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ABSTRACT

In this paper, we present a unified approach to the (related)
problems of recovering signal parameters from noisy obser-
vations and the identification of linear system model parame-
ters from observed input/output signals, both using singular
value decomposition (SVD) techniques. Both known and new
SVD-based identification methods are classified in a subspace-
oriented scheme. The singular value decomposition of a matrix
constructed from the observed signal data provides the key step
to a robust discrimination between desired signals and disturb-
ing signals in terms of signal and noise subspaces. The methods
that are presented are contrasted by the way in which the sub-
spaces are determined and how the signal or system model pa-
rameters are extracted from these subspaces. Typical examples
such as the direction-of-arrival problem and system identifica-
tion from input/output measurements are elaborated upon, and
some extensions to time-varying systems are given.

I. INTRODUCTION

The analysis of time series is a fundamental problem in almost
all scientific disciplines. In engineering parlance, time series are
called signals and their analysis generally serves at least one of
two possible purposes. First, the signals themselves are of prime
interest and are to be recognized or recovered by the analysis
procedure, as for example in communication applications. Sec-
ondly, the signals bear information pertinent to the physical dy-
namical systems that produced them, or to the hypothetical dy-
namical systems that could have produced them. In the latter
case, the analysis of the signal should provide the unknown sys-
tem parameters.

A typical example of the first class of problems is the follow-
ing. Consider a number of signals si

�
t � , modulated by a known

carrier frequency, and suppose that only a number of unknown
linear combinations xk

�
t � of these signals have been received at

sensors located at different points. We assume that each of the
coefficients of these linear combinations is a known function of
both the (known) sensor positions and some (unknown) parame-
ter φi of each signal. The objective is to reconstruct the original
signals from the received signals, which will be possible if we
first determine the actual values of the parameters φi, and sub-
sequently identify the pairs (φi � si

�
t � ) for each of the signals. We
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can think of the φi as being spatial directions from which the sig-
nals of interest, si

�
t � , are received.

As an example of the second class of problems, suppose we
have recorded two signals, u

�
t � and y

�
t � , where u

�
t � is a test sig-

nal that is applied at some point in a system, and y
�
t � is a re-

sponse signal measured at some other point in the system. If
we represent the system mathematically as the mapping u

�
t � →

y
�
t ��� T

�
u
�
t ��� , where T satisfies certain causality and linearity

constraints, then the problem may be stated as one of using u
�
t �

and y
�
t � to either identify the map T , or to find a map T̂ of low

complexity that is close, in some sense, to T .

It is instructive and useful to notice that the two problems al-
luded to above are sometimes quite similar. For example, if the
mapping T of our second example is a causal, linear and time-
invariant operator, then it is in fact a matrix multiplicative oper-
ator that is completely determined by the response h

�
t � due to a

unit impulse excitation u
�
t ��� δ

�
t � . This impulse response and

all of its time-shifted versions constitute the rows of the matrix
map. Moreover, if the system is finite, meaning that it can be
described by a difference equation of finite order, then this im-
pulse response must be a linear combination of a number of ex-
ponentially decaying functions of time, where the exponential
factors are the unknown parameters to be determined first. The
description of this signal (a weighted sum of elementary signals
described by a single parameter) is very similar to the descrip-
tion of each of the received signals in the first example, and the
two problems may even become identical in certain specific ap-
plication scenarios. What we observe here is that the impulse
response h

�
t � , much as was the case with the recorded signals

xk
�
t � , explicitly reveals parameters, in particular the poles of the

presumed system model that directly or indirectly define a real-
ization for the model. The determination of the realization para-
meters of a predefined model is called system identification. Sys-
tem identification techniques can also be used to determine sig-
nal models as well. For example, a signal composed of a sum of
damped complex exponentials may be thought of as the output
of a certain linear system in response to a known or presumed
excitation. Identifying this ‘system’ will then provide a model
for the signal.

Whether the objective is to recover a signal, to model a signal,
or to identify a linear system, the choice of the structure of the
signal (or the model of the system) plays a crucial role. Surely, a
priori knowledge of the signal properties must be incorporated
into the model, but we must also account for uncertainties in a
proper way, that is to say, in such a way that they do not intro-
duce modeling artifacts. But even when these choices have been
made successfully, the subsequent signal analysis can be carried
out along many different routes, and its success will depend on



2 PROCEEDINGS IEEE, VOL. 81, PP. 1277-1308, SEPT. 1993

three important additional choices:
�
i � the kind of realization that

we have in mind,
�
ii � the analysis strategy, and

�
iii � the tightness

of the coupling between the analysis procedure and the system
realization. What comes into play here are aspects of numerical
stability, minimality, and tightness of approximation. Numerical
stability guarantees robustness of the analysis procedure, mini-
mality avoids artifacts due to opaque dependencies between ex-
cess parameters, and tightness of approximation has to do with
convergence of the analysis procedure. The ideal situation oc-
curs when the analysis procedure directly constructs a realiza-
tion of the model that has been chosen to have a necessary and
sufficient number of parameters, and to have low sensitivity with
respect to perturbations of its parameters.

In all practical applications, the observed signals are corrupted
versions of the observations that we would expect under ideal
circumstances. The unavoidable contaminations are commonly
called noise, and they obstruct the extraction of the true or de-
sired parameters from the analysis of the observed signals. Con-
sequently, the goal of any given identification method is to find
the signal model parameters that best match the noise-corrupted
observations. Commonly used approaches include maximum
likelihood estimation (estimation of the parameters of the model
that, in a probabilistic sense, most likely produced the observed
signal) and least-squares error minimization (yielding the para-
meters of the model that optimally approximates the observed
signal in terms of minimal energy of the difference signal). For
an overview of many such identification methods, see [1–3].

In practice, therefore, the choice of the signal or system model
has to be complemented by the choice of a noise model and an
optimization criterion. For example, in terms of the two classes
of applications mentioned above, and with the assumption that
the noise is additive, the noise could be due to interfering sig-
nals that are received from directions outside the focus area, or it
could be due to receiver equipment noise (class 1). On the other
hand, it could be part of the impulse response corresponding to
higher order modes that are not of interest (class 2). The selec-
tion of the signal or system model, the noise model, and the opti-
mization criterion will in general depend on any available a pri-
ori knowledge, desired accuracy, etc., or in short on a number
of design variables. Choosing values for these variables may be
quite difficult, and an optimal choice may only be possible by
trial and error. This makes identification as much an art as it is a
science.

In this paper, we will focus on signals and systems that fit de-
terministic state space models. State space models cover causal
and finite systems that may be neither linear nor time-invariant.
If they are linear and time-invariant, then they are closely related
to constant coefficient difference equations relating input and
output signals. In a function theoretic framework, these models
in turn become rational (expressed by a ratio of two polynomi-
als), are thus also called pole-zero models. However, while such
models are global input/output characterizations of the system,
state space models also take the internal system behavior into ac-
count by describing the current output as a function of a current
internal state and the current input, and by describing the next
state as a function of the current state and the current input. A
linear, time-invariant system is simply one for which these func-
tions are themselves linear and time-invariant. The order of the

state space model is the dimension of the state vector, or more
precisely, that of the state space, and is a measure of the system’s
memory capacity.

In this paper, we will only be concerned with linear state space
models, and we will require that all signals (input, output, and
state signals) belong to certain normed spaces. The analysis
of these signals and their models is done through extensive use
of linear algebra. Signals are represented as (possibly infinite-
length) vectors, and the state space model is taken to be a ma-
trix map from the input space and state space to the output and
state spaces. The observations from which such a map is to be
identified do not in general include the (internal) state signals, so
estimation of the model order becomes an essential part of the
identification problem. The presence of noise turns this prob-
lem into a difficult one, since noise tends to reveal itself as an
increased state space dimension. In order to discriminate against
noise, our approach will essentially be the following. We collect
the observed signal or signals in a so-called observation matrix,
which will often inherit a certain (Hankel) structure from the nat-
ural ordering imposed by the state space model. Decomposing
the column (range) space of this matrix into a dominant and a
subordinate part reveals which of its subspaces can be attributed
to the noise-free signal or signals and which can be attributed to
the noise. We will assume that these two subspaces are orthogo-
nal to each other, which implies that in terms of inner products,
the noise-free signals and disturbances are independent of one
another. The dominant subspace is due to the signals and is re-
ferred to as the signal subspace, while the other is referred to as
the noise subspace.

The designated tool used to decompose the range space of the
observation matrix into these two complementary subspaces is
the singular value decomposition (SVD). The SVD is compu-
tationally very robust and allows for high resolution discrimi-
nation against noise contamination. Once the signal subspace
has been determined, the model parameters are extracted from
it. This approach gives rise to a number of subspace based ap-
proaches, and we will be interested in understanding the ba-
sic differences between them. Again, these approaches corre-
spond to different model assumptions, specific design parame-
ters, or alternative ways of computing what are essentially the
same quantities. Associated with each of these approaches is a
certain algorithm: a computational scheme. However, we will
focus on the basic principles of subspace modeling — also called
low rank approximation — rather than dwelling on the algorith-
mic details. We will strive to provide a unified description of
low-rank approximation methods, while at the same time point-
ing out the particularities of each of the approaches with respect
to the generic solution.

The paper can be divided into two main parts. In the first, the
generic problem we are considering is described, and several rel-
evant applications are presented. The second part of the paper
is concerned with various classes of algorithms that have been
developed over the years for these applications. Linking the two
parts of the paper is a discussion of the SVD, which is both a the-
oretical and computational tool used in the analysis of the data
models and the development of appropriate algorithms.

In the first part of the paper, Section II presents an introduc-
tion to linear system realization theory, which can be viewed as
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identification in the absence of noise. The shift-invariance struc-
ture present in the data matrices is shown to be a crucial prop-
erty. Section III illustrates the presence of such shift-invariant
data structures in four identification scenarios: realization the-
ory for time-varying systems, pole estimation from input-output
measurements, direction-of-arrival estimation in antenna array
applications, and harmonic retrieval of sinusoidal signals. Sec-
tion IV then contains the intermediate discussion of the proper-
ties of the SVD that we will use in this paper.

The second part of the paper consists of Sections V–IX, and
contains details concerning the actual identification algorithms
under consideration. An overview of these algorithms is given in
Section V, which leads to a classification of the available meth-
ods into three classes, which are subsequently treated in Sections
VI, VII, and VIII. The methods in Section VI (a.o. TAM, ES-
PRIT) are algebraic and are based on the single shift-structure
observed between two submatrices of the data matrix. The meth-
ods in Section VII (Min-Norm, AAK) are in a sense intermedi-
ate; while they can be described using submatrices as in Section
VI, they are based on the analytic (i.e., polynomial) properties
of one vector selected from the noise subspace orthogonal to the
signal subspace. This is elaborated upon in Section VIII where
the analytic properties of the full noise subspace (or equivalently
the full signal subspace) are taken into account (Max Likelihood,
MUSIC, Weighted Subspace Fitting, MODE). The general ob-
jective in these approaches is to find a low-rank subspace with
shift-structure that has minimal distance to the true signal space,
or equivalently, that is as orthogonal to the noise subspace as pos-
sible. To conclude the paper, Section IX gives a review of recent
work on the statistical accuracy and computational load of the
above algorithms.

Several parts of the contents of this paper have appeared in
separate tutorials and books, in particular the material on the
SVD and elementary system theory. In the context of sig-
nal processing, introductory texts on SVD and linear prediction
methods can be found in [4,5]. During the review of this paper, a
related tutorial by Rao and Arun on subspace-based model iden-
tification was published [6]. Obviously, there is some overlap
between this paper and ours. The present paper gives more de-
tails concerning the classification of single shift-invariant meth-
ods, and also features some maximum likelihood and Hankel-
norm approximation methods. In addition, we consider an ap-
plication to time-varying systems, and model identification from
input/output data.

Notation

Throughout this paper, the superscript ∗ denotes complex con-
jugate transpose and the superscript T denotes the ordinary ma-
trix transpose. The superscript ˆ is used either to denote a low-
rank approximant of a matrix, or the reduction of a matrix to a
smaller size by omitting some rows or columns. The i-th column
(or sometimes row) of a matrix X is denoted by xi. In addition,
for the polynomial constructed from a vector u ��� u1 u2 · · · � T,
we will use the notation u

�
z �	� u∗a

�
z �
� ū1 � ū2z � · · ·, with

a
�
z ���� 1 z z2 · · · � T, for z ∈ |C .

For a one-sided infinite matrix (operator) H, we denote by H↑

the operator H with its top row removed. Likewise, H← is the

operator H minus its first column. For a finite matrix H of size�
L � 1 � × N, H � 1 � is the L × N matrix containing the first L rows

of H, and H � 2 � is the matrix containing the last L rows of H.
The matrix Id is the identity matrix of size d × d. The range

of a matrix H of size L × N is the space {Hx : x ∈ |C N}, which
is a subspace in the Euclidean space |C L. The kernel of H is the
subspace {x ∈ |C N : Hx � 0}. Projectors onto subspaces are de-
noted by Π. Tr

�
F � denotes the trace of a matrix F, i.e., the sum

of the diagonal entries of F. Eig
�
F � denotes the diagonal matrix

containing the eigenvalues λi of F.

II. INTRODUCTION TO LINEAR SYSTEM REALIZATION

THEORY

The realization problem for linear systems is already a fairly
old subject. A state space approach to this problem was intro-
duced by Nerode [7], and was subsequently formalized by Ho-
Kalman [8]. The realization scheme is based on the analysis of
certain subspaces spanned by ‘inputs in the past’ in combination
with ‘outputs in the future’. In the mid-70’s, the SVD was intro-
duced as a tool to identify these subspaces in a numerically sta-
ble way, and for obtaining an approximate realization of lower
order than the true system order [9–11]. This section will intro-
duce some system theoretic notions with relevance to subspace
based system realization theory. Section III will apply this the-
ory to a few standard identification scenarios that will be used
throughout this paper. More background material on linear sys-
tems theory can be found in the books by Kailath [12] and Rugh
[13].

A. System operator

Consider a causal linear time-invariant (LTI) system with sys-
tem transfer operator T , mapping an input vector (sequence) that
represents an input signal

u ��� · · · u−1 u0 u1 · · · � T
to a corresponding output sequence

y �� · · · y−1 y0 y1 · · · � T �
such that y � Tu (the box in the above equations denotes the 0-th
entry). For simplicity of notation, we consider systems with only
one input and one output, although the general case follows eas-
ily along the same lines. We take the input and output sequences
to be of finite energy, � u � 22 � u∗u ≤ M � ∞, so that they are el-
ements of the Hilbert space � 2 (see e.g., [14]), and we take T to
be a bounded (stable) operator acting from � 2 to � 2. Associated
with T is its impulse response

h �� · · ·0 0 h0 h1 h2 · · · � T � T � · · · 0 0 1 0 0 · · · � T
which is the response of the system to a unit impulse applied at
time 0. The operator T has a matrix representation such that y �
Tu fits the usual rules for matrix-vector multiplications:

T �
��������

. . .
· · · h0 0

h1 h0
· · · h2 h1 h0

...
...

. . .

�����������
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Fig. 1. LTI state space model. � a � Mapping of an input sequence {ui} to an
output sequence {yi} using an intermediate state sequence {xi}. The state
dimension is d � 2. Due to causality, the signal flow is from top to bottom.
The delay operator z denotes a time shift here. � b � The operation at a partic-
ular time instant k is a linear map from input uk and current state xk to output
yk and next state xk  1.

The i-th column contains the impulse response due to an im-
pulse at time i. Note that the above relationship relies on the lin-
earity of the system. The input u can be thought of as consist-
ing of a sum of impulses, one for each time instant i, weighted
by ui. The output of the system is then the weighted sum of
the responses to these impulses. This description is equiva-
lent to the familiar convolution sum y � h ∗ u, defined by yi �
∑∞

k ! 0 hkui−k. Because of time-invariance, the matrix representa-
tion has a Toeplitz structure: it is constant along diagonals. It is
lower triangular due to causality.

B. State space representation

The familiar state space model used to describe causal LTI
systems is

xk " 1 � Axk � Buk
yk � Cxk � Duk

in which xk is the state vector (assumed to have d entries), A is
a d × d matrix, B and CT are d × 1 vectors, and D is a scalar (see
Fig. 1). The integer d is called the state dimension or system or-
der. All finite dimensional linear systems can be described in this
way. The realization problem is to find a state space representa-
tion that matches a given system operator T , i.e.,

y � Tu ⇔ # xk " 1
yk $ �%# A B

C D $ # xk

uk $ (1)

such that the impulse response of the state space system

h ��� · · · 0 D CB CAB CA2B · · · � ∗ (2)

matches the impulse response of T . In principle, there exist an
infinite number of state space realizations for a given system. For
example, the state vector xk might contain some states that are
not observed in the output or that are never excited by the input.
Hence, we will limit our attention to minimal state space mod-
els, that is, models for which the state dimension d is minimal. It
is well known that for minimal systems, in order to have h ∈ � 2,
the eigenvalues of A must be smaller than 1 in absolute value,
although eigenvalues on the unit circle are allowed in some ap-
plications.

