two types of covariance matrices. The first one is based on
a stochastic channel assumption, whereas the other one is based on a deterministic
channel assumption, which leads to Rd and R̃d(c), respectively. Note that for both
cases the data symbols s{D} are always viewed as a stochastic variable.

We first assume that c is stochastic with

Rc = Ec{ccH}. (4.62)

To derive its expression, let us introduce the (Q + 1)× (Q + 1) matrix Rcl
, which is

defined as the autocorrelation of the BEM coefficients for tap l:

Rcl
:= E{clcH

l }}. (4.63)

with
cl := [c0,l, · · · , cQ,l]T . (4.64)

By taking the windowing into account, we can easily derive that

Rcl
= B†D{w}Rhl

D{wH}B†H , (4.65)

where
Rhl

:= Ehl
{hlhH

l } (4.66)

is defined as the covariance matrix of the lth unwindowed channel tap, which is thus
related to the specific Doppler spectrum. In addition, if we use an (L + 1)× (L + 1)
matrix Rmultipath to describe the correlation due to the channel’s frequency selec-
tivity, which depends on the correlation between the channel taps and the power
intensity profile, i.e.,

[Rmultipath]p,q := E{hn,ph
∗
n,q}, (4.67)
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we obtain

Rc = Rcl
⊗Rmultipath/σ2

l . (4.68)

with σ2
l denoting the power of the lth channel tap defined in (2.17).

With aid of Rc, we can derive the covariance matrix of the interference term d as

Rd := Ec,s{D}{ddH}
= Ec,s{D}{Γ(IQ+1 ⊗D{s{D}}G{D}

L )ccH(IQ+1 ⊗D{s{D}}G{D}
L )HΓH}

= ΓRxΓH , (4.69)

where using Assumption 4.4 we have

Rx := Ec,s{D}{(IQ+1 ⊗D{s{D}}G{D}
L )ccH(IQ+1 ⊗D{s{D}}G{D}

L )H

= Es{D}{(IQ+1 ⊗D{s{D}}G{D}
L )Rc(IQ+1 ⊗D{s{D}}G{D}

L )H}
= Es{D}{(IQ+1 ⊗D{s{D}})X (IQ+1 ⊗D{s{D}})H},

with

X := (IQ+1 ⊗G{D}
L )Rc(IQ+1 ⊗G{D}

L )H . (4.70)

Utilizing Assumption 4.3, we can easily verify that

[Rx]m,n =

{
σ2

s [X ]m,n if mod(m− n,Nd) = 0,

0 otherwise,

where Nd = N −M(D + 1) is the total number of data symbols in s{D}.
In contrast with Rd, R̃d(c) is obtained by assuming that c is deterministic:

R̃d(c) := Es{D}{ddH}
= Es{D}{Γ(IQ+1 ⊗D{s{D}}G{D}

L )ccH(IQ+1 ⊗D{s{D}}G{D}
L )HΓH},

= ΓR̃x(c)ΓH , (4.71)

where using Assumption 4.3 we have

R̃x(c) := Es{D}{(IQ+1 ⊗D{s{D}}G{D}
L )ccH(IQ+1 ⊗D{s{D}}G{D}

L )H}
= D{

(IQ+1 ⊗G{D}
L )c

}Es{D}{(1Q+1,1 ⊗ s{D})(1Q+1,1 ⊗ s{D})H}D{
(IQ+1 ⊗G{D}

L )c
}H

= σ2
sD{

(IQ+1 ⊗G{D}
L )c

)
(1Q+1,Q+1 ⊗ INd

)D(
(IQ+1 ⊗G{D}

L )c
}H

. (4.72)
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Appendix 4B: Cramer-Rao Bound

In this section, we will derive the CRB of the BEM coefficient estimate c. We start
from (4.26)

y{O}f = Pc + d + v{O}f . (4.73)

For the sake of simplicity, we assume that y{O}f is Gaussian distributed with mean
Pc and covariance matrix R̃I(c). The latter is defined in (4.46) as the covariance
of the interference and noise taking c as a deterministic variable and the data and
noise as stochastic. The Gaussian distribution assumption of y{O}f is supported by
Assumption 4.3, and by the fact that the OFDM symbol size N is large enough to
make d approximately normal-distributed due to the central limit theorem. The
negative Gaussian log-likelihood function L can hence be written as

−L = C log
(
det(R̃I(c))

)
+ (y{O}f −Pc)HR̃−1

I (c)(y{O}f −Pc), (4.74)

which leads to the following Fisher Information Matrix (FIM)

J (c) := Es{D},vf
{(∂L

∂c

)T (∂L
∂c

)}. (4.75)

Adapting the results given in [23], we can formulate the real FIM as

J (c) = 2
[<(Jθθ) −=(Jθθ)
=(Jθθ) <(Jθθ)

]
+ 2

[<(Jθθ∗) −=(Jθθ∗)
=(Jθθ∗) <(Jθθ∗)

]
, (4.76)

where

[Jθθ]i,j := [PHR̃−1
I P ]i,j + tr

(
R̃−1
I

∂R̃I
∂[c]∗i

R̃−1
I

∂R̃I
∂[c]∗j

)
,

[Jθθ∗ ]i,j := tr
(
R̃−1
I

∂R̃I
∂[c]∗i

R̃−1
I

∂R̃I
∂[c]∗j

)
.

Let us now focus on computing ∂R̃I
∂[c]∗j

. Since [ ∂R̃I
∂[c]∗j

]m,n = ∂[R̃I ]m,n

∂[c]∗j
, we want to

formulate [R̃I ]m,n as a function of [c]∗j . This is achieved by realizing that

[R̃I ]m,n = eT
m

(
ΓR̃x(c)ΓH + R{O}

v

)
en, (4.77)

with R̃x(c) defined in (4.72). Following the derivative rules given in [65], we have

∂[R̃I ]m,n

∂[c]∗j
= eT

mΓ
∂R̃x(c)
∂[c]∗j

ΓHen,

∂R̃x(c)
∂[c]∗j

= σ2
s

(
(IQ+1 ⊗G{D}

L )c
)
(1Q+1,Q+1 ⊗ INd

)
∂D{

(IQ+1 ⊗G{D}
L )c

}H

∂[c]∗j
.
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To work out the last equation, we realize that in the matrix D(
(IQ+1 ⊗G{D}

L )c
)H ,

only the (1+b j−1
L+1cNd)th until the (Nd +b j−1

L+1cNd)th diagonal entries are associated

with [c]∗j , with the coefficients G{D}∗
L emod(j−1,L+1)+1. Therefore,

∂D(
(IQ+1 ⊗G{D}

L )c
)H

∂[c]∗j

= D{
[01,b j−1

L+1 cNd
, eT

mod(j−1,L+1)+1G
{D}
L ,01,(Q−b j−1

L+1 c)Nd
]T

}
. (4.78)

Coining some new matrix definitions:

F j := 1Q+1,1 ⊗D{G{D}∗
L emod(j−1,L+1)+1},

Γj := Γ[0Nd,b j−1
L+1 cNd

INd
0Nd,(Q−b j−1

L+1 c)Nd
]T , (4.79)

we can easily show

∂R̃I
∂[c]∗j

= σ2
sΓD(

(IQ+1 ⊗G{D}
L )c

)F jΓH
j . (4.80)

With the obtained FIM, we find a lower bound on the channel estimator’s variance
[48]

CRB = tr
{
(J (c))−1

} ≤ tr
{Es{D},vf

{(ĉ− c)(ĉ− c)H}}, (4.81)

which is also a lower bound on the MSE of the BEM channel, as can be seen from
(4.40).





Chapter 5

Channel Estimation based on Multiple OFDM
Symbols

5.1 Introduction

In the previous chapter, the channel is estimated separately for each received OFDM
symbol. From information theory, we understand that if more observation samples
are available, the channel estimation performance can be improved. This idea will
be explored in this chapter. It is nonetheless noteworthy that in the context of TV
channels, the channel coherence time is relatively short, which means that only a
limited number of OFDM symbols can be utilized for channel estimation.

With multiple OFDM symbols, we are endowed with the freedom to decide how
to distribute the pilots among these OFDM symbols. In order to differentiate be-
tween diverse pilot patterns, we borrow in this chapter the terms that are used in
[20]. The first scheme, referred to as the comb-type, is adopted in [58, 119, 89, 5, 67,
88, 104, 15]. In this scheme, pilots occupy only a fraction of the subcarriers, but such
pilots are carried by each OFDM symbol. This is actually the pilot scheme that we
discussed in the previous chapter but is now extended to multiple OFDM symbols.
In contrast, the channel estimators in [18, 21, 91] adopt a block-type scheme, where
the pilots occupy the entire OFDM symbol, and such pilot OFDM symbols are in-
terleaved with data OFDM symbols. A third pilot scheme, considered in [17], is
referred to as the mixed-type, which is a compromise between the comb- and block-
types. To be more specific, the pilots only occupy a fraction of the subcarriers, and
such pilot OFDM symbols are interleaved with data OFDM symbols∗. An example
of these three pilot schemes is sketched in Fig. 5.1.

The question arises as which scheme is able to yield the most reliable channel
estimates under the same bandwidth/power restriction. Conflicting results are re-
ported, e.g., the works in [69, 84, 17] advocate the comb- or mixed-type, while the
block-type scheme is preferred in [21, 91]. Common to all pilot schemes, channel

The results of this chapter appeared in [104, 98] and [102, Chapter 3].
∗In this chapter, we will refer to an OFDM symbol that contains pilots as a pilot OFDM symbol, and

an OFDM symbol that contains exclusively data as a data OFDM symbol.
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Figure 5.1: The pilot schemes. The horizontal axis corresponds to the time; the vertical axis
corresponds to the subcarrier positions; the position where a pilot symbol is located is repre-
sented by a dot.

estimation can be decomposed into a two-step approach: first, preliminary chan-
nel estimates are acquired for individual pilot OFDM symbols; next, these prelim-
inary results are interpolated to attain the final channel estimates with the aid of,
e.g., channel second-order statistics (SOS), or a first-order polynomial. Usually, the
block-type scheme can yield a better channel estimation for each pilot OFDM sym-
bol because more pilots can be utilized. It is also noteworthy that the comb- or
mixed-type pilots are usually adopted in the works which assume the channel is
constant within the OFDM symbol except in [104, 15]. In the TV channel case where
ICI cannot be ignore any more, they will suffer from a noise floor, whereas the pilots
in the block-type scheme, by occupying the entire subcarriers, are not plagued by
this problem. On the other hand, in the second step of channel estimation where the
interpolation is invoked, the block-type scheme will in general suffer from a larger
interpolation error because in the comb- and mixed-type schemes, the pilot OFDM
symbols are placed much closer to each other.

This chapter aims to provide a better overview on the impact of diverse pilot
placement schemes on the channel estimation performance. Compared to the exist-
ing works, improvements are made in two aspects:

1. in the comb- and mixed-type schemes, the channel will not be assumed con-
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stant within the OFDM symbol, and the ICI will be more effectively addressed.
To this end, the pilots will be lumped in clusters like we have done in the previ-
ous chapter. Besides, we will employ a best linear unbiased estimator (BLUE)
[48] to combat ICI, which is similarly applied as in the previous chapter [97];

2. for interpolation (as well as channel modeling for each OFDM symbol), we
will adopt a general BEM assumption. Note that the first-order polynomial
interpolation used in [67] can be put in the framework of the P-BEM, and the
interpolation using channel SOS (especially the reduced rank approach in [91])
corresponds to the DKL-BEM.

5.2 System Model and BEM for Multiple OFDM Sym-
bols

A similar system model as considered in the previous chapter will be used here,
where we consider the OFDM system to have N subcarriers. The TV channel that
takes the transmit filter, the propagation environment, and the receive filter (and a
possible window) into account is assumed to be an FIR with a maximal order L. If
we use hp,l to denote the lth channel tap at the pth time-instance, then hp,l = 0 for
l < 0 or l > L. For the ith OFDM symbol, the data symbols s(i) are first modulated
on N subcarriers as

x(i) = WH
N s(i). (5.1)

Making abstraction of the digital-to-analog and analog-to-digital conversions, x(i)
is next concatenated by a cyclic prefix (CP) of length Lz ≥ L, sent over the channel,
stripped from the CP, windowed and finally demodulated. The received data stream
resulting from the ith OFDM symbol can be expressed in the frequency domain as

yf (i) = Hf (i)s(i) + vf (i), (5.2)

where
vf (i) := WND{w}vt(i) (5.3)

represents the noise in the frequency domain with vt(i) being its counterpart in the
time domain. D{w} corresponds to the windowing operation with

w := [w0, · · · , wN−1]T (5.4)

as the window elements. Hf (i) stands for the FD channel matrix, which is related
with the TD channel matrix Ht(i) as

Hf (i) := WND{w}Ht(i)WH
N . (5.5)
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Conform the FIR assumption of the channel and letting Lz = L without loss of
generality, we understand that the entries of Ht(i) admits the expression as

[Ht(i)]p,n = hi(N+L)+p+L,mod(p−n,N). (5.6)

In the following of the chapter, we will consider R consecutive OFDM symbols
and assume that the symbol index i is ranged from 0 until R − 1. By employing
multiple OFDM symbols, we are able to benefit from their mutual time correlation
to enhance the estimation precision. Besides, this is indispensable for the block-type
scheme, where the data symbols are transmitted in a different OFDM symbol than
the pilots.

To introduce the BEM, let us first define an NR × 1 vector hl that collects all the
lth channel taps after windowing

hl := [hl(0)T , · · · ,hl(R− 1)T ]T , (5.7)

for l = 0, · · · , L, with

hl(i) := [w0hi(N+L),l, · · · , wN−1hi(N+L)+N−1,l]T (5.8)

representing the lth channel tap within the ith OFDM symbol after windowing.
Note that there is a gap between the last index of hl(i) and the first index of hl(i+1)
because the channel in between is discarded with the CP. As a result, if we want to
use a BEM to approximate hl as

hl ≈




b0(0) · · · bQ(0)
...

. . .
...

b0(R− 1) · · · bQ(R− 1)




︸ ︷︷ ︸
B

[c0,l, · · · , cQ,l]T , (5.9)

we need to first set up a larger BEM matrix with a dimension of R(N + L) by Q + 1,
and designate bq(i) as its qth column starting from row i(N + L) until row (i +
1)(N + L) + N − 1. Hence for the ith OFDM symbol in particular,

hl(i) ≈ [b0(i), · · · ,bQ(i)]︸ ︷︷ ︸
B(i)

[c0,l, · · · , cQ,l]T , (5.10)

Assuming that the BEM induces only a negligible modeling error, we can express
the TD channel matrix in (5.6) in terms of the BEM as

D{w}Ht(i) =
Q∑

q=0

D{bq(i)}Cq, (5.11)
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where Cq denotes a circulant matrix with [cT
q ,01×(N−L−1)]T as its first column. Here,

cq := [cq,0, · · · , cq,L]T . (5.12)

As a result, the I/O relationship in (5.2) can be accordingly rewritten as

yf (i) =
Q∑

q=0

WND{bq(i)}CqWH
N s(i) + vf (i),

=
Q∑

q=0

WND{bq(i)}WH
N D{GLcq}s(i) + vf (i), (5.13)

where the second equality is derived due to the fact that the circulant matrix Cq

corresponds in the frequency domain to a diagonal matrix

D{GLcq} = WNCqWH
N , (5.14)

with GL standing for an N × (L + 1) matrix that consists of the first L + 1 columns
of WN , and is scaled by

√
N .

5.3 Channel Estimators and Pilot Schemes

5.3.1 Data Model for Channel Estimation

The channel estimation is accomplished in a similar way as in the previous chapter.
For the ith OFDM symbol, let us use T (i) to denote the set that contains the indices
of the pilot-carrying subcarriers, and D(i) to denote the set that contains the indices
of the data-carrying subcarriers. Accordingly, the pilots carried in the ith OFDM
symbol can be expressed as

t(i) = s{T (i)}(i), (5.15)

and the data symbols carried in the ith OFDM symbol can be expressed

d(i) = s{D(i)}(i). (5.16)

In addition, we use O(i) to denote the positions of the observation samples. for
which we can derive their relationship with the pilots and data symbols from (5.13)
as:

y{O(i)}
f (i) = P(i)c + I(i)c + v{O(i)}

f (i), (5.17)
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with c := [cT
0 , · · · , cT

Q]T and

P(i) :=
[
W{O(i)}

N D{b0(i)}W{T (i)}H
N , · · · , W{O(i)}

N D{bQ(i)}W{T (i)}H
N

]

(
IQ+1 ⊗D{t(i)}G{T (i)}

L

)
,

I(i) :=
[
W{O(i)}

N D{b0(i)}W{D(i)}H
N , · · · , W{O(i)}

N D{bQ(i)}W{D(i)}H
N

]

(
IQ+1 ⊗D{d(i)}G{D(i)}

L

)
. (5.18)

In (5.17), the contribution to the observation samples is decomposed into two parts,
where P(i) is entirely dependent on pilots, while I(i) is entirely dependent on un-
known data symbols. Note that (5.17) is the same as (4.26), but in a slightly different
appearance.

Further, let us use V to denote the index set for those OFDM symbols that contain
pilots with iv standing for the vth component. We suppose there are in total V pilot
OFDM symbols with

V = {i0, · · · , iV−1}. (5.19)

By the definition of the diverse pilot scheme, we understand that

• Comb-type scheme has |V| = R since each OFDM symbol carries pilot, and
the pilots occupy only a fraction of the subcarriers, i.e., |T (i)| < N .

• Mixed-type scheme has |V| < R since the pilot OFDM symbols are interleaved
with the data OFDM symbols, and the pilots occupy only a fraction of the
subcarriers, i.e., |T (i)| < N if i ∈ V .

• Block-type scheme has |V| < R since the pilot OFDM symbols are interleaved
with the data OFDM symbols, but the pilots occupy all the subcarriers, i.e.,
|T (i)| = N if i ∈ V .

Note that in a general comb/mixed-type, it is not mandatory that the positions of
the pilot subcarriers in different OFDM symbols are aligned with each other, i.e., it
is allowed that T (i) 6= T (i′). An example of these three pilot schemes is sketched in
Fig. 5.1.

With the aid of the above notations, we can apply a similar operation as in (5.17)
to each pilot OFDM symbol, and stack the results in one vector. This leads to

yf = Pc + Ic + vf , (5.20)

where
yf := [y{O(i0)}T

f (i0), · · · ,y{O(iV−1)}T
f (iV−1)]T , (5.21)

and P , I , and vf are similarly defined as yf .
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It is important to remark here that in the block-type scheme, the effect of the
pilots are detached from the data, and thus the observation samples are free from
the interference. In that case, (5.20) reduces to

yf = Pc + vf . (5.22)

5.3.2 Channel Estimators

We consider the BLUE, which can be analogously implemented as in the previous
chapter. Here, we briefly summarize its working principle: from (5.20), suppose ĉ(k)

denotes the channel estimate obtained at the kth iteration. In the next iteration, we
compute:

ĉ(k+1)
BLUE =

(PHR(k)−1P)−1PHR(k)−1y, (5.23)

with R(k) standing for the covariance matrix of the interference and noise resulting
from the current estimate ĉ(k). Assuming that the noise and data are uncorrelated
and independent in different OFDM symbols, we have

R(k) := E{I ĉ(k)ĉ(k)HIH + vfvH
f }, (5.24)

=



R(k)(i0)

. . .
R(k)(iV−1)


 , (5.25)

with

R(k)(i) := Ed(i),vf (i){I(i)ĉ(k)ĉ(k)HIH(i) + v{O(i)}
f (i)v{O(i)}H

f (i)}. (5.26)

In the sequel of this paper, the following assumption will be made.

Assumption 5.1. All the received samples of the pilot OFDM symbols will be used as the
observation samples for channel estimation, i.e.,

|O(i)| = N. (5.27)

For the block-type scheme, this assumption speaks for itself. For the comb- and
mixed-type schemes, this is required for the BLUE to achieve the optimal perfor-
mance. Requiring |O(i)| = N is equivalent to minimizing the assumed bandwidth
Bc in Fig. 4.2. See the previous chapter for more details.

It is noteworthy that since the block-type scheme is free from interference, (5.26)
becomes

R(k)(i) := Evf (i){v{O(i)}
f (i)v{O(i)}H

f (i)}. (5.28)
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Figure 5.2: The “FDKD” pilot scheme, where the black boxes stand for non-zero pilots, the
white boxes for zero pilots. The remaining boxes corresponds to the data symbols.

If we further assume that the noise prior to windowing is zero-mean white with
power σ2, the BLUE in (5.23) will reduce to

ĉ =
(PHR−1

v P)−1PHR−1
v yf , (5.29)

with
Rv = σ2WND{w}D{wH}WH

N . (5.30)

The estimator in (5.29) is a weighted LS estimator, and can be attained in one shot.

5.4 Channel Identifiability

Channel identifiability is defined in this chapter as the existence of a unique channel
estimator. For the LS estimator used in the block-type scheme, this is equivalent to
requiring that the matrix P in (5.29) be of full column rank. The same requirement
is posed on the BLUE in the comb- and mixed-type schemes, which is adequate
since the covariance matrix R(k)(i) defined in (5.26) is always positive definite for
a zero-mean white noise and a practical SNR, and so is its inverse. In that case,
PHR(k)−1P in (5.23) will be non-singular if P has full rank.

