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ABSTRACT

Distributed multiple-input multiple-output (MIMO) radars
can use multiple transmitters and receivers simultaneously to
detect targets. In order to maximize the probability of tar-
get detection, it is necessary to allocate the available transmit
power resources suitably. The optimal allocation requires cal-
culating the probability of detection, which is a computation-
ally complex task, so using the exact distribution is very diffi-
cult in a dynamic scenario. In order to alleviate this problem,
we propose an approximate distribution that is computation-
ally simpler. This approximation is compared with the ex-
act distribution as well as other cost functions that depend on
the distribution of the test statistic, including the Kullback—
Leibler divergence. It is demonstrated that the approximate
distribution works well in the power allocation problem for
MIMO radar target detection.

Index Terms— MIMO radar, Target detection, Power al-
location, Optimization

1. INTRODUCTION

Distributed multiple-input multiple-output (MIMO) radar sys-
tems use multiple transmitters and receivers in different lo-
cations over a large area. Using multiple waveforms from
different transmitters and combining multiple measurements,
the target detection and parameter estimation capabilities of
the radar system can be improved. In order to achieve a good
target detection capability within the given power budget, the
transmit power for each transmitter needs to be optimized.

Power allocation for distributed radar systems has been
studied previously in several papers. Power allocation meth-
ods that achieve a predefined MSE for target location estima-
tion have been proposed in [1] and [2]. The power alloca-
tion was formulated in [3] as a combinatorial subset selection
problem of choosing the transmitters that should be active to
reach a desired target localization MSE. Power allocation for
target detection was studied in [4], where the exact probabil-
ity of detection was optimized under probability of false alarm
constraints.

Unfortunately, optimizing the exact probability of detec-
tion directly is computationally difficult and the optimization
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problem is non-convex. In a time-varying scenario, the opti-
mal transmit power is constantly varying, so the optimization
has to performed in real time. Thus, using the exact prob-
ability of detection in the optimization is not plausible in a
dynamic scenario with moving transmitters or receivers. It
is therefore necessary to find an alternative optimization cri-
terion that still results in a desired probability of detection.
To this end, we propose an approximate distribution for the
detection test statistic that is far simpler to compute. The
approximation is based on the gamma distribution for which
the parameters are chosen so that the mean and the variance
are equal to those of the true distribution. Furthermore, we
compare the proposed approximate distribution with other op-
timization criteria, namely the Kullback-Leibler divergence,
the J-divergence, and the signal to noise ratio (SNR). Numer-
ical examples are provided to show the feasibility of the pro-
posed approximation.

This paper is organized as follows: The signal model is
given in Section 2 and target detection is discussed in Sec-
tion 3. The different optimization criteria are introduced in
Section 4, while numerical results are provided in Section 5.
Finally, the concluding remarks are given in Section 6.

2. SIGNAL MODEL

In a distributed radar system with M transmitters and N re-
ceivers, the baseband received signal at the ith receiver is

M
ri(t) = Z LricimLrm®im(t)amsm(t—Tim)+vi(t), (1)

m=1

where Lpg; is the path loss to the receiver, ¢;,, is the scattering
coefficient, L, is the path loss from the transmitter, ¢;,, is
the Doppler and phase factor, a,, is the transmit amplitude,
Sm 1s the waveform, and 7, is the propagation delay, and v;
is the receiver noise. The noise v; is assumed to be zero-mean
complex circular Gaussian. Furthermore, Swerling model I
is assumed [5], so the scattering coefficients are zero-mean
complex circular Gaussian as well. The variables that need to
be optimized are the amplitudes a,,, for each waveform.

