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1.1 Pervasive sensors and data deluge

Every day, we are generating data of the order of a billion gigabytes. �is massive volume—exascale

data comes from omnipresent sensors used in medical imaging (e.g., breast or fetal ultrasound),

seismic processing (e.g., from oil or gas �eld exploration), environmental monitoring (e.g., pollu-

tion, temperature, precipitation sensing), radio astronomy (e.g., from radio telescopes like the square

kilometre array), power networks (e.g., to monitor wind farms or other distribution grids), smart

infrastructures (e.g., to monitor the condition of railway tracks or bridges), localization and surveil-

lance platforms (e.g., security cameras or drones, indoor navigation), and so on.

�e acquired data samples are stored locally and then transported to a central location (e.g., a

server or cloud) to extract meaningful information (that is, for inference). Due to an unprecedented

increase in the volume of the acquired data, it is becoming increasingly challenging to locally store

and transport all the data samples to a central location for data/signal processing. �is is because

the amount of the sampled data quickly exceeds the storage and communication capacity by sev-

eral orders of magnitude. Since the data processing is generally carried out at a server with ample

computing power (e.g., Hadoop clusters), mainly the storage and transportation costs form the bot-

tleneck of big data processing. To alleviate these bottlenecks, most of the data is blindly discarded

without even being examined in order to limit thememory and communication requirements, caus-

ing a serious performance loss.
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Access point

Figure 1.1: Illustration of an indoor localization setup. We show the �oor plan of a building (e.g., museum)
with candidate locations for installing the access points. �e restriction on installing the access points in only
certain areas might be for security or ambience purposes.

If we had some prior knowledge about the task we want to perform on the data samples, then

just a small portion of that data might be su�cient to reach a desired inference accuracy, thereby

signi�cantly reducing the amount of sampled and transported data. �at is to say, if the inference

task is known beforehand, less data needs to be acquired, thereby signi�cantly reducing the amount

of sampled and transported data. �us, the memory and bandwidth requirements can be seriously

curtailed. In addition, the cost of data collection (or sensing) can be signi�cantly reduced, where

the major factors that determine the sensing costs are the number of physical sensors (thus, their

economical and energy costs) and the physical space they occupywhen installed. So, it is evident that

there is an urgent need for developing unconventional and innovative sensing mechanisms tailored

for speci�c inference tasks to extract as much information as possible yet collecting fewer data. �is

leads us to the �rst question:

Q1. How can task-cognition be exploited to reduce the costs of sensing as well as the related storage

and communications requirements?

Given the central role of sampling in engineering sciences, answering this question will impact a

wide range of applications. �e basic question of interest for such applications is how the sensing

systems should be designed to minimize the amount of data acquired yet reach a desired inference

performance. In particular, the design questions that should be answered are related to the opti-
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Figure 1.2: Heatmaps of a 32KB data cache (a) without and (b) with a hot spot. Black circles (○) denote the
candidate temperature sensor locations— these are the areas with less or no active logic.

mal sensor placement in space and/or time, data rate, and sampling density. We next illustrate two

speci�c examples of sensor placement for indoor localization and temperature sensing.

Example 1.1 (Target localization). Indoor localization is becoming increasingly important inmany ap-

plications. Some examples include: locating people inside a building for rescue operations, monitoring

logistics in a production plant, lighting control, and so on. In such environments, global positioning sys-

tem (GPS) signals are typically unavailable. �us, other types of measurements such as visual, acoustic

or radio waves revealing information about range, bearing, and/or Doppler are used. �ese measure-

ments are gathered by access points, like cameras, microphones, radars, or wireless transceivers. One

such scenario is illustrated in Fig. 1.1, where we show an indoor localization setup for navigating a

visitor inside a building. An interesting question is, instead of installing many such costly access points

randomly, how canweminimize the number of access points (hence, the amount of data), by optimizing

their characteristics (e.g., their spatial position) in such a way that a certain localization performance

can be guaranteed.

Example 1.2 (Field detection). Consider a multi-core processor with a hot spot. A historical question

of interest is to estimate the thermal distribution, for instance, by interpolating noisy measurements. In

some applications, though, a precise estimation of the temperature �eld might not be required, instead,

detecting the hot spots (i.e., the areas where the temperature exceeds a certain threshold) would be

su�cient for subsequent control actions. Such a scenario is illustrated in Fig. 1.21, where the image on the

1We would like to thank Sumeet Kumar for the heatmaps [Kumar et al., 2015] .
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Figure 1.3: Illustration of two sample clocks dri�ing from each other with respect to an ideal clock.

right (le�) shows a 32 KB data cache with (no) hotspots. An important question [Memik et al., 2008] of

interest then is spatial sampling design, i.e., sensor placement, for such detection problems exploiting the

knowledge of the underlying model, and accounting for the physical space and/or processing limitations.

Such optimally designed sensing systems can be used to perform a number of inference tasks.

In the next section, we will introduce sensor networks as a spatial sampling device and discuss some

related signal processing applications.

1.2 Distributed sensing: synchronization and localization

Over the past decade, advances in wireless sensor technology have enabled the usage of sensors to

connect almost everything as a network. �is so-called internet of things (IoT) is used for di�erent

purposes related to sensing, monitoring, and control. Such networks �nd applications ranging from

monitoring natural ecosystems to buildings, industrial equipments, and vehicles, from military to

civil localization applications, to name a few.

Due to the inherent discrete nature of the sensors—spatially localized objects, a sensor network

performs sampling in space [Gastpar et al., 2006]. For many cases that we frequently encounter,

a sensor network can be designed to faithfully represent distributed signals (e.g., a spatially vary-

ing phenomenon such as the temperature �eld). In addition, the distributed signals can be mul-

tidimensional, that is, they can exist in space and time. To acquire spatiotemporal variations of

such distributed signals, we need to sample over both space and time, where the temporal sam-

pling is achieved using the sensor’s analog-to-digital converters (ADCs) or time-to-digital convert-

ers (TDCs), for example. Each sensor has an independent sample clock (i.e., oscillator), and its

stability essentially determines the alignment of the temporal sampling grid across the sensors. �is
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temporal sampling grid is perfectly aligned if all the sensors share a common clock. However, when

uncommon, the sample clocks dri� from each other due to imperfections in the oscillator, aging and

other environmental factors (e.g., temperature variation, vibration). We illustrate two sample clocks

dri�ing from an ideal (or a reference) clock in Fig. 1.3. �is dri� will result in the misalignment of

the temporal sampling grid across the sensors. �erefore, we need to align them from time to time.

In other words, we need to devise a mechanism to distribute the sample clock wirelessly. �is brings

us to the second question:

Q2. How can wireless communications be exploited to synchronize spatially separated sample clocks?

Answering this question impacts a range of other sensor network applications that demand for

a common time frame for the entire network, such as sleep and wake-up coordination, time-based

channel access, among others [Freris et al., 2010].

A vast number of the applications that use sensor networks rely on a fundamental aspect of ei-

ther associating the location information to the data that is acquired by spatially distributed sensors

(e.g., air quality measurements), or the acquired data is solely used to localize a target/source (e.g.,

indoor localization). One way to do this is to equip each sensor node with a GPS receiver, how-

ever, in many applications of interest the operating environment is harsh with GPS signals either

being impaired or unavailable. Moreover, sensors are usually battery powered making GPS a less

viable option. To facilitate low-power and e�cient localization solutions especially in GPS-denied

environments, there exists a plethora of algorithms based on two localization paradigms: absolute

or relative localization. In absolute localization, the aim is to estimate the absolute position of the

sensor(s) using a few reference nodes whose absolute positions are known. Hence, these reference

nodes are commonly referred to as anchors. Absolute localization problems are typically solved us-

ing measurements related to the propagation of radio or acoustic waves, e.g., time-of-arrival (TOA),

time-di�erence-of-arrival (TDOA), received signal strength (RSS), or angle-of-arrival (AOA), to list

a few [Patwari et al., 2005,Gezici et al., 2005,Gustafsson and Gunnarsson, 2005]. Localization can

also be relative, in which case the aim is to estimate the constellation of the sensors or the topol-

ogy of the network, and determining the location of a sensor relative to the other sensors is su�-

cient. Classic solutions to relative localization are based on multi-dimensional scaling (MDS) using

squared-range measurements [Cheung and So, 2005, Costa et al., 2006]. For relative localization,

anchors are not needed.

�euse of sensor networks to remotelymonitor hazardous environments that are beyondhuman

reach (e.g., leakage in oil pipes, surveillance of nuclear plants, or health of industrial machines) is

gaining strong interest. Such tasks are generally performed using robots or drones (more generally,

a sensing platform) with a number of sensors mounted on them. Consequently we now have to

localize more than one sensor or even localize the whole sensing platform, and typically we know

beforehand the sensor placement on the platform. �is distributed setting creates a need to solve

the following problem:

Q3. How canwe extend the classical localization paradigm to localize a sensing platformby exploiting

the knowledge of the sensor placement on the platform?
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Anchor
Sensor

Sensing platform

Fixed World

Figure 1.4: Illustration of distributed sensing with sensors mounted on a (moving) sensing platform. �e
sensor data has to be shipped to a central location with possibly multiple receivers mounted on a �xed world.

We next illustrate the aforementioned problems (i.e., Q2 and Q3) with the following scenario.

Example 1.3 (Sensors on a platform). Consider a number of sensors mounted on a moving platform

as shown in Fig. 1.4. �ese autonomous sensors collect data related to di�erent physical phenomena,

like temperature, vibration, pressure, and so on. �is data has to be shipped to a central location (hav-

ing several wireless transceivers —anchors) on a �xed platform. �is is a typical setup in industrial

machines or robots, where we generally know the sensor placement on the platform. However, the ab-

solute position of the platform might not be known. Now the questions of interest are: can we use the

available wireless links between the sensors and anchors to (A) synchronize the sample clocks and (B)

localize such rigid platforms?

In the next section, we will discuss the context of this thesis and also pose the urgent questions

that are addressed in this thesis.

1.3 Scope and context of this thesis

�e research for this thesis was generously sponsored by the following two NWO/STW projects:

•VICI-SOWN:�eVICI project on signal processing for self-organizingwireless networks (SOWN)

aims at developing new mathematical signal processing tools for energy-e�cient distributed

information processing, spectral sensing, and localization in large sensor networks.