Conform Assumption 5.1, P is a V N × (L + 1)(Q + 1) matrix, which is usually
tall. Hence, the channel identifiability is paraphrased in this chapter as

Rank{P} = (L + 1)(Q + 1). (5.31)

In practice, the rank condition on P depends on many factors, such as the choice
of BEM, or the pilot structure. Especially for the latter, it turns out to be very hard
to give a rigorous formulation on (5.31) if a general pilot structure is used. In this
chapter, we will adopt a specific pilot structure assumption for each pilot OFDM
symbol, which is referred to as the “FDKD” pilot scheme in [47].

Assumption 5.2. Assuming that total number of subcarriers equals

N = PM (5.32)

with P and M integers, we group the pilots into P (cyclically) equi-distant clusters, where
each cluster takes on a pulse shape form, i.e., a non-zero pilot is guarded by D

2 zero pilots on
both sides.
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Note that for the derivation that follows, the position of the non-zero pilot inside
one cluster is actually not important. In that sense, the zero guard pilots might be a
misnomer. An example of such “FDKD” pilots is schematically illustrated in Fig. 5.2.

Although the optimal pilot scheme remains to be explored, the “FDKD” pilot
scheme (and its variant “TDKD” pilot scheme for single-carrier systems [59]) are
shown to be optimal under a special (C)CE-BEM assumption in [47]. For a general
BEM assumption as taken in [97], the “FDKD” seems also to yield a good perfor-
mance experimentally.

In what follows, we find it instrumental to first explore the rank condition on
P(i) for the single OFDM symbol case, and then extend the results to the multiple
pilot OFDM symbol case.

5.4.1 Rank Condition of P(i)

To begin with, let us describe the “FDKD” pilots contained in the ith pilot OFDM
symbol in a vector form as

t(i) = t̄(i)⊗ [01×D
2
, 1,01×D

2
]T , (5.33)

where t̄(i) contains all the P non-zero pilots. Let us further use T̄ (i) to denote the
positions of the subcarriers carrying these non-zero pilots. Under the equi-distance
assumption, these non-zero pilots are also equally distributed with distance M .
Hence,

T̄ (i) := {µ(i), µ(i) + M, · · · , µ(i) + M(P − 1)}. (5.34)

with µ(i) denoting the position of the first non-zero pilot in the ith OFDM symbol.
Discarding the columns (rows) corresponding to the positions of the zero pilots, we
are allowed to rewrite the matrix P(i) defined in (5.18) as

P(i) = Z(i)U(i), (5.35)

with

Z(i) = W{O(i)}
N

[D{b0(i)} · · · D{bQ(i)}] (
IQ+1 ⊗W{T̄ (i)}H

N

)
,

U(i) = IQ+1 ⊗D{t̄(i)}G{T̄ (i)}
L . (5.36)

Because G{T̄ (i)}
L consists of P equi-distant rows of GL, which is introduced in (5.14),

it is a P × (L + 1) Vandermonde matrix, which implies that

Rank{U(i)} = min(P, L + 1)(Q + 1). (5.37)
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Under Assumption 5.1 and 5.2, we can show that (see Appendix 5A for a proof)

Rank{Z(i)} = min(
N

P
,Q + 1)P. (5.38)

For an m× k matrix A and a k × n matrix B, the rank inequality reads [43]

(Rank{A}+ Rank{B})− k ≤ Rank{AB} ≤ min(Rank{A}, Rank{B}). (5.39)

Now that Z(i) is a PM × P (Q + 1) matrix, and U(i) is a P (Q + 1)× (L + 1)(Q + 1)
matrix, we understand that in order for the matrix product Z(i)U(i) to have a rank
(L + 1)(Q + 1), it is sufficient that

P ≥ (L + 1)

from (5.37) and

M =
N

P
≥ Q + 1

from (5.38). Let us summarize the above results in the following theorem,

Theorem 5.1. Within a single pilot OFDM symbol, the channel will be identifiable for a
practical BEM if the equi-distant “FDKD” pilots are used and if the number of pilot clusters
P satisfies

N

Q + 1
≥ P ≥ L + 1. (5.40)

The following remarks are in order at this stage.

Remark 5.1.

It is noteworthy that the length of the guard interval D of each pilot cluster is not mentioned
in Theorem 5.1. For the comb- and mixed- type pilot schemes, this implies that it is even
possible to take D = 0 in some special cases. For a fast fading channel, the power of the
interference I(i) could therefore be dominant, which is, however, not the biggest concern for
the BLUE. Later on, we will give a lower bound on the total number of pilots in terms of an
asymptotic expression of the BLUE.

Remark 5.2.

Theorem 5.1 holds in general true irrespective of the specific pilot value. However, for the
block-type pilot scheme, we must be cautious if an all non-zero pilot structure is to be taken.
Such a pilot structure can be viewed as a special form of the equi-distant “FDKD” pilots
with P = N and D = 0. In this case, Theorem 5.1, especially the first inequality in (5.40),
can only be satisfied if Q = 0, which happens only for time-invariant channels. In this case,
P(i) is not necessarily of full rank, which will depend on the specific value of the pilots t(i).
As a result, the channel is not guaranteed to be identifiable.
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5.4.2 Rank Condition of P
In many practical situations, Theorem 5.1 is hard to satisfy. We have mentioned one
such example in Remark 5.2. Another scenario that can be commonly encountered is
when the channel delay spread L is large. In that case, it will be difficult, especially
for the comb-type scheme, to afford enough pilot clusters P to match the channel
length as the second inequality of (5.40) requires. If channel estimation on a single
OFDM symbol is not possible, a solution is to employ multiple pilot OFDM symbols.

First of all, the following two lemmas proves useful.

Lemma 5.1. If each pilot symbol contains the same equi-distant “FDKD” pilots: the pilot
values and positions are identical, i.e.,

t̄(i0) = · · · = t̄(iV−1),

µ(i0) = · · · = µ(iV−1), (5.41)

then P will have full rank provided that

V N

Q + 1
≥ P ≥ (L + 1). (5.42)

The proof will be given in Appendix 5B. In the above, we have used the notation
µ(i) that is defined in (5.34) to denote the position of the first non-zero pilot in the
ith pilot OFDM symbol. Because the pilots in each OFDM symbol are grouped in
equi-distant clusters, each cluster having only one non-zero pilot (Assumption 5.2),
the positions of all the pilots in the ith pilot OFDM symbol are uniquely determined
by µ(i).

Lemma 5.2. If the positions of the non-zero pilots in each pilot OFDM symbol are shifted
with respect to each other, i.e.,

µ(i0) 6= · · · 6= µ(iV−1), (5.43)

then the matrix P will have full rank provided that

N

Q + 1
≥ P ≥ L + 1

V
. (5.44)

The proof will be given in Appendix 5C. In addition, we will need the following
assumption:

Assumption 5.3. We assume that the entire number of pilot OFDM symbols satisfies

V = VaVb (5.45)
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with Va and Vb being integers. Let us group the pilot OFDM symbols into Va clusters, each
containing Vb pilot OFDM symbols. Inside each cluster, we will make the pilots exactly
identical to each other [c.f. (5.41)], whereas among different clusters, we will displace the
positions of the non-zero pilots in each pilot OFDM symbol [c.f. (5.43)].

Combining Lemma 5.1 and 5.2, and conform Assumption 5.3, we come up with
the following theorem that guarantees the full-rank condition of P .

Theorem 5.2. For multiple OFDM symbols, the channel will be identifiable for a practical
BEM if the “FDKD” pilot structure follows Assumption 5.3 and if the number of pilot
clusters P inside each OFDM symbol satisfies

VbN

Q + 1
≥ P ≥ L + 1

Va
. (5.46)

The proof is in a great deal analogous to the proof of Lemma 5.1 and 5.2, and will
be omitted here.

5.4.3 Channel Identifiability at a High SNR

Theorem 5.2 (as well as Theorem 5.1 ) does not impose an explicit restriction on the
length of the guard band, D, in the “FDKD” pilots. For the LS estimator in (5.29)
that is used for the block-type scheme, this restriction is implicitly imposed since the
pilots occupy all the subcarriers, thus P (D + 1) = PM = N . For the other two pilot
schemes, where the BLUE is applied, D will only become significant to the channel
identifiability at high SNR.

To understand this, recall that when we start to discuss the channel identifiability
related to the BLUE, we have assumed that the covariance matrix R(k) given in
(5.28) is always positive-definite. Due to the white Gaussian noise assumption, this
is reasonable for a practical SNR, but could lose its validity when the SNR becomes
large. This makes sense since in that case the noise is small, the performance of
the channel estimator will be more susceptible to the interference due to the data
symbols. A longer guard band D within the pilot clusters will be helpful to reduce
the impact of the data interference. To facilitate a deeper insight, let us express the
covariance matrix R(k)(i) of the data interference defined in (5.26) as

R(k)(i) = Γ(i)Φ(k)(i)ΓH(i) + σ2W{O(i)}
N D{w}D{wH}W{O(i)}H

N . (5.47)

It can be shown that [c.f. (4.28)]

Γ(i) :=
[
W{O(i)}

N D{b0(i)}W{D(i)}H
N , · · · , W{O(i)}

N D{bq(i)}W{D(i)}H
N

]
,

Φ(k)(i) := D{(IQ+1 ⊗G{D(i)}
L )ĉ(k)}(1Q+1,Q+1 ⊗ E{d(i)dH(i)})

D{(IQ+1 ⊗G{D(i)}
L )ĉ(k)}H . (5.48)
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Assuming the data to be zero-mean white with variance σ2
s , we can rewrite Φ(k)(i)

after some algebra as
Φ(k)(i) = σ2

sG(k)(i)G(k)H(i), (5.49)

with
G(k)(i) :=

[
D{G{D(i)}

L ĉ(k)
0 }, · · · , D{G{D(i)}

L ĉ(k)
Q }

]T

. (5.50)

Further, because the noise covariance matrix is positive definite, it can be decom-
posed as

σ2W{O(i)}
N D{w}D{wH}W{O(i)}H

N = σ2M−1(i)M−H(i), (5.51)

with M(i) standing for a non-singular square matrix. As a result, the inversion of
the covariance matrix R(k)(i) can be expressed as

R(k)−1(i) = M−1(i)Ψ(i)M−H(i), (5.52)

with
Ψ(i) :=

(M(i)Γ(i)G(k)(i)G(k)H(i)ΓH(i)MH(i) + σ2I
)−1

. (5.53)

Utilizing the matrix inversion lemma, we can express the above as

Ψ(i) =σ−2I− σ−2M(i)Γ(i)G(k)(i)
(σ2

σ2
s

I + G(k)H(i)ΓH(i)MH(i)

M(i)Γ(i)G(k)(i)
)−1

G(k)H(i)ΓH(i)MH(i). (5.54)

In the high SNR region, where σ2
s

σ2 →∞, the above becomes

Ψ(i) ≈σ−2I− σ−2M(i)Γ(i)G(k)(i)
(G(k)H(i)ΓH(i)MH(i)M(i)Γ(i)G(k)(i)

)−1

G(k)H(i)ΓH(i)MH(i). (5.55)

In the above, because M(i) is a non-singular matrix, the rank condition of Ψ(i)
depends on Γ(i)G(k)(i), which is unfortunately not always of full column-rank:
for the diagonal block components D{G{D(i)}

L c(k)
q } of G(k)(i) in (5.50), it is possi-

ble that they have common zeros at the same diagonal position. For such a rank-
deficient Γ(i)G(k)(i), R(k)(i) can already become extremely ill-conditioned even at
a moderate-to-high SNR. In that case, we have to replace the inverse operation in
(5.23) with the pseudo-inverse operation, which leads to a sub-optimal BLUE

ĉ(k+1)
BLUE =

(PHR(k)†P)−1PHR(k)†y. (5.56)

For such a sub-optimal BLUE, the full rank condition of P alone is not sufficient
to guarantee the channel identifiability, but we must focus on the rank condition of
PHR(k)†P . In general, its full rank condition is difficult to prove, and we can only
find a necessary condition that is stated in the following lemma.
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Lemma 5.3. In order for the channel to be identifiable using the BLUE at high SNR, it is
necessary that the total number of pilots be greater or equal to the number of unknowns, i.e.,

V P (D + 1) ≥ (L + 1)(Q + 1). (5.57)

Proof. The PM×PM matrix Ψ(i) in (5.55) lies in the noise subspace of M(i)Γ(i)G(k)(i),
i.e.,

Ψ(i)M(i)Γ(i)G(k)(i) = 0. (5.58)

For the non-singular M(i), and assuming that the PM × P (M − D − 1) matrix
Γ(i)G(k)(i) has a full column-rank, we understand that

Rank{Ψ(i)} ≤ P (D + 1). (5.59)

and hence
Rank{R(k)†} ≤ V P (D + 1). (5.60)

In light of (5.56), we desire that the (L+1)(Q+1)× (L+1)(Q+1) matrix PHR(k)†P
be non-singular. This is only possible if (5.57) is satisfied. ¤

5.5 Some Simulation Results and Discussion

We test the different channel estimators/pilot schemes for TV channels that follow
Jakes’ Doppler profile [45] utilizing the TV channel generator that is given in [124].
We assume the channel to be an FIR filter with each filter tap having an indepen-
dent Gaussian distribution with zero-mean and a uniform multi-path profile, i.e.,
E{|hn,l|2} = 1

L+1 . Further, a flat window is used for channel estimation†.
We approximate the channel time-variation by means of the (O)CE-BEM, which

spans in total eight OFDM symbols including the cyclic prefix, with each OFDM
symbol containing N = 64 subcarriers. Note that other BEMs are also viable, but
will not be tested here. The scale of the BEM is associated with the normalized
Doppler spread νD. In the simulation, we set Q = 4 if νD ≤ 0.002 and otherwise
Q = 8.

The pilot schemes to be compared are plotted in Fig. 5.1. To be more specific, we
let each OFDM symbol carry pilots in the comb-type scheme, thus V = {0, · · · , 7}.
The pilots are grouped in P = 8 equi-distant “FDKD” clusters, each of length D+1 =
3. In the block-type scheme, the indices of the pilot OFDM symbols are collected in
V = {0, 3, 6}. Inside each pilot OFDM symbols, we set further [P,D] = [16, 3]. Note

†We did not use a window that is introduced in the previous chapters because it is only significant for
low-complexity channel equalization.
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Figure 5.3: NMSE vs SNR for L = 3.

that different than the most traditional works, we let the block-type scheme also
carry “FDKD” pilots to ensure the channel identifiability (see Remark 5.2). In the
mixed-type scheme, we set V = {0, 2, 4, 6}, and [P,D] = [16, 2]. In this way, all the
pilot schemes result in an equal loss in bandwidth (37.5%).

We use the normalized mean square error (NMSE) with respect to the actual TV
channel (hence the BEM approximation error is also taken into account) as perfor-
mance measure [c.f. (5.10)]:

NMSE-CH(i) =
1
N

∑

l

‖hl(i)−B(i)[ĉ0,l, · · · , ĉQ,l]T ‖2, (5.61)

where B(i) is defined in (5.10) as the part of the BEM matrix that corresponds to the
ith OFDM symbol. To combat the BEM modeling error due to a large BEM window
size, we adopt a sliding window approach. In other words, we will consider the
NMSE only for the fourth and fifth OFDM symbol in the comb- and mixed-type
scheme (i = 3 and i = 4), and the fifth and sixth OFDM symbols in the block-type
scheme (i = 4 and i = 5).

Test Case 1. Comparison of channel estimation performance
In the left and right plot of Fig. 5.3, we depict the performances of the three pilot

schemes for short channels, L = 3, with a normalized Doppler spread νD = 0.0008
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Figure 5.4: NMSE vs SNR for L = 15.

and νD = 0.004, respectively. In addition, we list the performance based on a single
OFDM symbol, which is a special case of the comb-type scheme but with |V| = 1
(for this case, we set Q = 2). We can observe in the left plot of Fig. 5.3 that when the
channel fading is slow, the three pilot schemes yield similar performances, which are
all better than the performance of the single OFDM symbol case. When the channel
fades faster as in the right plot, the block-type scheme endures more difficulty in
tracking the channel compared to the other schemes.

To explain this, let us interpret the pilot-aided channel estimation as a kind of
interpolation, where the positions of the pilot OFDM symbols correspond to the
interpolation points. In the block-type scheme, these interpolation points are ag-
glomerated in blocks, which are separated relatively farther apart from each other
than in the other two schemes. It is hence not hard to imagine that such a pilot pat-
tern is not capable of tracking promptly the ups-and-downs that arise more often in
fast channels. This drawback is alleviated in the other two schemes, where the pilot
OFDM symbols are much closer to each other. As can be seen, the performance of
the block-type scheme is even inferior to that of the single OFDM symbol case in
most SNR regimes.

The results for a much longer channel, L = 15, are depicted in Fig. 5.4. We ob-
serve that when the channel varies slow, the block-type scheme renders a similar
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Figure 5.5: BER vs SNR for L = 3.

performance as the other two, but gets worse when the channel varies much faster
as shown in the right plot. Interestingly, the performance of the comb-type scheme
degrades in the right plot more severely, and suffers from a high noise floor at a
moderate-to-high SNR. Compared to the other channel situations, this suggests that
the comb-type is inferior for a channel that is overspread in both the Doppler and
delay domain. We will study this effect in more detail later on. Further, note that
the channel with L = 15 is not identifiable any more within a single OFDM symbol
as evident in Fig. 5.4, since it only accommodates P = 8 pilot clusters, and conse-
quently, the condition in Theorem 5.1 is violated.

Test Case 2. Comparison of channel equalization performance
It is practically of more significance to see how the estimation error will impact

the BER performance. To this end, we construct a block LMMSE channel equalizer
that is based on the full block matrix knowledge of the frequency-domain channel,
estimated from the three pilot schemes. The BER results are depicted in Fig. 5.5 and
Fig. 5.6, where one can easily remark that the channel equalization performance cor-
responds roughly to the channel estimation performance that is depicted in Fig. 5.3
and Fig. 5.4.

Test Case 3. Comparison of channel estimation performance at high SNR
In Fig. 5.7, we plot the channel estimation performance in relationship with the
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Figure 5.6: BER vs SNR for L = 15.

Doppler spread, which is obtained at an SNR equal to 40dB for L = 3 and L = 15,
respectively. We observe that all the three pilot schemes are more or less robust to
the Doppler spread. There is indeed a jump at the point νD = 0.0025, where the
BEM scale is enlarged to Q = 8, and thereby almost doubles the number of channel
unknowns, which equals (L + 1)(Q + 1). Nevertheless, the performance after this
point becomes steady again.

However, the comb-type scheme is worth paying more attention to because it
exhibits an extraordinary behavior with regard to this performance drop. For short
channels with L = 3, it renders a superior channel estimation performance regard-
less of the Doppler spread change. Opposingly, when the channel is much longer,
L = 15, its performance drops drastically at the point the BEM scale needs to be en-
larged. We understand from Lemma 5.3 that the total number of channel unknowns
must be smaller than the total number of pilots in order for the channel to be iden-
tifiable at high SNR. For a channel that is overspread in both the Doppler and delay
domain, this condition seems to become more critical, and the performance of the
comb-type scheme is apparently very sensitive to it.

In Fig. 5.8, we compare the channel estimation performance of the three pilot
schemes with respect to the channel length L, which is obtained at an SNR equal
to 40dB for νD = 0.0008 and νD = 0.004, respectively. Similar to the situation in
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Figure 5.7: NMSE vs the normalized Doppler spread.

Fig. 5.7, one can remark that for slow channels, the performance of the comb-type
scheme is superior and robust to the channel length. In contrast, for fast channels,
its performance undergoes a drastic jump. Interestingly enough, this jump happens
specifically at the point L = 8, where the comb-type scheme with its number of
pilot clusters, P = 8, begins to break the condition in Theorem 5.1, i.e., the channel
loses identifiability within a single pilot OFDM symbol. We see that when the total
number of channel unknowns becomes larger, or in other words, the condition in
Lemma 5.3 becomes more critical, Theorem 5.1 plays a more significant role even
when Theorem 5.2 is satisfied. This is probably due to the fact that in that case, the
matrix P , though still of full rank, becomes quite ill conditioned, and the BLUE will
be more susceptible to noise and interference and be more difficult to converge.

It is noteworthy that the mixed-type scheme satisfies both Theorem 5.1 and The-
orem 5.2 for all the channel lengths. In addition, it withstands the fast channel vari-
ation much better than the block-type scheme thanks to the fact that the pilot OFDM
symbols are closer to each other. These two factors endow the mixed-type scheme
with a very robust channel estimation performance for all fading situations.
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Figure 5.8: NMSE vs the channel length.

5.6 Summary

In this chapter, TV channel estimation based on multiple OFDM symbols was dis-
cussed. We compared three pilot arrangement schemes, namely, the comb-, block-
and mixed-type schemes: in the comb-type scheme, each OFDM symbol carries pi-
lots, which are interleaved with data in the frequency domain; in the block-type
scheme, only a few of the OFDM symbols carries pilots, but these pilots occupy all
the subcarriers; in the mixed-type scheme, only a fraction of the subcarriers are ded-
icated to pilots, and such pilot OFDM symbols are interleaved with all-data OFDM
symbols in the time domain.