The received signal is filtered before target detection using
matched or mismatched filters. The filter output of the ith
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receiver for the kth waveform can be written as
Yik :Z ri()65. ()i (t = Fim)
t
= ZLRi CimLrmam d)z’m (t) Qg;kk (t) Sm (t —Tim ) SZ (t - 7A_im)

m,t

+ 3 (OG5 (Osh(E = Fom)- @)

t

We assume that the transmitted signals have the required
auto- and cross-correlation properties so that signals originat-
ing from different transmitters can be separated at the receiver
filters. As we want to detect a target in a certain range (and
Doppler) bin, it is possible align the filtered signals in delay
and possibly in Doppler shifts such that
3

Yik = LricikLriar + ni,
where n; is the filtered noise. Stacking the filter outputs into

a single vector, one obtains

y= [yn Y21 yNM]T
= (diag(a) & IN)(IM ® LR)(LT ® IN)C +n
= A(LT X LR)C +n,

“

where diag(x) denotes a diagonal matrix with the elements
of vector x on the diagonal, L = diag( [Lm LRN] ),
Ly = diag([Lm Lrum]), A = diag(a) @ Iy, a =

T
l[a1  as am| e=[en ca cnml, ® de-
notes the Kronecker product, I, is a kx k identity matrix, and
n is the stacked filtered noise vector. The M N x MN co-
variance matrix of the filter output is

Ry = E[yyH}
=A(Lr ® Lgp)Rc(Lr ® Lp)A + R,
= Rs + Rna

&)

where R, is the covariance matrix of the scattering ampli-
tudes, Ry is the covariance matrix of the signal (which is a
function of the amplitudes a as well as the path losses L and
Lgz), and R,, is the covariance matrix of the filtered noise.
The receiver noise is assumed to be Gaussian with the co-
variance matrix R,,, so the filtered noise has the covariance
matrix

Ry =E®R,, (6)

where Z is the matrix ambiguity function of the transmitted
waveforms. It is assumed that the transmitted waveforms are
designed so that = is invertible. Moreover, R,, is assumed to
be positive definite due to thermal noise.

3. TARGET DETECTION

Target detection is most commonly based on binary hypothe-
sis testing. Given the target location x and the target velocity
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v, the null hypothesis # is that no target is at (x, v), whereas
the alternative hypothesis H; is that a target is present at (x,
v). The likelihood ratio test (LRT) is known to be an opti-
mal testing procedure in the Neyman—Pearson sense for the
binary hypothesis test. Since the scattering amplitude vector
c and filtered noise vector n are assumed to be complex cir-
cular Gaussian, the matched filter output vector is distributed

as
CN(0,R,), Ho )
CN(O,Rs+Ry), Hi
The log-likelihood ratio is thus
L= yH[Rgl - (Rs + Rn)_l]y ®)

+ det[(Rg + Rp) 7! — det(R,1).

The test statistic can be identified to be y#[R;! — (Rg +
R,) !]y. Assuming z is a standard complex normal with a
zero mean and an identity covariance matrix, the distribution
of the test statistic under the null hypothesis can be written as
y'Ry! = (Rs +Ra) 'y
~z"RYZRy — (Rs + Rn) 'Rz

~z" Iy — (S +Iun) Yz,

€))

where the SNR matrix is defined as S = RgR!. The noise
covariance matrix R, can be assumed to be invertible, see
(6). S is positive semidefinite (it has the same eigenvalues as

R."/*RyRa"/?), and thus, Iy — (S + T, n) ! is positive
semidefinite as well.
Under the alternative hypothesis, the distribution is
y7[R.' — (Rs +Ra) 'y
~ 2z (Rs + Rp)[Ry' — (Rs + Ry) ')z

~ zSz

(10)

The probability distribution function of the test statistic
can be given using the eigenvalues of S and the series for-
mula of gamma distribution functions given in [6], but this is
numerically complex to calculate.

It should be noted that the eigenvalues of the SNR matrix
S are invariant with respect to linear full-rank transformations
of the filter output y, and whitening or other such operations
cannot be used to improve the probability of detection.

4. POWER ALLOCATION

The goal of the MIMO radar system is to detect the targets
in a predefined surveillance area. This surveillance area is di-
vided into range and Doppler bins for detection and the set
of bins is denoted by X’. With the assumption that the target
velocity does not affect the signal power, the Doppler may
be disregarded in the optimization. For a given power bud-
get of P, we would like to allocate the power so that the
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probability of detection is as high as possible over the set X
with a constraint on the probability of false alarm ps. Equiv-
alently, we can minimize the maximum probability of missed
detection p,, over the surveillance area. The problem may be
formulated as

min max p,, (a, X) s.t. a’a < Py, Pf < Pfmin, (11)
a xeX

where x is the target position (range bin). Each point x has

an SNR matrix associated with it that depends on the transmit

amplitudes a as well as the path losses L7 and L.