• FASTCOM:�e reliable and fast wireless communication for lithographymachines (FASTCOM)

project aims to connect a sensor network on a moving platform to a control unit using high-

speed linkswith low latency. To realize such a network, accurate sample clock synchronization

and optimal sensing design to collect as little data as possible are needed.
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Within the framework of the above two projects, we next pose the subquestions related to Q1,

Q2, and Q3 that we have answered in this thesis. �ese subquestions are of general interest (im-

pacts current hot topics like big data analytics, compressive sensing, internet of things) and goes far

beyond the scope of VICI-SOWN and FASTCOM.

In order to reduce the sensing and other related costs, it is crucial to tailor the sensingmechanism

for the speci�c inference task that will be performed on the acquired data samples. �e tool that

we will exploit in this thesis to reduce these costs is sparse sensing, which consists of an optimally

designed structured and deterministic sparse (i.e., with many zeros and a few nonzeros) sensing

function that is applied to the data in order to reach a desired inference performance. Here, the

number of nonzeros determines the amount of data samples acquired (thus, determines the amount

of data reduction). �is naturally leads to a number of questions related to the de�nition of the

inference task and the related performance metric, which we pose as the following subquestions of

Q1:

Q1.1. How do we model sparse sensing functions to carry out fundamental signal processing tasks,

like estimation, �ltering, and detection?

Q1.2. What are the reasonable inference performance metrics for the above tasks?

Q1.3. Can we e�ciently optimize (e.g., using a polynomial time algorithm) such inference perfor-

mance metrics to obtain the sparse samplers of interest?

Next, for a network comprising of several sensor nodes with independent clock oscillators, we

aim to distribute the clock signal wirelessly. In other words,we address the problemof synchronizing

the sample clocks of the sensor nodes in a network. �e assumption is that there are several sensor

units at known relative locations (absolute locations are, however, not known) and one sensor unit

at an unknown location. �e sensors have unreliable and uncommon clocks, except for one of them,

which has a relatively stable clock. �e goal is to estimate the clock deviations using time-of-arrival

measurements of messages. To this end, we pose the following subquestions of Q2:

Q2.1. What is a reasonable parametric representation for the clock deviations?

Q2.2. How can we fully exploit the broadcast nature of the wireless channel for clock synchroniza-

tion?

Q2.3. Is there an e�cient estimator (e.g., unbiased and linear) to resolve the clock parameters and

what are the theoretical limits on the variation of the estimates, that is, what is the Cramér-Rao

bound (CRB)?

Finally, we consider the problem of localizing a sensing platform using sensor networks. �e

assumption is that the �xed world has several transceivers with known locations (anchors) and the

sensing platform has several sensor units at known relative locations, and the platform is rigid; cf.

Fig 1.4. �e aim is to localize, that is, to estimate the position and orientation of the rigid platform

using distance measurements. We refer to this problem as rigid body localization. �e related sub-

questions of Q3 are:
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Q3.1. Is there a parametric representation for the rigid body localization problem?

Q3.2. What are the theoretical limits (e.g., CRB) on the variation of the position and orientation

estimates computed using distance measurements?

Q3.3. Can we solve the rigid body localization problem if the known sensor topology is perturbed,

that is, if the body is not fully rigid?

In the next section, we will discuss the main results and organization of this thesis.

1.4 Summary of results and outline of the thesis

�is thesis is organized into three parts. In the �rst part of this thesis, the theory and algorithms

of sparse sensing are discussed in depth. �at is, we address subquestions Q1.1-Q1.3. In the second

part of this thesis, applications of distributed sensing, more speci�cally, clock synchronization and

localization of a rigid platform are studied (here, we address subquestionsQ2.1-Q2.3 andQ3.1-Q3.3).

Finally, the thesis concludes with the third part, where we pose some interesting open problems for

future research. �e content of Chapter 3 till Chapter 8 are published as papers, however with some

new subtopics. �e relation between these chapters and the publications is depicted in Table 1.1,

where the list of publications is provided in Section 1.5.

Chapter 2 on sparse sensing fairly forms the backbone of the �rst part of this thesis. In this chapter,

we will model the sparse sensing function as a linear projection operation, where the sensing

function is parameterized by a sparse vector. �is vector is basically a design parameter that is

used as a handle to trade the amount of acquired data sampleswith the inference performance.

We refer to this sparse sensing scheme as discrete sparse sensing, as the continuous observation

domain is �rst discretized into grid points and we select (using the sparse vector) the best

subset out of those grid points. To harness the full potential of sparse sensing, we need to

sample in between the grid points and take samples anywhere in the continuous observation

domain. We refer to such sensing mechanisms as continuous sparse sensing. We will discuss

some applications of the proposed sparse sensing mechanisms and also list major di�erences

with the state of the art in data reduction, that is, compressed sensing. Although the inference

task is kept abstract in this chapter, the obtained novel unifying view allows us to jointly treat

sparse sensing mechanisms for di�erent inference tasks.

Chapter 3 focuses on discrete sparse sensing for a general nonlinear estimation problem. In partic-

ular, we solve the problemof choosing the best subset of observations that follow general non-

linear models (e.g., nonGaussian, nonadditive) with uncorrelated inputs. We also extend this

framework to nonlinear Gaussian observations with correlated inputs. �e data is acquired

using the discrete sparse sensing function, which is guided by a sparse vector. �e CRB is

used as an inference performance metric and we derive several functions of the CRB that in-

clude the sparse vector. To compute the sparse samplers, we propose convex relaxations of the
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Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8

J1 •

J2 •

J3 •

J4 •

J5 •

C1 • • •

C2 •

C3 •

C4 •

C5 •

C6 •

C7 •

C8 •

C9 •

Table 1.1: Connection between the papers and chapters.

derived inference performance metric and also develop low-complexity solvers. In sum, the

discrete sparse samplers for nonlinear inverse problems can be computed by solving a convex

program.

Chapter 4 extends the theory developed in Chapter 3 to nonlinear �ltering problems, that is, the fo-

cus will be on the design of discrete sparse sensing functions for systems that admit a nonlin-

ear state-space representation. In particular, we solve the problem of choosing the best subset

of time-varying observations based on the entire history of measurements up to that point.

�e posterior CRB is used as the inference performance metric to decide on the best subset

of observations. Although this framework is valid for independent observations that follow

general distributions (e.g., nonGaussian), we also extend it to Gaussian dependent observa-

tions. Further, we introduce some additional constraints to obtain smooth sensing patterns

over time. Finally, we devise sparse sensing mechanisms for structured time-varying obser-

vations (e.g., for time-varying sparse signals). In all these cases, the discrete sparse samplers

can be designed by solving a convex program.

Chapter 5 is dedicated to discrete sparse sensing for statistical detection. Speci�cally, the aim is to

choose the best subset of observations that are conditioned on the hypothesis, which belongs

to a binary set. Naturally, the best subset of the observations is the one that results in a de-

sired global error probability. Since the numerical optimization of the error probabilities is

di�cult, we adopt simpler costs related to distance measures between the conditional distri-

butions of the sensor observations. We design sparse samplers for the Bayesian and Neyman-

Pearson setting, where we respectively use the Bhattacharyya distance and Kullback-Leibler
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distance (and J-divergence) as the inference performance metric. For conditionally indepen-

dent observations, we give an explicit solution, which is optimal in terms of the error ex-

ponents. More speci�cally, the best subset of observations is the one with the smallest local

average root-likelihood ratio and largest local average log-likelihood ratio in the Bayesian

and Neyman-Pearson setting, respectively. We supplement the proposed framework with a

thorough analysis for Gaussian observations, including the case when the sensors are con-

ditionally dependent, and also provide examples for other observation distributions. One of

the results shows that, for nonidentical Gaussian sensor observations with uncommonmeans

and common covariances under both hypotheses, the number of sensors required to achieve

a desired detection performance reduces signi�cantly as the sensors become more coherent.

Chapter 6 contrasts with the discrete sparse sensing mechanisms that have been considered in

Chapter 3 to Chapter 5, where the sparse sensing functions are parameterized by a discrete

sparse vector that needs to be optimally designed. �is basically means that the continuous

observation domain is �rst discretized into grid points and we have to select the best subset

out of those grid points. However, this discretization might be very coarse because of com-

plexity reasons, preventing the system to achieve the best possible compression rates for the

considered inference task. �erefore, in this chapter, we introduce continuous sparse sensing

(or o�-the-grid sparse sensing), where it is possible to sample in between the grid points and

take samples anywhere in the continuous observation domain. �e basic idea is to start from

a discretized sampling space and to model every sampling point in the continuous sampling

space as a discrete sampling point plus a perturbation. �en, the smallest set of possible dis-

crete sampling points is searched for, along with the best possible perturbations, in order to

reach the desired inference performance. Wewill demonstrate this approach for linear inverse

problems, that is, for linear estimation problems with additive Gaussian noise.

Chapter 7 addresses subquestions of Q2 related to distributed sampling. More speci�cally, this

chapter is dedicated to wireless clock synchronization. To realize this, we assume an a�ne

clock model, that is, we approximate the clock deviations using phase o�set (or clock o�set)

and frequency o�set (or clock skew), where we ignore the higher order terms like the fre-

quency dri� and so forth. In other words, we approximate the sample clock curves in Fig. 1.3

with a piecewise straight line (within each observation interval) having slope and o�set equal

to the clock skew and clock o�set, respectively. �e assumption is that there are several an-

chor nodes with known relative locations and one sensor node with an unknown position.

Further, all the nodes have unreliable and uncommon clocks, except for one node that has a

relatively stable clock (that is, one of the nodes has no clock o�set and a clock skew equal to

one). We estimate these clock parameters using time-of-�ight measurements. To fully har-

ness the broadcast nature of the wireless medium, we allow all the nodes to passively listen to

the messages and record time stamps. By doing so, we collect a signi�cant amount of extra

measurements, which we solve using a least squares estimator. Speci�cally, we solve for all

the unknown clock skews and clock o�sets along with the pairwise distances (i.e., ranges) of

the sensor to each anchor. �e proposed estimator is shown to be e�cient, asymptotically
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meeting the theoretical CRB.

�e proposed framework can be extended to jointly resolve unknown clock parameters and

locations (instead of ranges) — a pertinent problem to time-based sensor network localiza-

tion; see C8 for the related results and the CRB. �ese results are, however, excluded in this

thesis for the sake of conciseness.

Chapter 8 provides a framework for joint position and orientation estimation of a rigid platform.