Even for minimal systems, the representation (1) is not at all
unique. An equivalent system representation (yielding the same
input-output relationship) is obtained by applying a state trans-
formation R (an invertible d ×d matrix) to define a new state vec-
tor x &k � Rxk. The equivalent system is

x &k " 1 � A & x &k � B & uk

yk � C & x &k � Duk

where the new state space quantities are given by# A & B &
C & D $ � # R−1

1 $ # A B
C D $ # R

1 $ �
The eigenvalues of A remain invariant under this transformation
since R−1AR is a similarity transformation [15]. The eigenval-
ues of A are directly related to the poles of the system, a fact that
is easily verified if these poles are distinct. Under the assump-
tion of distinct poles, another way to describe linear systems is
via a partial fraction expansion of the z-transform of the impulse
response h:

h
�
z ��� ∞

∑
0

hnzn � r0 � d

∑
i ! 1

riz
1 − φiz

(3)

where φ−1
i , i � 1 � · · · � d, are the d poles of the system, and ri, i �

1 � · · · � d � their respective residues. A corresponding state space
realization is

# A B
C D $ �

�������
φd rd

. . .
...

φ2 r2
φ1 r1

1 · · · 1 1 r0

�������� �
Another way to obtain this decomposition is to start from a given
realization {A � B � C � D} and apply an appropriate state similarity
transformation that will diagonalize the A-matrix: A � RΦR−1.
This is an eigenvalue decomposition of A, and the entries of Φ
are the eigenvalues of A. A sufficient condition for the existence
of this decomposition (i.e., an invertible R) is that the poles of
the system be distinct [12].

C. Hankel operator

We now turn to the realization problem: given a system trans-
fer operator T (or equivalently an impulse response h), how can
a state space model that realizes this transfer operator be deter-
mined? The solution to the realization problem in a subspace
context calls for the Hankel operator, which we define presently.
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Fig. 2. Applying inputs up to t � −1 and recording outputs from t � 0 on yields
information about the state at t � 0. From this, a state space realization can
be derived.

The idea is to apply inputs only up to time t � −1 (called ‘the
past’ with respect to the present time instant t � 0) and measure
the resulting outputs from t � 0 on (the future; see Fig. 2). Writ-
ing y � Tu, we have������������

...
×
×
y0
y1
y2
...

������������� �
�������������

. . .
· · · × × 0

× × ×
· · · h3 h2 h1 ×

h3 h2 × ×

. .
.

h3 × ×
. . .

...
...

��������������

������������
...

u−3
u−2
u−1

0
0
...

������������� �
(4)

From this equation it is seen that only the lower-left corner of T
is actually used. Since this part operates on a one-sided infinite
sequence, we can bring it into a more familiar form by defining
a past input sequence and a future output sequence as the one-
sided sequences

u− �� u−1 u−2 · · · � � y " �� y0 y1 · · · � �
from which we can write equation (4) as y " � Hu− with H de-
fined by

H �
������

h1 h2 h3 · · ·
h2 h3

h3
. . .

...

������� � (5)

The matrix H has what is called Hankel structure: it is constant
along the anti-diagonals. As outlined below, it has a number
of important properties that will enable us to derive state space
models from it.

1. H has rank d, equal to the minimal system order. This fol-
lows from inserting equation (2) into (5), or alternatively,

by inspection of Fig. 2 directly: y " � Hu− is computed in
two stages, '

x0 � ( u−
y " � ) x0

where

)�� ����� C
CA
CA2

...

������ ; (*�,+ B AB A2B · · · - � (6)

Clearly, H has a factorization H �.)/( . ( is called the con-
trollability operator and ) is called the observability op-
erator, and for a minimal realization they have by defini-
tion full rank d. Since H is an outer product of rank d ma-
trices, it must be of rank d itself. Even for minimal real-
izations, there is of course an ambiguity in this factoriza-
tion. With R an invertible d × d matrix, we can also factor
H as H �0)1&2(3&4�5) R ·R−1 ( , corresponding to a state space
model that has undergone a state transformation by R as de-
scribed above. Factorizations modulo R lead to equivalent
systems.

2. H has a shift-invariance structure. Denote by H↑ the oper-
ator H with its top row deleted. Likewise, denote by H← the
operator H with its first column deleted. Shift-invariance
means that the range (column space) of the shifted opera-
tor is contained in the range of the original operator. This
property can be deduced directly from the Hankel structure
in (5):

H↑ � ) ↑ ( � ) A · (
H← � )1( ← � ) · A ( �Thus it is seen that shifting H upwards or to the left is equiv-

alent to a multiplication by A in the center of the factoriza-
tion.

There is a physical interpretation of this shift-invariance. Just as
the range of H contains all possible outputs of the system from
t � 0 on, due to inputs that last until t � −1, the range of H↑ con-
tains all possible outputs of the system from t � 1 on, due to in-
puts that stop at t � −1. Because of the time-invariance of the
system, this is the same as stating that H↑ contains the outputs
of the system from t � 0 on, due to all inputs that stop at t � −2.
This set of inputs is a subspace in the set of all inputs in the past,
and hence the resulting set of future outputs (the range of H↑)
must be a subspace contained in the original set of future outputs
(the range of H).

D. Realization scheme

Using the above two properties of the Hankel operator H —
i.e., that it is of finite rank with some minimal factorization H �)1( , and that it is shift-invariant — we will show how to obtain
a state space realization as in equation (1) from a given transfer
operator T .

1. Given T , construct the Hankel operator H as in (5). Deter-
mine the rank d of the operator, and a factorization H �6)1( ,
where ) and ( are of full rank d. The SVD is a robust tool
for doing this, as will be discussed later.
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2. At this point, we know that ( and ) have the shift-invariant
structure of equation (6). Use this property to derive) A �.) ↑ ⇒ A �0) " ) ↑

where ) " is the pseudo-inverse of ) such that ) " )7�
Id. Because ) is of full row rank d, we have ) " �� ) ∗ )8� −1 ) ∗. This determines A. The matrices B, C and D
follow simply as

B � ( � : 9 1 �
C � ) � 1 9 : �
D � h0

where the subscript
�
: � 1 � denotes the first column of the as-

sociated operator, and
�
1 � : � the first row.

Various issues emerge here to make this realization scheme
feasible in practice. First, we are only willing to do computa-
tions on matrices of finite size. In particular, H should have fi-
nite size. This issue can be dealt with relatively easily. Suppose
we have available a top-left

�
L � 1 � × N window of the infinitely

dimensioned H:

HL " 1 9 N � ����� h1 h2 · · · hN

h2 h3 hN " 1
...

. . .
...

hL " 1 hL " 2 · · · hN " L

������
� ����� C

CA
...

CAL

������ · + B AB A2B · · · AN−1B -
� ) L " 1 · ( N �

(7)

Define ):� 1 � and ):� 2 � by) L " 1 �;# ):� 1 �
CAL $ �%# C)<� 2 � $ �

and as before, let d be the rank of H. If L and N are equal to or
larger than d, then the rank of HL " 1 9 N is also equal to d, and in
particular ):� 1 � and )<� 2 � are of full rank d. The shift-invariance
property in this finite-size case is now) � 2 � �0) � 1 � A ⇒ A �.) � 1 �=" ) � 2 � (8)

and A �>) � 1 �?" ) � 2 � is the same matrix as obtained in the infinite
case.

A second issue is how to handle an inaccurate T . This is more
difficult to treat, and in fact is the subject of most of the remain-
ing part of the paper. Suppose that T is corrupted by additive
noise, or alternatively, that we have measured an impulse re-
sponse sequence h which contains additive noise. The matrix
H will thus be constructed from noisy measurements, and will
therefore have full rank in general. H will also have high rank if
T represents a system of high order for which a ‘reduced order’
model is desired. In both cases (system identification and model
reduction) the objective is to find an approximate system with
Hankel matrix Ĥ of low rank d that, in some suitable norm, is as

close to the original noisy H as possible. In essence, the prob-
lem is to determine the optimal (or close-to-optimal) positions
of the poles of the approximating system, or in other words to
estimate the d × d diagonal matrix Φ � eig

�
A � given a finite ex-

tent of the impulse response. At first, we will consider only the
shift-invariant structure in the observability matrix ) . The key
problem (and also the major distinction between the various al-
gorithms) is how to enforce the shift-invariant structure present
in the original or noisy ) to be present in the approximation too.

E. Discussion

There is a subspace theory underlying the low-rank and shift-
invariance properties that we have used implicitly. We assumed
the existence of a model as in equation (1), and used the resulting
properties to derive the structure of ( and ) as in equation (6).
A proof of the existence of this model starts from some system
transfer operator T and its Hankel operator H. We briefly touch
upon this subject. Let the minimal system order be d, and let H �)1( with ) and ( of full rank d. The output state space @ 0 is the
subspace defined by@ 0 � {y " : y " � Hu− � all u− ∈ � 2} �@ 0 is the subspace of all possible outputs in ‘the future’ that can
be reached by inputs in the past. Mathematically, @ 0 is the range
(‘column space’) of H, and the d columns of ) constitute a min-
imal basis for it. Likewise, define the input null space A and
input state space @ asA � {u− : y " � Hu− � 0}@ � A ⊥ �A is the kernel of H and consists of all inputs in the past that
yield zero output in the future. @ is the orthogonal complement
of A and is equal to the column space of H∗, or the conjugate
transpose of the row range space of H. The d columns of ( ∗ con-
stitute a minimal basis for @ .

Using the above spaces @ and @ 0 and making use of the as-
sumption that they are of finite dimension d, it is possible to for-
mally derive that there must exist a state space model in the form
of equation (1). We omit this derivation, but remark that crucial
in the derivation is the fact that @ and @ 0 are shift-invariant; e.g.,
the space @ ↑

0 is contained in @ 0. It follows that their bases must
also be shift-invariant, and hence that there must be some matrix
A to express the shifted basis in terms of the original: ) ↑ �5) A.
This gives rise to the now familiar structures of ( and ) , and is
the content of the abstract realization theory in [16, 17].

III. APPLICATIONS OF SUBSPACE BASED REALIZATION

THEORY

In this section, we discuss a number of related identifica-
tion problems that rely on the same type of low-rank and shift-
invariance properties described in the previous section. We first
discuss the realization problem for time-varying systems, and
show that the resulting time-varying Hankel operator is of low
rank and has a shift-invariance property which can be used to de-
termine a time-varying state space realization. A second applica-
tion is system identification using input-output data. In this prob-
lem the impulse response is not specified, but instead a measured



VAN DER VEEN ET AL.: SUBSPACE BASED SIGNAL ANALYSIS 7

collection of inputs and their corresponding outputs is given.
The third application is the direction-of-arrival estimation prob-
lem, in which one attempts to determine the incidental directions
of a number of narrowband plane wave signals impinging on an
antenna array. Finally, in the fourth application we discuss the
classical harmonic retrieval problem, where one attempts to de-
termine the frequencies and decay factors of multiple cisoids.

A. Realization of a time-varying system

The purpose of this section is to give a brief introduction to
realization theory for time-varying systems, primarily to demon-
strate the generality of the subspace concept. The derivation is
very similar to the time-invariant case, and a more detailed dis-
cussion along these lines can be found in [18,19]. Consider again
an input sequence u ∈ � 2, which is mapped by an operator T to
a corresponding output sequence y � Tu, where

u � � · · · u−1 u0 u1 · · · � T
y � � · · · y−1 y0 y1 · · · � T �

T is assumed to be bounded and causal, and hence has a matrix
representation

T �
��������

. . .

· · · h00 0
h10 h11

· · · h20 h21 h22
...

...
. . .

��������� �
As before, the i-th column of T is the response of the system to
an impulse applied at time t � i, but because the system is time-
varying, these impulse responses can change with time. We have
thus lost the Toeplitz structure of T .

A time-varying state space realization has the form

xk " 1 � Akxk � Bkuk

yk � Ckxk � Dkuk

in which xk is the state vector at time k (taken to have dk en-
tries; the state dimensions need not be constant now), Ak is a
dk " 1 ×dk (possibly non-square) matrix, Bk is a dk " 1 ×1 vector, C
is a 1 × dk vector, and D is a scalar. Note that, with time-varying
state dimensions, the Ak-matrices are no longer square matrices,
and hence they do not have the eigenvalue decompositions which
were used in the time-invariant case to compute the poles of the
system. Nonetheless, it is possible to compute time-varying state
realizations for a given time-varying system transfer operator T ,
as the next paragraph will show.

Suppose a time-varying system transfer operator T is given,
for which we want to determine a time-varying state space real-
ization. The approach is as in the time-invariant case. Denote
a certain time instant as ‘current time’, apply all possible inputs
in the ‘past’ with respect to this instant, and measure the corre-
sponding outputs in ‘the future’, from the current time instant on
(see Fig. 3). As in the time-invariant case, we select in this way
a lower-left submatrix of T . For example, for the current time

0

3

2

3

2

0

1

0

1

2

33

2

0

1

B

A

A

x

x

x

0

0

y

y

u

u

z z

z z

zz

A

A

C

C

z

x

z

B1

Fig. 3. Principle of the identification of a time-varying state space model. In this
picture, the ‘current time’ is t � 2, and all possible inputs up till time t � 1
(‘the past’) are applied, and the corresponding output sequences are recorded
from time t � 2 on (‘the future’). This yields H2, a Hankel operator at instant
t � 2. This should be done in turn for all t.

t � 2,������������
...
×
×
y2
y3
y4
...

������������� �
�������������

. . .
· · · × × 0

× × ×
· · · h2 9 −1 h20 h21 ×

h30 h31 × ×

. .
.

h41 × ×
. . .

...
...

��������������

������������
...

u−1
u0
u1

0
0
...

������������� �
Denote by H2 the one-sided infinite equivalent of this submatrix:

H2 �
������

h21 h20 h2 9 −1 · · ·
h31 h30

h41
. . .

...

������� �
In analogy with the time-invariant case, we call H2 the Hankel
operator at time 2, although in reality it doesn’t possess an anti-
diagonal Hankel structure. By doing this in turn for all time, we
obtain from T a sequence of Hankel operators Hk, viz.,

T �
���������������

. . .

· · · h0 9 −1 h00 0
· · · h1 9 −1 h10 h11
· · · h2 9 −1 h20 h21 h22

h30 h31 h32 h33

. .
.

h41 h42 h43
. . .

...
...

...
H1 H2 H3

���������������� �
(9)
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Although we have lost the Hankel structure, we retain the fol-
lowing two important properties:

1. Hk has rank dk equal to the minimal system order at time
instant k. While this can be derived formally, it also follows
from inspection of Fig. 3. For example, at time 2 we have
that the realization satisfies

H2 � ����� C2
C3A2
C4A3A2
...

� ���� � B1 A1B0 A1A0B−1 · · · �B�0) 2 ( 2

where for a minimal system both ) 2 and ( 2 are of full rank
d2. ( k and ) k can be regarded as time-varying controllabil-
ity and observability matrices.

2. Hk has shift-invariant properties. For example,

H↑
2 � ����� C3

C4A3
C5A4A3
...

������ A2 � B1 A1B0 A1A0B−1 · · · �
� ) 3A2 ( 2

H3 � ����� C3
C4A3
C5A4A3
...

������ � B2 A2B1 A2A1B0 · · · �
� ) 3 ( 3

The shift-invariance property is now reflected by the fact
that the range of H↑

k is contained in the column space of
Hk " 1. This can also be seen from equation (9). The physical
interpretation is the same as in the time-invariant case; i.e.,
the range of H↑

2 contains the output sequences from t � 3
on, due to inputs in the past up to t � 1, whereas the range
of H3 contains the output sequences from t � 3 on, due to
inputs that run up to t � 2. The latter set of inputs prop-
erly contains the former, hence the range of H3 contains the
range of H↑

2 .
The above properties form the ingredients for obtaining a re-

alization of a given time-varying transfer operator T :
1. First construct Hankel operators Hk from T . Compute the

rank dk of each Hankel operator; this is the system order at
time instant k. Compute a decomposition Hk �) k ( k into
full rank dk factors ) k and ( k. The columns of ) k form
a basis for the output state space at time k, and likewise
the columns of ( ∗

k form a basis for the input state space at
time k.

2. Having obtained ( k and ) k for all time instants k, apply the
shift-invariance property:) k " 1Ak �.) ↑

k ⇒ Ak �.) "k " 1 ) ↑
k �

Thus Ak is of size dk " 1 × dk. The matrices Bk, Ck and Dk

follow much as before:

Bk � ( k " 1 � : 9 1 �
Ck � ) k � 1 9 : �
Dk � hkk

1/4

1/4

4321

1

1
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Fig. 4. Time-varying state realization of a finite matrix.

It is instructive to perform the above recipe on a numerical ex-
ample. Consider the finite lower triangular matrix

T � ���� 1
1 C 2 1
1 C 6 1 C 3 1
1 C 24 1 C 12 1 C 4 1

� ���
Finite matrices form a special class of time-varying systems. The
Hankel matrices with non-vanishing dimensions are

H2 � �� 1 C 2
1 C 6

1 C 24

�� � �� 1
1 C 3

1 C 12

�� 1 C 2 �
H3 � # 1 C 3 1 C 6

1 C 12 1 C 24 $ �;# 1
1 C 4 $ � 1 C 3 1 C 6 � �

H4 � � 1 C 4 1 C 12 1 C 24 � �Since rank
�
Hk ��� 0 for k � 2 and k D 4, no states are needed at

these points in time. One state is needed for x2 and one for x4,
because rank

�
H2 �3� rank

�
H4 �E� 1. Finally, also only one state is

needed for x3, because rank
�
H3 �F� 1. In fact, this is (for this ex-

ample) the only non-trivial rank condition: if one of the entries in
H3 would have been different, then two states would have been
needed. The realization algorithm leads to the sequence of real-
ization matrices# A1 B1

C1 D1 $ � # · 1 C 2
· 1 $ � # A2 B2

C2 D2 $ � # 1 C 3 1 C 3
1 1 $ �# A3 B3

C3 D3 $ � # 1 C 4 1 C 4
1 1 $ � # A4 B4

C4 D4 $ � # · ·
1 1 $ �

where the ‘·’ indicates entries that actually have dimension 0 be-
cause the corresponding states do not exist. The corresponding
realization is depicted in Fig. 4, and it is not difficult to see that
it indeed computes the matrix-vector multiplication y � Tu. The
above example of the derivation of a ‘computational network’
shows how system theory can be used to obtain efficient algo-
rithms for linear algebra problems (in this case matrix-vector
multiplications of lower triangular matrices, but also inversion,
Cholesky factorization, etc. is possible) [19].