A BLUE channel estimator is adopted, which reduces to an LS channel estimator
in the case of the block-type scheme. The existence of a channel estimate (channel
identifiability) was discussed, which turns out to be dependent on the pattern in
which pilots are distributed in the time and frequency domain.

Finally, via numerical examples, we have shown that the pilot schemes also have
an impact on the channel estimation performance. In short, the block-type scheme,
despite the fact that it allows for a simple channel estimator, is not suitable for chan-
nels that vary fast. The performances of the comb-type and mixed-type schemes
are in general similar if the number of channel unknowns is limited, but the comb-
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type scheme has a slight advantage in the precision. However, when the number of
channel unknowns becomes large, the comb-type is incapable of estimating a long
channel. In contrast, the mixed-type scheme is able to render a robust performance
for a wide range of channel situations.

Appendix 5A: Rank Condition of Z(i)

In this section, we will look at the rank condition of Z(i), which is considered in Sec-
tion 5.4.1. Before starting, let us introduce the following facts. First, due to the fact
that the set T̄ (i) contains equi-distant elements [c.f. (5.34)], the entries of W{T̄ (i)}

N

can be expressed as

[W{T̄ (i)}
N ]m,n = e−j 2π

MP (mM+µ(i))n, (5.62)

where µ(i) denotes the position of the first subcarrier that carries a non-zero pilot.
Hence, it is not hard to see in matrix/vector form that

W{T̄ (i)}
N = θµ(i)T ⊗WP D{δµ(i)}, (5.63)

with

θ := e−j 2π
M [0,··· ,M−1]T , (5.64)

δ := e−j 2π
MP [0,··· ,P−1]T . (5.65)

Second, in compliance with the equi-spaced clustered pilots, we are allowed as
well to group the observation samples into P equi-distant clusters with each cluster
containing K + 1 observation samples in a row. Notice from Fig. 4.2 that the cen-
ters of these observation sample clusters align with the centers of the pilot clusters.
Therefore, the set of the observation sample positions O(i) can be expressed as

O(i) = T̄ (i)⊕ {−K

2
, · · · ,

K

2
}, (5.66)

where the operator⊕ stands for the set sum: if a belongs to the setA and b belongs to
the set B, then a+b belongs to the setA⊕B. From the definition, we understand that
if we arrange the elements ofO(i) in an ascendant order and group them into K +1
subsets by picking the (K + 1)-spaced elements, then the kth subset will contain

T̄ (i) + k − K

2
= {µ(i) + k − K

2
, · · · , µ(i) + M(P − 1) + k − K

2
},
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for k = 0, · · · , K − 1. Such a partitioning of O(i) enables us to attain the following
relationship

ΠK+1W
{O(i)}
N =



W{T̄ (i)−K

2 }
N

...

W{T̄ (i)+ K
2 }

N


 , (5.67)

where Πd denotes a depth-d interleaver matrix. It is such defined that when multi-
plied with a vector [a0, a1, · · · ]T , it produces

Πd[a0, a1, · · · ]T = [a0, ad, · · · , a1, ad+1, · · · ]T . (5.68)

The matrix W{T̄ (i)+k}
N is related to the matrix W{T̄ (i)}

N as

W{T̄ (i)+k}
N = W{T̄ (i)}

N Λk, (5.69)

with Λ denoting the diagonal matrix

Λ = D{e−j 2π
MP [0,··· ,MP−1]T }

= D{θ} ⊗D{δ}.

Using (5.63) along with the fact that (A ⊗ B)(C ⊗D) = AC ⊗ BD, we can derive
that

W{T̄ (i)}
N Λk =

(
θµ(i)T ⊗WP D{δµ(i)})(D{θk} ⊗D{δk})

= θ(µ(i)+k)T ⊗WP D{δµ(i)+k},

and thus the matrix ΠK+1W
{O(i)}
N in (5.67) can be further rewritten as

ΠK+1W
{O(i)}
N =



W{T̄ (i)}

N Λ−K
2

...
W{T̄ (i)}

N Λ
K
2


 =




θ(µ(i)−K
2 )T ⊗WP D{δµ(i)−K

2 }
...

θ(µ(i)+ K
2 )T ⊗WP D{δµ(i)+ K

2 }


 .

Taking both the above and (5.63) into account, we can show that the matrix Z(i)
defined in (5.36), if permuted by ΠK+1, will admit the following expression:

ΠK+1Z(i) =




θ(µ(i)−K
2 )T ⊗WP D{δµ(i)−K

2 }
...

θ(µ(i)+ K
2 )T ⊗WP D{δµ(i)+ K

2 }


×

[D{b0(i)} · · · D{bQ(i)}] (
IQ+1 ⊗ θ−µ(i) ⊗D{δ−µ(i)}WH

P

)
. (5.70)
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Actually, ΠK+1Z(i) is a block matrix comprised of (K + 1) by (Q + 1) square sub-
matrices, each of size P . The (k, q)th sub-matrix [ΠK+1Z(i)]kP :(k+1)P−1,qP :(q+1)P−1

can be expressed as

[ΠK+1Z(i)]kP :(k+1)P−1,qP :(q+1)P−1

=
(
θ(µ(i)+k−K

2 )T ⊗WP D{δµ(i)+k−K
2 })D{bq(i)}

(
θ−µ(i) ⊗D{δ−µ(i)}WH

P

)
, (5.71)

for k = 0, · · · ,K and q = 0, · · · , Q. Because θ is an M × 1 vector [c.f. (5.64)], to work
the above equality further out, we can likewise partition the qth expansion sequence
that corresponds to the ith OFDM symbol bq(i) into M sub-vectors

bq(i) = [bT
q,0(i), · · · ,bT

q,M−1(i)]
T , (5.72)

with each sub-vector containing P entries, i.e., for the mth sub-vector

bq,m(i) :=
[
[bq(i)]mP , · · · , [bq,i](m+1)P−1]T . (5.73)

Accordingly, (5.71) can be expressed as

[ΠK+1Z(i)]kN :(k+1)N−1,qN :(q+1)N−1

=
M−1∑
m=0

[θµ(i)+k−K
2 ]mWP D{δµ(i)+k−K

2 }D{bq,m(i)}[θ−µ(i)]mD{δ−µ(i)}WH
P

= WP

M−1∑
m=0

[θk−K
2 ]mD{bq,m(i)}D{δk−K

2 }WH
P

= WP D{δk−K
2 }D{Ξq(i)θk−K

2 }WH
P , (5.74)

with Ξq(i) defined as an P ×M matrix

Ξq(i) := [bq,0(i), · · · ,bq,M−1(i)]. (5.75)

We observe that the index µ(i) drops out from (5.74). As can be understood that the
positions of equi-distant pilots are uniquely characterized by their starting position
µ(i), this implies that [ΠT

K+1Z(i)]k,q (and thus Z(i) as well) is independent of the
pilot positions.

In line with (5.74), Z(i) can be expressed as [c.f. (5.70)]

Z(i) = ΠT
K+1

(
IK+1 ⊗WP

)D{[δ−K
2 T , · · · , δ

K
2 T ]T }X(i)

(
IQ+1 ⊗WH

P

)
, (5.76)

with

X(i) :=




D{Ξ0(i)θ−
K
2 } · · · D{ΞQ(i)θ−

K
2 }

...
. . .

...
D{Ξ0(i)θ

K
2 } · · · D{ΞQ(i)θ

K
2 }


 . (5.77)
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Apparently, X(i) determines the rank of Z(i). Observing that X(i) is a block matrix
consisting of K + 1 by Q + 1 diagonal sub-matrices, each of dimension P × P , we
transform it into a block diagonal matrix to attain a better perception of its rank
condition:

ΠP X(i)Π̄T
P =



X̃0(i)

. . .
X̃P−1(i)


 , (5.78)

where ΠP and Π̄P are both depth-P interleave matrices with appropriate dimen-
sions. X̃p(i) is a (K +1)× (Q+1) matrix, which can be expressed after some algebra
as

X̃p(i) = ΘT B̄p(i), (5.79)

with

Θ :=
[
θ−

K
2 · · · θ

K
2

]
,

B̄p(i) :=
[
ΞT

0 (i)ep · · · ΞT
Q+1(i)ep

]
.

As the transpose of a stack of all the pth rows from the matrices Ξq(i)’s for q =
0, · · · , Q, the M × (Q+1) matrix B̄p(i) is actually comprised of M equi-distant rows
of the ith BEM matrix B(i), i.e.,

B̄p(i) = [B(i)T ep, · · · ,B(i)T ep+(M−1)P ]T . (5.80)

This means for the CE-BEM or the P-BEM, B̄p(i) is a Vandermonde matrix, and thus

Rank{B̄p(i)} = min(M, Q + 1). (5.81)

For the other BEM definitions, the above holds in general true as well, though we
cannot rigorously prove it.

Due to Assumption 5.1 and 5.2, we understand that

P (K + 1) = PM = N. (5.82)

Consequently, the M × (K + 1) matrix Θ becomes a unitary M -point DFT matrix,
and the rank of B̄p(i) is therefore also the rank of X̃p(i)‡.

Since X̃p(i) determines the rank of X(i) in (5.77), and thus that of Z(i) in (5.76)
as well, we reach the conclusion in (5.38).

‡A special exception is reported in [47], which does not adopt Assumption 5.1 and chooses K + 1 =

Q + 1 < M . However, because it relies on a critical CE-BEM assumption, it can be shown that X̃p(i) =

IQ+1.
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Appendix 5B: Proof of Lemma 5.1

Due to the identical pilot assumption, we have

U(i0) = · · · = U(iV−1), (5.83)

and therefore

P = [PT (i0), · · · , PT (iV−1)]T

= ZU(i), (5.84)

where
Z := [ZT (i0), · · · ,ZT (iV−1)]T , (5.85)

which is thus an PV (K + 1)× P (Q + 1) matrix. Since we have already shown that
the P (Q+1)× (L+1)(Q+1) matrix U(i) has full rank (L+1)(Q+1) if P ≥ L+1, to
prove the full-rank condition of P , it is sufficient to prove that Z has a rank P (Q+1).
Following the similar steps as given in Appendix 5A, we can show that the rank of
Z is a V -multiple of the rank of X̃p(i) that is defined in (5.79). In other words,

X̃p := [X̃T
p (i0), · · · , X̃T

p (iV−1)]T

=
(
IV ⊗ΘT

)
[B̄T

p (i0), · · · , B̄T
p (iV−1)]T . (5.86)

As a result, we understand that [c.f. (5.81)]

Rank{X̃p} = min(V M, Q + 1) = min(V (K + 1), Q + 1). (5.87)

The rank of Z will therefore be P (Q + 1) if V (K + 1) ≥ Q + 1, which concludes the
proof.

Appendix 5C: Proof of Lemma 5.2

In the case that the positions of the non-zero pilots in each pilot OFDM symbol are
not aligned with each other, we have

P = ZU, (5.88)

with

Z :=



Z(i1)

. . .
Z(iV )


 ,U :=




U(i1)
...

U(iV )


 .
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Obviously, with the equality K + 1 = M , Z is of full column-rank if K + 1 ≥ Q + 1.
Therefore, we only need to examine the rank of U. By adopting a depth-P (Q + 1)
interleaver matrix ΠP (Q+1), we are able to show that

ΠP (Q+1)U = IQ+1 ⊗




D{t̄(i1)}
. . .

D{t̄(iV )}







G{T̄ (i1)}
L

...
G{T̄ (iV )}

L




︸ ︷︷ ︸
ḠL

. (5.89)

Because the positions of the V P non-zero pilots in each OFDM symbol are com-
pletely different to each other, accordingly, the V P × (L + 1) matrix ḠL consists
of V P different rows of the Vandermonde matrix GL, it has a full rank L + 1 if
V P ≥ (L + 1), which concludes the proof.



Chapter 6

Channel Equalization in a Single-Carrier
System

6.1 Introduction

In a single-carrier transmission system over a channel with a large delay spread, it
is more efficient to equalize the channel in the frequency domain utilizing a simple
one-tap equalizer [30]. The underlying consideration is that the frequency-domain
(FD) channel is diagonal if

1. the channel stays invariant during at least one block;

2. the inter-block interference (IBI) can be completely annihilated by inserting a
sufficiently long guard interval (GI).

However, these two conditions are not always satisfied in practice, and as a result,
the orthogonality among the subcarriers will be destroyed and the FD channel be-
comes actually a full matrix. A reliable FD equalizer for such a channel will be much
more expensive, which is the key issue considered in this chapter.

To restore the orthogonality among the subcarriers, pre-processing at the re-
ceiver is indispensable. For instance, a channel shortening technique, in the form
of an FIR filter, is proposed in [3] for time-invariant channels, with the aim of fitting
the effective channel within the given guard interval. In [7], an FIR filter is adopted
to “flatten” the channel fluctuation, which can be considered as the dual of chan-
nel shortening. In [8], both schemes are combined. These techniques work well for
channels that are moderately spread in delay and Doppler domains.

Often, a strictly diagonal FD channel matrix is too difficult to achieve. In a realis-
tic transmission system, the Doppler-induced channel has most of its power concen-
trated in the vicinity of the diagonal in a circular sense, with those entries that are
far away from the diagonal reducing fast [96, 14]. This implies that it is more prac-
tical to assume a banded FD channel matrix. Many equalizers exploit this banded
(rather than diagonal) structure to lower the complexity for single-carrier systems

The results of this chapter appeared in [99, 100].
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as well as OFDM, e.g., the block zero-forcing (ZF) equalizer in [46], the block min-
imum mean square error (MMSE) equalizer in [81, 82], the serial iterative MMSE
equalizer in [90, 92], the maximum likelihood (ML) equalizer in [71, 49], etc. It can
be imagined that to enhance the equalization performance, especially at a moderate
to high SNR, the band approximation error must be reduced as much as possible.
One solution can be the FIR filter of [8], but it generally requires a multiple antenna
assumption and can still be too complicated. Since we need not to enforce a diago-
nal channel matrix but a banded one, a reduced-order FIR filter with just a single tap
could be adequate. Such a filter is referred to as a receiver window in [92, 90, 82, 44].
The windowing operation on the received signals is thus a time-domain point-wise
multiplication with the time-varying coefficients of the window.

In this chapter, we will present two receiver architectures in combination with
the windowing technique to counteract the channel time-variation as well as the IBI
for a single-carrier transmission system. The first receiver will be based on the orig-
inal data model (ODM), which describes the actual channel input/output (I/O) re-
lationship. The second receiver will be based on the so-called extended data model
(EDM), which extends the ODM to a larger scale without compromising its validity.
The advantage of the EDM is that by introducing redundancy at the receiver, we are
endowed with some extra design freedom to explore the Doppler resolution better.
In both data models, the full FD channel matrix will be approximated by a strictly
banded matrix for the sake of complexity.

Note that the band approximation procedure taken in this chapter will be simi-
lar to that in Chapter 3, where a strictly banded matrix is devised that is close to its
full counterpart only in terms of the Frobenius norm. These two matrices will there-
fore not necessarily share common diagonals, which is the traditional approach in
[92, 90, 82, 44]. This is especially true in the EDM case. A more profound rationale is
that by this means we have translated the band approximation error in the frequency
domain into a basis expansion modeling error in the time domain. More specifically,
we can show that the band approximation error in the ODM corresponds to a mod-
eling error resulting from the (C)CE-BEM∗, while the band approximation error in
the EDM corresponds to a modeling error resulting from the (O)CE-BEM. This idea
will be reflected in our window design. Since the (O)CE-BEM in general can yield
a much tighter fit to a realistic TV channel than the (C)CE-BEM, it is not hard to
understand that the equalizer for the EDM will be subject to a much smaller band
approximation error than for the ODM, and is thus able to yield a better perfor-
mance.

∗As a matter of fact, such a link also underlies the equalizer design in [92], but is not straightforward
to observe.
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6.2 System Model

Let us consider a discrete communication system, where the data symbols are di-
rectly transmitted over the channel. We assume that the channel to be an FIR filter
with order L, i.e., if we use hp,l to denote the lth channel tap at the pth time instance
then hp,l = 0 if l < 0 or l > L. At the receiver, a window is deployed. Conform the
FIR assumption of the channel, the observation sample at the pth time-instance yp

can be expressed as

yp = wp

L∑

l=0

hp,lsp−l + wpvp, (6.1)

where wp stands for the pth element of the window; sp denotes the pth data symbol,
and vp the corresponding noise prior to windowing.

Like in Chapter 3, the following assumptions will be used throughout the whole
chapter.

Assumption 6.1. We assume the channel to be a wide-sense stationary uncorrelated scat-
tering (WSSUS) process, for which

Eh{hp,lhp−m,l−n} = σ2
l γmδn. (6.2)

Here, δn denotes the Kronecker delta, σ2
l the variance of the lth channel tap, and γm the

normalized temporal correlation.

Assumption 6.2. We assume the data symbols to be zero-mean white with unit variance,
and the noise to be zero-mean white with variance σ2 i.e.,

Es{sps
∗
p−m} = δm,

Ev{vt,pv
∗
t,p−m} = σ2δm. (6.3)

6.3 FD Equalization Based on the ODM

6.3.1 Equalization Scheme

Suppose that we are interested in estimating the N − L data symbols, which are
stacked in the vector

sN−L := [s0, · · · , sN−L−1]T . (6.4)

Their information can be found at the receiver in the observation sample vector yt,N ,
which is collected at the 0th until (N − 1)st time-instance,

yt,N := [y0, · · · , yN−1]T . (6.5)



108 6. Channel Equalization in a Single-Carrier System

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

���
���
���
���

���
���
���
���

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

���
���
���
���

���
���
���
���

�
�
�
�
�

�
�
�
�
�

sN−L

spost

sN−L

spost

spre

=

yt,N D{w}H

= +

D{w}Hi,N

(spre − spost)

sD{w}Ht,N

Figure 6.1: The noiseless original data model.

For these samples, the I/O relationship in (6.1) can be expressed in a block form as

yt,N = D{w}H[sT
pre, s

T
N−L, sT

post]
T + D{w}vt,N , (6.6)

where

w := [w0, · · · , wN−1]T ,

vt,N := [v0, · · · , vN−1]T . (6.7)

spre and spost represent the neighboring L data symbols, which come from the pre-
vious and next data blocks, respectively, and whose information is also carried in
yt,N :

spre := [s−L, · · · , s−1]T ,

spost := [sN−L, · · · , sN−1]T . (6.8)

The N × (N + L) matrix H stands for the convolutive channel with

[H]p,n := hp,p−n+L. (6.9)
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The I/O relationship in (6.6) in the noiseless case is illustrated in the upper panel
of Fig. 6.1, where one can observe that the channel matrix D{w}H is horizontally
divided in three parts. The first part corresponds to the data symbols from the pre-
vious block spre, which are put aside in a separate term in the lower panel of Fig. 6.1.
The remaining parts of D{w}H, which are square, are made “circulant” in the lower
panel of Fig. 6.1 by adding a triangular from the first part. In mathematics, this
means that we can rewrite (6.6) in the following form

yt,N = D{w}Ht,Ns + εt,N + D{w}vt,N , (6.10)

where
s := [sT

N−L, sT
post]

T , (6.11)

and the N ×N matrix Ht,N has entries

[Ht,N ]p,n := hp,mod(p−n,N), (6.12)

where the operation mod(a, b) in the subscript corresponds to the “circulant” nature
of Ht,N . In light of (6.10), we can easily observe that εN represents the IBI, which is
formed by

εt,N := D{w}Hi,N (spre − spost). (6.13)

Here, Hi,N is an N × L matrix with entries

[Hi,N ]p,n := hp,p−n+L. (6.14)

The reshaped I/O relationship in the noiseless case is illustrated in the lower panel
of Fig. 6.1. Transformed into the frequency domain, (6.10) becomes

yf,N := WNyt,N ,

= Hf,NWNs + εf,N + vf,N , (6.15)

where

εf,N := WNεt,N ,

vf,N := WND{w}vt,N . (6.16)

Further,
Hf,N := WND{w}Ht,NWH

N (6.17)

stands for the FD channel matrix. Since D{w}Ht,N is not really circulant due to the
channel time-variation, Hf,N is not diagonal.

In (6.15), except for the DFT, we did not apply other processing on the received
samples, and the data model is identical to what has actually happened in reality.
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We call such a data model the original data model (ODM). Typical to the ODM is
that the size of the DFT N equals the number of observation samples. This will be
in contrast with the EDM scheme discussed in the next section, where the size of the
DFT is larger than the number of observation samples.

The IBI in the frequency domain εf,N can be mitigated by the utility of a guard
interval of length Lz , e.g., a cyclic-prefix (CP), a zero-prefix (ZP)[118] or a non-zero
prefix (NZP) [25]. In the CP case, we let

[s−Lz
, · · · , s−1] = [sN−L, · · · , sN−L+Lz−1], (6.18)

while in the ZP and NZP case, we let

[s−Lz
, · · · , s−1]T = [sN−L, · · · , sN−L+Lz−1]T = p, (6.19)

with p being a zero or non-zero pilot vector, respectively. For Lz ≥ L, the IBI can
be completely removed. In this chapter, we will focus on the scenario where Lz

assumes an arbitrary value, which implies that the IBI could be still present. In that
case, we need to design the window to minimize its impact. We will come back to
this later on.