We consider a setup in which a few sensors are mounted on a rigid body. �e absolute posi-

tion of the rigid body is not known. However, we know how the sensors are mounted on the

rigid body, i.e., the sensor topology is known. �e rigid body is localized using noisy distance

measurements between the sensors and a few anchors (nodes with known absolute positions),

and without using any inertial measurements. We model the rigid body localization problem

using an unknown rotation matrix and a translation vector that uniquely determine the ori-

entation and position of the rigid platform, respectively. We propose a least squares, and a

number of constrained least squares estimators, where the constrained estimators solve an

optimization problem on the Stiefel manifold. As a benchmark, we derive a unitarily con-

strained CRB. Finally, the known topology of the sensors can be perturbed during fabrication

or if the body is not entirely rigid. To take these perturbations into account, constrained total

least squares estimators are also proposed.

We can further track the position and orientation of the rigid body using a state-space rep-

resentation and a (constrained) Kalman �lter; see C9 for details. �e results on tracking are,

however, excluded here for the sake of conciseness.

Chapter 9 contains the conclusions and outlines a number of directions for future research along

with some open problems.

1.5 List of publications and other contributions

�e research work done for this thesis has resulted in the following journal papers, conference pa-

pers, and internal reports.

Included publications
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2.1 Introduction

Sparse sensing extends traditional sensing methods to more structured sensing mechanisms. �e

sensing functions are designed knowing beforehand the inference task we want to perform on the

data. �e statistical inference task could be as general as estimation, �ltering, or detection, which are

fundamental to statistical signal processing. �e main aim of sparse sensing is therefore to exploit

the knowledge of the inference task to be performedon the acquired data in order to signi�cantly re-

duce the costs of sensing as well as storage and communications requirements yet assuring a desired

inference quality.

In this chapter we provide the fundamental theory of sparse sensing. �is includes modeling

as well as designing the sensing function that is used for gathering data (or sensing) to carry out a

speci�c signal processing task. In particular, we discuss the continuous and discrete sparse sensing

problems. Sections 2.3 and 2.4 present some applications and bene�ts of sparse sensing, respectively.

Section 2.5 gives the major di�erences of sparse sensing with compressed sensing.
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y(t) = ∑K
m=1 x(τm)δ(t − τm)

w(t) = ∑K
m=1 δ(t − τm),K = 3

x(t)

τ1 τ2

τ3

τ1 τ2 τ3

Figure 2.1: Continuous sparse sensing scheme. Here, we show an illustration, wherewe acquireK = 3 samples
from a one-dimensional signal x(t).

2.2 Sparse sensing model

Let x(t) be a continuous-domain signal, where t ∈ [0, T] denotes the sampling domain. �e sam-

pling domain can be space, time, or space-time and can be even of higher dimensions. For example, t

could be p-dimensional, where p = 4 represents a (three-dimensional) spatio-temporal sampling

domain.

We assume that the observation signal x(t) follows a known model, which relates the obser-

vation to the state of nature (e.g., through a parametric model or conditional distributions under

di�erent hypotheses) that we want to infer along with its statistical dependence on noise, if any.

In practice, the inference problem is typically solved in a digital fashion, that is, using a sampled

version of the observation process. In this context, we are interested in the following fundamental

question:

What are the best indices {τm} to optimally sample x(t) to form {ym = x(τm)} such that a

desired inference performance is achieved?

�is is tantamount to applying a continuous-domain sparse sensing function (hence the name)w(t),
modeled as a sum of Diracs,

w(t) = K

∑
m=1

δ(t − τm) (2.1)

that we apply on x(t) to acquire
y(t) = w(t)x(t) = K

∑
m=1

x(τm)δ(t − τm), (2.2)

where we jointly design the unknown indices {τm}, and the number of samples K, required in order

to reach a desired inference performance. We label such a sensing mechanism as continuous sparse
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=

y Φ(w) = diagr(w) x

Figure 2.2: Discrete sparse sensing scheme. Here, a white (black) and colored square represents a one (zero)
and an arbitrary value, respectively.

sensing; see the illustration in Fig. 2.1. �e sensing operation w(t) is designed keeping in mind the

known inference task that needs to be performed, and it is related to it.

A way to design the continuous-domain sparse w(t) is to discretize the sampling domain, and

to assume that the indices {τm}Km=1 lie on a discrete grid. In other words, we assume a set ofM ≫ K

candidate sampling locations {tm}Mm=1, and we alternatively model y(t) as
y(t) = M

∑
m=1

wmx(tm)δ(t − tm), (2.3)

where wm = (0)1 indicates whether sample x(tm) is (not) selected. �e vector w obtained by col-

lecting {wm}Mm=1 as
w = [w1 ,w2, . . . ,wM]T ∈ {0, 1}M

is used to construct a sensing matrix Φ(w) = diagr(w), which is then applied to the discrete signal

x = [x(t1), x(t2), . . . , x(tM)]T , to obtain a discrete-domain counterpart of (2.3) given as

y = Φ(w)x = diagr(w)x , (2.4)

where y = [y(t1), y(t2), . . . , y(tM)]T . We term such a sensingmechanism as discrete sparse sensing;

see the illustration in Fig. 2.2. �us, the design of a sparse function w(t), can be simpli�ed to the

design of a sparse vector w. Formally, we pose the question:

What is the sparsest w to optimally sense x to form y such that a desired inference performance

is achieved?

Before discussing the properties of the proposed sparse sensing scheme, we state the following re-

mark.

Sparse sensing guided by a sparse vector has several interesting properties:
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1. Linearity: �e compression is linear, however the sampling is typically nonuniform or irreg-

ular (as in [Marziliano and Vetterli, 2000,Marvasti, 2001,Vaidyanathan, 2001], for instance).

2. Deterministic and structured samplers: Sparse sensing is close to traditional sampling. �e

samplers are easier to implement as compared to sampling via random projections, which is

o�entimes not practical.

3. Distributed sampling: In contrast to a nonsparse linear compression, the construction of

the sensing matrix Φ(w) enables a fully distributed sampling scheme, which is central to

distributed signal processing.

4. Controllable: Naturally, as with any subsampling scheme, sparse sensing also results in a

reduction of the signal-to-noise ratio, by the compression factor, and leads to a loss in the

inference performance. However, with sparse sensing, there exists a handle to trade this loss

with the compression rate.

Other sub-optimal and trivial alternatives to the proposed sparse sensing mechanism are, for

example,

1. Uniform sensing: A common practice is to use equally-spaced sampling indices, tm = −T/2+(m − 1)(T/K), m = 1, 2, . . . ,K.
2. Randomsensing: Another approachwould be to instead pickK indices uniformly at random,

i.e., tm ∼ U[−T/2, T/2],m = 1, 2, . . . ,K .
�ese sensing schemes are suboptimal as they ignore the inference task at hand andmight not always

guarantee a desired inference performance or limits the compression rate.

2.3 Applications

�e proposed sparse sensing model is universal in the sense that it can be used to optimally gather

data or to optimally compress already acquired data to carry out a speci�c signal processing task.

For example, the task could be estimation, learning (classi�cation, clustering), control, or detection.

�is applies to a wide range of applications:

Sensor placement/selection/scheduling

Many real-world applications like �eld (temperature, pollution, precipitation, sound) inference, tar-

get localization and tracking, radar and sonar systems, video surveillance, imaging, spectral sensing,

seismology, control, to list a few, are carried out using sensor networks —a spatial sampling modal-

ity. For such applications, sensor placement, sensor selection, and sensor scheduling are some of the

important key design issues.

Choosing the best subset of sensors (or spatial locations) froma large set of candidate or available

sensors (or spatial locations) such that a desired inference performance is achieved is referred to as
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sensor selection (placement). Interpreting the entries of x as the observations from di�erent sensors

(or spatial locations), sensor selection/placement can be achieved through sparse sensing. Sparse

sensing can also be used to select temporal samples or to schedule space-time sensor activations

(e.g., antenna thinning). Sparse sensing can be used for source placement—a dual problem of sensor

placement. Source placement can be interpreted as the problemof choosing the best subset of source

(e.g., heater) locations from a large set of candidate source locations in order to generate a desired

�eld (e.g., temperature).

Sparse sensing does not necessarily mean that the sensing matrix should itself be sparse. �at is,

sparse sensing can be used to pick the best subset of rows of matrix A that are applied to the signal

x. In other words, the signal x is acquired using a sensing function diagr(w)A. For example, the

rows of A can represent di�erent receive beamformers, �lters, or (sparsifying) basis functions that

are selected using a sparse w.

Data/Graph sketching

�e sparse sensing mechanisms developed in this thesis, �nd applications much beyond sensing a

physical phenomenon. Examples include data from the internet, social networks, �nancial mar-

kets, genetics, consumer behavior, and so on. Data analytics (e.g., robust learning, classi�cation,

clustering) with such large-scale data is infeasible without dimensionality reduction due to limited

computational capacity [Slavakis et al., 2014]. Sparse sensing guided by a sparse w can be used for

dimensionality reduction of already acquired data by sketching (or throwing away) less informa-

tive samples again to ensure a desired inference quality. Data can also be represented as signals on

graphs [Sandryhaila andMoura, 2014], where sparse sensing can be used to design optimal sampling

of graph signals. In otherwords, which are the best graph nodes to observe for localizing/detecting a

source (e.g., rumor, virus, failure) in a network (e.g., power grid, internet, social) admitting a graph

representation.

2.4 Bene�ts

In this section, we will list the bene�ts of sparse sensing and answer the following questions: why

and when is sparse sensing important?

1. Economical constraints (hardware costs): Inmany of the practical applications such as envi-

ronmental monitoring, radio astronomy, localization services, the sensing devices (including

communications and signal processing hardware; their maintenance) are expensive. In such

cases, it is of paramount importance to minimize the number of sensing devices itself yet

achieving the best possible inference performance.

2. Storage and physical space: Sensors generate prohibitively large datasets. If the data is not

acquired smartly keeping in mind the task to be performed, then there might not be su�-

cient memory to store the acquired data for subsequent processing. In some applications,
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the physical space available for sensor placement might also be very restrictive and limited.

For example, in thermal management of microprocessors there is not much physical space

available for temperature sensor placement.

3. Communications bandwidth: O�en the data acquired from the distributed sensors have to

be transported to a central processing unit or a server. �is consumes spectral resources,

energy related to transmission and reception, and creates a need for a high data rate commu-

nication link. �e communications requirements can be signi�cantly reduced through sparse

sensing.

4. Processing and inference costs: �e data acquired has to be optimally processed to solve

a speci�c interference task. Solving the inference problem becomes more and more di�cult

(e.g., increased latency, more computational capacity is required) as the data volume increases.

Hence, through sparse sensing the processing requirements can be seriously diminished.