Based on (3), we can assume that the target velocity does
not affect the probability of detection, as the velocity changes
the phase of the received signal, not the power. Furthermore,
we have assumed a total power constraint aTa < P,;. Other
constraints on the amplitudes are possible as well, including a
maximum power constraint for each transmitter. The expres-
sion for the probability of missed detection p,, can be found
in [4].

Using the gamma series formula given in [6] is compu-
tationally complex as thousands or even tens of thousands of
terms might be needed for accurate approximation, in partic-
ular when the condition number of the SNR matrix is large.
If all the eigenvalues of the SNR matrix are distinct, a closed-
form expression for the distribution function of the test statis-
tic can be computed (see e.g. [7]). However, this approach is
numerically unstable. We therefore need to find an alternative
criterion that provides an accurate approximation for the ex-
act probability of missed detection so that the transmit power
allocation can be done in a dynamic scenario.

In order to facilitate the detection, we want to make the
distribution of the test statistic as different as possible under
the null hypothesis and the alternative hypothesis. A com-
mon measure for the similarity of two distributions is the
Kullback-Leibler divergence also known as the relative en-
tropy [8]. For complex Gaussian distributions with covariance
matrices Ry and R, and equal mean, the Kullback-Leibler
divergence is given by

DkL(R1|Rg) = tr(Rg 'Ry) — tr(I) 1)
+ log det(Ryg) — log det(Ry).

The Kullback—Leibler divergence is not concave, so maximiz-
ing it is not a convex problem. Substituting Ry = R, and
R;: = Rs + R,,, one obtains

DKL(RllRO) = tI‘(S) — logdet(S + IMN)- (13)

A metric that is related to the Kullback—Leibler diver-
gence but symmetric is the J-divergence, defined as [9]

D;(R1,Rp) = DkL(R1|Ro) + DkiL(Ro|R1) (14)
= tI"(S + IMN) + tr[(S + I]\4N)71].

The J-divergence is a convex function, so maximizing it is not
a convex problem.
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As a simplification of the Kullback-Leibler divergence,
we can drop the determinant and only consider the trace of
the SNR matrix. It is straightforward to show that the trace is
quadratic in the amplitudes a, so the minimax problem is yet
again non-convex. Only in the special case in which the R,
is diagonal, the trace is a linear function of the transmit am-
plitudes squared and the maximization is a convex problem.

Denoting the eigenvalues of the SNR matrix by );, the
Kullback-Leibler divergence and the J-divergence can be ex-
pressed as

DL = Y A +log(Ai + 1) (15)
D —ZA-+1+# (16)
J = - ) )\i+17

respectively. We can immediately see that both these diver-
gences behave like the trace of the SNR matrix for large eigen-
values. When optimizing the probability of detection, we
want the SNR matrix to have as large eigenvalues as possible.
Thus, the Kullback-Leibler divergence, the J-divergence, and
the trace are likely to yield a similar power allocation.

We propose another optimization criterion that is based
on an approximation of the distribution of the test statistic.
The exact distribution can be written as a series of gamma
distribution functions, but we use a single gamma distribution
that has equal mean and variance with the test statistic. The
rationale for this type of approximation is discussed in [10].

As seen in the previous section, the test statistic can be
written as z/? Xz, where z is a standard complex Gaussian
random vector and X is a positive-semidefinite matrix. The
mean and the variance of z// Xz are the given by tr(X) and
tr(X?), respectively. A standard gamma distribution with pa-
rameters o and 3 has a mean a3 and a variance 32, In order
to have these equal to those of the test statistic, one needs

a = tr}(X) /tr(X?) (17)
B = tr(X?)/tr(X), (18)

where X would be [Ir;x — (S + Insx) 1] under the null hy-
pothesis and S under the alternative hypothesis, where S de-
pends on the transmit amplitudes a that are to be optimized.
One can then use this distribution to form an approximate
probability of detection and use that in the optimization.
Although the exact distribution of the test statistic can be
written as a series of gamma distribution functions, accurate
approximation of this requires typically hundreds of evalu-
ations of the gamma distribution function. Given that the
proposed approximation requires only a single evaluation, the
computational complexity is significantly reduced.