Although the development of a time-varying state space the-
ory started in the 1950’s (or even earlier), the realization ap-
proach presented here is fairly recent, and based on [18]. Some
other important approaches that parallel the given presentation
can be found in the monograph by Feintuch/Saeks [20], in which
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a Hilbert resolution space approach is taken, and in recent work
by Kamen et al. [21,22], where time varying systems are put into
an algebraic framework of polynomial rings. However, many re-
sults, in particular on controllability, detectability, stabilizabil-
ity, etc., have been discussed by a number of authors without
using these specialized mathematical means (see e.g., Ander-
son/Moore [23] and references therein, and Gohberg et al. [24])
by time-indexing the state space matrices {A � B � C � D} as above.

B. Realization from input/output measurements

In Section II, we assumed that impulse response measure-
ments hi of the system to be identified were somehow available.
In many practical situations, however, instead of the impulse re-
sponse one is given only a segment of the response of the system
to some known non-impulsive input sequence. A deconvolution
operation could be used to determine the impulse response, from
which the system can subsequently be identified, but this does
not yield a very convincing algorithm because the deconvolu-
tion operation itself needs some estimate of the system parame-
ters. We would like to use the Hankel approach of the previous
section, where we obtained a realization by applying all possible
inputs in the past (inputs that are zero from t � 0 on), and de-
termined the range of the corresponding output sequences from
t � 0 on.

We first look at a slightly different scenario. Suppose we have
applied a collection of N independent input sequences {ui} � i �
0 � �G��� � N − 1, but have measured only a finite segment of the cor-
responding output sequences y

i
, say from time t � 0 to t � L,

with d ≤ L H N. We denote the known part of each y
i

by yi,
which thus is an

�
L � 1 � -dimensional vector. Likewise, ui is de-

fined to be the segment of ui from time t � 0 to t � L, which will
be the only part of each input sequence that will be used in the
algorithm. Because the input sequences are not zero from t � 0
on, we cannot apply the Hankel approach directly. However, the
system is linear, and hence we can construct new input sequences
by taking linear combinations of the given sequences, and com-
pute the corresponding output sequences by applying the same
linear combinations to the original output sequences. In particu-
lar, if we choose the linear combinations such that all known fu-
ture segments of the input sequence ui become zero vectors, then
we have in fact constructed an input that lives entirely in the past
(is zero from t � 0), with corresponding output sequences known
only from t � 0 up to t � L. This leads to a transformation# u0 u1· · · uN−1

y0 y1· · · yN−1 $ Q � # u &0· · ·u &L 0 · · · 0
y &0· · ·y &L y &L " 1· · ·y &N−1 $ � (10)

in which Q is an N ×N matrix representing the appropriate linear
combinations. Note that for independent {ui}, we cannot expect
to make all u &i zero; L � 1 independent non-zero u &i will remain.
From the analysis in Section II, it is clear that the output vectors
y &L " 1 · · ·y &N−1 are contained in the output state space restricted to
t ∈ � 0 � L � ; i.e.,

� y &L " 1 · · · y &N−1 �I� ����� C
CA

...
CAL

������ · X0 �J) L " 1X0 � (11)

where X0 is an unknown d ×
�
N − L − 1 � matrix that can be re-

garded as containing the initial states (at time t � 0) due to the
portion of each of the new set of inputs in the (unknown) past.
Only if X0 is of full rank d will the above decomposition deter-
mine ) L " 1 up to a state transformation, and in this case we arrive
at a model identification problem that is slightly less restricted
than that associated with equation (7), since in (11) only ) L " 1
has a shift-invariance property. From this shift-invariance, we
can obtain A and C as before. The determination of B and D is
more involved now, and requires a least-squares fit of the given
input/output relations (we omit the details) [25].

A few remarks are in place. First, the appropriate transforma-
tion Q in equation (10) can be conveniently computed via a QR
(or rather LQ) factorization:# u0 u1 · · · uN−1

y0 y1 · · · yN−1 $ �;# R11 0
R21 R22 $ # Q∗

1
Q∗

2 $ � (12)

where the matrices R11 and R22 are lower triangular matrices of
dimension

�
L � 1 � ×

�
L � 1 � , and �Q1 Q2 � are the first 2

�
L � 1 �

columns of the unitary matrix Q having dimension N × N. Con-
sequently, � y &L " 1 · · · y &N−1 �I�K� R22 0 � �
and it is seen from equation (11) that R22 must have rank d and a
range space that spans that of ) L " 1. Hence it is shift-invariant,
and A can be determined from R22 as A � R � 1 �?"22 R � 2 �22 .

Secondly, when only one input-output sequence is given, of
length N � L say, then we can use the time-invariance of the sys-
tem to construct a set of N ‘independent’ input-output sequences
of length L, as����� u0 u1 · · ·uN−1

u1 u2 · · ·uN
...

. . .
...

uL uL " 1· · ·uN " L−1

������ �
����� y0 y1 · · ·yN−1

y1 y2 · · ·yN
...

. . .
...

yL yL " 2· · ·yN " L−1

������ � (13)

Finally, it is essential that X0 in equation (11) has full rank d.
In order to realize this, the set of inputs should be sufficiently
‘rich’. More precisely, we must have

(i) the part of the inputs for t � 0 should span at least the input
state space @ (which is unknown); and

(ii) L ≥ d, N ≥ L � 1 � d.
A set of N inputs {ui} that satisfies condition

�
i � for all possible

input state spaces @ of a certain rank is called persistently ex-
citing. We will not discuss precise conditions for a set of inputs
(or a single input, from which a set of N inputs is constructed
by considering shifts as in equation (13)) to be persistently ex-
citing. In practice, however, if one takes N L d and ensures that
the span of the past inputs has dimension N, one can be ‘almost
sure’ that the rank of X0 is equal to d. Typically, this will be the
case when a stochastic input (zero mean white noise) is applied
to the system. Alternatively, one can construct a deterministic
input sequence which also has this property.

As a simple example illustrating the above, consider the sys-
tem described by the first order difference equation

yk � uk − αyk−1 �
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Fig. 5. Direction of Arrival Estimation. Shown is a uniform linear array con-
sisting of 4 sensors, and two impinging signals. The angle-of-arrival θi of
signal si is computed from an estimate of the phase shift corresponding to
the distance ∆sin � θi � .

which has a (trivial) state model in which xk � yk−1 is the state,
and where A � α is the pole to be identified. Suppose that we
have applied the input sequence u �M� · · · � 1 � 2 � 1 � 1 � · · · � , which
resulted in the output sequence y �7� · · · � 1 � 2 � α � 1 � 2α �
α2 � 1 � α � 2α2 � α3 � · · · � . With L � 1 and N � 3, the Hankel
matrices constructed on the data according to (13) are

# U
Y $ �

���� 1 2 1
2 1 1
1 1 � 2α 1 � 2α � α2

1 � 2α 1 � 2α � α2 1 � α � 2α2 � α3

����� �
Taking linear combinations of the columns to zero the third col-
umn of U leads to

# U &
Y & $ �

���� 1 2 0
2 1 0
1 1 � 2α 5α � 3α2

1 � 2α 1 � 2α � α2 5α2 � 3α3

� ��� �
so that � y &L " 1 � can be written as# 1

α $ � 5α � 3α2 � �
(cf. (11)). The above technique thus yields C � 1 and A � α.

The material in this section is primarily based on recent
work of Verhaegen [26–28], whose subspace model identifica-
tion scheme was in turn inspired by De Moor et al. [25, 29], and
Moonen [30, 31]. It is also possible to derive a combined sto-
chastic/deterministic identification scheme [32, 33].

C. Direction of arrival estimation

The third application arises in antenna array signal process-
ing, and concerns the estimation of the angles of arrival of d nar-
rowband plane waves impinging upon an antenna array. This is
the so-called direction-of-arrival (DOA) estimation problem (see
Fig. 5). For simplicity, the narrowband signals sk

�
t � associated

with each plane wave are modeled as complex-valued sinusoids
sk
�
t �N� ŝk

�
t � exp

�
j2π f t � , where j �0O −1, ŝk

�
t � is the amplitude

of the signal (assumed to be slowly time-varying), and f its cen-
ter frequency. The assumption of complex (or analytic) signals
is supported by the fact that most antenna receivers decompose
the received signals into both in-phase and quadrature compo-
nents.

An analytic signal model is convenient here since, for narrow-
band signals, it allows a time delay to be represented as multipli-
cation by a complex exponential. Consequently, corresponding
to each angle of incidence θk is a complex constant φk of unit
modulus that represents the phase shift due to the propagation
delay τk of a plane wave signal between two neighboring sensors
of the array separated by a distance ∆. Thus, sk

�
t −τk �3� sk

�
t � φk,

with φk � exp
�
j2π f ∆sin

�
θk ��� . We will parameterize the DOA

problem in φk rather than θk.
Assuming that the sensors and associated receiver hardware

are approximately linear, the array output signal at the i-th sen-
sor, xi

�
t � , is given as a weighted sum of the d input signals:

xi
�
t �N� d

∑
k ! 1

ai
�
φk � sk

�
t � � i � 1 � · · · � L � 1 � (14)

where ai
�
φk � represents the response of the i-th sensor to a sig-

nal arriving from the direction associated with φk, and we have
assumed that there are a total of L � 1 sensors. Suppose that N
samples are taken at time instants t1 � · · · � tN, and collect the data
xi
�
t j � into a

�
L � 1 � × N matrix X with entries Xi 9 j � xi

�
t j � . Be-

cause of equation (14), X may be decomposed into the product
of a

�
L � 1 � × d matrix P � Φ � and a d × N matrix Q :

X �5P � Φ �RQ � (15)

where the k-th row of Q contains the samples sk
�
t j � , Φ �

diag
�
φ1 � · · · � φd � is a diagonal matrix containing the parameters

φk that are to be identified, P � Φ ���� a � φ1 � · · · a
�
φd �R� is a matrix

with columns of the form a
�
φk �F�S� a1

�
φk � · · · aL " 1

�
φk �R� T, which

is the array response vector due to a signal impinging from direc-
tion φk. This vector depends only on the geometrical construc-
tion of the array and the directional response of the sensors. For a
uniform linear array (ULA) of identical equispaced sensors, a

�
φ �

is given by a
�
φ �T��� 1 φ φ2 · · · φL � T � and P � Φ � by

P � Φ ���
�������

1 1 · · · 1
φ1 φ2 φd

φ2
1 φ2

2 φ2
d

...
...

φL
1 φL

2 · · · φL
d

� ������ � (16)

P has a structure that is known as Vandermonde structure, and
its column space is clearly shift-invariant. Letting P � 1 � represent
the first L rows of P , and P:� 2 � the last L rows (and likewise for
X � 1 � and X � 2 � ), we haveP � 2 � � P � 1 � Φ
and

X � 1 � � P � 1 � Q
X � 2 � � P<� 2 � Q7�JP<� 1 � Φ Q � (17)

As before, the equation P<� 2 � �UP<� 1 � Φ illustrates the shift-
invariant structure present in the array due to the uniform distri-
bution of its (identical) sensors. If no two of the d signals sk

�
t �
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are fully correlated, then Q is of full rank d.2 As before, a de-
compositionV of X into minimal rank-d factors is not unique, and
will not reveal the Vandermonde-structure. We may obtain the
decomposition as

X � 1 � � )<� 1 � ( � P<� 1 � R−1 · R Q
X � 2 � � )<� 2 � (:�0)<� 1 � A ( � P<� 1 � R−1 · RΦR−1 · R Q

where R is some unknown invertible d × d matrix, playing
the role of a similarity transformation. However, ) is shift-
invariant, and A can be determined as in equation (8): A �) � 1 �=" ) � 2 � � RΦR−1, and the eigenvalues of A are equal to the
φk.

A related shift structure arises if, instead of a ULA, the array
is known to be composed of two identical but otherwise arbitrary
subarrays. In this case, P � Φ � will satisfyP � Φ �W� # P 0P 0Φ $ (18)

for some full rank P 0. This kind of block-shift structure is the
parameterization assumed by the so-called ESPRIT algorithm
[34–36]. Techniques for exploiting this structure are described
in Section VI.

The matrix X above will drop rank if either the array response
matrix P � Φ � or the signal matrix Q has rank less than d. WhenP � Φ � has rank less than d, the array is referred to as being am-
biguous, and the signal parameters φk are not identifiable. This
corresponds in some sense to an unobservable linear system.
This type of rank deficiency can be avoided by proper array de-
sign, or in cases where the signal location parameters are re-
stricted to some subset of possible phase delays. For example,
the ULA described above is guaranteed to be unambiguous if and
only if ∆ � λ C 2, where λ is the wavelength of the narrowband
signals. When Q is rank deficient, it usually indicates that some
subset of the signals are perfectly coherent; that is, (at least) one
of the signals is just a scaled and delayed version of another sig-
nal. This type of situation arises when the multipath phenom-
enon is present, such as occurs when both a direct-path signal
and one (or more) reflections are received by the array. Unlike
the case of an ambiguous array, the location parameters φk are
often still identifiable when Q is rank deficient [37, 38].

D. Harmonic retrieval

The relationship between the Hankel decomposition H �5)1(
in equation (6) and the decomposition X �6P � Φ �RQ in (15) is not
coincidental. The Hankel matrix decomposition can also be writ-
ten in terms of Vandermonde matrices if the poles of the system
are distinct. Under this condition, recall the partial fraction ex-
pansion of the z-transform of the impulse response in equation
(3),

h
�
z �:� ∑∞

0 hnzn � r0 � d

∑
k ! 1

rkz
1 − φkz� r0 � ∑d

k ! 1 rkz
�
1 � φkz � φ2

kz2 � · · · � �
(19)

2Note that perfect sinusoidal signals of the same frequency are the same, up to
a difference in phase and amplitude, and consequently X will have rank 1. The
rank condition is satisfied if ŝk � t � is not constant but slowly time-varying, and the
sampling time is long enough.

where the φk are the poles of the system and rk their residues.
The corresponding decomposition of the Hankel matrix is

HL " 1 9 N � ∑d
k ! 1 a

�
φk � L " 1 rk a

�
φk � TN

�
�������

1 · · ·1
φ1 φd

φ2
1 φ2

d
...

...
φL

1 · · ·φL
d

��������
��� r1

. . .
rd

���� ��� 1 φ1 φ2
1 · · ·φN−1

1
...

...
1 φd φ2

d · · ·φN−1
d

����
�>P L " 1

�
Φ �YQ N

(20)

with a
�
φk � TL " 1 � + 1 φk φ2

k · · · φL
k - ,P7�Z� a � φ1 � · · · a

�
φd �R� , and Q equal to the product of the last

two matrices in the decomposition. The same decomposition
would have been obtained from equation (7) starting from any
realization {A � B � C � D} by applying a state similarity transforma-
tion that diagonalizes the A-matrix, A � RΦR−1, for an appropri-
ate choice of R. Letting ) R � : P and R−1 ([� : Q will map equa-
tion (7) to (20).

Another connection between the models of (6) and (17) can
be made by means of the harmonic retrieval problem. Assume
for the moment that we have the following realization of a linear
system with distinct poles:

A � Φ � B � � r1 · · · rd � T �
C � � 1 · · · 1 � � D � r0 �

where we allow the φk and rk to possibly be complex. If we let
φk � eαk " jωk , the time-domain version of the impulse response
of equation (19) can be written as

hn � d

∑
k ! 1

rke � αk " jωk � n � (21)

which is just a sum of d damped exponential signals. Thus, the
problem of determining the poles of a linear system from obser-
vations of its impulse response can be recast as one of estimat-
ing the frequencies and decay factors of multiple exponential sig-
nals. This latter problem is referred to as harmonic retrieval, and
has been studied by researchers for many years in fields as di-
verse as economics, zoology, and physics, not to mention engi-
neering. One of the earliest written accounts of such work was
given by the Baron de Prony in the late eighteenth century [39].
Comparing equation (20) with equation (15), we see that the ma-
trix P � Φ � defined here is analogous to the array manifold in the
DOA estimation problem, and will be ‘unambiguous’ (i.e., full
rank d) if L � 1 D d and ωk � π. When N − 1 D d, the Nyquist
assumption ωk � π also can be shown to guarantee that Q is full
rank d.

IV. SINGULAR VALUE DECOMPOSITION

In the previous section, the notions of subspace, column space,
rank and factorization of matrices have been introduced concep-
tually, and it was noted that the singular value decomposition
(SVD) of matrices is a robust tool for computing them. In sec-
tions to follow we will make extensive use of this tool, and there-
fore we shall take a closer look at it in this section. For a more
detailed account (and an overview of algorithms for its compu-
tation) we refer to [15]. Tutorial information as well as related
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technical papers on the subject of SVD and signal processing are
provided\ by [4] and the series [40, 41].