2.5 Contrast with compressive sensing

Sparse sensing di�ers from the broad research area of compressive sensing —state of the art in the

�eld of sensing cost reduction [Donoho, 2006b,Candès and Wakin, 2008]. Compressive sensing is

an elegant protocol for sensing and compressing data simultaneously. Although compressive sensing

also aims at gathering fewer samples or measurements, there are a number of major di�erences with

sparse sensing.

1. Sparsity and signal processing task: In compressive sensing, the signal of interest x(t), is
always considered sparse in some domain and the main goal is sparse signal reconstruction.

On the other hand, for sparse sensing, the underlying signal does not necessarily have to be

sparse and more general signal processing tasks can be considered. �is can include sparse

signal reconstruction, which we will discuss more in detail in Chapter 4, but is not limited to

it.

2. Samplers and compression: �e theory developed under the classical compressive sensing

framework advocates randomcompression, which is essential to provide recovery algorithms,

reconstruction guarantees, and performance analyses. Although random compression intro-

duces robustness, it might limit themaximum amount of compression if a speci�c signal pro-

cessing task needs to be carried out. Such random samplers are di�cult to realize in practice,

particularly for applications requiring spatial sampling such as source localization, �eld es-

timation, imaging, and cognitive radio sensing, to list a few. Sparse sensing, on the other

hand, is a deterministic type of data compression, where the sparse vector w inside the sens-

ing function gives a handle on the compression factor that can be used for optimally designing

the sensing process.

3. Inference quality: �e inference quality in compressive sensing, i.e., the reconstruction qual-

ity is generally characterized by a probabilistic measure on the space of random compression
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Compressed sensing Sparse sensing

Sparse x(t) needed not needed

Signal processing task sparse signal reconstruction any statistical inference task

Samplers random structured and deterministic

Compression robust, but not practical practical and controllable

Table 2.1: Relation to compressive sensing.

matrices. �is means that the sensing function has to be constantly changed to achieve a de-

sired result. In contrast, in sparse sensing we use a �xed sensing function, which is designed

based on the probabilistic nature of the noise. �us, it is practically more meaningful.

�ese di�erences are summarized in Table 2.1.

2.6 Sparse sensing design

To design the optimal sensing operator (characterized by the vector w), we need to know themodel

of the physical world, and the de�nition of the inference task that we are trying to solve from the

acquired data. �esemodels describe the uncertainty about the state of nature through a probability

measure for the noise. �is uncertainty or (task-speci�c) statistical risk denoted by a function f ∶{0, 1}M z→ R quanti�es the inference performance. In other words, by making observations y

through a sensing operator Φ(w), the uncertainty is reduced. Depending on the de�nition of the

inference task, the statistical risk can either be the estimation error, prediction error, or detection

probability, for example. Further, the risk can be ensemble, where the average is computed under

the noise pdf or instantaneous leading to model-driven or data-driven sparse sensing, respectively.

In model-driven sparse sensing, the sensing function is designed to guarantee an average inference

performance (hence, it can be computed o�ine), whereas data-driven sparse sensing requires data to

compute the sensing function (e.g., for sketching or censoring purposes). We will restrict ourselves

to model-driven sparse sensing throughout this thesis.

We are interested in the design of the lowest-cost sensing structures that guarantee a desired

inference performance. Generally, this corresponds to a sparsestw for a �xed statistical risk. Math-

ematically, it is a constrained cardinality minimization problem:

argmin
w∈{0,1}M

∥w∥0
s.to f (w) ≤ λ, (P0)

where the threshold λ speci�es the inference accuracy. Clearly, λ controls the sample size (and, hence
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the related sensing cost). Equivalently, the optimization problem in (P0) can also be formulated as

argmin
w∈{0,1}M

f (w)
s.to ∥w∥0 = K ,

(P1)

where K is the desired number of samples. �e design problems (P0) and (P1) are equivalent in the

sense that with some threshold say λ∗, K samples can be selected. �e problem of the form (P0)

might be appropriate for certain designs where the number K is not known, in which case λ should

be known. In many applications, the number K might be known beforehand. �is might happen,

for example, when the sensors have already been purchased and we would want to use all of them.

When K is a priori known, then the problem of the form (P1) is the obvious choice.

An optimal solution to (P0) and (P1), respectively, requires a combinatorial search over all the

2M and (M
K
) possible combinations. �is quickly becomes computationally intractable for modest

values of M and K. For example, with M = 100 available potential sensors, there are in the order of

1030 possible choices whose direct enumeration is clearly impossible. �is is essentially due to the

Boolean constraint on the design variablew. In addition, the cardinality function ∥w∥0 is nonconvex
in w.

Depending on the shape of the statistical risk f , with respect to the selection variables, the above

nonconvexBoolean optimization problem can be solved in the following twoways as discussed next.

2.6.1 Convex risk

�e discrete combinatorial problems (P0) and (P1) can be approximately solved via convex opti-

mization techniques assuming that there exists a risk f (⋅) that is a convex function of its argument.

A convex function is formally de�ned as follows.

De�nition 2.1 (Convex function). Given a convex set W , the function f ∶ W z→ R is said to be

convex, if it satis�es

f (tw1 + (1 − t)w2) ≤ f (tw1) + (1 − t) f (w2)
∀w1,w2 ∈W and 0 ≤ t ≤ 1.

In order to solve (P0) and (P1) via convex optimization, we use standard convex relaxations:

the discrete Boolean constraint w ∈ {0, 1}M is relaxed to a continuous set (also its convex hull)

0 ≤ wm ≤ 1,m = 1, 2, . . . ,M, and the ℓ0-(quasi) norm can be approximated with the ℓ1-norm, its

best convex approximation. By doing so, we can simplify the combinatorial problems (P0) and (P1)

to the convex optimization problems

argmin
w

∥w∥1
s.to f (w) ≤ λ,

0 ≤ wm ≤ 1,m = 1, 2, . . . ,M ,

(R0)
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and
argmin

w
f (w)

s.to ∥w∥1 = K ,
0 ≤ wm ≤ 1,m = 1, 2, . . . ,M ,

(R1)

respectively. An approximate Boolean solution can then be recovered from the solution of the above

convex optimization problem either by simple thresholding or randomized rounding. Alternatively,

the ℓ0-(quasi) norm can be approximated using the sum-of-logs∑M
m=1 ln (wm+δ)with δ > 0, which

results in an iteratively weighted ℓ1-norm optimization problem. Typically, log-based heuristics re-

sult in a sparser solution, and thus better approximate the ℓ0-(quasi) norm.

Speci�c instances of relaxed problem (R1) has been proposed by [Joshi and Boyd, 2009] for es-

timation with linear Gaussian models and uncorrelated inputs. In this thesis, we provide a unifying

theory and related algorithms for sparse sensing for more complicated (nonlinear) inference tasks.

More speci�cally, wewill seek statistical risk functions f (w) that are convex functions onw ∈ [0, 1]M
for fundamental statistical inference problems like estimation, �ltering, and detection with uncor-

related (Gaussian and nonGaussian models) and correlated inputs.

2.6.2 Submodular risk

An alternative way to solve (P0) and (P1) is to look for a risk function that is submodular in

nature. �e notion of submodularity is based on the property of diminishing returns. �at is, for

example, adding an observation to a set X bene�ts less than or the same as adding the same obser-

vation to one of the subsets of X . Mathematically, submodularity can be de�ned as follows.

De�nition2.2 (Submodular function). Given two setsX andY such thatX ⊆ Y ⊆M and s ∈M/Y ,
a function f is submodular if it satis�es

f (X ∪ s) − f (X ) ≥ f (Y ∪ s) − f (Y).
Further, if the submodular function is monotone nondecreasing, i.e., f (X ) ≤ f (Y) for allX ⊆ Y ⊆ M and normalized (i.e., f (∅) = 0), then a greedy maximization of such a function

Algorithm 2.1 Submodular sensing [Krause, 2008]

1. Require X = ∅,K.
2. for k = 1 to K

3. s∗ = argmax
s∉X

f (X ∪ s)
4. X ← X ∪ s∗
5. end

6. Return X
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is near-optimal and has a deterministic approximation factor of (1 − 1/e), where e is the Euler’s

number [Nemhauser et al., 1978]. Hence, submodular risks are very useful to solve (discrete) com-

binatorial optimization problems using low-complexity greedy algorithms (see for e.g., [Krause,

2008, Ranieri et al., 2014]). Some examples of submodular functions that are used in sensing op-

timization for estimation and �ltering problems are frame potential [Ranieri et al., 2014], mutual

information [Krause, 2008], and entropy [Krause, 2008].

Let us de�ne an index set X that is related to the sparse vector w as

X = {m ∣wm = 1,m = 1, 2, . . . ,M}.
�us, the setX is analogous (andmaps uniquely) to the sparse vectorw. Assuming that there exists a

submodular (task-speci�c) risk f (⋅), we can solve the sparse sensing problem of the form (P1) using

a greedy algorithm, which iteratively adds elements such that the uncertainty is reduced the most

starting froman empty set; see the psuedo-code inAlgorithm2.1. Solving problems of the form (P0),

i.e., minimizing the number of samples subject to a performance constraint is a straightforward

adaptation of Algorithm 2.1, where the elements are added starting from an empty set until a desired

performance is acheived.

Submodular sensing is only applicable for discrete sparse sensing and not for continuous sparse

sensing. On the other hand, convex optimization techniques can be used to design discrete as well

as continuous sparse sensing mechanisms. In this thesis, the focus will be on sparse sensing design

with convex risks and we will not further discuss submodular sensing.

2.7 Discussion

In this chapter we have kept the de�nition of the signal processing task and hence the risk function

abstract. We shall discuss more speci�cally di�erent risk functions f (w) for estimation, �ltering,

and detection in Chapter 3, Chapter 4, and Chapter 5, respectively. We will provide algorithms to

solve the continuous sparse sensing problem in Chapter 6. �e risk functions that we will provide

quantify the ensemble inference performance. �us, they are data-independent and are model-

driven. As a result, the proposed sparse sensing mechanisms are more suitable for o�ine designs.

Once the sensing functions are designed, solving the inference problem is not novel by itself and is

based on classical signal processing tools.
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Chapter 3

Sparse Sensing for Estimation
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3.1 Introduction

Discrete sparse sensing mechanisms enable the design of sparse space-time samplers that guarantee

a desired estimation accuracy. Such problems are encountered, for example, in sensor placement (or

selection), where the best subset of sensor locations (ormeasurements) are to be selected froma large

set of candidate sensor locations (or measurements) subject to a speci�c performance constraint.