5. EXAMPLES

In this section, we compare the different optimization criteria
for the transmit power optimization. The probability of de-
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Table 1: Transmit power allocation for maximizing the min-
imum probability of detection py. The trace of the SNR
matrix, Kullback—Leibler divergence, and the J-divergence
result in the same allocation that is far from the optimal. Us-
ing the proposed approximate results in a significantly better
probability of detecting the target.

Method Tx Power Pd
SNR matrix trace  0.0000 0.0000 3.0000 0.917
Approx. pp, 0.0000 1.5362 1.4638 0.9854
True py, 0.8694 1.2168 0.9139 0.9988
J-div. 0.0000 0.0000 3.0000 0917
KL-div 0.0000 0.0000 3.0000  0.917

tection is optimized over the 2-D rectangle [0, 1] x [0, 1], in
arbitrary units. There are three transmitters, located at (0.3
0.3), (0.5 0.2), and (0.8 0.25) with total available power equal
to three. Four receivers are located at (0.15, 0.6), (0.38, 0.26),
(0.60, 0.14), and (0.95, 0.55). In addition to the thermal noise,
there is a narrowband jammer (0.8, 2.0) with a jammer to
noise ratio equal to 3dB. The scattering amplitudes c are in-
dependent with unit variance. The path losses coefficients L
and Ly at location x were simply assumed to be ||x — x,,, || =2
and ||x — x,, |72, where x,, is the location of the transmitter
and x,, that of the receiver. The probability of false alarm was
constrained to 1073 in the Neyman—Pearson detector. The
surveillance area was divided into (range) bins and the op-
timization criteria were calculated for each bin. The trans-
mit amplitudes were then optimized using Matlab fmincon
function starting from a uniform power allocation minimizing
the max p,,, over all the bins.

The results for the transmit power optimization are shown
in Table 1. Maximizing the minimum trace of the SNR ma-
trix, the KL-divergence, or the J-divergence all result in an
allocation where all the transmitted power is transmitted from
the rightmost transmitter, which leads to a minimum prob-
ability of detection of 0.917 in the surveillance area. This
corroborates that these criteria are closely related .

The proposed distribution allocates the power almost evenly

between the second and the third transmitter, resulting in a
minimum p, equal to 0.9854. Optimization using the ac-
tual distribution yields a power allocation of 0.8694, 1.2168,
0.9139 with a probability of missed detection of 0.9988.

Fig.1 shows the optimized trace of the SNR matrix, the
Kullback-Leibler divergence, and the J-divergence on the sur-
veillance area. As expected, these criteria are very similar.
The approximate and the exact probability of missed detec-
tion are compared in Fig.2. The approximation is conserva-
tive in the sense that it produces slightly larger probability of
missed detection compared to the exact distribution.
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Fig. 1: Comparison of (a) the trace of the SNR matrix, (b)
the Kullback-Leibler divergence, and (c) J-divergence. The
transmitters are denoted by circles and the receivers by trian-
gles. These three criteria are all very similar.
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Fig. 2: Comparison of (a) approximate and (b) the exact prob-
ability of missed detection. The transmitters are denoted by
circles and the receivers by triangles. The approximation pro-
duces slightly larger probability of missed detection.
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6. CONCLUSIONS

Transmit power optimization for distributed MIMO radar tar-
get detection has been discussed in this paper. For a dynamic
scenarios, it is necessary to have a low-complexity method so
that the transmit power allocation can be done in real-time.
Due to the computational complexity and numerical stability
problems, the exact distribution of the test statistic for target
detection is not suitable for this task. We proposed an al-
ternative approximate distribution that has significantly lower
computational complexity. This distribution was compared
to optimizing divergence measures that all produced similar
but sub-optimal result. Compared to these, the proposed ap-
proximate distribution provided a much better probability of
detection in the surveillance area.
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