A. Subspaces

Starting with a given matrix X of size L × N and with entries
in |C , one may want to know how many columns (rows) of this
matrix are non-parallel or independent of each other. We will as-
sume throughout that the dimensions L and N are finite (however,
most of the results will still hold when the dimensions are not fi-
nite, provided X is a so-called compact operator, i.e., when the
sum of its squared entries is bounded). If there are d ≤ L ≤ N
independent columns in X, then this matrix is said to have a d-
dimensional range or column space, which is a subspace of the
L-dimensional Euclidian space |C L. The rank of the matrix is the
dimension of this subspace. If d � L, then the matrix is of full
rank, and for d � L it is rank-deficient. Now |C L is spanned by
the columns of any unitary matrix in |C L×L, the Euclidean space
of square, complex-valued L-dimensional matrices. The same
holds for |C N of which the row space of X is a d-dimensional sub-
space: the columns of any N ×N unitary matrix in |C N×N span the
vector space |C N. Assuming d ≤ L ≤ N, we can choose a unitary
U such that the d-dimensional column space of X is spanned by a
subset of d columns of U, say the first d columns, which together
form a matrix Û:

U � ] d
↔

L−d
↔

L ^ Û Û⊥ _ �
Since U is a unitary matrix, we shall have

1. From U∗U � IL:�
a � Û∗Û � Id ��
b � Û∗Û⊥ � 0��� � c � �

Û⊥ � ∗Û⊥ � IL−d �2. From UU∗ � IL:�
d � ÛÛ∗ � Û⊥ � Û⊥ � ∗ � IL �

where Id is the identity matrix of order d, and similarly for IL

and IL−d. Relations
�
a � - � d � tell us that any vector x ∈ |C L can be

decomposed into two mutually orthogonal vectors x̂ and x̂⊥ in
the spaces spanned by the columns of Û and Û⊥, respectively.
These two spaces are d-dimensional and

�
L−d � -dimensional or-

thogonal subspaces in |C L, and their direct sum is equal to |C L.
Therefore, the orthogonal complement in |C L of the column space
of X is spanned by the columns of the matrix Û⊥. The matri-
ces ÛÛ∗ � Πc and Û⊥ � Û⊥ � ∗ � Π⊥

c in the above relation
�
d � are

the orthogonal projectors onto the column space of X and its or-
thogonal complement in |C L respectively. That is, x̂ � Πcx and
x̂⊥ � Π⊥

c x.
The unitary matrix V can be similarly decomposed:

V � ] d
↔

N−d
↔

N ^ V̂ V̂⊥ _ �
Here, the matrices V̂V̂∗ � Πr and V̂⊥ � V̂⊥ � ∗ � Π⊥

r are orthogo-
nal projectors onto the original subspaces in |C N spanned by the
columns of V̂ and V̂⊥, respectively. The columns of V̂⊥ span the
kernel of X, i.e., the space of input vectors x for which Xx � 0.

B. SVD

In terms of the above discussion of subspaces, the singular
value decomposition of the L × N matrix X, which we assume to
have rank d, is obtained by making a certain well-defined choice
for U and V , which then gives rise to the following decomposi-
tion [15]:

X �� Û Û⊥ � Σ # V̂∗�
V̂⊥ � ∗ $

where Σ is an L × N diagonal matrix containing the singular val-
ues σi of X. These are positive numbers ordered such that

σ1 ≥ σ2 ≥ · · · ≥ σd D σd " 1 � · · · � σL � 0 �Note that only d singular values are non-zero. The d columns
of Û corresponding to these non-zero singular values span the
column space of X and are called the left singular vectors. Simi-
larly, the d columns of V̂ are called the right singular vectors and
span the row space of X (or the column space of X∗). In terms
of these (sometimes much) smaller matrices, the SVD of X can
also be written in ‘economy’ size:

X � ÛΣ̂V̂∗ � (22)

where Σ̂ is a d × d diagonal matrix containing σ1 � · · · � σd . This
form of the SVD better reveals that X is actually of rank d: it is
constructed from a product of rank-d matrices.

The SVD of X makes the various spaces (range and kernel)
associated with X explicit. So does any decomposition of X as
X � ÛExV̂∗, where Û and V̂ are any matrices whose columns
span the column and row spaces of X, respectively, and where Ex

is an invertible d × d matrix. The property that makes the SVD
special is the fact that Ex is a diagonal matrix, so that a decou-
pling is obtained: with ui the i-th column of U, and vi likewise
for V , X can be written as a sum of rank-1 isometric matrices
uiv∗

i , scaled by σi:

X � d

∑
i ! 1

σi
�
uiv∗

i � �
and we also have

σiui � Xvi � σivi � X∗ui �This makes it possible to rank the vectors in the column space
and row space of X: the most important direction in the column
space is u1, with scale σ1, and is reached by applying X to the
vector v1. The second most important direction is u2, etc. This
ranking will in turn lead to optimal low-rank approximants of X
(see below). In the mapping a ∈ |C N → b ∈ |C L : b � Xa, b will
automatically be a vector in the column range of X, and will be
non-zero if and only if a has a component in the row space of X;
i.e., if and only if Πra is non-zero. On the other hand, b will be
identically zero if and only if a is orthogonal to the row space
of X. Therefore, the space spanned by the vectors vd " 1 � · · · � vN

in V̂⊥ is called the null space (or kernel) of X. Vectors a in this
space are mapped to zero by one of the zero singular values of
X. The SVD of X reveals the behavior of the map b � Xa: a is
rotated in N-space (by V∗), then scaled (by the entries of Σ: L−d
components are projected to zero), and finally rotated in L-space
(by U) to give b.
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C. The effect of noise

Suppose that X is an L×N matrix with rank d � L. As before,
denote the SVD of X as X � UΣV∗ � ÛΣ̂V̂∗. In this subsection,
we will briefly study the effect of adding noise to X on its SVD.
The perturbation theory of the SVD is partially based on the link
of the SVD with eigenvalue decompositions:

X � UΣV∗ ⇒ XX∗ � UΣ2U∗ �
so that the singular values of X are the positive square roots of the
eigenvalues of XX∗, while its left singular values are the eigen-
vectors of XX∗. Suppose that X is perturbed by some noise ma-
trix ` : X & � X � ` � We first consider the case where the en-
tries of ` are generated by uncorrelated, zero mean, white noise
processes with variance σ2, so that the variance E

� `a` ∗ � is as-
ymptotically (for N → ∞) given by E

� `a` ∗ C N �b� σ2IL. Under
the same conditions,

E
�
X & X & ∗ C N �N� E

�
XX∗ C N � � σ2IL

so that, for large N, the SVD of X & is given by

X & ≈ U
�
Σ2 � Nσ2I � 1 c 2V & ∗

for some unitary matrix V & . This expression shows that, for large
N and small σ, the singular values of X & increase by an amount
approximately equal to σ O N, while the left singular vectors of
X remain the same. X & is now of full rank, and its L − d smallest
singular values are no longer zero, but equal to σ O N. In theory,
we can recover XX∗ by subtracting Nσ2I from

�
Σ & � 2. This should

set the
�
L − d � smallest singular values back to zero. The range

space of X, as estimated from X & , is spanned by Û, the left singu-
lar vectors corresponding to the d largest singular values of X & .
It is not possible to recover V̂ (or X), because the length of the
columns of V̂ is equal to N, and hence these vectors do not par-
ticipate in the averaging effect of increasing N.

For more general ` , and in case N is not extremely large, one
can show that the singular values of X are raised by an amount
on the order of �d`e� , the largest singular value of ` . However,
in this case the singular vectors are also perturbed. The amount
of the perturbation in the subspace which they span can be esti-
mated (see e.g., [42, 43]), and is again in the order of �d`f� . The
effect on the singular vectors themselves can be much larger if
the corresponding singular values are close [42]. Summarizing,
the singular values and the subspace spanned by the left singu-
lar vectors are (for reasonably large N) relatively insensitive to
added perturbations on the entries of the matrix, and hence the
SVD is numerically reliable and robust. The SVD thus provides
a good estimate of the numerical rank of a matrix, and is useful
for quantifying how “close” a matrix is to being low-rank.

The ‘noise threshold’ depends on the smallest singular value
of the original matrix. This singular value is related to the small-
est vector that can be constructed with linear combinations of
the columns of the matrix, or the smallest distance of one col-
umn of the matrix to the column range of the remaining columns.
Obviously, it will be small when the columns are more or less
‘aligned’, as displayed in Fig. 6. This figure shows the con-
struction of the left singular vectors of a matrix X �Z� x1 x2 � ,
whose columns x1 and x2 are of equal length. The largest sin-
gular vector u1 is in the direction of the sum of x1 and x2, i.e.,

u1σ1 g 2

u2σ2 g 2
x2

x1

Fig. 6. Construction of the left singular vectors and values of the matrix X �h
x1 x2 i , where x1 and x2 have equal length.

the ‘common’ direction of the two vectors, and the correspond-
ing singular value σ1 is equal to σ1 �j� x1 � x2 �kClO 2. On the
other hand, the smallest singular vector u2 is dependent on the
difference x2 − x1, as is its corresponding singular value: σ2 �� x2 − x1 �mCnO 2. If x1 and x2 become more aligned, then σ2 will
be smaller and X will be closer to a singular matrix. Clearly, u2
is the most sensitive direction for perturbations on x1 and x2.

The relevance of this observation is that the resolution of sub-
space based parameter estimation algorithms depends on the
smallest singular value of the matrix of observations, in relation
to the noise level. For example, in the previous section, the ob-
servation matrix consisted of linear combinations of vectors of
the form a

�
φ �a�o� 1 φ φ2 · · · φL−1 � T. If two directions, or two

poles, are close together, then φ1 ≈ φ2 and a
�
φ1 � points in about

the same direction as a
�
φ2 � , which will be the direction of u1.

The smallest singular value, σ2, is dependent on the difference of
the directions of a

�
φ1 � and a

�
φ2 � . With a noise matrix ` added,

detecting the presence of two signals will in general become dif-
ficult if σ2 is approximately the same or smaller than �p`f� , the
noise level. This is because the structure of ` determines how
much σ2 is increased: σ2

2 ≤
�
σ &2 � 2 ≤ σ2

2 � �d`q� 2, and because the
second direction is only visible if σ &2 Dr�p`f� . Note that in the
commonly assumed case where ` is generated by independent
identically distributed noise processes such that E

� `s` ∗ C N �t�
σ2I, then, for large enough N, all of the singular values squared
increase by the same amount �d`q� 2. In such cases, σ &2 Du�d`q�
automatically, and detection of the second signal is always pos-
sible. It is also important to note that the smallest singular value
is strongly dependent on the value of L, the length of the observa-
tion vectors. If L is increased, then the difference between a

�
φ1 �

and a
�
φ2 � becomes more pronounced, so that σ2 becomes larger

and the resolution increases. This effect is stronger than the ef-
fect of increasing N, the number of observation vectors. In the
latter case, the purpose is to average out the noise.

For illustration, consider the following small numerical ex-
periment. Let φ1 � 1, φ2 � exp

�
jπ · 0 � 1 � , and construct ma-

trices XL 9 N from unitary linear combinations of the columns of� a � φ1 � a
�
φ2 �R� . For L � N ≥ 2, these matrices have rank 2. The

two non-zero singular values of XL 9 N for some values of L � N
are given in Table I. It is seen that doubling L almost triples
the smallest singular value, whereas doubling N only increases
the singular values by a factor O 2, which is because the matri-
ces have larger size. In the latter case, the ratio between σ2 and
the noise level is not increased because the perturbation matrix
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TABLE I

SINGULAR VALUES OF XL v N .

L � 3 � σ1 � 3 � 44 L � 3 � σ1 � 4 � 86
N � 3 σ2 � 0 � 44 N � 6 σ2 � 0 � 63
L � 6 � σ1 � 4 � 73
N � 3 σ2 � 1 � 29

would also have twice its original size, which leads to an increase
in the noise level of the same factor O 2.

D. Pseudo-inverse

Consider a rank-d L × N matrix X. In general, since X may
be rank-deficient or non-square, the inverse of X does not exist;
i.e., for a given vector b, we cannot always find a vector a such
that b � Xa. A related notion is the (Moore-Penrose) pseudo-
inverse of X, denoted by X " , which can be defined in terms of
the ‘economy size’ SVD of X (equation (22)) as

X " � V̂Σ̂−1Û �This pseudo-inverse satisfies the properties

1 � XX " X � X 3 � XX " � Πc

2 � X " XX " � X " 4 � X " X � Πr

which constitute the Moore-Penrose inverse in the traditional
way. These equations show that, in order to make the problem
b � Xa solvable, a solution can be forced to an approximate
problem by projecting b onto the column space of X: b &4� Πcb,
after which b &w� Xa has solution a � X " b & . The projection can
also be done implicitly by just taking a � X " b: from properties
1 and 3 of the list above, we have that a � X " b &n� X " XX " b �
X " b. It can be shown that this solution a is the solution of the
(least squares) minimization problem

min
a
� b − Xa � 22 �

where a is chosen to have minimal norm if there is more than one
solution (the latter requirement translates to a � Πra).

E. LS and TLS approximations

Suppose that X has full rank L. In this case, σd " 1 � · · · � σL are
non-zero, and the SVD of X can be written as

X � UΣV∗ � ÛΣ̂V̂∗ � Û⊥Σ̂⊥V̂⊥ �
where Û contains the first d left singular vectors of X, corre-
sponding to the d largest singular values which are collected in Σ̂.
Σ̂⊥ contains the L − d remaining singular values, which are now
non-zero. Û contains the d “most important” vectors (directions)
in the column space of X. Hence, a rank-d approximation X̂ of
X is obtained by putting

X̂ � ÛΣ̂V̂∗ � ΠÛ X ΠV̂ � (23)

where ΠÛ � ÛÛ∗ and ΠV̂ � V̂V̂∗ are the projectors onto the ap-
proximated column space and row space of X, respectively. If X &

is any rank-d L×N matrix, then it can be shown that X̂ is the rank-
d approximation of X that minimizes � X − X &k� F, the Frobenius
norm of the difference E � X −X & . The Frobenius norm of a ma-
trix is the sum of the squares of its entries, and can be shown to
be equal to the sum of the squares of its singular values (because
this norm is ‘rotationally invariant’). X̂ is called the rank-d Least
Squares (LS) approximation to X: it has retains the d most im-
portant singular values and vectors of X, and sets the remaining
L − d singular values to zero. Hence � E � 2F � σ2

d " 1 � · · · � σ2
L.

A typical LS application is the following. Suppose that a vec-
tor b is given, and we want to find a vector a such that b � Xa. We
saw above that a (least squares min-norm) solution is obtained by
setting a � X " b. However, since X " � VΣ " U∗, small singular
values of X play an important role in X " : the pseudo-inverse of
the full-rank matrix can lead to numerical instabilities. A more
reliable solution is obtained by setting the small singular values
of X equal to zero, thus obtaining a LS approximation X̂ of X.
The vector a is then obtained by computing a as the least squares
min-norm solution of b � X̂a (that is, a � X̂ " b).

Now, suppose that instead of a single vector b we are given an�
L × N � -dimensional matrix Y , the columns of which are not all

in the column space of the matrix X̂. We want to force solutions
to XA � Y . Clearly, we can use a Least Squares approximation
Ŷ � ΠÛY to force the columns of Ŷ to be in the d-dimensional
column space of X̂. This is reminiscent to the LS application
above, but just one way to arrive at X̂ and Ŷ having a common
column space. There is an other way, called Total Least Squares
(TLS) which is effectively described as projecting both X and Y
onto some d-dimensional subspace that lies between them, and
that is “closest” to the column spaces of the two matrices. To
implement this method, we compute the SVD� X Y �W�Z� Û Û⊥ � Σ # V̂∗�

V̂⊥ � ∗ $ � ÛΣ̂ � V̂∗
1 V̂∗

2 � � Û⊥Σ̂⊥ � V̂⊥ � ∗
and take the TLS (column space) approximations to be X̂ �
ΠcX � ÛΣ̂V̂∗

1 and Ŷ � ΠcY � ÛΣ̂V̂∗
2 , where V̂1 and V̂2 are the

partitions of V̂ corresponding to X and Y respectively. X̂ and Ŷ
are in fact solutions to

minx
X̂ Ŷ y rank d

�3� X Y � − � X̂ Ŷ �4� 2F
and A satisfying X̂A � Ŷ is obtained as A � X̂ " Ŷ . This A is the
TLS solution of XA ≈ Y .

F. The Matrix pencil problem

To close this section we consider the following eigenvalue
problem. Let X and Y be two (full-rank) matrices of dimension
L × N (L ≤ N), and let λ be a complex scalar. The matrix pencil
problem is to determine values of λ for which the rank of the ma-
trix Y − λX is L − 1 instead of L. Y − λX is called a matrix pencil,
and those special values of λ are called the rank reducing num-
bers of the pencil. When X and Y are not of full rank, the matrix
pencil problem is to find the values of λ for which the rank of the
pencil drops one in comparison to the usual rank of the pencil.

In cases where X and Y are full-rank square L×L matrices, the
matrix pencil problem reduces to an ordinary eigenvalue prob-
lem. There are L rank-reducing numbers λ1 � · · · � λL, and they are
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known as the generalized eigenvalues (GEs) of the matrix pair�
Y � X � . The

z
GEs of

�
Y � X � are those values of λ for which there

exists a non-trivial vector x such that Yx � λXx. Since, under the
present assumptions, X is invertible, these are just the solutions
to the ordinary eigenvalue problem

�
X−1Y � x � λx.

We now turn to the more general problem that will be encoun-
tered in the next section, where X and Y are rank-d L × N matri-
ces. For convenience, we require X and Y to have the same col-
umn space and row space. These amount to conditions for the
existence of non-trivial λ. If X and Y were to have disjoint col-
umn spaces, then the rank of Y −λX can only decrease if the rank
of λX decreases, i.e., if λ � 0. A similar result holds for the row
spaces. We will show that the solution of the matrix pencil prob-
lem can be given in terms of the pseudo-inverses of X and Y as
introduced before. Call ÛxΣ̂xV̂∗

x and ÛyΣ̂yV̂∗
y the ‘economy-size’

SVDs of X and Y , respectively. Since by assumption X and Y
span the same column and row spaces, we can express Y in terms
of Ûx and V̂x: say Y � ÛxEyV̂∗

x , with Ey � Û∗
x YV̂x a d × d matrix.