Sensor selection/placement is pertinent to various sensor network and data analysis applications
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like networkmonitoring (e.g., power grid, internet), location-aware services (e.g., target localization

and tracking), �eld (e.g., heat, sound) estimation, and environmental (e.g., climate, precipitation)

monitoring, to list a few. In such applications, we essentially solve an inverse problem, where the

goal is to infer the parameters that describe the underlying physical phenomenon from a set of

noisy measurements. �ese unknown parameters are related to themeasurements through amodel.

In this chapter we are interested in designing sparse sensing mechanisms to gather only the most

informative data being aware of the data model as well as the estimation task. In particular, the

focus will be on nonlinear measurement models and developing risk functions that quantify the

estimation accuracy.

3.1.1 Related prior works

A large volume of literature exists on sensor selection [Joshi and Boyd, 2009, and references therein].

�e sensor selection problem is o�en formulated as an optimization problem based on some well-

knownperformancemeasures from the optimal design of experiments [Ford et al., 1989,Pukelsheim,

1993]. For parameter estimation problems, the performance measures are related to the error co-

variance matrix denoted by E = E{(θ − θ̂)(θ − θ̂)T}, and they are optimized with respect to the

selection variables. Here, θ and θ̂ denote the unknown parameter and its estimate, respectively.

Some of the popular choices for the performance measures are:

1. A-optimality: sum of eigenvalues of E, i.e., tr{E}.
2. E-optimality: maximum eigenvalue of E, i.e., λmax{E}.
3. D-optimality: determinant of E, i.e., det{E(w)}.
All the above measures are equally reasonable, although neither of them completely characterizes

the error covariance. �ere is no general answer to the question of howdoes one performancemetric

compare with the other.

Sensor selection for additive Gaussian linearmodels has been solved via convex relaxation tech-

niques in [Joshi and Boyd, 2009], where the matrix E can be expressed in closed form (thus, can be

optimized). However, this is not true in general (e.g., for nonlinear or nonGaussian measurement

models). �e solution from [Joshi and Boyd, 2009] has also been applied to sensor placement for

power grid monitoring in [Kekatos et al., 2012].

Alternative greedy approaches exploiting the submodularity of the objective function [Krause

et al., 2008b, Krause and Guestrin, 2007, Krause et al., 2008a, Shamaiah et al., 2010, Yao et al., 1993,

Ranieri et al., 2014] are also proposed to solve the sensor selection for estimation (cf. Section 2.6.2

of Chapter 2).

Sensor selection for dynamical systems o�en referred to as sensor polling or scheduling, is stud-

ied in [Masazade et al., 2012,Carmi, 2010, Fu et al., 2012]. All the above literature (in general) deals

with measurements that are related to additive Gaussian linear models. In [Kekatos and Giannakis,

2011], reliable sensor selection based on the actualmeasurements to identify the outliers is presented.



3.2. Sensing nonlinear observations 29

A di�erent problem, yet related to sensor selection, is the problem of identifying source-informative

sensors, which is studied in [Schizas, 2013].

3.1.2 Contributions

We consider general scenarios where the measurements of the unknown parameter follow a non-

linear model (unlike [Joshi and Boyd, 2009] for instance). nonlinear measurement models are fre-

quently encountered in applications like source localization, �eld estimation, or phase retrieval, to

list a few. �e error covariance matrix for nonlinear models is not always available in closed form,

and more importantly it depends on the unknown parameter. Our �rst contribution in the con-

text of sensor selection is to leverage the additive property of the inverse Cramér-Rao bound (CRB)

or the Fisher information matrix (FIM) for independent observations, and thus to express the per-

formance requirement as a convex set. �e CRB is a rigorous performance measure for optimality,

and it generalizes very well for nonlinearmeasurementmodels (not necessarily in additive Gaussian

noise). Although the �rst part of this chapter focuses on independent observations, we also extend

the framework to the case of nonlinear measurements in additive correlated Gaussian noise. In or-

der to design the sensing mechanism of interest, we do not need the actual measurements (i.e., data

independent, but model driven), and hence, our framework is also well-suited for solving o�ine

design problems.

�e proposed sensor selection framework is generic and can be applied to any nonlinear esti-

mation problem (linear being a special case). �e selection problem is formulated as the design of a

sparse selection vector, which is an ℓ0-(quasi) norm nonconvex Boolean optimization problem. �e

nonconvex sensor selection problem is relaxed using standard convex relaxation techniques that can

be e�ciently solved in polynomial time.

A sparsity-enhancing concave surrogate for the ℓ0-(quasi) norm is also proposed for sensor se-

lection as an alternative to the traditional best convex relaxation. �is is particularly advantageous

when there are multiple (nearly) identical sensor measurements.

To cope with large-scale problems, we further present a projected subgradient algorithm. It is

worth mentioning that the projected subgradient algorithm allows a very easy distributed imple-

mentation. In essence, we seek a sparse vector (i.e., a vector with many zeros and a few nonzero en-

tries) that determines the sensing pattern. Sparse sensing leads to energy-e�cient sampling schemes.

We illustrate the sensor selection problem using examples of sensor placement for source localiza-

tion.

3.2 Sensing nonlinear observations

We consider a generic nonlinear measurement model

xm = hm(θ , nm), m = 1, 2, . . . ,M , (3.1)

where xm is the mth spatial or temporal sensor measurement, θ ∈ RN is the unknown parameter,{nm}m=1,2,... ,M describe the noise components, and the regressors {hm}m=1,2,... ,M are (in general)
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nonlinear functionals. Let the vector x = [x1 , x2, . . . , xM]T ∈ RM collect the measurements. �e

likelihood of themeasurements p(x; θ) is the probability density function (pdf) of x parameterized

by the unknown vector θ.

We acquire the data x via the discrete sparse sensing mechanism that was introduced in Chap-

ter 2. �at is, we acquire data as

y = diagr(w)x = Φ(w)x ,
whereΦ(w) = diagr(w) ∈ {0, 1}K×M is the sensing matrix characterized by the selection vector

w = [w1 ,w2, . . . ,wM]T ∈ {0, 1}M .

Here, the variable wm = (0)1 indicates whether the mth sensor is (not) selected. Note that we are

interested in cases where K ≪ M and K is not known. �e reduced dimension data vector y ∈ RK

is used instead of x ∈ RM to solve the estimation problem.

Our goal is now to select the best subset (≥ N) of the M available (or candidate) sensors, that

is, to design the entries of w as sparse as possible, such that a certain accuracy on the estimate θ̂ is

guaranteed. For nonlinear inverse problems, the risk functions f (w) that quantify the estimation

accuracy are discussed next.

3.3 f (w) for estimation

For nonlinear estimation problems, the error covariance matrix does not admit a closed-form ex-

pression or their expressionsmight not be suitable for numerical optimization, in general. �erefore,

we will discuss a simpler and weaker surrogate, which can be optimized instead of the error covari-

ance matrix. More speci�cally, we will use the CRB as a substitute for the error covariance matrix,

however, we will not restrict ourselves to any speci�c estimator. �e motivation behind using the

CRB is twofold:

1. �e CRB is a measure for the (local) identi�ability of the problem [Rothenberg, 1971]. More

speci�cally, a nonsingular FIM implies (local) solvability and a unique estimate of θ, however,

the converse is not necessarily true. �e sensor selection problem presented in this chapter

seeks a subset of sensors for which the FIM has full rank in some domain such that the solv-

ability of the problem in that domain is always ensured.

2. Typically, the subset of selected sensors that yields a lower CRB also yields a lower MSE, and

thus improves the performance of any practical system.

�e CRB also has a very attractive mathematical structure resulting in a selection problem that can

be e�ciently solved using numerical optimization techniques. Before we formally introduce the

CRB, we make the following assumption:

Assumption 3.1 (Regularity condition). �e log-likelihood of the measurements satis�es the regular-

ity condition, that is, E{ ∂ ln p(y;θ)
∂θ } = 0.
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�e regularity condition in general holds for observations that belong to the family of exponen-

tial pdfs, and it already includes a large number of distributions. �us, the proposed sparse sensing

framework is valid as long as the above assumption is true.

Under Assumption 3.1—awell-known condition for theCRB to exist [Kay, 1993], the covariance

of any unbiased estimate θ̂ ∈ RN of the unknown parameter satis�es the well-known inequality [Kay,

1993]

E{(θ − θ̂)(θ − θ̂)T} ≥ C(w , θ) = F−1(w , θ),
where the Fisher information matrix (FIM) is given by [Kay, 1993]

F(w , θ) = −E⎧⎪⎪⎨⎪⎪⎩
∂2

∂θ
( ln p(y; θ)

∂θ
)T⎫⎪⎪⎬⎪⎪⎭

= E
⎧⎪⎪⎨⎪⎪⎩(

∂ ln p(y; θ)
∂θ

)(∂ ln p(y; θ)
∂θ

)T⎫⎪⎪⎬⎪⎪⎭ ∈ R
N×N ,

(3.2)

and C(w , θ) is the CRB matrix.

We now introduce another assumption.

Assumption 3.2 (Independent observations). �e observations {xm}m=1,2,... ,M are a sequence of

independent random variables.

Under Assumption 3.2, the selection variable wm modi�es the log-likelihood of the selected

measurements1 as

ln p(y; θ) = ln M

∏
m=1

p(xm ; θ)wm =
M

∑
m=1

wm ln p(xm ; θ). (3.3)

Using (3.3) in (3.2), the FIM F(w , θ), can be explicitly expressed as a linear function of w as

F(w, θ) = M

∑
m=1

wmFm(θ), (3.4)

where

Fm(θ) = −E⎧⎪⎪⎨⎪⎪⎩
∂2

∂θ
( ln p(xm ; θ)

∂θ
)T⎫⎪⎪⎬⎪⎪⎭

= E
⎧⎪⎪⎨⎪⎪⎩(

∂ ln p(xm ; θ)
∂θ

)(∂ ln p(xm ; θ)
∂θ

)T⎫⎪⎪⎬⎪⎪⎭ ,
(3.5)

is the N × N FIM of the mth (local) measurement. In other words, (3.4) means that every inde-

pendent measurement contributes to the information measure and we use the Boolean selection

1�e pdf of the selectedmeasurements is of reduced dimension, i.e., it does not include the measurements that are set

to zero.
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parameter to choose the most informative sensors (or measurements). Note that the FIM for non-

linear models depends on the unknown vector θ.