For the moment, let us ignore the IBI in the data model, and apply a block
LMMSE equalizer on (6.15), which produces the data estimates as

ŝN−L = ZT
N−LWH

NHH
f,N (Hf,NHH

f,N + Rv,N )−1yf,N , (6.20)

with

ZN−L := [IN−L,0(N−L)×L],

Rv,N := Ev{vf,NvH
f,N} = σ2WND{w ¯w∗}WH

N . (6.21)

Here, we come across the same problem as in OFDM: now that the FD channel
matrix Hf,N is full, most of the computational effort in (6.20) is invested in inverting
the covariance matrix. Like in OFDM, we will approximate Hf,N with a strictly
banded matrix Ĥf,N , which has only non-zero entries on the main diagonal, the Q/2
super- and Q/2 sub-diagonals in a circular sense. As a result, the LMMSE equalizer
becomes

ŝN−L = ZT
N−LWH

N ĤH
f,N (Ĥf,NĤH

f,N + Rv,N )−1yf,N , (6.22)

In the above, Q is a design parameter that can be chosen as a trade-off between
complexity and performance. The resulting equalizer can be made cheaper with a
smaller Q, but accordingly suffers from more out-of-band interference. In reality, its
minimum value is often related with the maximal Doppler spread.
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It is noteworthy that the banded matrix Ĥf,N is not simply obtained by taking
the Q+1 most significant diagonals of Hf,N . Like in Chapter 3, we use the following
cost function to design the non-zero diagonals of Ĥf,N ,

arg min
{Ĥf,N}

‖Hf,N − Ĥf,N‖2,

s.t. Ĥf,N = Ĥf,N ¯TQ. (6.23)

where TQ is a matrix of proper dimensions, which has ones on the main diagonal,
the Q/2 super- and Q/2 sub-diagonals, and zeros on the remaining entries. It will
be shown later on that the above cost function is related to the choice of the window
w.

Another important feature in (6.22) is that we also require the noise covariance
matrix Rv,N to be strictly banded with a bandwidth 2Q + 1, just like the product
Ĥf,NĤH

f,N . If this is achieved as we will see later on, we can apply the Cholesky
factorization [37] on the covariance matrix in (6.20) such that

Ĥf,NĤH
f,N + Rv,N = GNGH

N , (6.24)

where the upper-triangular matrix GN will assume a sparse “V-shape” structure as
in Fig. 3.2. By this means, applying the inverse of Ĥf,NĤH

f,N + Rv,N can be imple-
mented by applying the inverses of GN and GH

N separately using, e.g., Gaussian
elimination.

For an overview of the total invoked complexity, we make a list of each step that
is involved in computing (6.22) in the left panel of Table 6.1.

Utilizing the efficient FFT, we can show that step 1 requires about N log 2N

MACs [75]. If we take the band structure of Ĥf,N into account, step 2 requires
N(Q + 1)(1.5Q + 1) MACs. Step 3 can be realized by applying the Cholesky factor-
ization, which entails N(7

8Q2 + 13
4 Q + 2) − 1

6Q3 − 3
2Q2 + 5

6Q MACs [44]. Due to
the sparse “V-shape” structure of GN , the Gaussian elimination required in step 4
and step 5 need N(2Q + 1)− 2Q2 −Q MACs each. Step 6 needs another N(2Q + 1)
MACs due to the band feature. Like step 1, Step 7 uses IFFT, which requires roughly
N log 2N MACs as well. In summary, the considered block LMMSE equalizer has a
complexity of O(NQ2), which is linear in N and square in Q.

It is worth mentioning that in the single-carrier system, the channel can also be
equalized in the time domain. For instance, we can apply a block LMMSE equalizer
directly on (6.6), for which the complexity can be shown to be O(NL2). Roughly,
it is more appealing to equalize the channel in the frequency domain if the channel
delay spread is much longer than the Doppler spread L À Q.

The equalization procedures for the ODM are, to a great extend, analogous to
the equalizers discussed for OFDM in Chapter 3. Indeed, the single-carrier system
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Table 6.1: Block MMSE equalization in the single-carrier system.

Steps in (6.22)

1. yf,N = WNyt,N ;

2. MN = Ĥf,NĤH
f,N +Rv,N ;

3. MN = GNGH
N ;

4. ρN = G−1
N yf,K ;

5. dN = G−H
N ρN ;

6. xN := ĤH
f,NdN ;

7. ŝN−L = ZT
N−LWH

NxN .

MACs required per step

N log 2N

N(Q + 1)(1.5Q + 1)

N( 7
8Q2 + 13

4 Q + 2)− 1
6Q3 − 3

2Q2 + 5
6Q

N(2Q + 1)− 2Q2 −Q

N(2Q + 1)− 2Q2 −Q

N(2Q + 1)

N log 2N

can be viewed as a precoded OFDM system in the frequency domain. The existence
of the precoder, which is the DFT matrix in this case, brings only a little increase in
complexity. The other difference here is the presence of IBI.

Hence, in order to enhance the equalization performance of the ODM, we need
to design the window and the banded matrix Ĥf,N such that the IBI ‖εf,N‖ as well
as the band approximation error ‖Hf,N − Ĥf,N‖ will be minimized in an average
sense. In addition, the window should also be able to make the noise covariance
matrix Rv,N strictly banded. These will be discussed next.

6.3.2 Window Design for the ODM

Due to the analogy with OFDM, the window design for the ODM will in the most
part follow the same procedures described in Section 3.4. For the sake of self-
completeness, the major results will be briefly reiterated here.

First, regarding the noise-shaping behavior, we follow the guideline of Proposi-
tion 3.1, and express the window w as a weighted sum of Q+1 complex exponential
series:

w = BNd, (6.25)

where BN corresponds to the (C)CE-BEM matrix with scale Q + 1, which is com-
prised of the first Q/2 + 1 and the last Q/2 columns of WN , and d is a (Q + 1)-long
vector containing all the weighting coefficients.
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Second, we have established in Theorem 3.1 the fact that the band approximation
error between Hf,N and Ĥf,N can be transformed into the (C)CE-BEM modeling
error. In mathematics,

‖Hf,N − Ĥf,N‖ = ‖D{w}H−BNC‖, (6.26)

where H stands for an N × (L + 1) matrix with entries [H]n,l = hn,l, and C for
a (Q + 1) × (L + 1) matrix with entries [C]q,l = cq,l. Here, cq,l represents some
coefficient, whose value needs to be determined.

Except for the above results that have already been established in Section 3.4,
we introduce the following theorem with regard to the minimization of IBI (see Ap-
pendix 6A for a proof).

Theorem 6.1. The average power of the IBI εf,N in the ODM is a function of the window
as

Eh,s{‖εf,N‖2} = 2wT Rε,Nw∗, (6.27)

where Rε,N denotes a diagonal matrix with the nth diagonal entry given by

[Rε,N ]n,n =

{ ∑L
l=n+Lz+1 σ2

l if n ≤ L− Lz − 1,

0 otherwise.
(6.28)

To minimize both the band approximation error in (6.26) and IBI in (6.27), we
formulate the following minimization problem

min
{w}

Eh

{
min
{C}

‖D{w}H−BNC‖2} + θwT Rε,Nw∗,

s.t. w = BNd and ‖w‖2 = N. (6.29)

In the above, the first constraint is due to (6.25); the second constraint is imposed to
avoid a trivial all-zero window. θ is a weight factor, whose function will be discussed
later on.

We solve (6.29) first for C:

C = B†
ND{w}H. (6.30)

Defining

PBN
:= IN −BNB†

N ,

RH,N := Eh{HHH}, (6.31)

we can show that the minimization problem then becomes

min
{w}

tr
(PBN

D{w}RH,ND{wH}PH
BN

)
+ θwT Rε,Nw∗,

s.t. w = BNd and ‖w‖2 = N. (6.32)
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For the channel covariance matrix RH,N , we adopt Assumption 6.1, and hence its
entries can be expressed as

[RH,N ]m,n =
L∑

l=0

σ2
l γm−n. (6.33)

Applying the same trick as used in (3.29), we can derive that

tr
(PBN

D{w}RH,ND{wH}PH
BN

)
= wT

(N−1∑
n=0

D{eT
nPBN

}RH,ND{PH
BN

en}
)
w∗.

(6.34)
Substituting (6.25) and (6.34) in (6.32) leads further to

min
{w}

dT X Nd∗,

s.t. ‖d‖2 = N. (6.35)

with

X N := BT
N

(N−1∑
n=0

D{eT
nPBN

}RH,ND{PH
BN

en}+ θRε,N

)
B∗

N . (6.36)

In the end, d can be computed as the eigenvector corresponding to the least signifi-
cant eigenvalue of X ∗

N .
Remarks 3.1, 3.2 and 3.3 that are made in Section 3.4 remain relevant here. Be-

sides, the following remarks will be instructive for the next section.

Remark 6.1.

In Remark 3.1, we have established the equivalence between the band approximation error
in the frequency domain with the (C)CE-BEM modeling error in the time domain. As a
result, it is not difficult to understand that the bottleneck of the ODM, and hence that of the
approach in Section 3.4 as well, is associated with a relatively poor modeling performance
of the (C)CE-BEM as reported in [122]. Intuitively, this is because the (C)CE-BEM has
a period equal to the block length N , and this implies that the (C)CE-BEM channel is N -
periodic [111], which is not the case to the true TV channels. As a result, the (C)CE-BEM,
which is in essence a truncated DFT, will oscillate at the edges and degrade the modeling
performance (the Gibbs phenomenon). To counteract this effect, one solution is to extend the
data model, which will be adopted in the next section. Another straightforward solution is
to use windowing. Its impact on the BEM modeling performance will be better enlightened
in the next remark.

Remark 6.2.
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We have not addressed the weight factor θ in (6.29) yet. First of all, we realize from Fig. 3.3
(as well as from [90, 82]) that the optimal window that minimizes only the BEM modeling
error (θ = 0) is a curve that smoothly reduces at the edges. A similar idea is echoed in [51,
p.p. 217], which reduces the channel at the edges to zero by subtraction. By this means, we
are able to achieve a smoother transition at the edges of the channel and therefore reduce the
(C)CE-BEM modeling error as proved in [51]. At the same time, such a window with very
low power at the edges is also beneficial to suppress the IBI, which co-exists in the same area.
The simulation will show that with the given channel parameters, choosing θ in the range of
[0, 1] will produce similar windows, and hence similar BER performances.

6.4 FD Equalization Based on the EDM

In the previous section, we have shown that the band approximation error can be
translated into the modeling error between the realistic windowed channel and a
corresponding (C)CE-BEM channel. While the (C)CE-BEM suffers from a relatively
large modeling error, it is reported in [107, 53] that a more generalized form, the
(O)CE-BEM, can yield a much better modeling performance [122]. This is achieved
by simply enlarging the exponential period of the CE-BEM from N to K with K > N

[c.f. (2.33)]. However, the (O)CE-BEM cannot be straightforwardly applied to the
ODM because the (O)CE-BEM channel matrix, if transformed to the N -grid fre-
quency domain, will not be strictly banded.

Essentially, the (C)CE-BEM and (O)CE-BEM both use almost the same complex
exponentials as basis expansion functions, except for the different exponential pe-
riod. The (C)CE-BEM, with a period N , leads to a strictly banded matrix for the
ODM that is of the same size N . Intuitively, one can imagine that the (O)CE-BEM,
with a period K, would also lead to a strictly banded matrix if the size of the data
model were also K. This means that we need to enlarge the data model.

6.4.1 Equalization Scheme

To derive a larger data model, let us first rewrite the ODM given in (6.10) in the form
as

yt,N = D{w}H̄NsN−L + D{w}H̄i,N

[
spre

spost

]
+ D{w}vt,N , (6.37)

where H̄N is an N × (N −L) matrix with entries [H̄N ]p,n := hp,p−n, and H̄i,N stands
for an N × 2L matrix constructed as

H̄i,N :=



A 0L×L

0(N−2L)×2L

0L×L B


 , (6.38)
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spre

spost

sN−L

svir

+=

U

+

D{w}H̄N

yt,N +=

yvir

D{w}H̄i,N

D{w}H̄i,N

spre

spost

sN−L

D{w}H̄N

yt,N

0(K−N)×1 0(K−N)×2L
0(K−N)×(N−L)

Figure 6.2: Upper: the noiseless original data model; below: the noiseless extended data
model.

where the L × L matrix A has entries [A]m,n = hm,L−n+m, and the L × L matrix B
has entries [B]m,n = hN−L+m,m−n.

The expression of (6.37) in the noiseless case is illustrated in the upper panel of
Fig. 6.2. Comparing it with that of Fig. 6.1, we can observe that the channel matrix
D{w}H in Fig. 6.1 is horizontally divided into three parts. The first and the last
parts correspond to the IBI from spre and spost, which are put together in Fig. 6.2 as
a separate term D{w}H̄i,N . The remainder of D{w}H corresponding to sN−L is
represented in Fig. 6.2 as D{w}H̄N .

We want to extend the data model in (6.37) to a scale K with K ≥ N + L. First,
let us append K −N zeros to the end of yt,N . At the same time, we desire to create
a K × K matrix Ht,K out of the N × (N − L) matrix D{w}H̄N . To this end, we
add K −N all-zero rows at the bottom of D{w}H̄N , and then add a K × (K −N +
L) matrix U to its right side. The entries of U remain to be determined. Because
the channel matrix now has K − N + L extra columns, accordingly, we append a
(K−N +L)× 1 vector svir behind sN−L, whose values are subject to design as well.
Further, we add K−N all-zero rows at the bottom of the N ×2L matrix D{w}H̄i,N ,
and K −N zeros at the bottom of the noise vector D{w}vt,N . The above steps can
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be summarized in the following mathematical expression:

[
yt,N

0(K−N)×1

]
+ yvir

︸ ︷︷ ︸
yt,K

=
[( D{w}H̄N

0(K−N)×(N−L)

)
U

]

︸ ︷︷ ︸
Ht,K

[
sN−L

svir

]

︸ ︷︷ ︸
sK

+
[D{w}H̄i,N

0(K−N)×2L

] [
spre

spost

]

︸ ︷︷ ︸
εt,K

+
[D{w}vt,N

0(K−N)×1

]

︸ ︷︷ ︸
vt,K

, (6.39)

where a K × 1 vector yvir is added on the left side, which is set equal to

yvir = Usvir, (6.40)

To enable a clearer view, we plot the noiseless relationship in (6.39) in the lower
panel of Fig. 6.2.

At this stage, it is worth underlining that we have introduced some redundancy
only at the receiver! This operation is completely transparent to the transmitter, and
hence the data rate is not compromised. A direct implication is that the ODM in
(6.37) remains valid: it simply becomes a part of the larger data model in (6.39). For
this reason, we will refer to the resulting channel I/O relationship as the extended
data model (EDM).

In the EDM, besides the extra zeros, svir and U are added. svir can be interpreted
as some “virtual” data symbols, which are not really transmitted but included in
(6.39) just because we want to make Ht,K to be a square “circulant” matrix. For
the same reason, we desire that the elements of the K × (K − N + L) matrix U be
designed as

[U]m,n = ĥm,mod(n−m−N+L,K), (6.41)

where ĥm,l stands for a virtual channel tap. We will discuss the specific value of ĥm,l

later on, but for the moment only assume that ĥm,l equals zero if l < 0 or l > L. As
a result, we can see that Ht,K indeed takes on a “circulant” form.

The second term on the RHS of (6.39), εt,K , is due to the IBI, whose first N non-
zero elements expressed as

D{w}H̄i,N

[
spre

spost

]
(6.42)

can only be eliminated by the ZP or the NZP. In the latter case, we can remove the
IBI by explicitly subtracting its effect from the observation samples.

To implement the block MMSE equalizer, let us choose svir to contain some ran-
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dom symbols that have the same distribution as sN−L such that†

Es{sKsH
K} = IK . (6.43)

Transformed into the frequency domain, the EDM in (6.39) becomes:

yf,K = Hf,KWKsK + εf,K + vf,K , (6.44)

where

yf,K := WKyK ,

εf,K := WKεt,K ,

vf,K := WKvt,K . (6.45)

Hf,K stands for the FD channel matrix

Hf,K := WKHt,KWH
K , (6.46)

which is full. Like in the previous section, we use a strictly banded matrix Ĥf,K

to replace Hf,K with Ĥf,K having non-zero entries only on the main diagonal, the
Q/2 super- and the Q/2 sub-diagonals. Neglecting the IBI εf,K , the block MMSE
equalizer can be expressed as

ŝN−L = ZH
N−LWH

KĤH
f,K(Ĥf,KĤH

f,K + Rv,K)−1yf,K , (6.47)

where

ZN−L := [IN−L,0(N−L)×(K−N+L)]T ,

Z := [IN ,0N×(K−N)]T , (6.48)

and
Rv,K := σ2WKZD{w ¯w∗}ZHWH

K , (6.49)

denotes the covariance matrix of the noise in the EDM. Similar to the ODM, if Rv,K

is banded with bandwidth 2Q+1, we can show that the thereby invoked complexity
in (6.47) is linear in K and square in Q.

Hence, to enhance the equalization performance, the window of the EDM should
take a three-fold task: 1) to make the noise covariance matrix Rv,K strictly banded;
2) to minimize the IBI ‖εf,K‖ in an average sense; and 3) to minimize the band
approximation error ‖Hf,K − Ĥf,K‖ in an average sense.

†To reduce the complexity, we can also set svir = 0 (and thus yvir = 0), which in practice does not
degrade the equalization performance too much. After all, we are not interested in their specific values.
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6.4.2 Window Design for the EDM

Regarding the noise-shaping behavior of the window, unfortunately the following
lemma holds.

Lemma 6.1. It is impossible for Rv,K to be strictly banded.

Proof. We prove this by contradiction. Observe that Rv,K defined in (6.49) must be
a circulant matrix with its first row equal to σ2√

N
(w ¯ w∗)T ZHWH

K . Should Rv,K

be strictly banded with bandwidth 2Q + 1, the first row should have zeros on the
entries indexed from Q + 2 until K −Q. In other words, we need

(w ¯w∗)T ZHWH
KP = 01×(K−2Q−1) (6.50)

with
P := [0(K−2Q−1)×(Q+1), IK−2Q−1,0(K−2Q−1)×Q]T . (6.51)

However, ZHWH
KP is an N × (K − 2Q− 1) Vandermonde matrix, and thus has full

row-rank if N ≤ K−2Q−1. In that case, there exists no non-zero vector w¯w∗ that
lies in the noise subspace of ZHWH

KP, and Rv,K can therefore never be banded.
¤

As a compromise, we have to use an approximation of Rv,K . This idea is re-
flected in the following proposition.

Proposition 6.1. The noise covariance matrix will be approximately banded if the window
is constructed as

w = B̄(0)
N d, (6.52)

where B̄(0)
N is an N × (Q + 1) matrix with entries

[B̄(0)
N ]p,q =

1√
K

ej 2π
K p(q−Q

2 ). (6.53)

Proof. From Proposition 3.1, we understand that the noise covariance matrix Rv,K

could be banded if it looked like

Rv,K = σ2WKD{wK ¯w∗
K}WH

K , (6.54)

with the K × 1 vector wK structured as

wK = BKd, (6.55)
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where d stands for a (Q + 1)× 1 vector, and BK a K × (Q + 1) matrix comprised of
the first Q/2 + 1 and the last Q/2 columns of a K-point DFT matrix WK . Therefore,
if we adopt the window

wK = [wT ,0T
1×(K−N)]

T , (6.56)

by letting w taking the first N values of wK in (6.55), Rv,K will be approximately
banded. This is equivalent to (6.52), because B̄(0)

N defined in (6.53) corresponds to
the first N rows of BK . ¤

Stemming from the definition of B̄(0)
N in (6.53), we introduce a more general nota-

tion B̄(l)
M , which denotes an M×(Q+1) matrix consisting of the lth until (l+M−1)st

row of BK . In mathematics, this means that B̄(l)
M has entries

[B̄(l)
M ]n,q =

1√
K

ej 2π
K (n+l)(q−Q

2 ), (6.57)

for n = l, · · · , l + M − 1, and q = 0, · · · , Q. If we compare the above definition with
(2.33), one can directly see that B̄(l)

M tallies with the definition of the (O)CE-BEM,
which uses an exponential period K and a BEM size M with K > M .

The (O)CE-BEM plays an important role in minimizing the band approximation
error ‖Hf,K − Ĥf,K‖ as is evident from the following theorem (see Appendix 6B for
a proof).

Theorem 6.2. If we design the non-zero entries of the matrix U in (6.41), ĥp,l, to be

ĥp,l =
1√
K

Q∑
q=0

e−j 2π
K p(q−Q

2 )cq,l, (6.58)

with cq,l denoting some non-zero coefficient, then the resulting band approximation error can
be transformed in the time domain as the error resulting from the (O)CE-BEM. In mathe-
matics, this can be expressed as

‖Hf,K − Ĥf,K‖ =
L∑

l=0

‖D{Υlw}hl − B̄(l)
N−Lcl‖2, (6.59)

where Υl stands for an (N − L)×N selection matrix

Υl := [0(N−L)×l, I(N−L),0(N−L)×(L−l)]; (6.60)

hl is an (N − L)× 1 vector collecting the lth channel tap in the range

hl := [hl,l, · · · , hN−L+l−1,l]T , (6.61)
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and cl is a (Q + 1)× 1 vector,

cl := [c0,l, · · · , cQ,l]T . (6.62)

In Theorem 6.2, we use for each channel tap a slightly different (O)CE-BEM ma-
trix B̄(l)

N−L to approximate the time variation contained in

D{Υlw}hl = [wlhl,l, · · · , wN−L+lhN−L+l,l]T .