Hence
Y − λX � Ûx

�
Ey − λΣ̂x � V̂∗

x �
and thus the problem is reduced to the square pencil problem:
the rank-reducing numbers of the pencil X − λY are given by the
d eigenvalues of Σ̂−1

x Ey. It can be shown that these solutions are
precisely the non-zero entries in eig

�
X " Y � or eig

�
YX " � . Indeed,

X " Y � V̂xΣ̂−1
x Û∗

x ·ÛxEyV̂∗
x� V̂x · Σ̂−1

x Ey · V̂∗
x �

From the property that the non-zero eigenvalues of the product�
AB � of two matrices A and B are equal to the non-zero eigenval-

ues of
�
BA � , the result follows.

V. OVERVIEW OF IDENTIFICATION SCHEMES

A. The model

In the realization theory of Sections II and III, we have seen
that there are two Hankel matrix decompositions that are in fact
equivalent if the system poles are distinct:�

1 � H �.)/( ��
2 � H �5P � Φ �YQ

in which P has a Vandermonde structure parametrized by the di-
agonal matrix Φ with entries φi, and in which ) � ( � P � Q are shift-
invariant. In fact, the second description is a special case of the
first. The purpose of identification is (i) to find the pole locations
(or equivalently Φ), and (ii) to determine a matching state space
model (i.e., to find the corresponding zeros of the system). In the
input/output identification application, H is not a Hankel matrix
but its column space is still shift-invariant. In the DOA applica-
tion, the second description given above is more natural since P
corresponds to the array response matrix and Q to the incoming
signals. Q has a shift-invariant structure only if the sampling pe-
riod is constant. The purpose in DOA estimation is (i) to find the
directions of arrival (or equivalently Φ), and (ii) to reconstruct
the signal matrix Q (signal copy). For the sake of discussing
these applications within a unified framework, and to present al-
gorithms that are valid for both system identification and DOA
estimation, we will use the description �H �5P � Φ �RQ{� in most of

the remainder of the paper, and focus on finding Φ. Once Φ, and
hence P � Φ � , is known, it is a straightforward matter to determine
a corresponding Q from H, e.g., by setting Q|�5P " H.

The algorithms in Section II were based on noise-free condi-
tions. In general, however, H is corrupted by noise, which is as-
sumed to be additive:

H �>P � Φ �}Q � ` �
The noise incorporates all undesired components of the data. De-
pending on the problem at hand and on the chosen solution strat-
egy, the noise is assumed to be either stationary zero-mean white
(as in the system identification and DOA problem), or to encom-
pass unwanted higher-order components of an actual system re-
sponse (modes to be neglected in model reduction problems).

The problem we will consider in the remaining part of this
paper thus reads as follows: Given a matrix H which contains
noise-corrupted observations of a system, determine a d × d di-
agonal matrix Φ using the model

H � P � Φ �}Q � ` �P � Φ �~� � a � φ1 � · · · a
�
φd �Y� � a

�
φ ���� 1 φ φ2 · · · φL � T �

(24)
in which H is of size

�
L � 1 � × N with N ≥ L ≥ d, P and Q are

of full rank d, and the matrix ` represents additive noise. In this
problem statement, H need not be Hankel, and hence no shift-
invariant structure in Q is presumed. The column space of P/Q is
referred to as the signal subspace (which is the output state space
in system theory), and its orthogonal complement is referred to
as the noise subspace. The presence of the noise term means that
H will actually be of full rank.

An important issue that we have not dealt with thus far is that
of model order determination. With white noise present and N
approaching infinity, the extra singular values due to the noise
are all the same and presumably small, and d can be found by
simply counting the multiplicity of the smallest singular value
of H and subtracting from L � 1. However, with probability one,
for finite N none of the singular values of H will be repeated, and
hence some other method is required to estimate d. Put simply,
the strategy is to look for a break in the pattern of singular val-
ues of H, attributing the larger ones to the signal and the small
ones to the noise. The detection of such a break has been well
studied and a number of techniques have been developed, most
of them being based on the asymptotic distribution of the covari-
ance matrix related to H under the assumption of white Gaussian
noise. These include the classical sequential hypothesis test [44–
46], Akaike’s Information Criterion (AIC) [47], Rissanen’s Min-
imum Description Length (MDL) principle [48, 49], and the re-
finements of Zhao, et al., [50]. Specific applications to DOA es-
timation have been studied in [51–55]. It is beyond the scope
of this paper to study the model order determination problem in
any detail, so we will just assume in what follows that d has been
correctly determined by some method.

B. Solution outline

A number of strategies for solving the identification problem
in equation (24) have been proposed. They differ primarily in
the degree of structure that is imposed on the solution.
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1. Subspace Fitting: These methods seek to match the data
with the ‘true’ model; i.e., they minimize � H − P � Φ �RQ�� 2F
in the Frobenius norm over all possible Q and Vander-
monde matrices P � Φ � of rank d. Equivalently, they may be
thought of as finding a model (with shift-invariance proper-
ties) whose column vectors are most orthogonal to the es-
timated noise subspace of the data. Weighted versions of
this minimization have recently been proposed (Weighted
Subspace Fitting, MODE) which provide minimum vari-
ance parameter estimates.

2. Single Shift-Invariant methods: In contrast to the Sub-
space Fitting techniques, these methods impose only a sin-
gle shift-invariance property on the data, in the sense that
the observation matrix H is partitioned into two matrices
X � H � 1 � and Y � H � 2 � , with X containing the first L rows
of H, and Y the last L rows. The problem is then recast as
one of finding Φ from

X �5P L Q N � ` 1
Y �>P L Φ Q N � ` 2 � (25)

We will describe a number of methods (e.g., , TAM, ES-
PRIT) that determine Φ from

�
X � Y � using only the above

decomposition (25), hence ignoring any further (shift-
invariant) structure that P or Q might possess. These meth-
ods are thus valid for any application in which an X and Y
which obey (25) are somehow obtained, but for which no
further information on the underlying structure is known. In
particular, in the ESPRIT algorithm for DOA estimation, X
and Y typically contain data from two identical sensor sub-
arrays. H is then obtained by stacking X and Y , thus having
size 2L × N.

3. Orthogonal Vector Methods: This class of techniques is re-
lated to the above two strategies, and can be thought of as
intermediary between them. These methods are also based
on the shift-invariant structure of (25), but they can equiva-
lently be described as methods that find vectors orthogonal
to a particular vector selected from the noise subspace (see
the discussion below).

Subspace Fitting techniques are described in Section VIII. In
these techniques, the problem is to determine a d-dimensional
column space (range) of P that has the required Vandermonde-
like structure and is closest to the column space of H. By ig-
noring any (shift-invariant) structure that Q might possess, the
minimization is linear in the parameters of Q . Consequently, the
problem can be made more compact by deriving from H a rank-
d signal subspace, and then finding a rank d matrix P with Van-
dermonde structure whose column space is as close as possible
to the signal subspace (or equivalently, which is as orthogonal as
possible to the noise subspace). Though Subspace Fitting tech-
niques can provide estimates of minimum variance, such tech-
niques are more difficult to implement since in general they re-
quire a multi-dimensional (gradient) search over the parameter
space. This drawback is mitigated by the fact that the computa-
tionally efficient Single Shift-Invariant methods can be used to
obtain an accurate starting point for the search.

Approaches to the Single Shift-Invariance problem (25) are
motivated by the exact relationships present in the noise free
case. They give rise to the matrix pencil techniques that we al-

ready have encountered in Section IV, in which the pencil Y −λX
is studied for varying values of λ. Without noise, it readily fol-
lows from the structure of equation (25) that the diagonal entries
of Φ are the rank reducing numbers of the pencil Y − λX, i.e.,
those values of λ for which the pencil drops rank. This is be-
cause Y − λX �>P � Φ− λI �RQ . A slightly more general way to de-
scribe these methods is by defining an L×L matrix F that satisfies
FX � Y . Since in the noise free case X and Y are of rank d, F is
not unique; it can have rank anywhere from d to L. For any of the
possible choices of F, it can be shown that d of the eigenvalues
of F are equal to the entries of the diagonal matrix Φ. Indeed,
since P and Q are rectangular matrices of full rank d, they have
pseudo-inverses P " , Q " such thatP " P�� Id � QbQ " � Id �
(dropping subscripts for ease of notation) and hence the equation
FX � Y results in

F P/Q|�5P Φ Q ⇒ Φ �>P " F P �It readily follows that a subset of the eigenvalues of F form the
entries of Φ. If F is taken to be rank d (e.g., the Least-Squares
solution F � YX " ), then F has L − d zero eigenvalues and Φ is
equal to the d non-zero eigenvalues of F.

If there is noise, X and Y will have full rank L. We will con-
sider two classes of solutions to solve the problem in this case.
In Section VI, the algebraic structure present in (25) is exploited;
i.e., these methods rely on the fact that X and Y should ideally
have the same (d-dimensional) column space and row space. By
SVD analysis on X and Y , rank-d LS or TLS approximations X̂
and Ŷ are obtained that satisfy this property, without retaining
any (Hankel) structure that might be present in X and Y . Setting
FX̂ � Ŷ , and solving for F in a Least Squares sense, the entries of
Φ are obtained as the d non-zero eigenvalues of F. These meth-
ods are also known as Principal Component methods because the
column/row spaces of X̂ � Ŷ contain the d strongest components
in the column/row spaces of X � Y , and are obtained by project-
ing X � Y onto these ‘principal’ subspaces. In many identification
contexts (except DOA estimation with sensor doublets), the fact
thatY has many entries in common with X is in principle not used
in finding or projecting onto these subspaces. However, this fact
can be exploited in the derivation of algorithms that are more
computationally efficient.

Section VII describes Orthogonal Vector methods as an inter-
mediary between Single Shift-Invariance and Subspace Fitting
techniques. They can be written in the same style as the Single
Shift-Invariance methods, operating on X and Y in (25) above,
and using the single shift-invariance between them to obtain a
different F, now having full rank L and a special structure. Φ is
obtained by selecting an appropriate set of d eigenvalues from
the L eigenvalues of F. On the other hand, it can be shown that
these methods compute a rank-L Vandermonde matrix P that is
precisely orthogonal to one selected vector u in the noise sub-
space of H. Due to the structure of P , this reduces the problem
to finding the roots of the polynomial u

�
z � associated with this

vector. Taking P of rank d and maximally orthogonal (in some
Least Squares sense) to all vectors in the noise subspace instead
of just one, a connection with the Subspace Fitting class of tech-
niques is obtained.
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VI. LEAST SQUARES SINGLE SHIFT-INVARIANT METHODS

In the Single Shift-Invariant (or Principal Component) meth-
ods described in this section, the

�
L � 1 � rows of the data matrix

H are arranged into two matrices X and Y , with X � H � 1 � con-
sisting of the first L rows of H, and Y � H � 2 � consisting of its
last L rows. As was already stated in the previous section, the
first step in this class of solutions is to find rank d approximants
X̂ and Ŷ to X and Y , and then invoke the

� P/Q � P Φ Qa� structure
of equation (25) to estimate Φ. Any additional shift-invariance
structure that might be present in X andY is not used, and also not
retained by this rank reduction. The approximation is performed
by projections onto subspaces spanned by the d most important
singular vectors derived from SVD analysis of X and/or Y , and
the approximation norm is the Frobenius norm. In Least Squares
(LS) solutions, the projection operators are constructed from ei-
ther the X data or the Y data, in a way that closely follows the
definitions of Πc and Πr in Section IV. In Total Least Squares
(TLS) solutions, the subspaces, and hence the projection opera-
tors, are obtained from both the X and Y data [15,56]. An outline
of the procedure described in the previous section which covers
almost all algorithms in this and the next section is given below.

1. Using the LS or TLS approximation algorithms of Section
IV, estimate from the row space of X and/or Y a “common”
d-dimensional row space, i.e., the row space of Q . Let Πr

represent the orthogonal projector onto this space.
2. Estimate from the column (range) space of X and/or Y a

d-dimensional ‘common’ column space, i.e., the column
space of P . Let Πc represent the orthogonal projector onto
this space.

3. Apply these projectors to X and Y to obtain the rank-d ap-
proximants

X̂ � Πc X Πr

Ŷ � Πc Y Πr �Next, find any matrix F such that FX̂ � Ŷ , and set the entries
of the diagonal matrix Φ equal to the non-zero eigenvalues
of F. These eigenvalues are the rank reducing numbers of
the pencil

�
Ŷ − λX̂ � .

The solution is by no means unique. Each of the projections used
to obtain X̂ and Ŷ can be done in either LS or TLS sense, giving
rise to at least four different, though closely related solutions. In
addition, a matrix F such that FX̂ � Ŷ can not only be found in
a LS sense, in which case it will have rank d, but also in a ‘pre-
dictor’ form of full rank L, in which the first L − 1 rows of X̂ are
just copied by F to Ŷ , and the last row of Ŷ is constructed by F
as a linear combination of the rows of X. Although in the latter
case F is of full rank L, only d eigenvalues are relevant to the so-
lution and somehow these d eigenvalues must be separated from
the rest. This fact can give rise to problems. Three of the four
LS/TLS methods which lead to rank-d estimates of F have ap-
peared in the literature, and are discussed below. Predictor meth-
ods are discussed in Section VII.

Principal Component methods were introduced by Moore in
1978 (see [10, 57]), who analyzed such methods on the Gram-
mians of internally balanced systems. This work is related to the
Principal Hankel Component analysis discussed here. Related
papers are by Zeiger and McEwen [9] and by Pernebo and Sil-
verman [58]. In the past decade, several major contributions in

this field have appeared in the publications of Kung et al. [11,59–
61], in which infinite-data Principal Component algorithms and
related covariance methods are discussed, with applications to
state-space and harmonic retrieval problems. This research has
led to a covariance-based method referred to as TAM, the direct-
data variant of which is related to the LS-LS and TLS-LS cases
discussed below. In another series of publications, Roy, Paulraj
and Kailath [34–36] have devised a comparable harmonic re-
trieval algorithm called ESPRIT, corresponding to the TLS-TLS
case discussed below. Since then, a number of authors [62–65]
have investigated the relationship between TAM and ESPRIT,
and concluded that their statistical performance is asymptotically
(i.e., for N → ∞) equivalent. Other authors have popularized the
use of a pencil description for the same type of problem [66–68].
The classification below is both a summary and unification of the
underlying concepts in the above publications, and does not pre-
cisely follow any of them in particular.

A. LS-LS algorithm

In the LS-LS type algorithms, both Πr, the projector onto the
common row space, and Πc, the projector onto the common col-
umn space, are determined from an SVD of X only (hence Least
Squares). Following the outline above, the algorithm is in prin-
ciple as follows:

1. Determine the SVD of X:

X � UΣV∗ �The rank-d LS-approximant X̂ of X is X̂ � ÛΣ̂V̂∗, where Û
and V̂ contain the d singular vectors corresponding to the d
largest singular values Σ̂ in Σ. The LS projectors onto these
subspaces are

Πc � ÛÛ∗

Πr � V̂V̂∗ �
and the LS-LS approximations of X and Y are

X̂ � ÛÛ∗ X V̂V̂∗ � ÛΣ̂V̂∗

Ŷ � ÛÛ∗ Y V̂V̂∗ �
2. Put FX̂ � Ŷ , and solve for F in the LS sense:

F � Ŷ X̂ " � ÛÛ∗ Y V̂ Σ̂−1Û∗ �3. Compute Φ � eig
�
F � , discarding zero eigenvalues. Using

the fact that the nonzero eigenvalues of a matrix product�
AB � are equal to the nonzero eigenvalues of the product�
BA � , we can obtain Φ as

Φ � eig
�
Û∗YV̂ · Σ̂−1 � �It is thus seen that the actual computations needed in the LS-LS

case amount to (i) computing the SVD of X, and (ii) computing
Φ � eig

�
Û∗YV̂ Σ̂−1 � . This shows that the projection of Y onto the

column space of X̂ is in fact not needed (Ŷ need not be computed)
because this is a side effect of computing

�
YX̂ " � . The projec-

tion of Y onto the row space of X̂ can also be omitted because
the computation of eig

�
YX̂ " � will implicitly project Y onto the

row space and column space of X̂ (see Section IV).
The LS-LS algorithm is akin to the ‘direct matrix pencil al-

gorithm’ described by Hua and Sarkar [67,68], although in their
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approach Ŷ is constructed from an SVD on Y , rather than by pro-
jections based on X. This has the conceptual advantage that X
and Y are treated equally. Φ is then determined as Φ � eig

�
Ŷ X̂ " �

as before.

B. TLS-LS algorithm

In the TLS-LS algorithm, a d-dimensional common row space
for X̂ and Ŷ is obtained by SVD analysis of the full data matrix
H of which X � H � 1 � and Y � H � 2 � are submatrices. This de-
termines the projector Πr onto the row space. The projector Πc

is the projector onto the column space of XΠr, but is never ex-
plicitly formed because the projection is done implicitly in the
computation of eig

�
F � , as in the LS-LS case. The outline of the

algorithm is as follows:
1. With X � H � 1 � and Y � H � 2 � , compute the SVD of the full

data matrix H:

H � UΣV∗ → Ĥ � ÛΣ̂V̂∗

where V̂∗ represents the common d-dimensional row space
of X and Y in the TLS sense, i.e., Πr � V̂V̂∗. Project X and
Y onto this row space (hence TLS):

X̂ � XV̂V̂∗ � Û1Σ̂V̂∗

Ŷ � Y V̂V̂∗ � Û2Σ̂V̂∗ �
where Û1 � Û � 1 � consists of the first L rows of Û, and Û2 �
Û � 2 � consists of the last L rows of Û. Hence Û1 and Û2 are
matrices of size L × d, and in fact X̂ and Ŷ are just subma-
trices of Ĥ.