One speci�c example that o�en occurs in practice is the case where the observations xm ,m =
1, 2, . . . ,M , are related through the following additive Gaussian nonlinear model given by

xm = hm(θ) + nm , m = 1, 2, . . . ,M , (3.6)

for which it is easy to verify that (3.5) simpli�es to

Fm(θ) = 1

σ2m
(∂hm(θ)

∂θ
)(∂hm(θ)

∂θ
)T .

Remark 3.1 (Additive Gaussian linear model).

As a special case, when the measurement process is linear, we have xm = hTmθ + nm ,m = 1, 2, . . . ,M,

i.e., hm(θ , nm) ∶= hTmθ + nm with hm ∈ RN being the regressor. �e computation of the FIM for a

linear model is straightforward, and is given by

F(w) = M

∑
m=1

wm

σ2m
hmh

T
m .

�e CRB for linear models in additive Gaussian noise is equal to the mean squared error (MSE), and

more importantly it is independent of the unknown vector θ.

Inwhat follows, wewill develop several scalar risk functions f (w) together with the correspond-
ing accuracy threshold λ that can be used in (P0) to design the sparse sensing operator as discussed

in Chapter 2.

We constrain the estimation error ε = θ̂ − θ to be within an origin-centered circle of radius Re

with a probability higher than Pe , i.e.,

Pr(∥ε∥2 ≤ Re) ≥ Pe , (3.7)

where the values of Re and Pe de�ne the accuracy required and are assumed to be known. A higher

accuracy level is obtained by reducing Re and/or increasing Pe . �is metric is used in several oc-

casions as an accuracy measure (e.g., see [Cover and �omas, 2012, Gustafsson and Gunnarsson,

2005,Wang et al., 2009]). We next discuss two popular performance measures from the design of

experiments that satisfy the above requirement.

Trace constraint

�e risk function that satis�es the accuracy requirement in (3.7) is

f (w) ∶= tr {C(w , θ)} = tr⎧⎪⎪⎨⎪⎪⎩(
M

∑
m=1

wmFm(θ))−1⎫⎪⎪⎬⎪⎪⎭
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with a su�cient condition (see Appendix 3.A)

tr

⎧⎪⎪⎨⎪⎪⎩(
M

∑
m=1

wmFm(θ))−1⎫⎪⎪⎬⎪⎪⎭ ≤ λtr = (1 − Pe)R
2
e . (3.8)

�is measure is related to theA-optimality or the average-variance criterion, which restricts the sum

of the semi-axes of the con�dence ellipsoid to λtr.

Minimum eigenvalue constraint

Another risk function that satis�es the accuracy requirement in (3.7) is

f (w) ∶= λmax{C(w , θ)}
with a su�cient condition

λmin{F(w , θ)} ≥ λeig = N

R2
e

( 1

1 − Pe ) ,
where λeig is derived in [Wang et al., 2009] (see also Appendix 3.A).�is measure is related to the E-

optimality or the worst-case error, which restricts the semi-major axis of the con�dence ellipsoid to

λeig. �e inequality constraint λmin{F(w , θ)} ≥ λeig can be equivalently expressed as the following

linear matrix inequality (LMI):

M

∑
m=1

wmFm(θ) − λeigIN ⪰ 0N . (3.9)

In other words, we put a lower bound on each eigenvalue of the matrix F .

�e above performance measures depend on the unknown parameter θ. In practice, the un-

known parameter θ has a physical meaning and takes values within a certain domain denoted byU . For example, in the case of direction-of-arrival estimation, U is the sector where the source is

expected or for target localization it is the surveillance area where the target resides. Since the FIM

for nonlinear models depends on the unknown θ, we propose to constrain every point within the

domain U .
Remark 3.2. �e trace constraint, which can also be represented by LMIs, has a larger feasible set as

compared to the minimum eigenvalue constraint. However, the resulting sensor selection problem is

computationally less attractive compared to the minimum eigenvalue constraint (as we show later on

in Section 3.5.5).

For the aforementioned reason, we focus on the minimum eigenvalue (LMI) constraint from

now on. However, either one of the two performance constraints can be used.
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3.4 Problem statement

Having introduced the risk functions we can now formally state the problem.

Problem 3.1 (Discrete sparse sensing for estimation).

Given the likelihoods of the measurements, p(xm; θ), m = 1, 2, . . . ,M, and a desired inference perfor-

mance λeig, �nd a sparsest vector w ∈ {0, 1}M that selects the minimum number of most informative

sensors satisfying the performance measure∑M
m=1wmFm(θ) − λeigIN ⪰ 0N , ∀θ ∈ U .

Mathematically, the discrete sparse sensing problem (P0) introduced in Chapter 2 for estimation

task specializes to

w⋆ = argmin
w

∥w∥0 (3.10a)

s.t.
M

∑
m=1

wmFm(θ) − λeigIN ⪰ 0N ,∀θ ∈ U , (3.10b)

w ∈ {0, 1}M . (3.10c)

�e threshold λeig imposes the accuracy requirement. �e threshold λeig is also the sparsity-inducing
parameter, where λeig → 0 implies a sparser solution. Alternatively, the sensor selection problem can

also be expressed as (P1) described in Chapter 2 when K is known.

Suppose the domain U consists of D points, obtained by gridding the entire domain (where the

parameter is expected) at a certain resolution. �e resulting multiple LMI constraints can then be

stacked together as a single LMI constraint. Let us consider the domain U = {θ1 , θ2, . . . , θD} with∣U ∣ = D. �e constraints in (3.10b) can then be equivalently expressed as a single LMI constraint

written as∑M
m=1wmFm − λeigIDN ⪰ 0DN , where

Fm = diag(Fm(θ1), Fm(θ2),⋯, Fm(θD)) ∈ SDN

for m = 1, 2, . . . ,M. Note that the FIM a�er gridding is independent of θ. Henceforth, we denote

this simply by Fm (not explicitly as a function of θ). �e computational complexity of the resulting

solvers depends on the number of grid points, which is due to the fact that we do not exactly know

where the true parameter is located and because we are dealing with a nonlinear system model.

We make the following remarks to indicate some scenarios where the computational burden due to

gridding can be reduced.

Remark 3.3 (Worst-case constraints).

If for every θ ∈ U , there exists some θ̃ ∈ Uworst ⊂ U such that

λmin{F(w, θ̃)} ≤ λmin{F(w, θ)}, ∀w ∈ {0, 1}M ,

then it is su�cient to constrain the performance for only the worst-case set Uworst instead of U . �is

property can be used as a guideline for gridding.
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Remark 3.4 (Bayesian CRB constraint).

In a Bayesian setting, when prior information of the unknown parameter θ is available, this additional

knowledge can be incorporated in the CRB.�e related information matrix is o�en called the Bayesian

informationmatrix (BIM) [Van Trees, 2004], and it is independent of the unknown parameter (hence,

gridding is not needed). �e BIM is given by

FB(w) = Jp +Eθ{F(w , θ)},
where Jp is the prior information matrix Jp = −Eθ { ∂

∂θ ( ln p(θ)
∂θ )T} with the (log) prior ln p(θ), and

the expectation Eθ{⋅} is under the pdf p(θ). �e LMI constraint in (3.9) for the Bayesian setting will

then be

Jp + M

∑
m=1

wmEθ{Fm(θ)} ⪰ λeigIN . (3.11)

�e prior information typically comes from the dynamics, previous measurements, or combining other

available measurements.

In order to optimize the Bayesian CRB, we need to know the distribution of the unknown pa-

rameter.

3.5 Solvers

As discussed in Chapter 2, the optimization problem (3.10) that is of the form (P0) is nonconvex

in w. We next present a number of solvers based on the relaxed convex problem (R0) presented in

Chapter 2, which can be solved e�ciently in polynomial time.

3.5.1 Convex approximation based on ℓ1-norm

A computationally tractable (suboptimal) solution is to use the traditional best convex surrogate for

the ℓ0-(quasi) norm, namely, the ℓ1-norm. �e ℓ1-norm is known to represent an e�cient heuris-

tic for the ℓ0-(quasi) norm optimization with convex constraints especially when the solution is

sparse [Polyak et al., 2013]. Such relaxations are well-studied for problems with linear constraints in

the context of compressed sensing (CS) and sparse signal recovery [Donoho, 2006a]. �e nonconvex

Boolean constraint in (3.10c) is further relaxed to the convex box constraint [0, 1]M . �e constraint

(3.10b) is convex on w ∈ [0, 1]M .
�e relaxed optimization problem is given as the following problem

ŵ = argmin
w ∈RM

∥w∥1 (3.12a)

s.t.
M

∑
m=1

wmFm − λeigIDN ⪰ 0DN , (3.12b)

0 ≤ wm ≤ 1, m = 1, 2, . . . ,M . (3.12c)
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Due to the positivity constraint, the objective function ∥w∥1 will simply be an a�ne function 1TMw.

�e optimization problem in (3.12) is a standard semide�nite programming (SDP) problem in the in-

equality form, which can be e�ciently solved in polynomial time using interior-pointmethods [Boyd

andVandenberghe, 2004], for instance. An implementation of the interior-pointmethod for solving

SDP problems in the inequality form is typically based on Newton’s method using an approximating

barrier function. A brief description of the projected Newton’s method is provided in Appendix 3.B,

which we use to analyze the computational complexity of the relaxed convex problem (3.12).

Remark 3.5 (Complexity per iteration).

�e computational cost involved during each iteration is as follows [Boyd and Vandenberghe, 2004, p.

619]. �e matrices {Fm}m=1,2,... ,M have a block-diagonal structure with D blocks. Forming the matrix

S = ∑M
m=1wmFm − λeigIDN costs O(DMN2) �ops; computing S−1F i ∀i via Cholesky factorization

costsO(MDN3) �ops; the Hessianmatrix is computed via the inner product of the matrices S−1F i and

S−1F j, which costsO(DM2N2) ∀i , j. Finally, the Newton step is computed via Cholesky factorization

costing O(DM3) �ops, and the projection costs O(M) �ops. Assuming that M ≫ N, the overall

computational complexity per iteration of the projected Newton’s algorithm is then O(DM3).
Implementations of the interior-point methods are easily available in the form of well-known

toolboxes like YALMIP [Lo2erg, 2004], SeDuMi [Sturm, 1999], and CVX [Grant and Boyd, 2012].

3.5.2 Projected subgradient algorithm

�e second-order Newton’s method (cf. Appendix 3.B) is computationally intensive when the num-

ber of candidate sensors is very large (M ≫ 1000, for example). To circumvent this problem, we

propose a subgradient algorithm. �e projected subgradient algorithm is a �rst-order method that

is attractive for large-scale problems as each iteration is much cheaper to process.