The resulting BEM modeling error added up for each l accounts for the band ap-
proximation error.

Next, to minimize the IBI, the following theorem is useful (see Appendix 6C for
a proof).

Theorem 6.3. The average power of the IBI εf,K for the EDM is related to the window as

Eh,s{‖εf,K‖2} = wT R̄ε,Nw∗, (6.63)

with R̄ε,N denoting an N ×N diagonal matrix with the nth diagonal entry equal to

[R̄ε,N ]n,n =





∑L
l=n+Lz+1 σ2

l if n ≤ L− Lz − 1,∑n−N+L−Lz

l=0 σ2
l if N − L + Lz ≤ n ≤ N − 1,

0 otherwise.
(6.64)

Eventually, to minimize the IBI and band approximation error jointly in the
EDM, we come up with the following design problem:

min
{w}

Eh

{
min
{cl}

L∑

l=0

‖D{Υlw}hl − B̄(l)
N−Lcl‖2

}
+ θwT R̄ε,Nw∗,

s.t. w = B̄(0)
N d and ‖w‖2 = N, (6.65)

where a weight factor θ is again utilized. The first constraint above is due to Propo-
sition 6.1. We solve the above design problem first for cl. Under Assumption 6.1,
different channel taps are uncorrelated, i.e.,

E{hlhH
l′ } = 0, (6.66)

for l 6= l′. Therefore, we can compute cl as

cl = B̄(l)†
N−LD{Υlw}hl, (6.67)

after which (6.65) becomes

min
{w}

L∑

l=0

Eh{‖P(l)

B̄N−L
D{Υlw}hl‖2}+ θwT R̄ε,Nw∗,

s.t. w = B̄(0)
N d and ‖w‖2 = N, (6.68)
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where
P(l)

B̄N−L
:= IN−L − B̄(l)

N−LB̄(l)†
N−L. (6.69)

The first term in (6.68) can be worked out as

Eh{‖P(l)

B̄N−L
D{Υlw}hl‖2}

= tr
(P(l)

B̄N−L
ΥlD{w}ΥH

l E{hlhH
l }ΥlD{wH}ΥH

l P(l)H

B̄N−L

)
. (6.70)

The above equality holds because

D{Υlw} = ΥlD{w}ΥH
l . (6.71)

By introducing the following notation

R(l)
h := ΥH

l E{hlhH
l }Υl

= Eh{[01×l,hT
l ,01×(L−l)]T [01×l,hT

l ,01×(L−l)]∗}, (6.72)

we can rewrite (6.70) further as

Eh{‖P(l)

B̄N−L
D{Υlw}hl‖2} = tr

(P(l)

B̄N−L
ΥlD{w}R(l)

h D{wH}ΥH
l P(l)H

B̄N−L

)

= wT X̄ (l)
N w∗, (6.73)

with

X̄ (l)
N :=

N−L−1∑
n=0

D{[01×l, eT
nP(l)

B̄N−L
,01×(L−l)]T }R(l)

h D{[01×l, eT
nP(l)

B̄N−L
,01×(L−l)]H}.

(6.74)
Obviously, the vector [01×l, eT

nP(l)

B̄N−L
,01×(L−l)]T in the above corresponds to the

nth row of P(l)

B̄N−L
Υl.

Substituting (6.73) in (6.68) and taking (6.52) into account, we can simplify the
minimization problem further to

d = arg min dT X̄ Nd∗,

s.t. ‖B̄(0)
N d‖2 = N, (6.75)

with

X̄ N := B̄(0)T
N (

L∑

l=0

X̄ (l)
N + θR̄ε,N )B̄(0)∗

N . (6.76)

Unlike the ODM case, here the columns of B̄(0)
N are not orthonormal to each other.

As a result, we have to compute d as the generalized eigenvector that corresponds
to the least significant generalized eigenvalue of the matrix pair (X̄ ∗

N , B̄(0)H
N B̄(0)

N )
[37].

The following remarks are in order.
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Remark 6.3.

In the EDM case, we transform the band approximation error in the frequency domain to the
(O)CE-BEM modeling error in the time domain in light of (6.59). Equipped with a larger
exponential period, the (O)CE-BEM channel is reported to fit to a realistic TV channel much
tighter than the (C)CE-BEM [122].

Remark 6.4.

It is unique to the EDM that the band approximation error ‖Hf,K − Ĥf,K‖ does not corre-
spond to the out-of-band interference of Hf,K as in the ODM. In other words,

Ĥf,K 6= Hf,K ¯TQ. (6.77)

This is because in the ODM, the columns of the (C)CE-BEM are also the columns of the N -
point DFT matrix, and hence the modeling error is orthogonal to the (C)CE-BEM channel.
However, this fact does not hold for the EDM that uses the (O)CE-BEM. As a result, Ĥf,K

and Hf,K will not share the same diagonals: they are analogous to each other only in terms
of the Frobenius norm.

Remark 6.5.

The weight factor θ in (6.65) plays a more significant role in the EDM than in the ODM.
First of all, it is more difficult to find a window that is able to minimize the BEM modeling
error and the IBI jointly. Minimizing them separately will often yield opposing window so-
lutions. For example, the optimal window that only minimizes the IBI (θ = ∞) should have
L zeros at both edges. The channel resulting from such a window will exhibit discontinuities
and all-zero areas, both of which make it extremely hard for the (O)CE-BEM to yield a tight
fit. On the other hand, the window that only minimizes the BEM modeling error (θ = 0)
takes on usually a near-to-rectangular shape (this is due to the superior modeling perfor-
mance of the (O)CE-BEM), which is thus incapable of suppressing the IBI. The tuning of θ

will depend on the actual transmission parameters, such as the block size, the delay/Doppler
spread of the channel, etc. For a practical time-varying system, the BEM modeling error
usually plays a more demanding role than the IBI. Indeed, the IBI can be diminished by in-
serting a guard interval, though not necessarily longer than the channel delay spread. By
adopting a sliding window approach in the equalization [92], the impact of the IBI can be
further confined. In this sense, a smaller θ tends to be preferred as shown in the simulation
part.

6.5 Numerical results

We test the proposed algorithms over a TV channel following Jakes’ Doppler profile
[45] using the TV channel generator given in [124]. The channel is assumed to have
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Figure 6.3: NMSE vs. θ.

L + 1 = 31 channel taps with the lth tap having a variance σ2
l = c e−

l
10 with c

standing for a normalization constant.
For the transmitter setup, we use QPSK to modulate the data symbols and em-

ploy for the moment no guard interval, i.e., Lz = 0. Further, we set N = 256 for the
ODM case, and set N = 158 and K = 256 for the EDM case. In this way, we can
construct a block MMSE equalizer that works for both cases on the same frequency
grid and inflicts an analogous complexity. To mitigate the absence of the guard in-
terval, we will consider the BER only of the 32 data symbols that lie in the middle of
the block, i.e., we assume a sliding window approach (for more details see [92]).

Study case 1. Window design as a function of θ.
As we understand from the earlier analysis, a larger θ corresponds to a window

that will suppress the IBI more. We will study whether this will influence the band
approximation error (BEM modeling error). To this end, we define the normalized
mean square error (NMSE), which is defined as the MSE of (6.26) and (6.59) for the
ODM and EDM, respectively, normalized to the block size N .

Fig. 6.3 depicts the relationship between the NMSE and θ for a normalized Doppler
spread νD = 0.004 using Q = 2, and a normalized Doppler spread νD = 0.008 using
Q = 4. Fig. 6.4 depicts the resulting BER performance at an SNR = 30dB. Fig. 6.5
and Fig. 6.6 show window examples resulting from some different θ’s.
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Figure 6.4: BER vs. θ.

From these figures, we can observe that in the ODM case, despite the different
values of θ, the resulting windows are similar to each other, and so are the NMSE
and BER performances. This is due to the window shape, which tends to zero at
the edges, and is thus beneficial for suppression of both the BEM modeling error
and the IBI. The windows in the EDM case exhibit a totally different behavior: the
window corresponding to θ = 0 is almost flat, which suggests that the (O)CE-BEM
alone is already adequate to reduce the BEM modeling error. However, the IBI is
virtually invariant to such a flat window. By enlarging θ, we can expect the edges
of the window to tend more to zero, but the BEM modeling performance degrades
rapidly as can be observed in Fig. 6.3. Fig. 6.4 suggests that a smaller θ favors the
BEM modeling performance because the high Doppler spread has a relatively large
impact on the overall BER whereas the IBI affects mainly the first and last data sym-
bols of the block, and is thus less serious thanks to the utility of the sliding-window
approach.

In reality, it is difficult to find a BER-optimal θ in closed form. A similar problem
occurred in [64, 54] though in a different context. In the following simulations, we
will just adopt θ = 0 for both the ODM and EDM.

Study case 2: BER performance.
We here compare the BER performance for a range of SNRs. Also included is
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Figure 6.5: The obtained windows corresponding to different θ’s. νD = 0.004.

the window of [92] applied to the ODM. Because this window can be longer than
the data block, we choose the window length to be N + L. The BER comparison
is made for two different kinds of TV channels νD = 0.004 and νD = 0.008, where
we set Q = 2 for the former and Q = 4 for the latter to account for the channel
time-variation properly.

Fig. 6.7 shows that the window of the ODM and of [92] render similar perfor-
mances as we expected. At high SNR, the window of the EDM exhibits a remark-
able performance lead, which is, however, less prominent when the channel varies
faster.

In the above cases, we have assumed Lz = 0, which can be too harsh for a
practical system. It will be more usual if we allow for a short guard interval, e.g.,
ZP or NZP, though not necessarily longer than the channel. In these cases, we can
expect the BER performance to improve especially for the EDM. This is justified in
Fig. 6.8 for νD = 0.004, and in Fig. 6.9 for νD = 0.008.

6.6 Summary

In this chapter, we discussed how to equalize the channel in a single-carrier system,
which is achieved in the frequency domain. Because the channel is plagued by fast
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Figure 6.6: The obtained windows corresponding to different θ’s. νD = 0.008.

fading and IBI, its matrix expression in the frequency domain is not diagonal but
full. For the sake of low-complexity, we have to approximate it as banded, inducing
thereby out-of-band interference, which degrades the performance.

In spite of the utility of a window, we have shown that the band approximation
in the ODM is equivalent to modeling the TV channel with the (C)CE-BEM in the
time domain. The (C)CE-BEM usually suffers from a large modeling error especially
for a fast fading channel.

As a remedy, we introduced redundancy at the receiver in the EDM. By this
means, we are able to exploit a better resolution of the Doppler spectrum in the
frequency domain. It was shown that the band approximation in the EDM is equiv-
alent to modeling the TV channel with the (O)CE-BEM in the time domain, which is
typically known to have a much smaller modeling error than the (C)CE-BEM. The
noise floor in the EDM is therefore considerably reduced.

The proposed channel equalizer relies on the CSI, which is usually not available
at the receiver. Channel estimation for a single-carrier system is discussed in the
next chapters.
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Figure 6.7: BER performance vs. SNR.

Appendix 6A: Proof of Theorem 6.1

By the definition of εf,N in (6.13), we understand that

Eh,s{‖εf,N‖2} = Eh,s{‖D{w}Hi,N (spre − spost)‖2}, (6.78)

which, by adopting the zero-mean, unit-variance white assumption on the data
symbols in Assumption 6.2, becomes

Eh,s{‖εf,N‖2} = 2tr
(D{w}Eh{Hi,NΦLHi,ND{wH}}), (6.79)

where an L × L diagonal matrix ΦL is introduced to account for a possible guard
interval in spre and spost:

ΦL := D{[11×(L−Lz),01×Lz ]T }. (6.80)

It can be shown that under the WSSUS channel assumption in Assumption 6.1,

Eh{Hi,NΦLHH
i,N} = Rε,N . (6.81)

Substituting the above in (6.79) concludes the proof.
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Figure 6.8: BER performance vs. SNR corresponding to different Lz . νD = 0.004.

Appendix 6B: Proof of Theorem 6.2

From Lemma 3.1, the banded matrix Ĥf,K in the frequency domain can be expressed
in the time domain as

Ĥt,K := WH
KĤf,KWK

=
∑

q

D{BKeq}Cq
K , (6.82)

where Cq
K is a circulant matrix with [cq,0, · · · , cq,L,01×(K−L−1)]T as its first column,

and cq,l standing for some design parameter. As a result, the band approximation
error in the frequency domain can be transformed in the time domain as

‖Hf,K − Ĥf,K‖ = ‖Ht,K − Ĥt,K‖. (6.83)

Recall from (6.39) that Ht,K is comprised of three parts

Ht,K :=
[( D{w}H̄N

0(K−N)×(N−L)

)
U

]
, (6.84)

where the K × (K −N + L) matrix U is assigned in (6.41) with virtual channel taps
ĥp,n. Because the value of ĥp,n is subject to design, and our target is to minimize
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Figure 6.9: BER performance vs. SNR corresponding to different Lz . νD = 0.008.

the difference ‖Ht,K − Ĥt,K‖, we can simply let U take the last K −N + L columns
of Ĥt,K . In mathematics, this is equivalent to adopting (6.58). In this way, Ht,K

and Ĥt,K will be different only in their first N − L columns. More specifically, they
are different only in the L + 1 most significant diagonals of D{w}H̄N since the
remaining diagonals are all zero as can be observed in Fig. 6.2.

The lth diagonal of D{w}H̄N corresponds to the lth channel tap, spanning from
the lth until the (N − L + l)th time-instance, which can thus be expressed as

[wlhl,l, · · · , wN−L+lhN−L+l,L]T = D{Υlw}hl. (6.85)

for l = 0, · · · , L.
From the definition in (6.82), we understand that the (m,n)th entry of Ĥt,K , if

0 ≤ n−m ≤ L, can be expressed as

[Ĥt,K ]n,m =
∑

q

1√
K

ej 2π
K n(q−Q

2 )cq,n−m. (6.86)

As a result, the corresponding part of the lth diagonal of Ĥt,K can be expressed after
some algebra as

[
[Ĥt,K ]l,l−l, · · · , [Ĥt,K ]N−L−1,N−L−l−1

]T = B̄(l)
N−Lcl. (6.87)

Substituting (6.85) and (6.87) in the RHS of (6.83) concludes the proof.
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Appendix 6C: Proof of Theorem 6.3

By the definition of εf,K in (6.42), we understand that

Eh,s{‖εf,K‖2} = Eh,s‖D{w}H̄i,N

[
spre

spost

]
‖2. (6.88)

which, by adopting the zero-mean, unit-variance white assumption on the data
symbols in Assumption 6.2, becomes

Eh,s{‖εf,K‖2} = tr
(D{w}Eh{H̄i,NΦ̄NH̄H

i,N}D{wH}), (6.89)

with
Φ̄N := D{[11×(L−Lz),01×2Lz ,11×(L−Lz)]T }, (6.90)

which is introduced to account for the presence of a guard interval (ZP). Let us use
R̄ε,N to denote

R̄ε,N := Eh{H̄i,N Φ̄NH̄H
i,N}. (6.91)

Under the WSSUS channel assumption in Assumption 6.1, R̄ε,N will be a diagonal
matrix with its diagonals defined as in (6.64). As a result,

Eh,s{‖εf,K‖2} = tr
(D{w}R̄ε,ND{wH}

= wT R̄ε,Nw∗.





Chapter 7

Channel Estimation in a Single-Carrier System

7.1 Introduction

The equalizer described in the previous chapter requires perfect knowledge of the
CSI, which is usually not available at the receiver in practice. We will discuss in this
chapter how to estimate the channel for a single-carrier system. Compared with
the approaches described in Chapter 4, which are proposed for an OFDM system,
the channel estimation methods proposed in this chapter bear some analogies: first,
the channel time-variation will be also modeled by an arbitrary but tight BEM and
the channel estimation will hence be achieved by estimating the BEM coefficients.
Second, the channel matrix will be assumed to be banded as well: for the OFDM
case in Chapter 4, this assumption is valid since for a realistic Doppler spread, most
of the channel power in the frequency domain is located in the entries that are close
to the diagonal. For the single-carrier case, the band assumption is is due to the FIR
feature of the channel in the time domain.

The works in [55, 19, 111, 112] belong to the few that focus on blind BEM chan-
nel estimation, which is beneficial for bandwidth efficiency, but usually results into
a complicated channel estimator. In this aspect, pilot-aided methods might be more
useful. To save bandwidth, the channel estimator in [42] uses superimposed pilots,
but the disadvantage is that at each symbol time, a portion of the total power must
be allocated to the pilots. In addition, the data-induced interference can give rise to
a high noise floor, which can only be remedied by some additional post-processing
(data-aided channel estimation). As one solution, the superimposed pilots in [34]
are designed to be orthogonal to the data such that the channel estimation can be
achieved free from interference. However, the equalizer resulting from such a trans-
mitter design entails more complexity. Other than superimposed training, the pilots
can also be interleaved with the data in the time domain, a scheme that is considered
in [10, 94, 59, 122, 78] as well as in this chapter. Of course, the bandwidth efficiency
will be consequently sacrificed.

At a first glance, pilot-aided channel estimation seems to be easier in the single-

The results of this chapter appeared in [102, Chapter 3].
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carrier system than in OFDM. This might be attributed to the fact that the TD chan-
nel matrix in the single-carrier system is strictly banded due to the FIR channel
assumption, while the channel matrix in OFDM is in principle full, and thus the
channel estimator is constantly plagued by the data-related interference as we have
shown in Chapter 4. Indeed, for a strictly banded channel matrix, if the pilots can be
grouped in a sufficiently long cluster, we are able to find observation samples that
are solely dependent on pilots. This scheme is adopted in most of the pilot-aided
channel estimators and is best summarized in [57]. However, in other cases where
the pilot cluster is short [78], data-related interference still exists. In addition, it is
sometimes even beneficial to deliberately introduce some interference. For instance,
the observation samples at the edges of the cluster are not only contributed by pi-
lots, but also contaminated by the unknown data. If we design the channel estimator
properly, then including these samples in the channel estimation will be useful to av-
erage the noise better, which could compensate the loss due to the thereby induced
interference. The overall performance can be still improved.

7.2 System Model

In a single-carrier transmission scheme, the I/O relationship (without windowing)
can be expressed as

yn =
L∑

l=0

hn,lsn−l + vn, (7.1)

where yn, sn and vn represent the received sample, transmitted symbol and noise
at the nth time instance, respectively. hn,l stands for the realization of the l channel
tap at the nth time instance. In (7.1), we have thus modeled the channel to be an FIR
filter with L + 1 taps, where L is assumed to be known to the receiver.

For the time-multiplexed pilot scheme, the pilots are interleaved with data sym-
bols in the time domain. For the sake of notational ease, we will in the sequel assume
that the pilots are grouped in clusters, each of the same length Lt + 1∗. Suppose tk

stands for the kth pilot cluster whose starting position is nk, i.e.,

tk := [snk
, · · · , snk+Lt ]

T . (7.2)

The contribution of tk can be found in the received samples [ynk
, · · · , ynk+Lt+L]T .

Let us choose yk as the kth observation sample cluster

yk := [ynk+∆, · · · , ynk+Lt+L−∆]T , (7.3)

∗The analysis for unequally-long pilot clusters follows a similar path.
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where the integer ∆ is included to determine which of the received samples will
be eventually used for channel estimation. This makes sense since the choice of ∆
is related to the amount of pilot information as well as the interference due to the
unknown data symbols that is fed to the channel estimator. For instance, in [59], ∆ =
L is chosen such that yk contains the maximum number of received samples that
are exclusively dependent on the pilots and thus free from interference. In [79, 78],
the situation ∆ = 0 is considered such that yk contains the maximum number of
received samples that are dependent on the pilots and therefore the interference has
to be taken into account. In the sequel, we will follow an approach similar to [57],
where ∆ is assumed to be an arbitrary positive integer. As a result, we can find the
expression for yk as

yk = Hk[snk−L+∆, · · · , snk+Lt+L−∆]T + vk

= H(p)
k tk + H(d)

k dk︸ ︷︷ ︸
ξk

+vk, (7.4)

where the noise term vk is similarly defined as yk; dk stands for the unknown data
symbols

dk := [snk−L+∆, · · · , snk−1, snk+Lt+1, · · · , snk+Lt+L−∆]T ; (7.5)

and Hk is an (Lt + L− 2∆ + 1)× (Lt + 2L− 2∆ + 1) “Toeplitz” matrix†

Hk :=




hnk+∆,L · · · hnk+∆,0,
. . .