2. Set F � Ŷ X̂ " . Then F � Û2Û "1 , and

Φ � eig
�
F �N� eig

�
Û "1 Û2 �

(discarding zero eigenvalues).
By construction, X̂ and Ŷ share the same row space. Again, the
computation of eig

�
F � implicitly projects the columns of Ŷ onto

the column space of X̂ in the LS sense.
The above method is known in the DOA context as the LS-

ESPRIT algorithm. As before, X and Y typically contain data
from two identical sensor subarrays, H is obtained by stacking
X and Y , thus having size 2L×N. The method also encompasses
the ‘direct data’ TAM method for harmonic retrieval in [59], al-
though the description of the computation is slightly different
here. It is observed in [59] that Û "1 can be computed without in-
verting matrices because Û1 is almost an isometry. To see this,
denote by uL the last row of Û, and note that Û∗

1Û1 � u∗
LuL � Id.

Elaborating on this formula, it follows from Û "1 Û1 � Id that

Û "1 � �
Id − u∗

LuL � −1Û∗
1� �

Id � u∗
LuL

1 − uLu∗
L
� Û∗

1 �
The TLS-LS algorithm (as well as the LS-LS algorithm) is suit-
able for efficient SVD updating techniques [69,70], which can be
adapted to yield on-line estimates of Φ for an increasing number
of samples N.

C. TLS-TLS algorithm

In the above two algorithms, the actual choice of F results in
an implicit LS projection of the columns of Ŷ onto the column
space of X̂ when the eigenvalues are computed. In the TLS-TLS
method, an explicit projection is done in the TLS sense by pro-
jecting the columns of X̂ and Ŷ onto a subspace that lies ‘be-
tween’ the column space of X and the column space of Y . This
subspace is obtained by computing the SVD of a matrix H1 �� X Y � and retaining the d left singular vectors that correspond
to the d largest singular values. Although this extra projection
gives rise to results which are slightly different from TLS-LS,
and presumably more accurate, the difference with the TLS-LS
case for system identification is only marginal if N is large. The
algorithm is given below.

1. With X � H � 1 � and Y � H � 2 � , denote H1 ��� X Y � , H2 � H.
Compute the SVDs of H1 and H2, and denote their rank-d
approximants by Ĥ1 and Ĥ2:

H1 � U1Σ1V∗
1 → Ĥ1 � Û1Σ̂1V̂∗

1
H2 � U2Σ2V∗

2 → Ĥ2 � Û2Σ̂2V̂∗
2 �In this step, the common column and row spaces of X and Y

are determined explicitly to be Û1 and V̂∗
2 , and the projectors

onto these subspaces are Πc � Û1Û∗
1 and Πr � V̂2V̂∗

2 .
2. Define

X̂ � Û1Û∗
1 · X · V̂2V̂∗

2 � : Û1ExV̂∗
2

Ŷ � Û1Û∗
1 ·Y · V̂2V̂∗

2 � : Û1EyV̂∗
2 �

where Ex and Ey are d × d the following full rank matrices:

Ex � Û∗
1 X V̂2

Ey � Û∗
1 Y V̂2 � (26)

With these definitions, X̂ and Ŷ are rank d and share com-
mon column and row spaces obtained by (TLS) projections
onto both the column space spanned by Û1 and the row
space spanned by V̂∗

2 . They reflect the structure of the as-
sumed model (25) in the sense that they are weighted ‘outer
products’ of rank-d rectangular matrices, the weights being
the d × d matrices Ex and Ey.

3. Set F � Ŷ X̂ " , then

eig
�
F �F� eig # EyE−1

x
0 $ and Φ � eig

�
EyE−1

x � �
The computation of Ex and Ey in (26) can be done efficiently by
defining the matrices U11 and U21 to be the first and last L rows
of U2, respectively, so that

X � U11Σ2V∗
2

Y � U21Σ2V∗
2 �Substituting this in the definitions of Ex and Ey in (26) and using

the fact that Σ2 V∗
2 V̂2 �� Σ̂2 0 � T, we obtain

Ex � Û∗
1Û11Σ̂2

Ey � Û∗
1Û21Σ̂2 �

Multiplication by Σ̂2 can even be omitted, since this will not af-
fect Φ.
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The above algorithm only requires computation of the SVDs
of H1 and H2, followed by the computation of the eigenvalues of
the pair

�
Û∗

1 Û11 � Û∗
1Û21 � . If X and Y are Hankel matrices (as in

system identification), then X and Y have all but two columns
in common. It seems in this case better to omit the duplicate
columns in H1, but in doing so H1 and H2 differ in only one row
and one column, and for large N the difference between the TLS-
TLS and TLS-LS algorithms is negligible. If the Hankel assump-
tion is not used, then the above algorithm is a modification of the
more sequential TLS-ESPRIT algorithm of [35,36] in which the
projection onto the common column space is done first, and the
common row space is then determined from the resulting smaller
matrices. In the ESPRIT context, H is obtained by stacking X
and Y . Because the noise on X is now unrelated to the noise on
Y , the difference between the LS and the TLS variant can be sig-
nificant.

D. Pro-ESPRIT

For completeness, and to indicate that there exists a litany of
algorithms that are all based on (repeated) rank d truncations of
matrices constructed from X and Y , we mention an algorithm
based on Procrustes rotations [71], called Pro-ESPRIT. The algo-
rithm can basically be formulated as follows [72]. Starting from
data matrices X and Y as before, compute (independent) rank-d
approximations X̂ � Ŷ using SVDs:

X � U1Σ1V∗
1

Y � U2Σ2V∗
2

→ X̂ � Û1Σ̂1V̂∗
1

Ŷ � Û2Σ̂2V̂∗
2 � (27)

Then the rank reducing numbers of Ŷ − λX̂ are equal to those of
the rank-d pencil

QuΣ̂2Q∗
v − λΣ̂1 �

with Qu � Û∗
1Û2 and Qv � V̂∗

1 V̂2. Under noise-free conditions,
Qu and Qv are unitary matrices. With noise they are not, but can
be replaced (approximated) by their closest unitary matrices Q̂u

and Q̂v. This is called a Procrustes approximation, and Q̂u and
Q̂v can be computed via SVDs of Qu and Qv by setting all singu-
lar values equal to one. Hence Φ is determined from the d rank
reducing numbers of the approximated pencil Q̂uΣ̂2Q̂∗

v − λΣ̂1. In
[72] it is shown that, under certain conditions, this algorithm
yields results identical to those that would be obtained by replac-
ing Û1 and Û2 in (27) with approximating unitary matrices shar-
ing a common d-dimensional space. This approximation is ob-
tained via an SVD of � Û1 Û2 � , and V̂1 and V̂2 are approximated in
the same fashion. The resulting algorithm can be viewed as yet
another (two-step) variant of the algorithms mentioned above,
where a common d-dimensional subspace of the column spaces
of X and Y is determined in two successive steps.

E. Discussion

It is a difficult matter to decide which of the above algorithms
is to be preferred. They are all closely related, and their differ-
ences tend to disappear when N is large since they are all as-
ymptotically (for large N) equivalent to a first order approxima-
tion [72]. The variance of the estimated parameters is, however,
smaller for the various TLS implementations. If a parallel array
of processors is used, then there is not a dramatic difference in

the number of operations between the LS-LS and TLS-TLS al-
gorithm (less than a factor 2), because on a parallel array it takes
about the same number of operations to compute the SVD of a
matrix as it takes to apply the resultingU and V matrices to a sec-
ond matrix. Pro-ESPRIT requires roughly twice the amount of
computation, and is not necessarily more accurate. SVD updat-
ing techniques are very promising for an on-line (or real-time)
implementation of the TLS-LS algorithm. In these techniques,
estimates of Φ are calculated for increasing values of N by up-
dating the SVDs of X and Y obtained from some previous value
of N [70].

VII. ORTHOGONAL VECTOR METHODS

A. Introduction

As before, we assume that an
�
L � 1 � × N data matrix H is

given, and let X � H � 1 � represent the matrix constructed from
the first L rows of H, and Y � H � 2 � represent the matrix contain-
ing the last L rows. The last (unique) row of Y is denoted yL. In
contrast to the Least Squares Single Shift-Invariant methods of
the previous section, Orthogonal Vector methods exploit the fact
that Y is a shifted version of X, so that, in the relation FX � Y , F
can be chosen to be an L×L matrix with the following structure:

F �
�������

0 1
0 1

. . .
. . .
0 1

g

�������� � (28)

This reflects the fact that all but the last rows of Y are just copies
of rows of X. The last row yL of Y is obtained as a linear combi-
nation of rows of X, gX � yL, and hence � g − 1 � H � 0. Conse-
quently, � g − 1 � ∗ could be any vector in the left null space of H.
As mentioned in the problem outline in Section V, Φ � eig

�
F �

has L eigenvalues, only d of which are relevant. In the noise free
case, the valid eigenvalues are independent of L. The remaining�
L − d � eigenvalues depend on the particular choice of g.

An alternative approach leading to the same result takes the
analytic structure of H into account. With the definition a

�
z �W�� 1 z z2 · · · � T, we can associate with the vector u �� u1 u2 · · · � T

a polynomial u
�
z �s� u∗a

�
z �s� ū1 � ū2z � · · ·. The basic prop-

erty used by all Orthogonal Vector Methods is the trivial (noise
free) relationship that H �,P � Φ ��Q satisfies when P � Φ � is a
Vandermonde-type matrix (see (16)):

u∗H � 0 ⇔ u∗ P � Φ ��� 0 ⇔ u
�
φi ��� 0

�
i � 1 � · · · � d �

(29)
which states that if u is in the left null space of H, then the d ele-
ments φi on the diagonal of Φ must be solutions of the equation
u
�
z �{� 0. Hence, the polynomials u

�
z � derived from all possi-

ble vectors u in the left null space of H have d roots in common,
and in the noise-free case the choice of u in this null space is of
no particular importance. In comparison with the previous para-
graph, we see that u must be proportional to � g −1 � ∗. The equal-
ity between the eigenvalues of a matrix in bottom companion
form (F in equation (28)) and the roots of the polynomial con-
structed from the last row of this matrix is a well known result in
linear systems theory [12].
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Orthogonal Vector methods are sometimes called prediction
methods. This is because when H is a Hankel matrix built from
a time series hk, the entries gi of g can be thought of as the coeffi-
cients of a linear prediction filter (moving average filter) G

�
z �N�

∑L
1 gL−i " 1zi that predicts a new data sample hk " 1 from knowl-

edge of the preceding L samples {hk � · · · � hk−L " 1}, for k � L to
k � N � L − 1. In writing out the equations, it is seen that g pre-
dicts yL from a linear combination of the rows of X by minimiz-
ing the error

�
yL − gX � . For such a matched filter, the zeros φi

of the prediction-error filter −1 � G
�
z � are the zeros of u

�
z � in

equation (29), and hence equal to the poles of the system that
generated the data because the inverse prediction-error filter will
have the original data sequence as its impulse response. There
are many variants of such linear prediction methods. For exam-
ple, when the data is known to be sinusoidal, as in the harmonic
retrieval problem, then doing both a forward (as above) and a
backward prediction (predicting hk from {hk " 1 � · · · � hk " L}) yields
improved accuracy. When covariance data is used instead of di-
rect data, then the resulting relationships are known as the Yule-
Walker equations; they are solved in precisely the same way as
in the sequel to this Section [73, 74].

If H is a noisy data matrix, then an approximation Ĥ � ÛΣ̂V̂∗

may be formed from the SVD representation H � UΣV∗. In this
way, the column space of H is split into a signal subspace Û and
a noise subspace Û⊥ which is the left null space of Ĥ. There exist
a number of Orthogonal Vector Methods, each of which differs
from the others in the actual choice of the vector u in the noise
subspace. Because, with noise, Ĥ no longer has a left factor P
with Vandermonde structure, property (29) above is no longer
valid and different selections of vectors u in the noise subspace
lead to different solutions. A few of the possibilities are dis-
cussed in the subsections which follow.

One of the problems associated with these methods is that only
d of the L roots of the polynomial u

�
z � are of interest, namely

those that correspond to the system poles. Apart from the com-
putational overhead incurred in obtaining L roots (in comparison
with the order d eigenvalue calculations of the previous section),
one is also faced with the problem of how to select these d roots.
Each of the methods below has its own rationale behind its selec-
tion criteria. A few observations are indicative in this respect.
One is that if H was noise-free, then the residues ri of the un-
derlying model h

�
z � (equation (3)) that correspond to the L − d

extra roots would be zero, and hence these extra poles would be
unobserved in the model. If H does contain noise, one might as-
sume that these spurious residues are still small. Another obser-
vation is that for rank d Hankel matrices H that are corrupted by
additive white noise, the L − d � 1 smallest singular values of H
would be equal. The theory of Adamjan, Arov, and Krein (AAK)
in [75] states that if the

�
d � 1 � -st through

�
L � 1 � -st singular val-

ues of H are equal, then the polynomials constructed from any
of the corresponding singular vectors have d roots in common.
Hence, for both the white noise and noise free cases, all polyno-
mials constructed from vectors that are in the noise subspace of
H have d roots in common, and the results of each of the methods
discussed below should ‘asymptotically’ be the same.

Below, a brief overview is given of four Orthogonal Vector
Methods: Padé approximation (as in [59]), Kumaresan-Tufts
(KT) Min-Norm method with and without rank reduction, and

AAK Hankel-norm model reduction. The first two methods are
included for historical reasons. The different methods are char-
acterized by the choice of the representative vector from the
noise subspace (as in [76]) since the roots of the polynomial con-
structed from this vector are directly related to the poles of the
approximating system.

B. Padé approximation

In this class of methods, the data matrix X is square and of full
rank, so N � L and d � L. Hence the order of the system deter-
mines the size of the data matrices to be used, and vice versa.
The vector g is defined by

gX � yL ⇒ g � yLX−1 �
With F constructed from g as before (equation (28)), we have
FX � Y and Φ � eig

�
F � . The ‘approximating’ system which re-

sults is of degree d � L. Since this method uses all data without
rank reduction, it is very sensitive to perturbations in X and yL
[59], and the number of measurements directly determines the
degree of the approximating system. The noise subspace is de-
fined in this case by the null space of H∗ ���X∗ y∗

L � , which has
dimension one, and is spanned by the vector � g −1 � ∗. A related
method is the classical method of Prony [39] for sinusoidal data.

C. Kumaresan-Tufts method without rank reduction

In the Kumaresan-Tufts method without rank reduction, it is
assumed that the L×N matrices X and Y satisfy N D L. Since no
rank reduction is done, we still have d � L. In comparison with
the Prony method, it is seen that the restriction N � L is removed.
The vector g is computed by trying to solve the overdetermined
system of equations gX � yL for g. With noise present, the null
space of H∗ �0�X∗ y∗

L � will contain no vectors at all; the row yL is
not contained in the row space of X. However, after projecting yL
onto the row space of X, resulting in ŷL � yLX " X, the null space
of Ĥ∗ ���X∗ ŷ∗

L � spans precisely one vector: � g − 1 � ∗. This g is
also the solution to the minimization problem

min
g
� gX − yL � 2

and is determined explicitly as g � ŷLX " . Note that the LS meth-
ods of Section VI with d � L yield precisely the same result since
no actual rank reduction is done; i.e., F � YX " is the same as that
obtained here. Pisarenko’s method [77] for harmonic retrieval
operates on a covariance matrix constructed on the given data but
is essentially the same method (see [60]). These methods are still
very sensitive to perturbations in X due to noise.

D. Kumaresan-Tufts Minimum-Norm method

The Min-Norm method proposed by Kumaresan-Tufts [78–
83] is a modification of the above method to make it more robust
for the separation of closely spaced sinusoids in the presence of
noise. It amounts to the following three steps:

1. A solution to gX � yL is forced by reducing H �� X∗ y∗
L � ∗

to rank d. This can be done in two ways. The classical LS
way would compute a rank d approximation X̂ from an SVD
of X, and project yL onto the row space of X̂ to obtain an ŷL
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such that gX̂ � ŷL has solutions g:

X � UΣV∗ → X̂ � ÛΣ̂V̂∗

ŷL � yL V̂∗V̂ �
This is the counterpart of the LS-LS method of the previous
section. A TLS method (cf. the TLS-LS method of Section
VI) would compute the SVD of H and derive X̂, ŷL from the
rank d approximation Ĥ as follows:

H � UΣV∗ → Ĥ � ÛΣ̂V̂∗ �%# X̂
ŷL $ �

which yields

X̂ � X V̂∗V̂ � Û � 1 � Σ̂V̂∗

ŷL � ŷV̂∗V̂ � � Û � LΣ̂V̂∗ �
where

�
Û � L is the last row of Û.

2. The system gX̂ � ŷL is now underdetermined, and the noise
subspace of Ĥ has dimension L − d � 1. Of the many pos-
sible vectors � g − 1 � ∗ in this subspace, choose the one with
minimum norm � g � 2, i.e., choose g � ŷLX̂ " � yLX̂ " as in
the previous case. If the TLS approach is used in the above
step, then we can show that in fact� g −1 � ∼

�
Û⊥ � LÛ⊥∗ �

in which Û⊥ spans the noise subspace defined via U �� Û Û⊥ � , and
�
Û⊥ � L is the last row of Û⊥ (see also [84]).