�e subgradient method is typically used for optimizations involving nondi�erentiable func-

tions [Boyd et al., 2003,Bertsekas, 1999]. �e subgradient method is a generalization of the gradient

method for nonsmooth and nondi�erentiable functions, such as, the ℓ1-norm and the minimum

eigenvalue constraint functions. We next derive the projected subgradient algorithm.

�e relaxed sensor selection problem in (3.12) can be equivalently expressed as

argmin
w

1TMw (3.13a)

s.t. feig(w) ≥ λeig, (3.13b)

w ∈W , (3.13c)

where feig(w) ∶= λmin{∑M
m=1wmFm} is the constraint function in (??), and the set

W = {w ∈ RM ∣ 0 ≤ wm ≤ 1,m = 1, 2, . . . ,M}
denotes the box constraints in (3.12c).
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�e objective 1TMw is a�ne, so a subgradient of the objective is the all-one vector 1M . Let g
k ∈

∂ feig(wk) denote a subgradient of the constraint function feig(w) evaluated atw = wk . Here, the set

∂ feig(wk) denotes the subdi�erential of feig(w) towards w evaluated at w = wk . To compute gk , we

express the constraint function feig(wk) as
feig(wk) = inf

∥v∥≤1
vT ( M

∑
m=1

wk
mFm) v .

�e computation of a subgradient is straightforward, and is given by

gk = [(vkmin)TF1v
k
min,⋯, (vkmin)TFmv

k
min]T ∈ ∂ feig(wk), (3.14)

where vkmin is the eigenvector corresponding to the minimum eigenvalue λmin{∑M
m=1w

k
mFm}. �e

minimum eigenvalue and the corresponding eigenvector can be computed using a low-complexity

iterative algorithm, for example, the power method (see Appendix 3.C) or using the standard eigen-

value decomposition [Golub and Van Loan, 1996]. Let the projection of a point onto the setW be

denoted by the operator PW(⋅), which can be expressed elementwise as

[PW(w)]m =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if wm ≤ 0,
wm if 0 < wm < 1,
1 if wm ≥ 1.

(3.15)

�e projected subgradient algorithm then proceeds as follows:

wk+1 =
⎧⎪⎪⎨⎪⎪⎩
PW(wk − αk1M) if feig(wk) ≥ λeig ,PW(wk + αkg k) if feig(wk) < λeig . (3.16)

In other words, if the current iteratewk is feasible (i.e., feig(wk) ≥ λeig), we updatew in the direction

of a negative objective subgradient, as if the LMI constraints were absent; if the current iterate wk

is infeasible (i.e., feig(wk) < λeig), we update w in the direction of a subgradient gk associated with

the LMI constraints. A�er the update is computed, the iterate is projected onto the constraint setW
using PW(⋅). When the kth iterate is feasible, a diminishing nonsummable step size αk = 1/√k is

used. When the iterate is not feasible Polyak’s step size αk = ( feig(wk) + α0)/∥gk∥22 is used, where
we adopt the optimal value for α0 ∶= 1TMw

⋆ when ∥w∥0 is known (i.e., the number of sensors to

be selected is known). If this is not known, then we approximate it with α0 ∶= f kbest + γ, where

γ = 10/(10 + k), and f kbest = min{ f k−1best , 1
T
Mw

k} [Boyd et al., 2003]. �e algorithm is terminated a�er

a speci�ed maximum number of iterations kmax. Finally, the estimate is denoted by ŵ = wkmax .

�e convergence results of the subgradient method for the constrained optimization (i.e., with-

out the projection step) are derived in [Boyd et al., 2003]. Since the projection onto a convex set

is nonexpansive [Bertsekas, 1999], it does not a�ect the convergence. �e projected subgradient

algorithm is summarized as Algorithm 3.1.
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Algorithm 3.1 Projected subgradient algorithm

1. Initialize iteration counter k = 0, wk = 1M , gk = 0, kmax, α0, and λeig.
2. for k = 0 to kmax

3. compute feig(wk) = λmin{∑M
m=1w

k
mFm}

4. update

5. if feig(wk) ≥ λeig
6. wk+1 = PW(wk − (1/√k)1M)
7. elseif feig(wk) < λeig
8. compute gk according to (3.14)

9. wk+1 = PW(wk + feig(wk)+α0
∥g k∥22

gk)
10. end

11. end

12. ŵ = wkmax

Remark 3.6 (Complexity per iteration).

We �rst form the matrix∑M
m=1wmFm , which costsO(DMN2) �ops.�e minimum eigenvalue and the

corresponding eigenvector can be computed using the power method at a cost ofO(DN2) �ops [Golub
and Van Loan, 1996]. Forming the vector g costs O(DMN2) �ops, computing its norm costs O(M)
�ops, and the update and projection together cost O(M) �ops. Assuming that M ≫ N as earlier, the

computational cost of the projected subgradient algorithm is O(DMN2), which is much lower than

the complexity of the projected Newton’s method.

A distributed implementation of the projected subgradient algorithm is very easy. A simple

distributed averaging algorithm (e.g., [Xiao and Boyd, 2004]) can be used to compute the sum of

matrices ∑M
m=1wmFm. �e minimum eigenvalue and the corresponding eigenvector can then be

computed using power iterations at each node independently. �eupdate step (3.16), the subgradient

vector g, and the projection are computed coordinatewise and are already distributed.

Subgradient methods are typically very slow compared to the interior-point method involving

Newton iterations, and subgradient methods typically require a few hundred iterations. Newton’s

method typically requires in the order of ten steps. On the other hand, unlike the projected subgra-

dientmethod, Newton’smethod cannot be easily distributed, and incurs a relatively high complexity

per iteration due to the computation and storage of up to second-order derivatives. Depending on

the scale of the problem and the resources available for processing one could choose between the

subgradient or Newton’s algorithm.

3.5.3 Concave surrogate based on sum-of-logarithms

�e ℓ1-norm is customarily used as the best convex relaxation for the ℓ0-(quasi) norm. However, the

intersection of the ℓ1-norm ball (or an a�ne subspace) with the positive semi-de�nite cone (i.e., the
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LMI constraint) is not always a unique point as shown in the following �eorem.

�eorem 3.1 (Uniqueness). �e projection of a point w ∈ [0, 1]M onto a convex LMI constraint set

∑M
m=1wmFm − λeigIDN ⪰ 0DN under the ℓ1-norm is not always unique.

Proof. �e proof follows from the fact that the ℓ1-norm is not strictly convex, and from the linearity

of the constraint set. Let us consider an example with M = 2 (w.l.o.g.), and F1 = F2 ⪰ λeigIDN . In

other words, the observations are identical. In this case, the extreme points of the ℓ1-norm ball, i.e.,

ŵ1 = [1, 0]T and ŵ2 = [0, 1]T are two example solutions. Moreover, since the solution set of a convex

minimization problem is convex, τŵ1 + (1− τ)ŵ2 is also a solution for any 0 < τ < 1, which gives an

in�nite number of solutions to the relaxed optimization problem (3.12). For such cases, the ℓ1-norm

relaxation might not result in a sparse solution.

To improve upon the ℓ1-norm solution due to its nonuniqueness following from �eorem 3.1,

we propose an alternative approximation to the ℓ0-(quasi) normwhich also results in fewer selected

sensors. Instead of relaxing the ℓ0-(quasi) norm with the ℓ1-norm, using a nonconvex surrogate

function can yield a better approximation. It is motivated in [Candès et al., 2008] that the logarithm

of the geometric mean of its elements can be used as an alternative surrogate function for linear

inverse problems in CS. Adapting this to our sensor selection problem, we arrive at the optimization

problem

argmin
w ∈RM

M

∑
m=1

ln (wm + δ) (3.17a)

s.t.
M

∑
m=1

wmFm − λeigIDN ⪰ 0DN , (3.17b)

0 ≤ wm ≤ 1, m = 1, 2, . . . ,M , (3.17c)

where δ > 0 is a small constant that prevents the cost from tending to −∞. �e cost (3.17a) is

concave, but since it is smooth w.r.t. w, iterative linearization can be performed to obtain a local

minimum [Candès et al., 2008]. �e �rst-order approximation of ln (wm + δ) aroundwm[i − 1]+ δ
results in

ln (wm + δ) ≤ ln (wm[i − 1] + δ) + wm −wm[i − 1]
wm[i − 1] + δ .

Here, i denotes the iteration index. Instead of minimizing the original cost, the majorizing cost

(second term on the right-hand side of the above inequality) can be optimized to attain a local

minimum. More speci�cally, the optimization problem (3.17) can be iteratively driven to a local
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minimum using the iterations

ŵ[i] = argmin
w ∈RM

M

∑
m=1

wm

ŵm[i − 1] + δ (3.19a)

s.t.
M

∑
m=1

wmFm − λeigIDN ⪰ 0DN , (3.19b)

0 ≤ wm ≤ 1, m = 1, 2, . . . ,M . (3.19c)

�e iterative algorithm is summarized as Algorithm 3.2. Each iteration in (3.19) solves a weighted

ℓ1-norm optimization problem. �e weight updates force the small entries of the vector ŵ[i] to
zero and avoid inappropriate suppression of larger entries. �e parameter δ provides stability, and

guarantees that the zero-valued entries of ŵ[i] do not strictly prohibit a nonzero estimate at the next

step. Finally, the estimate is given by ŵ = ŵ[imax], where imax is the speci�ed maximum number of

iterations.

Remark 3.7 (Sparsity-enhancing projected subgradient algorithm).

�e projected subgradient algorithm can be adapted to �t into the sparsity-enhancing iterative algo-

rithm as well.�e optimization problem (3.18) is then replaced with the following update equations:

wk+1[i] = ⎧⎪⎪⎨⎪⎪⎩
PW(wk[i] − αku[i]) if feig(wk[i]) ≥ λeig ,PW(wk[i] + αk g k[i]) if feig(wk[i]) < λeig ,

where we solve a number of iterations (inner loop) of the projected subgradient algorithm within the

Algorithm 3.2 Sparsity-enhancing iterative algorithm

1. Initialize the iteration counter i = 0, the weight vector u[0] =[u1[0], u2[0], . . . , uM[0]]T = 1M , δ, and imax.

2. for i = 0 to imax

3. solve

ŵ[i] = argmin
w ∈RM

u[i]Tw (3.18a)

s.t.
M

∑
m=1

wmFm − λeigIDN ⪰ 0DN , (3.18b)

0 ≤ wm ≤ 1,m = 1, 2, . . . ,M . (3.18c)

4. update um[i + 1] = (δ + ŵm[i])−1, for each m = 1, 2, . . . ,M.