...
. . .

hnk+Lt+L−∆,L · · · hnk+Lt+L−∆,0


 . (7.6)

The (Lt + L− 2∆ + 1)× (Lt + 1) matrix H(p)
k consists of the columns of Hk that are

indexed from L − ∆ + 1 until L − ∆ + Lt + 1, which correspond to the positions
of the pilots tk; The (Lt + L − 2∆ + 1) × (2L − 2∆) matrix H(d)

k consists of the
remaining columns of Hk, which correspond to the positions of the data symbols.
The partitioning of Hk is illustrated in Fig. 7.1. From the definitions above, it is not
difficult to see that in order for yk to be free from interference, ∆ must be at least L

such that H(d)
k vanishes (or has a non-positive number of columns). However, it is

not wise to choose ∆ > L, which leads to information loss. In short, we require that

0 ≤ ∆ ≤ L. (7.7)

Suppose there are in total K + 1 pilot clusters that are cast for channel estima-
tion, whose starting positions are n0, · · · , nK , respectively. For each pilot cluster, we

†It is not strictly Toeplitz because it is not constant along the diagonals.
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Figure 7.1: Partitioning of the channel matrix Hk. Its rows corresponds to the positions of yk

and its columns to the positions of tk and dk

designate the corresponding observation samples as in (7.3) and establish the I/O
relationship as in (7.4). Stacking these results vertically, we obtain

y = H(p)t + H(d)d︸ ︷︷ ︸
ξ

+v, (7.8)

with
y := [yT

0 , · · · ,yT
K ]T , (7.9)

and t, d and v similarly defined as y; further

H(p) :=



H(p)

0

. . .

H(p)
K


 , (7.10)

and H(d) similarly defined as H(p).

7.3 Data Model for Channel Estimation

If we assume that the TV channel within the interval n = 0, · · · , N − 1 can be tightly
approximated by a BEM, then the lth channel tap will admit the following equality

[hl,0, · · · , hl,N−1]T =
[
b0, · · · ,bQ

]
︸ ︷︷ ︸

B

[c0,l, · · · , cQ,l]T , (7.11)

where bq stands for the qth expansion basis as we have introduced in Chapter 2, and
cq,l for the qth BEM coefficient of the lth channel tap. With the aid of the BEM, the
CSI can be attained via estimating the BEM coefficients. To this end, let us substitute
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(7.11) in (7.4). It can be shown after some algebra that the kth observation sample
cluster is related with the BEM coefficients as

yk =
Q∑

q=0

D{bk,q}Cq[snk−L+∆, · · · , snk+Lt+L−∆]T + vk

=
Q∑

q=0

D{bk,q}C(p)
q tk +

Q∑
q=0

D{bk,q}C(d)
q dk

︸ ︷︷ ︸
ξk

+vk, (7.12)

where
bk,q :=

[
[bq]nk+∆, · · · , [bq]nk+Lt+L−∆

]T ; (7.13)

and Cq is an (Lt + L− 2∆ + 1)× (Lt + 2L− 2∆ + 1) Toeplitz matrix

Cq =




cq,L · · · cq,0 0
. . . . . .

0 cq,L · · · cq,0


 . (7.14)

Accordingly, the matrix C(p)
q consists of the columns of Cq that are indexed from

L−∆+1 until L−∆+Lt +1, and the remaining columns comprise C(d)
q . It is more

convenient to rewrite the last equality in (7.12) as

yk = Pkc + ξk + vk, (7.15)

where
c := [c0,0, · · · , c0,L, · · · , cQ,0, · · · , cQ,L]T , (7.16)

and
Pk := ZkUk, (7.17)

with

Zk :=
[D{bk,0} · · · D{bk,Q}

]
,

Uk := IQ+1 ⊗Tk,

Tk :=




[tk]∆ · · · [tk]0 0
...

. . .
[tk]L · · · [tk]0

...
. . .

...
[tk]Lt · · · [tk]Lt−L

. . .
...

0 [tk]Lt · · · [tk]Lt−∆




. (7.18)
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Stacking the results in (7.15) for k = 0, · · · ,K, we obtain

y = Pc + ξ + v, (7.19)

where
P := ZU, (7.20)

with

Z :=



Z0

. . .
ZK


 ,

U =
[
UT

0 · · · UT
K

]T
.

7.4 Channel Estimation

In the following, we will use three different channel estimators to attain the knowl-
edge of c: the LMMSE estimator is a Bayesian approach, which relies on the statistics
of c, while the LS estimator and the BLUE treat c as a deterministic variable. Due to
the analogies to channel estimation for OFDM as mentioned in the introduction, we
will see that the channel estimators for a single-carrier system will admit the same
expressions as those presented in Chapter 4, though some of the symbols will have
a different implication here.

Like in Chapter 3, the following assumptions are adopted

Assumption 7.1. We assume the channel to be a wide-sense stationary uncorrelated scat-
tering (WSSUS) process, i.e.,

Eh{hp,lhp−m,l−n} = σ2
l γmδn, (7.21)

where δn denotes the Kronecker delta, σ2
l the variance of the lth channel tap, and γm the

normalized time correlation.

Assumption 7.2. The noise v is assumed to be zero-mean white with variance σ2, i.e.,

Rv := Ev{vvH} = σ2I. (7.22)

Assumption 7.3. The data symbols d are assumed to be zero-mean white with variance σ2
s ,

and uncorrelated with the noise v, i.e.,

E{ddH} = σ2
sI, (7.23)

and
E{dvH} = 0. (7.24)
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7.4.1 The LMMSE Estimator

The LMMSE estimator treats c as a stochastic variable. To be more specific, we
introduce the following assumption:

Assumption 7.4. The channel vector c is assumed to be uncorrelated with the noise v and
the data symbols d, i.e.,

E{cvH} = 0, (7.25)

and
E{cdH} = 0. (7.26)

Its covariance matrix
Rc := E{ccH} (7.27)

is assumed to be known (see (4.68) for its computation).

We seek a linear filter F such that the MSE between the estimated BEM coeffi-
cients

ĉ = Fy (7.28)

and the true BEM coefficients c is minimal. In other words, we solve

FLMMSE = arg min
{F}

trace{Ec,d,v{(Fy − c)(Fy − c)H}}. (7.29)

Similarly to (4.36), it can be shown that

Ec,d,v{(Fy−c)(Fy−c)H} = F(PRcPH +Rξ+Rv)FH−2<(RcPHFH)+Rc. (7.30)

In deriving the above, we make use of Assumptions 7.3 and 7.4, and introduce the
covariance matrix for the interference term ξ:

Rξ := Ec,d{ξξH}. (7.31)

The computation of Rξ is different from that in Chapter 4, as we can observe that
due to Assumption 7.3, Rξ becomes here a block-wise diagonal matrix

Rξ = IK+1 ⊗Rξk
. (7.32)

Conform Assumption 7.1, each diagonal block Rξk
is again diagonal with the nth

diagonal entry given by

[Rξk
]n,n =





∑L
l=∆+n σ2

l if n ≤ L−∆− 1,∑n−Lt+∆−1
l=0 σ2

l if n ≥ Lt −∆ + 1,

0 otherwise.

(7.33)

Substituting (7.30) in (7.29), and forcing its derivative with respect to F to zero, we
obtain

FLMMSE = RcPH(PRcPH + Rξ + Rv)−1. (7.34)
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7.4.2 The Least Squares Estimator

The Least Squares (LS) estimator FLS treats c as a deterministic variable. It is straight-
forward to obtain

FLS := P† (7.35)

such that
ĉLS = c + P†(ξ + v). (7.36)

The LS estimator is the most robust estimator, in the sense that it is not sensitive to a
mismatch of the channel and noise statistics. However, it perform inferior when the
interference (and noise) is prominent, especially in the case if P is ill-conditioned or
even rank-deficient.

7.4.3 An Iterative BLUE

From (7.19), we can find an expression for the BLUE following similar steps as in
[48, Appendix 6B] by treating the interference ξ and noise v as a single disturbance
term such that

ĉBLUE = FBLUEy,

FBLUE =
(PHR̃−1

I (c)P)−1PHR̃−1
I (c), (7.37)

where R̃I(c) denotes the covariance matrix of the disturbance with c again viewed
as a deterministic variable:

R̃I(c) := Ed,v{(ξ + v)(ξ + v)H}. (7.38)

The computation of R̃I(c) is different than in Chapter 4: due to Assumption 7.2 and
Assumption 7.3, we understand that R̃I(c) is a block-wise diagonal matrix

R̃I(c) =



R̃ξ0(c)

. . .
R̃ξK

(c)


 + σ2I, (7.39)

with R̃ξk
(c) standing for the covariance matrix of ξk, which treats only the data

symbol dk as random [c.f. (7.33)]

R̃ξk
(c) := Edk

{ξkξH
k },

= σ2
s(

Q∑
q=0

D{bp,q}C(d)
q )(

Q∑
q=0

D{bp,q}C(d)
q )H . (7.40)
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The equation in (7.37) is not solvable in closed form since its computation entails
the knowledge of c itself. A recursive approach can be therefore applied: suppose
at the ith iteration, an estimate for c is available denoted as ĉ(i)

BLUE. Next, we use this
estimate to update the covariance matrix R̃I(c) using (7.40). The update of ĉ in turn
is used to produce the BLUE for the next iteration and so on:

F(i+1)
BLUE =

(PHR̃−1
I (ĉ(i)

BLUE)P)−1PHR̃−1
I (ĉ(i)

BLUE),

ĉ(i+1)
BLUE = F(i+1)

BLUE y.

To initialize, we can simply let

ĉ(0)
BLUE = 0, (7.41)

which results in the following expression for the first iteration:

F(1)
BLUE = P†. (7.42)

The resulting ĉ(1)
BLUE is actually the least-squares fit as obtained in the previous sec-

tion.
Note that the BLUE in the single-carrier system resembles to the “weighted LS

estimator” in [78].

7.5 Channel Identifiability

Like in Chapter 5, we define channel identifiability in a single-carrier system as the
full column-rank condition of the matrix P . Such a full rank P leads to a unique
channel estimator for the LS estimator and the BLUE. It is also significant to the
performance of the LMMSE estimator in the moderate-to-high SNR regime. We will
illustrate this effect in the simulation part with some numerical examples.

To begin with, let us first adopt the assumption on the length of each pilot cluster.

Assumption 7.5. The length of each pilot cluster Lt is assumed to be

Lt ≥ 2∆. (7.43)

Assumption 7.5 implies that the (Lt + L− 2∆ + 1)× (L + 1) matrix Tk defined
in (7.18) is ‘tall’. Based on this assumption, we can establish the following fact.

Theorem 7.1. Under Assumption 7.5 and an arbitrary BEM that is defined in Chapter 2,
P will be of full rank if the following conditions on the pilots are satisfied.
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Figure 7.2: Examples of the proposed pilot structure: the white boxes stands for the area
where zero pilots are located; the black boxes for the area where non-zero pilots are located;
the hatched boxes for the area where the arbitrary pilots (zero or non-zero) are located.

(C1.) Inside each pilot cluster, at least either the first or the last ∆ pilots are zeros. In
addition, we suppose that each pilot cluster has at least one non-zero pilot that is
located between the ∆th and (Lt −∆)th position.

We refer to Fig. 7.2 for an illustration of such a pilot structure.

(C2.) The total number of such pilot clusters is greater or equal to the BEM scale, i.e.,

K + 1 ≥ Q + 1. (7.44)

We will give here only a sketch of the proof of Theorem 7.1 (for details see Ap-
pendix 7A). Due to Assumption 7.5 and supposing that the first ∆ pilots of each
pilot cluster are zeros , Tk becomes a “tall” banded matrix with zeros above its
main diagonal‡. Obviously, the matrix P is a stack of K +1 by Q+1 of such banded
submatrices (each weighted by a diagonal matrix). By changing the order of the
rows and columns of P , we can obtain a new matrix which has a block-wise banded
structure. This process is illustrated in Fig. 7.3, where the blocks with the same pat-
tern are put together. It can be shown that the full-rank condition of P relies on
the full-rank condition of the blocks (circled in Fig. 7.3) on the main diagonal of the
permuted matrix.

Remark 7.1.
‡For an M ×N tall matrix A, its main diagonal is defined as the vector

[
[A]0,0, · · · , [A]N−1,N−1

]T .
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Figure 7.3: Changing a stack of banded matrices to a block-wise banded matrix by row- and
column-interleaving.

Assumption 7.5 is key to Theorem 7.1. For the case other than Assumption 7.5 where Lt <

2∆, the special structure of P depicted in Fig. 7.3 is ruined. To be more specific, T(k) will
have not only zeros above its main diagonal. Consequently, the channel identifiability will
not be guaranteed, and will depend on the specific value of the pilots and the choice of a
particular BEM.

Remark 7.2.

In [59], so-called “TDKD” pilot clusters are considered (its frequency-domain variant “FDKD”
is discussed in Chapter 5). In each cluster of the “TDKD” pilots, a non-zero pilot is guarded
by zero pilots on both sides. This is a special case of the pilot structure defined in (C1) with
∆ = L and Lt ≥ 2L. In that case, we know from (C2) that the channel is identifiable for
K ≥ Q as also argued in [59].

Remark 7.3.

Note that the parameter ∆ is the choice of the receiver. We will show in the simulation that
∆ = 0 is optimal for the performance of the LMMSE estimator and the BLUE. In that case,
the constraint on the pilot structure is very loose: the channel is always identifiable as long
as there are more than Q non-zero pilot clusters. The length of such pilot clusters is not even
important.
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7.6 Simulation Results

In this section, we examine the performance of the channel estimators that are dis-
cussed in the previous section. We let the TV channel follow the Jakes’ Doppler
spectrum [45], which can be simulated by the channel generator proposed in [124].

The channel’s time-variation is characterized by the normalized Doppler spread
νD = 0.002. We use a DPS-BEM to approximate the TV channel, which spans a
window size N = 256 and has Q + 1 = 3 basis expansion functions. Further, we
assume the channel to be an FIR filter with L + 1 taps. We will examine two cases,
L = 4 and L = 10. The channel taps are generated independently with a uniform
power delay profile, i.e., each tap has the same power 1

L+1 .
Pilots are inserted in the time domain for channel estimation. Within a block of

256 transmitted symbols, 176 are QPSK data symbols. The remaining 80 symbols are
reserved for pilots, which are grouped in K +1 = 5 clusters, each cluster containing
Lt + 1 = 16 pilots. In the case where Assumption 7.5 is applicable, we construct
the pilots following Theorem 7.1, where the non-zero pilots are randomly picked
constant-modulus symbols§. They are further amplified such that the average pi-
lot power equals the data symbol power. In the case where Assumption 7.5 is not
applicable, we let all the pilots take randomly picked constant-modulus symbols.

The LMMSE estimator is equipped with the perfect knowledge of the channel
statistics. Its performance is depicted in Fig. 7.4, where the results are attained for
different channel lengths. As argued in the previous section, the number of obser-
vation samples could lead to different channel estimates. This is reflected by the
choice of ∆. As one can observe in Fig. 7.4, a smaller ∆ can improve the perfor-
mance, especially for a longer channel. In that case, the noise is better averaged out
by processing more observation samples in the channel estimator. Although more
interference due to the unknown data is thereby induced, it is efficiently counter-
acted by the LMMSE estimator.

A different behavior is exhibited by the LS estimator, whose performance is plot-
ted in Fig. 7.5. The estimator based on a smaller ∆ performs only better at low-to-
moderate SNR. In that area, since the noise plays a more dominant role, it is bene-
ficial to employ more observation samples. However, when the SNR increases, the
interference becomes more pronounced, and the LS estimator suffers from a high
noise floor. The noise floor can only be reduced by adopting a larger ∆.

The behavior of the BLUE is analogous to that of the LMMSE estimator as can
be seen in Fig. 7.6. Note that the case ∆ = L is not shown, because the BLUE in that
case just reduces to the LS estimator.

§We did not use “TDKD” pilots because they perform better for short channels where Lt ≥ 2L but
worse for long channels.
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Figure 7.4: The performance of the LMMSE estimator. Solid curves L = 4; Dashed curves
L = 10.

In Fig. 7.7, we compare the best performance of the LMMSE estimator, the LS
estimator and the BLUE to each other. We find that for a short channel (or equiv-
alently, if the pilot cluster is long enough), the three estimators perform similarly,
whereas for a long channel, the LMMSE estimator and the BLUE are much more
accurate than the LS estimator. Compared to the LMMSE estimator, the BLUE is
more appealing because except for the statistical knowledge of the noise and data
symbols, it does not require the channel statistics, which are in practice hard to at-
tain especially in the case of a TV channel [106]. On the other hand, the BLUE is
computationally more complicated due to the iterations.

7.7 Summary

We discussed in this chapter how to acquire the channel state information in a
single-carrier system by means of time-domain multiplexed pilots. Analogous to
the OFDM case, the channel is approximated by an arbitrary BEM that is tight with
respect to the realistic TV channel.

The pilots are grouped in clusters. For such clustered pilots, we first formulated
their relationship with the observation samples in terms of the BEM coefficients.
The number of observation samples can actually be selected: the more observation
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Figure 7.5: The performance of the LS estimator. Solid curves L = 4; Dashed curves L = 10.

samples are considered, the more pilot-related information can be included. On
the other hand, the more data-related interference will be induced. Three types of
channel estimators were discussed, the LMMSE estimator, the LS estimator and the
BLUE. The interference is explicitly taken into account in the design of the LMMSE
estimator and the BLUE.

For these channel estimators, we have established channel identifiability, which
can be applied to a general BEM assumption.

We have seen from the simulation that for the LMMSE estimator and the BLUE,
a higher performance is achieved by employing more observation samples. In this
case, the noise can be better averaged out while the interference is efficiently coun-
teracted. For the LS estimator, however, employing more observation samples is
only beneficial at low-to-moderate SNR. At high SNR, this will lead to a higher
noise floor.

The channel estimation in a single-carrier system can be viewed as a counter-
part to that in OFDM. For instance, the channel estimators in both cases bear the
same expression; the strategy of choosing which observation samples for respective
channel estimators is similar. Except for these analogies, the channel estimation in
a single-carrier system could be somewhat simpler than in OFDM. This is mainly
because the channel matrix in the time domain is always strictly banded due to
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Figure 7.6: The performance of the BLUE. Solid curves L = 4; Dashed curves L = 10.

the FIR assumption while its counterpart in the frequency domain is only approx-
imately banded. As a result, the pilot power is more dissipated in OFDM (to the
whole OFDM symbol). The signal to inference ratio could therefore be lower in
OFDM. For the LMMSE estimator and the BLUE, more observation samples must
accordingly be taken into account in OFDM, which increases computational com-
plexity. Also, the conditions on channel identifiability in a single-carrier system are
much less stringent than in OFDM. The pilot cluster in a single-carrier system is
required only to be longer than a design parameter ∆, whose value itself is at the
choice of the receiver. For the LMMSE estimator and BLUE, ∆ can be even chosen
to be zero. From the point of view of channel identifiability, this could allow us to
employ fewer pilots in a single-carrier system.

Appendix 7A: Proof of Theorem 7.1

To begin with, let us first use an N × (Q + 1) matrix B to stand for a BEM matrix,
which is introduced in Chapter 2; S stands for a set consisting of M unique elements,
which range from 0 until N − 1. B{S} is hence an M × (Q + 1) matrix comprised of
rows of B whose indices are collected in the set S . We assume that
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Figure 7.7: Comparison of different channel estimators. Solid curves L = 4; Dashed curves
L = 10.

Assumption 7.6. B{S} is of full rank Q + 1 if M ≥ Q + 1.

Assumption 7.6 holds in general for the CE-BEM and P-BEM, in which case B{S}

is a ‘tall’ Vandermonde matrix. For the other BEMs, this is true via computer vali-
dation.

To prove Theorem 7.1, we need also the following lemma.

Lemma 7.1. Let us use A to denote a matrix that has the following block structure

A =




A0,0 0 · · · 0

♦ A1,1
. . .

...
...

. . . . . . 0
...

. . . AN−1,N−1

♦ · · · · · · ♦




, (7.45)

where An,n stands for a P × M “tall” submatrix (P ≥ M ); ♦ stands for some arbitrary
block entries. Then A will be of full rank MN if and only if each matrix An,n is of full rank
M for n = 0, · · · , N − 1.

Proof. We prove by contradiction. Suppose all An,n’s are of full rank but A is not of
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full rank. Then, there exists a non-zero vector

g :=
[
gT

0 · · · gT
N−1

]T
, (7.46)

with gn representing an M × 1 vector, such that

ξ = Ag = 0. (7.47)

Observing the structure of A in (7.45), in order for the first P elements of ξ to be
zeros, we require g0 = 0 for the full-rank A0,0. Similarly, in order for the next P

elements of ξ to be zeros, we require g1 = 0, which corresponds to the column
position of the full-rank matrix A1,1. Repeating the argument above, we obtain

g0 = · · · = gN−1 = 0, (7.48)

which contradicts the assumption that g is not an all-zero vector. Therefore, we
complete the proof. ¤

To begin with the proof of Theorem 7.1, we first, without loss of generality, as-
sume that the pilot structure satisfies the first case of (C1)¶, where the position of
the first non-zero element in each pilot cluster µk is assumed to be

∆ ≤ µk ≤ Lt −∆; (7.49)

The subsequent entries of the pilot cluster are allowed to take an arbitrary value. As
a result, the first µk −∆ rows of the matrix Pk are all zeros. Hence, we need only to
concentrate on the remaining rows, which are collectively denoted by P̄k [c.f. (7.18)]

P̄k :=
[D{b̄k,0}T̄k · · · D{b̄k,Q}T̄k

]
, (7.50)

where

b̄k,q :=
[
[bq]nk+µk

, · · · , [bq]nk+Lt+L−∆

]T
,

T̄k :=




[tk]µk
0

♦ . . .
...