This determines precisely which vector of the noise sub-
space is chosen.

3. The estimated d poles are a subset of the eigenvalues of F,
with F as in (28). We could also compute the roots of the
polynomial associated with � g − 1 � ∗, leading to the same
result.

In comparison with the previous method, the rank reduction to
order d in combination with a null space vector of dimension
larger than d greatly improves the previous two methods [82].
The choice of g to have minimal norm among all vectors g that
satisfy gX̂ � ŷL forces the extra L − d � 1 eigenvalues of F to
lie regularly spaced on a circle of minimal radius within the unit
disc [78–80,85]. This property can be used to select the d desired
eigenvalues.

E. AAK Hankel norm approximations

The ultimate goal of the methods considered in this paper is,
given a (full rank) matrix H, to find a rank d approximating struc-
tured matrix Ĥ �6P � Φ̂ �RQ that minimizes in an appropriate norm
the difference H − Ĥ. In Section VI, the minimizing norm was
taken at first to be the Frobenius norm:

min
Ĥ rank d

� H − Ĥ � 2F � (30)

However, the minimizing Ĥ does not have the required shift-
invariance structure. By ignoring this fact, and using properties
that Ĥ would have in the noise free case, we were able to derive
a reduced order model that does possess shift-invariance struc-
ture and is presumably not too far away from Ĥ. Unfortunately,

to date no bound has been found to quantify this error. In Section
VIII, techniques will be discussed that do solve the above mini-
mization problem in the Frobenius norm, taking the structure of
the approximant into account. This is a highly non-linear oper-
ation, leading to complicated search techniques. Under certain
conditions, however, it can be shown that a structured solution
can be found when a different norm is applied. Such a norm is
the Hankel norm.

In a celebrated paper, Adamjan, Arov and Krein [75] have
demonstrated that, when H is a Hankel matrix of infinite dimen-
sions, but of finite rank and bounded L2-norm, there exists a
unique Hankel matrix Ĥ that is the solution to a related mini-
mization problem:

min
Ĥ rank d

� H − Ĥ � (31)

in which the matrix L2 (operator) norm is minimized:� H − Ĥ �e� sup� x � 2 ! 1
� Hx − Ĥx � 2 �

Recall that the L2 norm of a matrix is in fact equal to its largest
singular value. The use of this norm leads to a so-called Hankel-
norm approximation of the impulse response vector h on which
H was built, or its polynomial h

�
z � ; i.e., it is the approximation

in L2 norm of the Hankel matrix associated with h
�
z � . Unlike

the Frobenius norm, the Hankel-norm approximation allows the
d vectors spanning the range of Ĥ to have components outside
the range spanned by the first d singular vectors of H without
penalty on the norm of the error, because the norm only measures
the largest singular value. This enables Ĥ to take on a Hankel
structure, something that the SVD methods of Sections VI and
VII were not able to achieve. We can summarize the main results
[59, 75, 86–91] as follows, favoring vector notations over poly-
nomial descriptions, when possible, for better comparison with
the previous methods.

Given a matrix H of infinite size, representing a stable high-
order system, let H � UΣV∗ and denote the

�
d � 1 � -st column of

U by ud " 1. With U �S� Û Û⊥ � as before, ud " 1 is the first column
of Û⊥, the noise subspace. The corresponding singular value and
right singular vector of ud " 1 are denoted σd " 1 and vd " 1.

1. The polynomial ud " 1
�
z � constructed from ud " 1 has pre-

cisely d ‘stable’ roots φi inside the unit circle.
2. If Ĥ is a rank-d Hankel matrix approximating H according

to (31), then the minimum error � H − Ĥ �t� supu � u∗H −
u∗Ĥ � equals σd " 1 and is attained by the corresponding left
singular vector ud " 1 of H:

u∗
d " 1
�
H − Ĥ ��� σd " 1vd " 1 �

where vd " 1 is the
�
d � 1 � -st right singular vector. Since

u∗
d " 1H � σd " 1vd " 1, we must have u∗

d " 1Ĥ � 0. Hence the
columns of Ĥ are all orthogonal to ud " 1, or, in the context
of the previous section, ud " 1 is in the noise subspace asso-
ciated with H.

3. Combining the above two properties, it is concluded that
the d stable roots of ud " 1

�
z � define the best rank-d Hankel

approximant in the L2 norm.
The above properties are derived only for infinite-dimensional
Hankel matrices. If a high-order (stable) model of h

�
z �:�
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b
�
z ��C a � z � is known, for example in the form of a high-order state

space model, then the theory can be extended to operate on Han-
kel matrices of finite size that are larger than or equal to the
model order, thereby obtaining the same results [59, 86, 88, 89,
92]. The singular values and vectors of the infinite dimensional
Hankel matrix can then also be easily computed [93]. If oper-
ating on Hankel matrices that are windowed (finite) versions of
infinite Hankel matrices (as is the case throughout this paper),
then the above theory is no longer applicable, although the so-
lution is continuous when the rank of the matrix is finite and the
dimension is larger than the rank. However, in general it can eas-
ily happen that ud " 1

�
z � has more or fewer roots than d in the open

unit disc, especially if the data is corrupted by noise, and hence
the rank of the underlying infinite matrix is not finite. One way to
avoid these problems is first to derive a high-order stable model
using other techniques, and then use an extension of the AAK
theory that works on finite size state space models to obtain a
rank-d reduced-order model Ĥ. Precise formulas appear in [94],
[95, p. 452]. Since this Ĥ is obtained by a two-step process, it
will be a suboptimal solution to (31). However, it will approach
the optimal solution as N � L → ∞. AAK Hankel-norm model re-
duction methods can also be extended to the time-varying con-
text [96].

F. Root MUSIC: a link to Subspace Fitting techniques

To link the methods of this section with the Subspace Fitting
techniques of the next section, we briefly discuss here a deriva-
tion of (root)-MUSIC. In the introduction to this section, we no-
ticed that the basic form of the Orthogonal Vector Methods is
simply

u∗Ĥ � 0 ⇔ u
�
φi ��� 0 � (32)

which means that for a selected u in the left null space of Ĥ,
the roots of u

�
z � are viable estimates of φi. However, as Ĥ does

not have Vandermonde structure, different choices of u in this
null space will lead to different estimates {φi}. Because the left
null space of Ĥ is, by definition, spanned by Û⊥, we can write
u∗ � wÛ⊥∗ for some row vector w of dimension L − d � 1. For
example, in the AAK approach w �0� 1 0· · ·0 � selects the first vec-
tor in the noise subspace, while for for the Kumaresan-Tufts TLS
method, w � � Û⊥ � L is the last row in Û⊥. Now, using the nota-
tion a

�
φ � : �� 1 φ φ2 · · · φL � T, (32) is equivalent to the polyno-

mial equation in φ,
wÛ⊥∗a

�
φ ��� 0 �Orthogonal Vector Methods select one specific vector w, and

search for the roots of the above expression. In this context,
the idea behind the well-known DOA estimation algorithm MU-
SIC is not to select a single w, but instead to work with the full
polynomial null space Û⊥∗a. In particular, root-MUSIC exploits
the fact that in the noise free case, as well as in the infinite data
white noise case, all entries of the column vector of polynomi-
als Û⊥∗a

�
z � ≡ Û⊥ � z � have d roots in common. The root-MUSIC

algorithm, as a spectral estimation method, then makes the as-
sumption that these roots lie on the unit circle, and estimates
them by rooting the sum of squared polynomialsÛ⊥∗ � z−1 � Û⊥ � z � ,
retaining only the d roots in the unit disk with modulus nearest
unity (only roots inside the unit circle need be considered since
the squaring operation forces conjugate reciprocal roots).

To connect this Orthogonal Vector method with the Subspace
Fitting methods of the next section, note that the root-MUSIC
technique was derived from the MUSIC algorithm, which ob-
tains parameter estimates by minimizing the so called MUSIC
null-spectrum:

min
φi
� Û⊥∗ a

�
φi �b� 2F � min

φi
a∗ � φi � Û⊥Û⊥∗ a

�
φi � � i � 1 � �G�G� � d �(33)

for φi on the unit disc. It can be seen that MUSIC attempts to
find, one at a time, d vectors a

�
φi � from the array manifold which

most closely fit the signal subspace, or which are most orthog-
onal to the noise subspace. Note that MUSIC cannot force the
null-spectrum to be zero since it only uses vectors a

�
φ � from the

array manifold in its search; i.e., instead of rooting a polyno-
mial as above, it finds points on the unit circle where the sum
of squared polynomials is minimized. On the other hand, root-
MUSIC finds the exact roots of this polynomial, and then esti-
mates φi � i � 1 � ���G� � d by projecting these roots onto the unit cir-
cle.

VIII. SUBSPACE FITTING TECHNIQUES

In this section, the class of Subspace Fitting techniques for
solving the direction-of arrival estimation problem is considered.
The discussion follows the framework of Viberg and Ottersten
[97] and Stoica et al., [98, 99] whose recent work provides an
enlightening overview of the DOA estimation problem and new
results on the asymptotic behavior of the estimate errors. The
generic subspace fitting problem considered in [97] is the follow-
ing: given some representation of the data M, find Φ̂ and T̂ such
that

Φ̂ � T̂ � argmin
Φ 9 T � M − P � Φ � T � 2F (34)

for T of suitable size, and with P � Φ � and T of rank d. In the
sequel, we will often write just P instead of P � Φ � . Due to the
special structure of P , this is a non-linear optimization problem,
separable however into a linear part in T and a non-linear part inP . Substituting the solution of the linear part, T̂ �.P " M, back
into (34) gives

Φ̂ � argmin
Φ
� � I − Π �W� M � 2F � argmax

Φ
Tr
�

Π � � Φ � MM∗ � �
(35)

in which Π � � Φ �t��P�P " is the LS-projector onto the column
space of P � Φ � , and Tr denotes the trace operator.3 Several pop-
ular DOA estimation algorithms may be cast in the form of equa-
tion (35). These include the deterministic maximum likelihood
method [79, 98, 100–104], multi-dimensional MUSIC [35, 105],
as well as Weighted Subspace Fitting (WSF) [97]. The MODE
algorithm of Stoica et al., also has a related interpretation [98,
99].

In our discussion of identification methods so far, we have
been able to avoid the notion of covariance matrices. However,
the Subspace Fitting techniques have been introduced in the lit-
erature in a statistical framework, and hence the analysis is tra-
ditionally not done directly on the data, but rather on the covari-
ance matrix of the data. There are strong links between the two,

3Recall that the trace of a matrix is defined as the sum of its diagonal entries.
We will use some of its properties: (1) the trace of a projection operator is equal
to the dimension of the subspace on which it projects, (2) Tr � AB �}� Tr � BA � , for
matrices A and B of compatible size, (3) � A � 2F � Tr � A∗A � .
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and it is possible to avoid the notion of covariance altogether (as
we have done in the preceding sections), but in the discussion of
the present section the use of covariance matrices avoids certain
complications. Denoting the

�G�
L � 1 � × N � -dimensional output

data matrix H of (24) by H � HN �5P � Φ ��Q N � ` N, the relevant
covariance matrices are defined as

Signal covariance: P � limN→∞
1
N Q N Q ∗

N
Output covariance: R � limN→∞

1
N HN H∗

N � (36)

With the assumption that the additive noise matrix is a realization
of a stationary, zero-mean white Gaussian process with spatial
covariance σ2I, we have

R �5P � Φ � P P ∗ � Φ � � σ2I

if the noise and signals are uncorrelated. If P � Φ � P is full rank
d, it is easily seen that the L � 1 − d smallest eigenvalues of R
are all equal to σ2. This fact is reflected in our notation for the
eigenvalue decomposition of R:

R � EsΛsE
∗
s � EnΛnE∗

n � EsΛ̃E∗
s � σ2I

where E �� Es En � is unitary,

Λn � σ2I
Λ̃ � Λs − σ2I �

and Es and En are isometries of rank d and
�
L � 1 − d � , respec-

tively. Since the column space of Es is equal to that of P � Φ � P,
it is referred to (as above) as the signal subspace. The column
space of En is correspondingly referred to as the noise subspace.

Since in practical applications we cannot allow N → ∞, the
above quantities must be estimated using finite sample averages.
Thus, the sample covariance RN of the data is computed as in
equation (36) by removing the limit statement. Estimates of the
signal and noise subspaces are then simply obtained by perform-
ing an eigenvalue decomposition on RN, and these estimates will
be denoted as Ês and Ên. Comparing RN with HN � UΣV∗ and its
rank d approximation ĤN � ÛΣ̂V̂∗, where U �M� Û Û⊥ � as usual,
we can identify Û � Ês, Û⊥ � Ên, and Σ̂2 C N � Λ̂s. This provides
the link between the SVD of a data matrix and the eigenvalue
decomposition of the estimate of its covariance matrix. An es-
timate of σ2 can be obtained by simply averaging the L � 1 − d
smallest eigenvalues of RN.

The remainder of this section is devoted to a brief overview of
the various Subspace Fitting methods, based on specific choices
of M in (34) and (35).

A. Deterministic Maximum Likelihood

If we assume that the columns of ` N are stationary, inde-
pendent, zero-mean, circular complex Gaussian random vectors,
and that the signals corresponding to the matrix Q N are determin-
istic (as in the pole estimation problem), then maximizing the
log-likelihood of the data HN with respect to Φ and Q N can be
shown [102,103] to be equivalent to the following minimization
problem:

Φ̂ � ˆQ N � arg min
Φ 9 � N

� HN − P � Φ �RQ N � 2F � (37)

The solution of the linear part gives ˆQ N �0P " HN, and substitu-
tion into (37) reduces the minimization problem to

Φ̂ � argmax
Φ

Tr
�

Π � � Φ � RN � � (38)

The algorithm resulting from implementation of either of the
two above extremization problems is referred to as deterministic,
or conditional, Maximum Likelihood (ML) [79, 98, 100–104].
Since P � Φ � is non-linear in the entries of Φ, its computation re-
quires in general a complicated multi-dimensional search over
the parameter space. Asymptotic properties of the deterministic
ML method are given in [97–99].

Note that deterministic ML can be cast in the Subspace Fitting
framework of equation (34) if the matrices M and T are chosen
to be HN and Q N respectively. Using asymptotic arguments, an-
other connection with Subspace Fitting can be made [97]. For
large N, we have Λ̂n → σ2I and RN → ÊsΛ̃Ês � σ2I. As the trace
of σ2Π � is a constant, it can be omitted from the optimization
and, from (38) it then follows that the ML solution is asymptot-
ically (for large N) equivalent to the solution obtained from

Φ̂ � argmin
Φ 9 T � ÊsΛ̃1 c 2 − P � Φ � T � 2F � argmax

Φ
Tr
�
Π � � Φ � ÊsΛ̃Ê∗

s � �(39)
This is again an instance of the generic Subspace Fitting prob-
lem in (34) and (35) for M � ÊsΛ̃1 c 2 and T of dimension d × d.
Using the weighting Λ̃, (39) minimizes the distance of the d-
dimensional shift-invariant subspace of P to the signal subspace
Ês. In going from the formulation of (37) to that of (39), we see
that the minimization has been made more compact; i.e., it in-
volves d columns of data instead of N.

B. ESPRIT and MI-ESPRIT

In Section VI, it was mentioned that the (TLS) ESPRIT algo-
rithm [35] was a special case of the TLS-TLS principal compo-
nent approach. It has recently been noted [97,106] that ESPRIT
also has a Subspace Fitting interpretation. In particular, it can be
shown that the ESPRIT algorithm is equivalent to the following
least-squares minimization problem:

Φ̂ � arg min
Φ 9 � 1 ���� #

Ê1

Ê2 $ − # P 1P 1Φ $ T ����
2

F
� (40)

where Ê1 and Ê2 contain the rows of Ês corresponding to the two
identical subarrays; e.g., for the uniform linear array described
in equation (16), two maximally overlapped subarrays will yield
Ê1 � Ê � 1 � equal to the first L rows of Ê, and Ê2 � Ê � 2 � containing
the last L rows of Ê. The obvious connection with equation (34)
is made by describing P � Φ � as in (18) and letting

M � # Ê1

Ê2 $ �
If instead of just two subarrays, the array is composed of multi-

ple identical subarrays, a similar Subspace Fitting approach may
be formulated. Letting Êi represent the rows of Ês correspond-
ing to the i-th subarray, and Φi the diagonal matrix of phase de-
lay factors due to propagation of the (plane) wave from the refer-
ence to the i-th subarray, the most natural extension of ESPRIT
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is given by the following minimization problem:

Φ̂ � arg min
Φ1 9 ··· 9Φp 9 � 0

�����������

�������
Ê0

Ê1

Ê2
...
Êp

� ������ −

�������
P 0P 0Φ1P 0Φ2
...P 0Φp

� ������ T
�����������

2

F

� (41)

where we have assumed a total of p � 1 identical subarrays. Al-
gorithms based on this approach have been developed in [106,
107] for the case where Φi � Φi, and in [108] for the two-
dimensional (azimuth/elevation) case.

When Φi � Φi above, a generalized Vandermonde structure
results as evidenced by the multiple shift structure in the signal
subspace. The algorithm for this case is referred to as Multi-
ple Invariance (MI) ESPRIT. One drawback relative to (41) that
should be mentioned is that the elegant ‘closed-form’ SVD so-
lution of ESPRIT is not applicable; minimizing (41) requires a
non-linear multidimensional search when p D 1.