. . . [tk]µk

♦ · · · ♦




.

Here, ♦ denotes an entry that is irrelevant at this point. For the sake of convenience,
we let all the matrices P̄k contain the same number of rows by appending at the end
µk − µmin all-zero rows with

µmin = min(µ0, · · · , µK). (7.51)
¶The proof for the other case of (C1) follows a similar approach.



150 7. Channel Estimation in a Single-Carrier System

Equivalently, we consider the rank condition of P̄ which is defined as

P̄ :=
[
P̄T

0 0(L+1)(Q+1)×(µ0−µmin) · · · P̄T
K 0(L+1)(Q+1)×(µK−µmin)

]T

. (7.52)

In line with the structure of T̄k, we understand that P̄ is a stack of (Lt + L − ∆ +
µmin + 1)× (L + 1) banded matrices both horizontally and vertically, as depicted in
the left of Fig. 7.3. To explore such a structure, we interleave the columns of P̄ with
an interleaving depth L + 1; at the same time, we interleave the rows of P̄ with an
interleaving depth Lt + L−∆ + µmin + 1. As a result, we obtain

ΠT
Lt+L−∆+µmin+1P̄ΠL+1 =




A0,0 0 · · · 0

♦ A1,1
. . .

...
...

. . . . . . 0
...

. . . AL,L

♦ · · · · · · ♦




, (7.53)

where the Πd denotes a depth-d interleaving matrix of proper dimensions as defined
in (5.68); the (K + 1)× (Q + 1) matrix All can be shown to admit an expression as

Al,l :=




[b0,0]n0+µ0+l[t0]µ0 · · · [b0,Q]n0+µ0+l[t0]µ0

...
. . .

...
[bK,0]nK+µK+l[tK ]µK

· · · [bK,Q]nK+µK+l[tK ]µK




= D{[[t0]µ0 , · · · , [tK ]µK

]T }




[b0,0]n0+µ0+l · · · [b0,Q]n0+µ0+l

...
. . .

...
[bK,0]nK+µK+l · · · [bK,Q]nK+µK+l




︸ ︷︷ ︸
B̄l

. (7.54)

Because of (C1), [tk]µk
6= 0 for k = 0, · · · ,K. Further, the (K + 1) × (Q + 1) matrix

B̄l is carved out of the larger BEM matrix B, and thus of full rank Q + 1 according
to Assumption 7.6. Applying Lemma 7.1 on (7.53), we conclude the proof.



Chapter 8

MSE-Optimal Training for Time-Selective
Channels

8.1 Introduction

For pilot-aided channel estimation, an interesting topic is what is the ‘best’ pilot
structure in terms of a certain optimality criterion. It is quite common in a practical
communication system that the bandwidth and power consumption dedicated for
pilots are constrained. A judicious design of the pilot symbols and their positions
can lead to a significant “potential gain” [109]. For instance, [57] consider the case
in of a single-carrier system where the pilots are optimized in terms of the channel
estimator’s MSE. The OFDM case is tackled in [69]; the MIMO case for a single-
carrier system is considered in [62] and the MIMO case for OFDM is considered
in [6]. [26] loosens the constraint on the pilot cluster size and optimizes the pilot
structure in terms of the CRB of the channel estimator. The design of CRB-optimal
pilots in the presence of a precoder is treated in [73, 115]. There are also works that
strike on the impact of the pilot structure on channel capacity [2, 40, 74].

Compared to the time-invariant channel case, there are, however, much fewer
works that cast attention to the optimality of pilots on time-varying channels. [27]
studies time-selective channels, and claims that the periodic single pilot minimizes
the maximum steady-state channel MSE, whereas in the practical SNR regime, the
superimposed training is more beneficial to both the MSE and BER performance.
For a doubly-selective channel, [47] argues that the “Time-Domain Kronecker Delta”
(TDKD) pilot structure that is also used in [59] is optimal in the MSE of the chan-
nel estimator for a single-carrier system, and its variant, the “Frequency-Domain
Kronecker Delta” (FDKD) pilot structure, is optimal for an OFDM system. It is
worth underlying that [27] approximates the time-varying channel with a first-order
Gauss-Markov model, while [59, 47] uses the (C)CE-BEM. Both models can induce
quite a large modeling error for fast-varying channels, which is nonetheless ne-
glected in the analysis. Note that the positions of the pilots can play an important

The results of this chapter appeared in [101].
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role in the modeling error: a well-known example can be encountered for the P-
BEM, for which the maximum modeling error is minimized if the pilots are placed
according to the roots of the Chebyshev polynomials [50].

By adopting a tighter BEM other than the (C)CE-BEM, we are allowed in prin-
ciple to bypass the impact of the modeling error, but the optimal pilots for these
BEMs remain unsolved. Due to the lack of insight, many existing channel estima-
tion works just adopt the classical equi-distant/powered pilot scheme like in e.g.,
[10, 122, 78] without arguing its optimality. In this chapter, we will try to cast some
light on how to attain the optimal pilots to minimize the channel MSE for time-
selective channels via a numerical approach. A time-selective channel is a simpler
version of a doubly-selective channel, where the channel has only one time-varying
tap. The time-variation of the channel tap will be modeled by a tight BEM such as
reported in [122], where most of the BEMs (except the (C)CE-BEM) inflicts a BEM
modeling error lower than −40dB, whose impact is indeed negligible. This means
that the proposed approach can be applied for these BEMs. Focusing on an LS chan-
nel estimator, we will first formulate the problem as the minimization of an MSE-
related cost function, which is next transformed into a mixed-integer non-linear
programming problem [31]. The simulation results show that the resulting pilot
structure can produce a lower channel MSE than the classical equi-distant/powered
pilots if a general BEM assumption is adopted.

8.2 Data Model for Time-Selective Channel Estimation

Let us consider a communication system over a time-selective channel. Because the
channel considered in this chapter has only one tap in the time domain (instanta-
neous channels), we drop the tap index l in the channel notation, hn,l, which is used
in the previous chapters, and just use hn to stand for the channel gain at the nth
time-instance. The I/O relationship in discrete form can then be expressed as

yn = hnsn + vn, (8.1)

where yn, sn, and vn denote respectively the received signal, the transmitted signal
and the noise at the nth time-instance.

To approximate the time-variation with a BEM, let us choose the time instants
n = 0, · · · , N − 1 as an observation window and collect all the channel gains within
this observation window in the vector

h := [h0, · · · , hN−1]T . (8.2)
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By selecting a proper scale Q for the BEM, we can closely fit the channel time varia-
tion within the observation window with Q + 1 BEM coefficients:

h = Bc + δ, (8.3)

where B is an N × (Q + 1) BEM matrix, and c a (Q + 1)-long vector containing
the related BEM coefficients. δ represents the BEM modeling error. In the sequel,
we will assume that by choosing an appropriate BEM, the modeling error can be
kept sufficiently small [122]. As a result, its impact in a practical SNR region can
be neglected. It is also notable that the idea of a BEM is reflected in some other
applications without inducing a modeling error, e.g., the frequency-domain channel
in an OFDM system can be model by a (C)CE-BEM [69]. In this case, h corresponds
to the channel vector in the frequency domain, and B corresponds to the (C)CE-
BEM,

[B]n,q =
1√
N

ej 2π
N nq, (8.4)

with N denoting the total number of subcarriers. If the frequency-domain channel
must abide with some virtual subcarriers in an OFDM system [32], then h can be
viewed as a stack of all the non-virtual subcarriers, and B will correspond to an
(O)CE-BEM:

[B]n,q =
1√
N ′ e

j 2π
N′ nq, (8.5)

with N ′ denoting the total number of subcarriers, which is larger than N . For these
cases, the approach discussed in this chapter can be also applied.

To estimate the BEM coefficients c, we resort to a time-multiplexed training
scheme, where the pilots are interleaved with data symbols in the time domain. For
time-selective channels, the channel estimation and equalization can thus be com-
pletely decoupled. Suppose there are K pilots transmitted during the observation
window, whose positions are collected in the set

G := {g0, g1, · · · , gK−1}. (8.6)

Furthermore, we assume that the kth pilot sgk
has phase φk and power Pk, i.e.,

sgk
=

√
Pkejφk , (8.7)

with the total power assigned for training

P =
∑

k

Pk. (8.8)
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With the aid of these notations and neglecting the modeling error, we can express
the I/O relationship that results from the pilots in matrix/vector form as

yp = Φp

√
PpBpc + vp, (8.9)

where yp is a K × 1 vector collecting the received samples at the pilot-related posi-
tions, i.e.,

yp := [yg0 , · · · , ygK−1 ]
T ; (8.10)

vp is similarly defined as yp; Pp and Φp are both K ×K diagonal matrices

Pp := D{[P0, · · ·PK−1]T }, (8.11)

Φp := D{[ejφ0 , · · · , eφK−1 ]T }. (8.12)

Bp is a K × (Q + 1) matrix consisting of K rows carved out of B corresponding to
the pilot positions

Bp := B{G}. (8.13)

An LS estimate from (8.9) can be obtained as

ĉ = (BH
p PpBp)−1BH

p

√
PpΦH

p yp, (8.14)

which results in a channel MSE equal to

MSE = E{‖(BH
p PpBp)−1BH

p

√
PpΦH

p vp‖2}. (8.15)

If we assume that the noise vp is zero-mean white with variance σ2, i.e.,

E{vpvH
p } = σ2IK , (8.16)

the channel MSE will be independent of the phase of the pilots as can be observed
from

MSE = σ2tr{(BH
p PpBp)−1}. (8.17)

In this way, we only need to focus on the powers and positions of the pilots. The
optimization problem can thus be formulated as

arg min
{G,Pp}

MSE(G, Pp) = arg min
{G,Pp}

σ2tr{(BH
p PpBp)−1}

s.t. Bp = B{G},G ⊂ {0, · · · , N − 1} and |G| = K, (8.18)

Pp positive diagonal with tr{Pp} = P. (8.19)
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8.3 Optimization Algorithm

The above formulation is a mixed-integer non-linear optimization problem, where
we have posed restrictions on the total number and power of the pilots. [31] pro-
vides an algorithm known as the Generalized Benders Decomposition (GBD). In a
nutshell, the GBD iteratively projects the minimization problem onto the Pp−space
(primal problem) and the G − space (relaxed master problem). Since the constraints
in (8.18) and (8.19) are separable in G and Pp, the primal problem becomes simply
the search for the optimal Pp subject to a fixed G, and the relaxed master problem
becomes the search for the optimal G subject to a fixed Pp. The GBD algorithm is
summarized in Table 8.1:

Table 8.1: The GBD algorithm.

1. We use the superscript (k) to denote the iteration
index. To initialize, let us set k = 0, and assume
G(0) = {0, · · · , K/2 − 1, N − K/2, · · · , N − 1} and
P(0)

p = P
K IK .

2. For a fixed P(k)
p , solve v

(k+1)
master = min

{G}
MSE(G, P(k)

p )

subject to (8.18) resulting in G(k+1).

3. For a fixed G(k+1), solve v
(k+1)
primal =

min
{Pp}

MSE(G(k+1), Pp) subject to (8.19) resulting

in P(k+1)
p .

4. For a predetermined ε, if |v(k)
primal − v

(k)
master| ≤ ε then

terminate. Otherwise, return to Step 2.

8.3.1 Solving the Primal Problem

The primal problem in step 3 is a non-linear programming problem (NLP). To solve
this problem, we first introduce the following lemma:

Theorem 8.1. The function MSE(G, Pp) = σ2tr{(BH
p PpBp)−1} is strictly convex on

the positive-diagonal matrix Pp for a given G.
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Theorem 8.1 (see Appendix 8A for a proof) ensures that there exists a unique
global optimum for the pilot powers once their positions are fixed. Indeed, in the
case of K = Q+1, the optimal pilot powers can be sought analytically [32]. In other
cases where K > Q + 1, we can resort to numerous convex optimization algorithms
[12]. An example can be the MATLABr built-in function fmincon(·), which will be
used in the simulations.

8.3.2 Solving the Master Problem

Compared to the primal problem, the solution to the master problem in step 2 of Ta-
ble 8.1, which is essentially a binary programming problem, is less straightforward
to find. In the first place, the MSE cost function is not necessarily convex on the pilot
positions. For instance, if the (C)CE-BEM is used, it is well-known that the solutions
for all the equi-distant positions are optimal [69, 73]. The non-convexity is bypassed
in, e.g., [29], by relaxing the binary problem to a non-binary problem such that the
convexity can be still called upon. Unfortunately, this approach, when applied to
our problem, does not facilitate a fast convergence due to a very large pilot position
space. In the sequel, we will resort to the combined Genetic Algorithm (GA) [24],
which has a fast convergence rate.

The working principle is illustrated by the flow chart in Fig. 8.1. For clarification,
we explain the major terms that are listed in the blocks.

• “Population” represents a set of candidate (pilot position) solutions;

• “Weakness” represents the cost function value defined in (8.17) for each can-
didate. Those candidates that do not satisfy condition (8.18) will be penalized
by a weakness value equal to infinity;

• “Reproduction” represents the operation that copies the population except for
the candidates that either have the largest weakness or the smallest weakness.
The former will be discarded while the latter will be copied twice since it has
the lowest MSE at the moment;

• “Crossover” represents the operation applied on the candidate pool produced
by the reproduction: at the lth iteration, all the candidates are randomly grouped
into pairs (parents). Let us take one such pair for example: suppose “Par-
ent1” is the mth candidate [g(l,m)

0 , · · · , g
(l,m)
K−1 ] and “Parent2” the nth candi-

date [g(l,n)
0 , · · · , g

(l,n)
K−1] with m 6= n. Here, g

(l,i)
k stands in our context for the

position of the kth pilot that corresponds to the ith candidate obtained at
the lth iteration. “Mating” these two parents results in two new candidates
(children) with “Child1” denoted as [g(l+1,m)

0 , · · · , g
(l+1,m)
K−1 ] and “Child2” as
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Crossover

Reproduction

Initialize Population

End

Continue?
Yes

No

new population

Weakness Assignment

Figure 8.1: A flowchart of GA.

[g(l+1,n)
0 , · · · , g

(l+1,n)
K−1 ]. In generating each entry of the children, either of two

operations, replication or swapping, will take place with the same probabil-
ity. For the kth entry for instance, in case of replication g

(l+1,m)
k = g

(l,m)
k , and

g
(l+1,n)
k = g

(l,n)
k . In case of swapping, we first express the kth entry of ‘Parent1’

and ‘Parent2’ in binary-form. These two binary strings are then divided at the
same arbitrary place, from which the right-hand part of “Parent2” will be con-
catenated to the left-hand part of “Parent1”, and likewise, the right-hand part
of “Parent1” will be concatenated to the left-hand part of ‘Parent2’. In this
way, two new binary strings are created and converted back in decimal form.
A numerical example of “crossover” is given as follows.

Example 8.1. Suppose the kth entry of “Parent1” and “Parent2” are

g
(l,m)
k = 2 and g

(l,n)
k = 5,

respectively. In case of replication, their children stay unchanged, i.e.,

g
(l+1,m)
k = g

(l,m)
k and g

(l+1,n)
k = g

(l,n)
k .

If swapping takes place instead, we first find the binary expression for g
(l,m)
k and g

(l,n)
k ,

which are

g
(l,m)
k = [0, 1, 0] and g

(l,n)
k = [1, 0, 1],
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g
(l,m)

k

g
(l,n)

k

g
(l+1,m)

k

g
(l+1,n)

k

010

1 0 1

0 0 1

1 1 0

Figure 8.2: An example of swapping.

respectively. Suppose a cutting place is chosen randomly at the first bit. We obtain

g
(l+1,m)
k = [0, 0, 1], and g

(l+1,n)
k = [1, 1, 0],

which in decimal-form equal 1 and 6, respectively. The procedure of swapping is
illustrated in Fig. 8.2.

8.3.3 Imposing Symmetric Constraint

If the observation window size N or pilot number K is large, the GA must abide
with a large population size. This results in a higher complexity and lower conver-
gence rate, which in practice, often leads to a “near-optimal” solution. The same
remark can be made for the algorithm to solve the primal (power) problem. It is
thus helpful if we could equip the searching algorithms with some a priori knowl-
edge about the solution. For the considered case (both N and K are assumed to
be even), we could constrain the pilot structure to be symmetric with respect to the
center of the observation window, i.e.,

gi = N − gK−i−1 − 1, (8.20)

Pi = PK−i−1. (8.21)

This constraint is introduced in light of the following properties:

Property 8.1. The BEM matrices B of the DKL-BEM, DPS-BEM, CE-BEM and the P-
BEM that are introduced in this thesis all admit inherently a symmetrical structure up to a
sign. If we use Bu and Bd to denote the first and second half of B, respectively, i.e.,

Bu :=
[
IN

2
0N

2 ×N
2

]
B,

Bd :=
[
0N

2 ×N
2

IN
2

]
B,
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then they are related with each other as

Bd = ΛB∗
uΞ, (8.22)

with Λ being an N
2 × N

2 flipping matrix,

Λ =




0 1
. .

.

1 0




N
2

. (8.23)

The definition of the matrix Ξ depends on the concerned BEM. To be more specific,

Ξ =
{

IQ+1 for the CE-BEM,

D{[(−1)0, · · · , (−1)Q]T } for the remaining BEMs.
(8.24)

Property 8.1 (see Appendix 8B for a proof) tells the interesting fact that the upper
half of any BEM matrix mirrors the lower half up to a sign. Enlightened by the
symmetry of the BEM, we observe further that

Property 8.2. If (G, Pp) denotes a certain pilot structure with

Pp = D{[P0, · · · , PK−1]T },
G = {g0, · · · , gK−1},

then we can always find another pilot structure (G̃, P̃p) with

P̃p = D{[PK−1, · · · , P0]T },
G̃ = {N − 1− g0, · · · , N − 1− gK−1},

such that
MSE(G̃, P̃p) = MSE(G,Pp). (8.25)

Apparently, the new pilot structure (G̃, P̃p) is just a flipped version of (G, Pp).

Property 8.2 (see Appendix 8C for a proof) suggests that if one specific pilot
structure is optimal in an MSE sense, then there exists at least another (flipped) pilot
structure that is also optimal. Should there be a unique global minimum, this would
imply that the optimal pilot structure ought to be symmetric. Although we have ob-
served that in some applications, e.g., when using the (C)CE-BEM, there might exist
multiple optimal solutions [59], and thus imposing a symmetric constraint upon the
search algorithm could in theory lead to an MSE degradation, in practice, the algo-
rithm with a symmetry constraint inflicts a much lower complexity and renders a
performance very close to (or even better than) the algorithms without a symmetry
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Table 8.2: A Pilot Structure Comparison K = 6 - Pilot Positions

symm. NLP / non-symm. NLP / equi-powered/ equi-powered / symm. NLP /

symm. GA non-symm. GA equi-distant symm. GA equi-distant

g0 1 1 1 1 1

g1 48 51 44 44 44

g2 126 53 87 105 87

g3 131 138 130 152 130

g4 209 210 173 213 173

g5 256 253 216 256 216

Table 8.3: A Pilot Structure Comparison K = 6 - Pilot Powers

symm. NLP / non-symm. NLP / equi-powered/ equi-powered / symm. NLP /

symm. GA non-symm. GA equi-distant symm. GA equi-distant

p0 0.8184 1.4643 1 1 0.6234

p1 1.2214 0.3162 1 1 1.0457

p2 0.9157 1.8032 1 1 1.0733

p3 0.9157 0.3162 1 1 0.6099

p4 1.2214 0.31622 1 1 1.2571

p5 0.8184 0.31622 1 1 1.1890

constraint, as shown in the simulation part. This is probably due to the fact that the
channel MSE is not a convex function of the pilot positions and has a large number
of local minima. By enforcing symmetry, the search space is reduced and hence the
global minimum might never be reached. On the other hand, a smaller search space
is beneficial in avoiding local minima and thus increases the convergence rate.

8.4 Numerical Examples

We generate time-selective channels as prescribed in [124] for a normalized Doppler
spread νD = 0.002. The (O)CE-BEM assumption will be adopted to approximate
the channel’s time-variation, though other BEMs are also applicable but will not be
examined here due to space restrictions. Following the definition given in (8.28), we
set N = 256, Q = 4, and κ = 4.

We compare different solutions for K = 6 pilots, which are listed in Table 8.2



8.4. Numerical Examples 161

10 12 14 16 18 20 22 24 26 28 30
10

−1

10
0

10
1

10
2

SNR (dB)

M
S

E

 

 
equi−powered/equi−distant
symm. NLP/equi−distant
symm. NLP/symm. GA
non−symm. NLP/non−symm. GA
equi−powered/symm. GA

Figure 8.3: MSE vs. SNR.

and Table 8.3 for their positions and powers, respectively. The symmetric GA is
equipped with a population pool size of 100 and iterates 100 times, and the non-
symmetric GA is equipped with a population pool size of 250 and iterates 1000
times. The latter requires much larger parameters for the setup because more un-
knowns need to be sought.

The different solutions that are compared are based on the following methods:

1. The proposed method denoted as “symm. NLP/symm. GA” searches the
pilot powers using the MATLABr function fmincon(·), and positions using
the GA, with both algorithms under a symmetry constraint.