C. MUSIC

Although the Subspace Fitting paradigms of
equations (34) and (35) are inherently multidimensional, similar
one-dimensional formulations are also possible. For example, if
the MUSIC [51, 109] cost function introduced in equation (33)
is normalized by dividing by a∗ � φi � a � φi � , it may be re-written as

φi � argmax
φ

Tr
�

Πa
�
φ � ÊsÊ

∗
s � � (42)

where Πa
�
φ � is the projection onto the vector a

�
φ � . The only

difference between (42) and (35) above with M � Ês is that
while (35) implements a search for all of the parameters simulta-
neously, MUSIC searches for them one at a time. Thus, MUSIC
can be classified as a one-dimensional Subspace Fitting tech-
nique.

The asymptotic properties of MUSIC have been studied, a.o.,
in [98, 110–112]. One of the interesting results of these studies
is that deterministic ML and MUSIC have equivalent asymptotic
performance if the sources are uncorrelated and of equal power.

D. Multi-Dimensional MUSIC

Although relatively simple to compute, MUSIC does not give
accurate results if the signals are highly correlated. This is pri-
marily because the parameter search is done one dimension at a
time. Schmidt [51] hinted at a multi-dimensional (MD) counter-
part to MUSIC that would overcome this difficulty, and Cadzow
independently developed such an algorithm [105]. The result-
ing algorithm, which has been referred to by several authors as
MD-MUSIC, can be described by replacing M with Ês in (34):

Φ̂ � argminΦ � Ês − P � Φ � T � 2F� argmaxΦ Tr
�

Π � � Φ � ÊsÊ∗
s � � (43)

The motivation for the terminology ‘one-dimensional’ and
‘multi-dimensional’ MUSIC becomes clear when comparing
equations (43) and (42).

E. Weighted Subspace Fitting (WSF)

In the Weighted Subspace Fitting method of Viberg/Ottersten
[97], the optimality criterion is defined as (cf. (34) and (39)),

Φ̂ � argminΦ � ÊsW1 c 2 − P � Φ � T � 2F� argmaxΦ Tr
�

Π � � Φ � ÊsWÊ∗
s � (44)

In this method, a positive definite weighting matrix W is intro-
duced. We showed earlier that the deterministic ML method cor-
responds to the case where W � Λ̃1 c 2. Viberg and Ottersten have
shown [97] that W can be chosen to asymptotically (for large
N) minimize the estimation error variance of the parameters φi,
and that the optimal choice for W is Wopt � Λ̃2Λ−1

s , or a consis-
tent estimate thereof. This choice for W has also been shown to
make WSF statistically efficient; i.e., the WSF estimates asymp-
totically achieve the Cramér-Rao lower bound on the variance of
the estimation error under the assumption that the signal wave-
forms are Gaussian random processes [113].

F. Method of Direction of Arrival Estimation (MODE)

Using the orthogonality of the estimated signal and noise sub-
spaces defined by Ês and Ên, an algorithm that is in some sense
a dual of the Subspace Fitting approach in (43) can be devel-
oped. In this approach, one estimates the parameters Φ as those
for which P � Φ � provides the worst fit (i.e., most orthogonal) to
the estimated noise subspace. Such an approach has been formu-
lated in [99] by considering a criterion function of the form

Φ̂ � argmin
Φ
� Ê∗

n P � Φ � W1 c 2
1 � 2F � argmin

Φ
Tr
� P ∗Ên Ê∗

n P W1 � �(45)
The estimation error covariance is shown in [99, 114] to be

minimized by the weighting W1 9 opt � � P ∗U P�� −1, where U �
Es Λ̃2Λ−1

s E∗
s , and the resulting algorithm using this weighting is

referred to as MODE. It can easily be shown that both WSF and
MODE yield results with identical asymptotic second order error
statistics [115]. Note also that the MUSIC algorithm is equiva-
lent to (45) when W1 � I, and that deterministic ML is asymptot-
ically equivalent to (45) when W1 c 2

1 �6Q or W1 � P [114].

G. Identification via Subspace Fitting

While the description of the above algorithms has been
couched in the problem of DOA estimation, the subspace fitting
concept may also be directly applied to the pole estimation (i.e.,
system identification) problem. To see this, recall equation (12),
where it is shown that the column space of the matrix R22Q∗

2 is
equivalent to that of the observability matrix ) . Without mea-
surement noise, there will exist a full rank d × d matrix T satis-
fying

E �.) T �
where E represents the d principal components of R22Q∗

2. With
noise, R22Q∗

2 is full rank, and we are led by the subspace fitting
results above to consider the minimization problem [116]

Â � Ĉ � argminA 9C � ÊW1 c 2 − ) T � 2F� argmaxA 9C Tr
�
Π � � A � C � ÊWÊ∗ � � (46)

where A and C are the matrices of the state space model upon
which ) depends. Because of the special shift structure inherent
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in ) , we see that the minimization problem of (46) is isomorphic
to that of the MI-ESPRIT algorithm described by (41).

As with MI-ESPRIT, implementation of (46) is somewhat
more difficult than for the single shift invariance methods of Sec-
tion VI. Whereas in the latter case the estimates are obtained
directly via one or two SVDs, solving equation (46) requires
some type of search technique. However, since single shift meth-
ods can be used to efficiently obtain an accurate initial estimate,
a Newton-like gradient search will rapidly converge to the de-
sired solution. Details of a Gauss-Newton implementation can
be found in [106].

One might immediately assume that the weighting matrix W
could be chosen to minimize the variance of the parameter esti-
mates, as does the WSF algorithm. Strictly speaking, however,
the optimality of Wopt has only been derived for the case where
the observations (columns) in H are independent (as is the case
in the DOA estimation problem). In the pole estimation prob-
lem, the Hankel structure of H violates this assumption. How-
ever, simulations indicate that the weighting nonetheless has the
desired effect of reducing the variance of the pole estimates.

IX. PROPERTIES OF THE IDENTIFICATION METHODS

The previous three sections have introduced perhaps an over-
whelming number of algorithms and methods, all computing ap-
proximately the same quantity. How does one go about select-
ing an appropriate algorithm for a given application? Usually,
the trade-off that must be addressed in answering this question
comes down to estimation accuracy versus ease of implemen-
tation and computational complexity. As a general rule, recent
literature conveys that among the identification methods men-
tioned in the previous sections the best estimation performance
is obtained by the optimal Subspace Fitting methods (e.g., WSF,
MODE), whereas the most computationally efficient solutions
are obtained by the Single Shift-Invariant methods of Section VI.

However, since there are often other variables and trade-offs
to consider, the question above is often not so easily answered.
For example, in the array processing context, if the source sig-
nals are highly correlated (e.g., due to specular multipath: the
same source is observed directly as well as via reflections), then
one of the multi-dimensional Subspace Fitting methods must be
selected. On the other hand, these methods require full knowl-
edge of the sensor array geometry and sensor properties (i.e.,
the array must be calibrated), while ESPRIT exploits the special
doublet structure of the array and does not require precise loca-
tions and response properties of the sensors.

To conclude the paper, we will briefly describe these trade-offs
in more detail. Our focus will be on the DOA estimation prob-
lem, since this is where most of the research in this area has been
conducted. Because of the large number of techniques discussed,
it is impractical to conduct and present the results of extensive
simulation studies in this paper. Instead, we choose to qualita-
tively describe the results that others have obtained in various
performance analyses. We refer the interested reader to the pa-
pers cited in this section for the actual numerical results of such
simulation studies.

A. Performance analyses

In the past several years, there has been considerable interest
in investigating the statistical properties of the various methods
mentioned in the previous three sections. In particular, the goal
of this work has most often been to derive theoretical expressions
for the variance of the pole or DOA estimates obtained by these
algorithms. Since this is very difficult to do in general, the the-
oretical studies are usually limited to the large sample case (i.e.,
large N), and hence can be considered to hold only asymptoti-
cally. The picture can be completed by numerical examples for
finite N. It should be noted that since these studies have concen-
trated on the DOA estimation problem and its corresponding as-
sumption of independent noise samples, their results are not di-
rectly applicable to the system identification problem since the
additive noise has (by construction) a Hankel structure that can-
not be regarded as a set of L × N truly independent random vari-
ables.

For the DOA application, most of the algorithms mentioned in
this paper have been investigated, and more or less final results
have been published [97,98,117,118], which we summarize be-
low. The results have been obtained for signals modeled as sta-
tionary stochastic processes, with temporally uncorrelated zero
mean jointly Gaussian distributions. The noise is assumed to be
a zero mean temporally uncorrelated white Gaussian process that
is also uncorrelated with the signals (there are a few other more
minor conditions). It has been shown that ESPRIT, Determinis-
tic Maximum Likelihood, MUSIC, WSF etc., are all asymptoti-
cally unbiased; that is, the estimated parameters converge to the
true parameters as N → ∞ with probability one. However, the
second order performance (estimation error variance) of these al-
gorithms can be very different, and it is usually this second order
performance that is used to evaluate them. This evaluation is of-
ten conducted with respect to the so-called Cramér-Rao Bound
(CRB), which provides a lower bound on the estimation error
variance of any unbiased estimator.

For historical reasons, the MUSIC algorithm was the first
to have its performance extensively analyzed [98, 110–112].
Among other results obtained in these papers, it has been shown
that MUSIC is a large sample realization of the deterministic
Maximum Likelihood (ML) method if the signals are uncorre-
lated (P diagonal) [98]. Under this condition, both algorithms
asymptotically achieve the deterministic signal CRB, where by
asymptotic we mean for both large N and L. For finite L, how-
ever, neither method is statistically efficient.

For correlated signals, deterministic ML will generally out-
perform MUSIC. In cases where the signals are highly corre-
lated, MUSIC will often fail to resolve all d of the signals; that
is, there will be fewer than d local maxima in the MUSIC spec-
trum of (42). This loss of resolution can also occur when the sig-
nal to noise ratio is very low, or if the signals arrive from nearly
coincident directions. One of the advantages of the Orthogonal
Vector formulation of MUSIC, i.e., root-MUSIC, is that it does
not exhibit this loss-of-resolution threshold effect4. Above the
threshold, however, both MUSIC and root-MUSIC yield esti-
mates with identical asymptotic variance [112]. When compared

4Strictly speaking, root-MUSIC does have a performance threshold that results
when the algorithm chooses a spurious root from its polynomial. However, this
effect is manifest well beyond the MUSIC threshold.
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with the other Orthogonal Vector methods, root-MUSIC has the
lowest estimation error variance that can be achieved by select-
ing only one orthogonal vector [117] from the noise subspace;
in particular, it has a lower variance than Pisarenko, Min-Norm,
and AAK. The same has been observed in [119] via other meth-
ods.

As with Orthogonal Vector methods, the Single Shift In-
variant techniques of Section VI are guaranteed by construc-
tion to always produce the correct number of parameter esti-
mates. However, these algorithms will also fail when the sig-
nals are perfectly coherent, or nearly so. In this case, a fail-
ure is manifest by one of the estimates taking on what is essen-
tially a random value. Among other results obtained for the Sin-
gle Shift-Invariant methods of Section VI, it has been shown
that TLS-ESPRIT and LS-ESPRIT are asymptotically equiva-
lent [64, 118], although for small N TLS-ESPRIT has slightly
better empirical performance. It has also been shown that TLS-
ESPRIT is in general asymptotically less accurate that MUSIC
[120], although comparing the two algorithms is somewhat un-
fair since they rely on a different set of assumptions about the
sensor array. In particular, MUSIC requires much more infor-
mation about the array, and hence its superior performance is
to be expected. A recent non-asymptotic comparison between
Orthogonal Vector methods (MUSIC, Min-Norm) and Single
Shift Invariant techniques (TAM, ESPRIT) has appeared in [43,
121], and supports the above asymptotic results. In these pa-
pers, closed-form expressions for first-order approximations of
the perturbation of the signal and noise subspaces are derived.

One of the greatest advantages of the multidimensional Sub-
space Fitting methods of Section VIII is their ability to pro-
vide accurate parameter estimates in the presence of perfectly
coherent signals. Of these methods, WSF and MODE possess
the smallest estimation error, and in fact both methods asymp-
totically achieve the CRB under the Gaussian signal and noise
model [97]. Thus, both WSF and MODE can be thought of as
large sample realizations of the Maximum Likelihood method
for stochastic signals [102, 122]. An important result derived in
[113, 114] states that asymptotically, deterministic ML is statis-
tically less efficient than WSF, MODE, and stochastic ML, inde-
pendent of whether one assumes the signals are random or not.
The performance difference between these algorithms and deter-
ministic ML can be quite large in difficult cases involving highly
correlated, closely spaced signals at low signal to noise ratios.

Our discussion thus far in this section has implicitly focused
on algorithm performance degradations due to additive noise.
Another important practical consideration is the sensitivity of the
algorithms to various modeling assumptions, the most important
of which is the assumption of a perfectly uniform linear array of
identical sensors (or, in the general case, a perfectly calibrated ar-
ray response). Such analyses have been carried out for many of
the algorithms discussed thus far, including MUSIC [123–125],
ESPRIT [126, 127], deterministic ML [128], and Subspace Fit-
ting algorithms in general [129–132]. One of the surprising re-
sults to come out of these studies is the fact that, under the as-
sumption of simple Gaussian perturbations to the array response
and infinite data (N → ∞), MUSIC yields lower variance esti-
mates than MODE, WSF, MD-MUSIC, and deterministic ML
[125, 132]. A Subspace Fitting minimization of the form (44)

can yield performance equivalent to MUSIC in such cases, but it
requires a weighting matrix W quite different from that of WSF.

In the context of system identification, theoretical studies
comparing several Matrix Pencil and Orthogonal Vector meth-
ods have been carried out in [68, 72, 81, 120, 133] for the har-
monic retrieval problem. As already noted above, in this prob-
lem the noise matrix has a Hankel structure, and its columns can-
not be regarded as being independent. This fact makes the analy-
sis somewhat more difficult, although some results have been
obtained. For example, the conclusion of the study in [120] is
that MUSIC and ESPRIT perform almost equally, although usu-
ally ESPRIT is slightly better (this contrasts with the DOA prob-
lem). For signals with unknown damping factors, the Single
Shift-Invariant methods of Section VI are less sensitive to noise
than the Orthogonal Vector methods [68, 72]. A significant in-
crease in accuracy for these methods is obtained by increasing
L, because the error variance is proportional to 1 C � L3N � [120].
This is interesting because for a given set of data, one is free
to choose the ‘blocking factor’ N C L of the Hankel matrix con-
structed on the data, as long as d ≤ N � L. Note however that the
computational complexity is also proportional to L3, and that we
still require N L L. For the special case of only one signal, it
has been derived [68] that the best choice for the pencil method
is
�
N − L ��C 3 ≤ L ≤ 2

�
N − L ��C 3. For model reduction, the ‘noise’

due to unwanted high-order modes is actually deterministic, and
cannot be modeled as white noise; hence, the statistical results
obtained in the DOA context are not necessarily valid. In fact,
one wants to have a bound on the modeling error � h � z � − ĥ

�
z ���

in some suitable norm. At present, only the AAK method pro-
vides such a bound (in terms of the Hankel norm).

B. Computational aspects

Although WSF, MODE, and stochastic ML are optimal in
the sense of minimum asymptotic estimation error variance, the
minimization of their various error criteria can only be achieved
by iterative, non-linear optimization procedures. These proce-
dures are necessarily complex, and must be given initial esti-
mates of reasonable quality to guarantee convergence. In [53], a
Gauss-Newton descent method is proposed that can be used for
both WSF and other ML techniques, and that requires ) � Ld2 �
operations per iteration. Compared with the fact that the compu-
tation of the SVD for an

�
L×N � matrix requires ) � L2 � N � 20L �G�

operations, the cost of each Gauss-Newton iteration is relatively
small. The number of iterations required for convergence de-
pends of course on the quality of the initial estimates. When ES-
PRIT is used to obtain the starting point, adequate convergence
can be expected in two to three iterations. A number of empirical
studies [53,115] have indicated that WSF has better convergence
properties than both deterministic and stochastic ML.

In comparison with Subspace Fitting and Orthogonal Vector
Methods (OVM), Single Shift-Invariant methods (such as ES-
PRIT) are computationally more attractive. The number of oper-
ations required for the SVD part of these algorithms is the same
as for Subspace Fitting and OVM, but the eigenvalue computa-
tions can be done on d × d matrices in the SSI class, while the
OVM requires the solution of a larger L×L eigenvalue problem,
after which the d ‘valid’ eigenvalues must be selected. Because
of the regularity of the operations, the Single Shift-Invariant
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methods are amenable to implementation on parallel arrays of
processors, of which the basic operation is a Jacobi (plain) ro-
tation [134].

In many signal processing applications, the identification
problem is solved several times, using new data as it becomes
available, and discarding the older data. There is recent interest
in developing efficient updating techniques, which will result in
an ‘on-line’ processor array that can update the pole or angle es-
timates each time a new sample vector is received (‘updating’)
and an old vector is discarded (‘downdating’). One such updat-
ing scheme, based on an approximate SVD that will converge for
stationary signals, is reported in [70].

To alleviate the cost of computing the SVD, alternative but
computationally less demanding decompositions of the form
X � UExV∗, where Ex is not diagonal any more, are gaining in-
terest. Recent developments are the rank-revealing QR factor-
ization [135] which can be updated [136], and the rank-revealing
URV decomposition [137], where Ex � : R is upper triangular.
In this decomposition, R has a block decomposition into four
blocks, such that R12 and R22 both have small Frobenius norms,
and the smallest singular value of R11 is of the order of the small-
est singular value of X that one does not want to neglect. In this
way, one still obtains a decomposition of the range space of X
into a signal subspace and a noise subspace. The URV decom-
position can be updated and downdated at lower computational
cost than the SVD, which makes it a useful tool for adaptive sub-
space tracking algorithms.
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