2. The method denoted as “non-symm. NLP/non-symm. GA” searches the pilot
powers using the MATLABr function fmincon(·), and positions using the
GA. No constraints are imposed on either algorithm.

3. The method denoted as “equi-powered/equi-distant” simply uses pilots that
have the same power and a uniform distance.

4. The method denoted as “equi-powered/symm. GA” uses pilots that have the
same power, but searches the positions using the symmetric GA.
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Figure 8.4: BER vs. SNR.

5. The method denoted as “symm. NLP/equi-distant” places the pilots with a
uniform distance, but searches the pilot powers using the MATLABr function
fmincon(·) under a symmetry constraint.

The corresponding MSE performances are plotted in Fig. 8.3, From Fig. 8.3, one
can observe that the method “symm. NLP/symm. GA” produces the best channel
estimates whereas the traditional method “equi-powered/equi-distant” produces
the worst. Note that the method “non-symm. NLP/non-symm. GA” requires a
much larger computational complexity than the method “symm. NLP/symm. GA”,
but its performance is even slight worse. It is also noteworthy that only optimizing
the pilot positions but assuming equal power, the method “equi-powered/symm.
GA” can already render a performance comparable to that of the method “non-
symm. NLP/non-symm. GA”. This might suggest that the pilot positions are more
significant to channel estimation than the pilot powers, and equal pilot powers are
in practice very attractive for hardware realization.

BER performances are plotted in Fig. 8.4, which result from a maximum like-
lihood equalizer that is based on the estimated channel knowledge from different
pilot structures. Similar remarks as in Fig. 8.3 can be made here, though the BER per-
formance discrepancy due to different pilot structures is less pronounced. Also, the
BER performance based on the true CSI (denoted as “true CSI”) is listed in Fig. 8.4
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for comparison. We can see that it performs 2dB better that the equalizer based on
the best channel estimates (the method “symm. NLP/symm. GA”).

8.5 Summary

This chapter discussed how to search numerically for the pilot structure that is op-
timal in a channel MSE sense. The time-selective channel is approximated by an
arbitrary BEM, which has only a negligible modeling error with respect to the real-
istic channel.

First, a mixed integer non-linear programming problem is formulated based on
the MSE expression, which is a function of the pilot powers and pilot positions.
This problem can be solved readily by the GBD algorithm, essentially a numerical
approach that iteratively optimizes the pilot powers and pilot positions. We have
shown that the optimization problem is convex in the pilot powers, but non-convex
in the pilot positions. The latter can be solved by means of the combined GA. To
accelerate the convergence rate of the optimization algorithms, we constrained the
pilots with a symmetric structure such that only half of the pilots needs to be opti-
mized.

Appendix 8A: Proof of Theorem 8.1

Proving this theorem is equivalent to proving that for two positive-diagonal matri-
ces Pp,1, Pp,2, and the real number α ∈ [0, 1], there holds

tr{(BH
p (αPp,1 + (1− α)Pp,2)Bp

)−1}
< tr{(BH

p αPp,1Bp)−1}+ tr{(BH
p (1− α)Pp,2Bp)−1}. (8.26)

Obviously, the two matrices BH
p Pp,1Bp and BH

p Pp,2Bp are both positive-definite
Hermitian, and can therefore be simultaneously diagonalized as [63]

BH
p Pp,1Bp = M−HM−1,

BH
p Pp,2Bp = M−HD{[1/λ0, · · · , 1/λK−1]T }M−1,

where M is a K×K non-singular matrix, and 1/λk is denoted as the kth eigenvalue
of the matrix BH

p Pp,2Bp(BH
p Pp,1Bp)−1, which is alway positive, i.e., 1/λk > 0. As
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a result, it is straightforward to see that

tr{(BH
p αPp,1Bp)−1}+ tr{(BH

p (1− α)Pp,2Bp)−1}
=

1
α

tr{MMH}+
1

1− α
tr{MD{[λ0, · · · , λK−1]T }MH}

=
1
α

K−1∑
m=0

K−1∑

k=0

|[M]m,k|2 +
1

1− α

K−1∑
m=0

K−1∑

k=0

λk|[M]m,k|2

=
K−1∑
m=0

K−1∑

k=0

1− α(1− λk)
α(1− α)

|[M]m,k|2.

Likewise

tr{(BH
p (αPp,1 + (1− α)Pp,2)Bp

)−1}

= tr{MD{[ λ0

1− α(1− λ0)
, · · · ,

λK−1

1− α(1− λK−1)
]T }MH}

=
K−1∑
m=0

K−1∑

k=0

λk

1− α(1− λk)
|[M]m,k|2.

It can be shown after some algebra that

λk

1− α(1− λk)
<

1− α(1− λk)
α(1− α)

, (8.27)

for any positive λk and α ∈ [0, 1], and hence (8.26) holds, which concludes the proof.

Appendix 8B: Proof of Property 8.1

The P-BEM satisfies this property by definition [c.f. (2.34)]. The symmetry inher-
ent to the DPS-BEM is observed in [95], though without argument. Actually, this
is because the kernel matrix of the DPS-BEM, C, in (2.26) is bisymmetric, i.e., C is
Toeplitz and C = CT . For such a bisymmetric matrix, its singular vectors are sym-
metric as proved in [13]. The same applies for the DKL-BEM, whose kernel matrix
is the covariance matrix or the channel, and thus is bisymmetric as well. For the
CE-BEM, we make a slight modification and define

[B̃]n,q = ej 2π
κN (n−N−1

2 )(q−Q
2 ), (8.28)

where κ = 1 for the (C)CE-BEM, and κ > 1 for the (O)CE-BEM. Compared to the
canonical definitions of the CE-BEM, B, in (2.30) and (2.33), a phase shift is intro-
duced in (8.28):

B = B̃D{[e−j 2π
κN

N−1
2

Q
2 , · · · , ej 2π

κN
N−1

2
Q
2 ]T }, (8.29)
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whose effect can be simply absorbed in the corresponding BEM coefficients, without
influencing the BEM modeling performance. Obviously, the CE-BEM defined as
such admits the symmetric property.

Appendix 8C: Proof of Property 8.2

Let us absorb the effect of Pp and G in a larger N × N diagonal matrix P , whose
diagonal consists of zeros except for the pilot positions, i.e.,

[P ]i,i =
{

[Pp]k,k if i = gk,

0 if i /∈ G.
(8.30)

By this means, it is equivalent to write (8.17) as

MSE(P) = σ2tr{(BHPB)−1}. (8.31)

Suppose P corresponds to the optimal pilots (G, Pp). We divide it into the left-
upper half, Pu,opt, and the right-bottom half, Pd,opt, respectively, i.e.,

Pu :=
[
IN

2
0N

2 ×N
2

]
P

[
IN

2
0N

2 ×N
2

]T

,

Pd :=
[
0N

2 ×N
2

IN
2

]
P

[
0N

2 ×N
2

IN
2

]T

,

such that

P =
[Pu

Pd

]
.

In line with such a decomposition and by virtue of Property 8.1, we can rewrite
(8.31) as

MSE(P) = σ2tr {(BH
u PuBu + BH

d PdBH
d )−1}

= σ2tr {(BH
u PuBu + ΞHBT

u ΛHPdΛB∗
uΞ)−1}.

For the flipped pilot structure (G̃, P̃p), we can derive similarly a matrix P̃ like in
(8.30), which is obviously related to P as

P̃ =
[
ΛHPdΛ

ΛHPuΛ

]
,
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where Λ is the flipping matrix defined in (8.23). Likewise, the MSE corresponding
to the pilot structure P̃ admits the expression [c.f. (8.31)] as

MSE(P̃) = σ2tr {(BH
u ΛHPdΛBu + ΞHBT

u PuB∗
uΞ)−1}

a= σ2tr {(ΞHBH
u ΛHPdΛBuΞ + BT

u PuB∗
u)−1}

b= σ2tr {(ΞHBT
u ΛHPdΛB∗

uΞ + BH
u PuBu)−1}

= MSE(P),

where a= holds because ΞΞ = ΞHΞH = IQ+1, and b= holds because tr {A−1} =
tr {A∗−1} for a Hermitian matrix A.



Chapter 9

Conclusions and Future Work

9.1 Conclusions

OFDM is characterized by a diagonal channel matrix in the frequency domain if
the channel is constant within the duration of an OFDM symbol. To equalize such
a diagonal channel matrix requires only a linear complexity with respect to the to-
tal number of subcarriers. However, when the channel time-variation cannot be
ignored within the OFDM symbol, the resulting FD channel matrix is full.

Despite this fact, we have explored the property that most of the channel power
is concentrated in the entries close to the main diagonal and hence the channel ma-
trix can be approximated as banded. We have constructed a block LMMSE equal-
izer which is based on a strictly banded matrix instead of on the original full chan-
nel matrix. This enables us to apply a simple Cholesky factorization such that the
overall complexity is still linear in the number of subcarriers, just like for the TI
channel case. To reduce the band approximation error between the strictly banded
matrix and the original full matrix, we introduced a window at the receiver. At the
meantime, we have shown that the corresponding band approximation error can be
interpreted as the modeling error resulting from using the (C)CE-BEM in the time
domain. In order to enhance the equalization performance, we optimized the value
of both the window and the strictly banded matrix.

Next, we discussed how to estimate the channel, which is indispensable for the
channel equalizer. Again, the full channel matrix due to the channel time-variation
presents a challenge to traditional channel estimators. The pilot-carrying subcarri-
ers are constantly corrupted by interference due to the unknown data symbols. As
counteract, we proposed clustered pilots. In addition, we have found that for differ-
ent types of channel estimators, the optimal number of observation samples must
individually be chosen: for the LMMSE estimator and BLUE, it is optimal to employ
the whole observed OFDM symbol for channel estimation because of their superior
capability to suppress the interference. In contrast, it is wise for the LS estimator to
only choose those observation samples that have highest SINR.

By extending channel estimation from a single OFDM symbol to multiple OFDM
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symbols, we are able to exploit the temporal correlation better, and hence the esti-
mation precision can be enhanced. This raised the question as how to distribute the
pilots along both the frequency axis and the time axis. Existing pilot schemes can be
categorized into the comb-type, the block-type and the mixed-type scheme. From
the point of view of channel identifiability, we posed constraints on the numbers,
positions and size of the pilot clusters for these pilot schemes. Further, we have
compared their channel estimation performance for different channel situations. It
turned out that the comb-type scheme produces the best channel estimates for a
fast fading channel while the block-type scheme produces the worst. If the channel
is overspread in both the Doppler and delay domain, then the mixed-type scheme
yields the most robust performance.

To equalize the TV channel for a single-carrier system in the frequency domain,
we came across the same problems as in OFDM. The FD channel matrix is not di-
agonal but approximately banded, which implies that the low-complexity equalizer
based on a banded channel matrix assumption can be similarly applied here. In ad-
dition, we have found in the single-carrier system that by introducing redundancy
at the receiver, we can exploit a better Doppler frequency resolution, which results
in a smaller band approximation error. This band approximation error is related to
the (O)CE-BEM modeling error in the time domain. Recall that in the case where no
receiver redundancy is introduced just like in OFDM, the band approximation error
corresponds to the (C)CE-BEM modeling error. It is well-known that the (O)CE-
BEM is much better than the (C)CE-BEM in terms of the modeling error. This is
why receiver redundancy yields a better performance in a single-carrier system.

To attain channel knowledge in a single-carrier system, we have proposed to use
pilots which are clustered and interleaved with data symbols in the time domain.
This means that channel estimation in a single-carrier system has been achieved in
the time domain, where we have again used a BEM to approximate the real TV
channel. Like in OFDM, the choice of observation samples plays a distinctive role
for different channel estimators. It is better for the LMMSE estimator and the BLUE
to employ as many observation samples as possible to improve the estimation preci-
sion. The opposite is true for the LS estimator in order to avoid unnecessary interfer-
ence. We also discussed channel identifiability in a single-carrier system, for which
the pilots are required to follow a certain structure if an arbitrary BEM is used.

An optimized pilot structure can improve the channel estimation performance
under the same power and bandwidth constraints. We discussed a simple case
where the channel is assumed to be only time-selective. A numerical method has
been proposed, which optimized the pilot powers and positions iteratively. It was
shown that the channel estimation performance is a convex function of the pilot
powers, and hence the existing convex optimization algorithms can be readily ap-
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plied. However, it is not convex with respect to the pilot positions. To solve this, we
proposed a combined GA. To make the GA converge faster, a symmetry constraint
was posed on the pilot structure, which was inspired by the structure of the BEM.

The contributions summarized above were all presented along with numerical
simulations, through which we have shown that the proposed methods outperform
other existing works, or for the same performance require a much smaller com-
plexity. The simulations were based on realistic TV channels and tested for diverse
normalized Doppler spreads up to νD = 0.008. For existing telecommunication stan-
dards such as IEEE 802.11a, this means that our algorithms can work for a maximal
vehicle velocity of 200 kilometers per hour. This can be even higher for those stan-
dards that are based on a lower carrier frequency and/or higher symbol rate.

9.2 Future Research

The window is indispensable in the low-complexity equalization for both the OFDM
and single-carrier systems. In the thesis, it was assumed that the window is aligned
with the received block of interest (thus the window size equals the block size), and
the window takes on a form of a one-tap filter. It would be interesting to study if
the window could be elongated to the neighboring received blocks like in [44], and
if the window could take on a more complex structure such as an FIR filter as was
proposed in [8].

The methods proposed in this thesis have been proven effective for estimating a
rapidly changing channel. Estimating a long TI channel has also been intensively
studied in the literature. However, when the channel is overspread in both the
Doppler and delay domain, we will need more pilots, which is not favorable for
bandwidth efficiency. Two solutions might be interesting to investigate. First, like
the BEM used in the Doppler domain, is it possible to introduce a parsimonious
model in the delay domain such that the number of channel taps can also be re-
duced? Second, data-aided channel estimation could be useful [123], where not only
the pilots but also the estimated data can be employed to assist channel estimation.

Another interesting topic is diversity techniques. Space-time coding has proven
useful to improve the robustness of the transmission link. It is not yet clear how
to extend this technique to the Doppler domain. At this moment, most results are
attained for a relatively slow channel where a CE-BEM assumption is valid [85, 60].
It will be of great significance if a diversity-enabled transmission strategy can be
found for a faster fading channel.

Recently, the popularity of OFDM has been extended to other areas such as un-
derwater acoustic communications (UAC) [93] or radar communications [28, 113]
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where usually other modulation techniques were employed. This brings about
many new challenges, especially in the context of the Doppler effects. For instance,
in UAC, acoustic waves are transmitted instead of electro-magnetic waves; the sym-
bol period is typically large, and the waves are constantly moving. All of these can
lead to an enormously high Doppler spread even if the mobile is moving at a low
velocity. Another complication is that this thesis considered only narrow-band sig-
nals, in which the Doppler effect manifests itself mainly as a frequency shift around
the carrier frequency of the transmitted signals. In contrast, UAC or radar com-
munications consider wide-band signals, where the bandwidth after modulation is
much higher than the bandwidth of the signal itself∗, e.g., the bandwidth in UAC
can be as high as 10 to 20kHz whereas the acoustic signals have a bandwidth of at
most 4kHz. In wide-band signals, the Doppler effect translates into a time scaling of
the signal waveform, i.e., the received symbol period can be either larger or smaller
than the transmitted symbol period. How to take these phenomena into account in
signal processing remains to be studied.

∗In telecommunications, “wide-band” has many meanings in different contexts. Here, we adopt the
definition that is often used in audio frequency modulation [16].
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Summary

This thesis is dedicated to efficiently estimate and equalize time-varying channels
in OFDM and single-carrier systems.

We first explore a low-complexity channel equalizer, which is constructed based
on a banded approximation of the full channel matrix in the frequency domain.
Thanks to the banded structure, existing low-complexity numeric algorithms can
be applied. To minimize the discrepancy between the banded approximation and
the original full channel matrix, a window is designed and deployed at the receiver.
Further, the strictly banded matrix is optimally sought such that its discrepancy
with respect to the original (windowed) channel matrix is minimized according to
the Frobenius norm.

To acquire the channel state information (CSI), which is indispensable for the
equalizer design, pilots are inserted in the OFDM symbol. The channel is estimated
in the time domain, where the time-variation of each channel tap is approximated
utilizing a basis expansion model (BEM), and thus the time-varying channel is cap-
tured by the corresponding BEM coefficients. For a certain pilot structure, we ex-
plore different channel estimation methods, and discover that for each channel esti-
mator, the window of observation samples must be optimized.

A question that arises when multiple pilot OFDM symbols are employed to en-
hance the estimation precision is, what is the strategy to distribute the pilots within
as well as along the OFDM symbols. This question is answered in terms of the chan-
nel identifiability conditions. Numerical results are also used to compare different
pilot distribution schemes.

By transforming the channel to the frequency domain, equalization of a single-
carrier system can be similarly realized as for OFDM, where windowing and band
approximation operations can be utilized. Moreover, it is possible in the single-
carrier system to expand the data model by appending extra samples to the received
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samples. These extra samples are free to design, which enable us to better exploit
the Doppler spectrum resolution. As a result, the band approximation error can be
further reduced, which eventually improves the equalization performance without
inflicting too much extra complexity.

Channel estimation for single-carrier systems is also discussed. Pilots are in-
serted in the time domain. Like in OFDM, we need to optimize the number of
observation samples for distinctive channel estimators. Channel identifiability is
also discussed for the single-carrier system, which leads to constraints on the pilot
structure.

As an effort to explore the optimal pilot structure, we examine the simple case of
time-varying frequency-flat channels. Numerical optimization methods are applied
to seek the best pilot power allocation and distribution strategy. We discover that
by imposing a symmetric constraint on the pilot structure, we can accelerate the
optimization speed without incurring a noticeable performance penalty.



Samenvatting

Dit proefschrift is toegewijd aan het egaliseren en schatten van tijdsvarirende kanalen
in OFDM en single-carrier systemen.

Om een eenvoudige egalisator te realiseren, benaderen we de kanaalmatrix in
het frequentiedomein door een bandmatrix. Zo een bandmatrix geeft aanleiding
tot eenvoudige numerieke algoritmes voor kanaalinversie. Om de benaderingsfout
tussen de bandmatrix en de originele volle kanaalmatrix te verkleinen, wordt een
speciaal venster ontworpen dat wordt aangewend aan de ontvanger. Verder wordt
de bandmatrix zo ontworpen dat het verschil ten aanzien van de originele kanaal-
matrix (inclusief venster) minimaal is volgens de Frobenius norm.

De kanaalkennis die nodig is voor het opbouwen van de egalisator wordt ver-
worven door middel van trainingsbits in het OFDM symbool. Het kanaal wordt
echter geschat in het tijdsdomein, waar de tijdsvariatie van elke kanaaltap wordt
benaderd door een basis expansion model (BEM). Het tijdsvarirend kanaal wordt
dan volledig vertegenwoordigd door de overeenkomstige BEM cofficinten. Voor
een bepaalde structuur van de trainingsbits worden verscheidene kanaalschatters
bestudeerd en we hebben aangetoond dat het optimaal aantal observatiemonsters
verschilt van kanaalschatter tot kanaalschatter.

Meerdere OFDM symbolen met trainingsbits kunnen samen worden gebruikt
om een betere kanaalschatting te verkrijgen. Een vraag die men dan kan stellen is
wat de beste strategie is om de trainingsbits zowel binnen als over de verschillende
OFDM symbolen te verspreiden. Deze vraag wordt beantwoord aan de hand van de
identificeerbaarheidscondities van het kanaal. Daarnaast worden ook verschillende
trainingsstructuren vergeleken door middel van numerieke simulaties.

Door het kanaal te transformeren naar het frequentiedomein, kan een single-
carrier systeem op een gelijkaardige manier ge-egaliseerd worden als een OFDM
systeem, waarbij we opnieuw kunnen gebruik maken van vensters en bandmatrix-
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benaderingen. Het is tevens mogelijk om het datamodel van een single-carrier sys-
teem te vergroten door extra monsters aan de reeds ontvangen monsters toe te voe-
gen. Deze extra monsters zijn vrij te kiezen wat ons impliciet een hogere resolu-
tie van het Doppler-spectrum oplevert. Ten gevolge daarvan, kan de bandmatrix-
benadering alsook de egalisatie worden verbeterd, zonder een al te hoge extra kost.

Kanaalschatting voor single-carrier systemen wordt ook besproken. Ditmaal
worden de trainingsbits geplaatst in het tijdsdomein. Zoals voor OFDM, is het
opnieuw noodzakelijk om voor de verschillende kanaalschatters het aantal obser-
vatiemonsters te optimaliseren. De identificeerbaarheid van het kanaal in een single-
carrier systeem wordt ook bestudeerd. Aan de hand daarvan worden een aantal
voorwaarden opgesteld waaraan de structuur van de trainingsbits moet voldoen.

In een poging om de optimale structuur voor de trainingsbits te vinden, on-
derzoeken we het eenvoudige geval van tijdsvarirende frequentievlakke kanalen.
Numerieke optimisatietechnieken worden aangewend om het optimale vermogen
en de optimale verdeling van de trainingsbits te achterhalen. Verder tonen we aan
dat als we symmetrie opleggen aan de trainingsstructuur, we de optimisatie kunnen
versnellen zonder een merkbaar performantieverlies.
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