5. end

6. ŵ = ŵ[imax].
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Algorithm 3.3 Randomized rounding algorithm

1. Generate L candidate estimates of the form wm,l = 1 (l = 1, 2, . . . , L) with a

probability ŵm (or wm,l = 0 with a probability 1 − ŵm) for m = 1, 2, . . . ,M.

2. De�ne w l = [w1,l , . . . ,wM,l ]T and the index set of the candidate estimates

satisfying the constraints as

Ω ≜ {l ∣ λmin{F(w l , θ)} ≥ λeig,∀θ ∈ U , l = 1, 2, . . . , L}.
3. If the set Ω is empty, go back to step 1.

4. �e suboptimal Boolean estimate is the solution to the optimization problem

ŵbp = argmin
l∈Ω

∥w l∥1.

ith iteration (outer loop) of Algorithm 3.2. Here, the kth iterate of the inner loop in the ith outer loop

is denoted as (⋅)k[i].
From the solution of the relaxed optimization problem, the approximate Boolean solution can

be obtained using randomization techniques, as described next.

3.5.4 Randomized rounding

�e solution of the relaxed optimization problem is used to compute the suboptimal Boolean solu-

tion for the selection problem. A straightforward technique that is o�en used is the simple rounding

technique, in which the Boolean estimate is given by round(ŵm), m = 1, 2, . . . ,M , where we de�ne

ŵ = [ŵ1 , ŵ2, . . . , ŵM]T , and the round(⋅) operator rounds its arguments towards the nearest integer.

However, there is no guarantee that the Boolean estimates obtained from the rounding technique

always satisfy the performance constraints. Hence, we propose a randomized rounding technique,

where the suboptimal Boolean estimates are computed based on random experiments guided by the

solution from the SDP problem (3.12) or the iterative version in (3.19). �e randomized rounding

technique is summarized as Algorithm 3.3.

3.5.5 Trace and determinant constraints

In this section, we will discuss the relaxed sensor selection problem based on the optimization cri-

teria related to A-optimality and D-optimality.
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Trace constraint

�e relaxed sensor selection problem with the scalar trace constraint is given as follows

argmin
w ∈RM

∥w∥1
s.t. tr

⎧⎪⎪⎨⎪⎪⎩(
M

∑
m=1

wmFm(θ))−1⎫⎪⎪⎬⎪⎪⎭ ≤ λtr , ∀θ ∈ U ,
0 ≤ wm ≤ 1, m = 1, 2, . . . ,M .

(3.20)

�e trace constraint in (3.20) is convex on w ∈ [0, 1]M ; this is easier to verify when the above trace

constraint is expressed as an LMI [Boyd andVandenberghe,2004, p. 387]. �eoptimization problem

(3.20) is a convex problem, and can be cast as an SDP:

argmin
w∈RM , x∈RN

∥w∥1
s.t. [ ∑M

m=1wmFm(θ) en
eTn xn

] ⪰ 0N+1 , n = 1, 2, . . . ,N , ∀θ ∈ U ,
1TNx ≤ λtr ,
xn ≥ 0, n = 1, 2, . . . ,N ,

0 ≤ wm ≤ 1, m = 1, 2, . . . ,M ,

(3.21)

where x = [x1, x2, . . . , xN]T ∈ RN is the auxiliary variable and en is the nth unit vector in R
N .

In addition to the box constraints, the optimization problem (3.21) has N LMI constraints (of

size N + 1) for every point in U and N + 1 inequality constraints, while (3.12) has only one LMI

constraint (of size N) for every point in U . Hence, solving (3.21) is computationally more intense

than solving (3.12).

Determinant constraint

Another popular scalar performance measure that quanti�es the estimation accuracy is the deter-

minant (product of eigenvalues) constraint. �is measure is related to the D-optimality. �e relaxed

sensor selection problem with the determinant constraint is given as follows

argmin
w ∈RM

∥w∥1
s.t. ln det{ M

∑
m=1

wmFm(θ)} ≥ λdet,∀θ ∈ U ,
0 ≤ wm ≤ 1, m = 1, 2, . . . ,M ,

(3.22)

where the threshold λdet speci�es the desired mean radius of the con�dence ellipsoid (see Ap-

pendix 3.A).�e log-determinant constraint is a concave function ofw ∈ [0, 1]M . Note that although



3.6. Numerical example: sensor placement 43

the constraint ln det{∑M
m=1wmFm(θ)} ≥ λdet is an indication of the performance of the estimator,

it is not a su�cient condition for (3.7).

�e relaxed sensor selection problem with the scalar (trace or determinant) constraints can be

solved with either one of the two proposed approximations of the cardinality cost, i.e., the ℓ1-norm

or log-based concave surrogate.

3.6 Numerical example: sensor placement

Localization is an important and extensively studied topic in wireless sensor networks (WSNs). Tar-

get localization can be performedusing a plethora of algorithms [Gustafsson andGunnarsson, 2005,

Gezici et al., 2005, Patwari et al., 2005] (and references therein), which exploit inter-sensor mea-

surements like time-of-arrival (TOA), time-di�erence-of-arrival (TDOA), angle-of-arrival (AOA),

or received signal strength (RSS). �e performance of any location estimator depends not only on

the algorithm but also on the placement of the anchors (sensors with known locations). Sensor

placement is a key challenge in localization system design, as certain sensor constellations not only

deteriorate the performance, but also result in ambiguity or identi�ability issues [Chepuri et al.,

2013b].

�e sensor placement problem can be interpreted as the problem where we divide a speci�c

sensor area S into M grid points and select the best subset of locations from these grid points.

Here, the selected sensors are deemed the best, if they guarantee a certain prescribed accuracy on

the location estimates for a target within a speci�c target area U . We consider a two-dimensional

network with one target located in the target area U and M possible sensors located at the M grid

points.

�e absolute positions of the sensor grid points are known, hence, the considered sensors are

commonly referred to as anchor nodes. Let the coordinates of the target and the mth anchor be

denoted by the 2× 1 vectors θ = [θ1 , θ2]T and am = [am,1 , am,2]T , respectively. Here, θ is assumed to

be unknown, but known to be within U . We next illustrate the developed theory with an example.

Let the pairwise distance between the target and themth anchor be denoted by dm = ∥θ − am∥2.
In practice, the pairwise distances are obtained by ranging and they are noisy. �e range measure-

ments typically follow an additive Gaussian nonlinear model, as given by

ym = dm + nm , m = 1, 2, . . . ,M , (3.23)

where nm ∼N (0, σ2m) is the noise with σ2m = σ2/d−ηm . Here, σ2 is the nominal noise variance, and η is
the path-loss exponent. We can now write the FIM for the localization problem as C−1 = F(w, θ) =
∑M

m=1wmFm(θ), where using (3.5) we can compute

Fm(θ) ∶= (θ − am)(θ − am)T
σ2m∥θ − am∥22 .
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Figure 3.1: Sensor placement for target localization with M = 80 candidate sensor positions. �e thresholds
are computed using Re = 20 cm and Pe = 0.9. (a) Selection based on sparsity-enhancing iterations with
minimum eigenvalue constraints. �e Boolean solution is recovered using randomized rounding. (b) Min-
imum eigenvalue constraints with ℓ1-norm and concave surrogate based relaxations. Randomized rounding
is applied on the concave surrogate based solution. (c) ℓ1-norm based selection with the trace constraints.

We apply the proposed sensor selection problem to sensor placement design for target localiza-

tion. To test the proposed algorithms, we use CVX [Grant and Boyd, 2012]. CVX internally calls

SeDuMi [Sturm, 1999], a MATLAB implementation of the second-order interior-point methods.

We consider the scenario shown in Fig. 3.1(a) withM = 80 sensors to illustrate the sensor place-
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Figure 3.2: (a) �e projected subgradient algorithm used to solve (3.12). (b) Performance of the projected
subgradient algorithm. �e thresholds are computed using Re = 20 cm and Pe = 0.9.

ment problem. Recall that the problem here is to choose the best sensor positions out of M = 80

available ones, such that a certain speci�ed localization accuracy is achieved. We grid the target (or

surveillance) area of 15 × 15 m2 uniformly with a resolution of 1.75 m along both horizontal and

vertical directions as shown in Fig. 3.1(a) to obtain the set U containing D = 81 points.
�e original nonconvex optimization problem is relaxed to an ℓ1-norm optimization problem.

Alternatively, a concave surrogate function can be used to further enhance the sparsity. �e opti-

mization problem with the concave surrogate cost function is iteratively solved by a�nely scaling

the objective based on the solution from the previous iteration. For the sparsity-enhancing iterative

Algorithm 3.2, we use imax = 10 and δ = 10−8. �e number of randomizations used in the ran-

domized rounding Algorithm 5.1 is L = 100. As observed in the simulations, a solution is typically

found in the �rst batch itself, and a few tens of candidate entries are su�cient. We use the following

parameters for the simulations: η = 2, σ2 = 2 × 10−5, and Pe = 0.9.
Fig. 3.1 shows the sensor selection for the distance (range) measurement model. �e thresholds

are computed with Re = 20 cm and Pe = 0.9. �e selection shown in Fig. 3.1(a) is based on Algo-

rithm 3.2 with randomized rounding to recover the approximate Boolean solution. �e selection

results based on the ℓ1-norm cost with the minimum eigenvalue constraint is shown in Fig. 3.1(b).

Fig. 3.1(b) also shows that the solution based on the concave surrogate cost function with the min-

imum eigenvalue constraint leads to a sparser solution. �e selection results based on the trace

constraint obtained by solving (3.20) are illustrated in Fig. 3.1(c). �e sensors from the same re-

gion (close to the red �lled boxes in Fig. 3.1(a)) are selected with either one of the two constraints.

�e su�cient trace constraint has a larger feasible set compared to the stronger su�cient minimum

eigenvalue constraint. As a result, for the considered scenario, the minimum eigenvalue constraint
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Figure 3.3: (a) Solution path of the sensors selected for di�erent values of Re and Pe = 0.9. Maximum RMSE
based on selected sensors can be seen on the top of this plot. (b) Maximum and average RMSE of the location
estimates based on Gauss-Newton’s method, the corresponding maximum and average root-CRB, and the
performance constraint in (3.31) for di�erent values of Re , and Pe = 0.9.

leads to a slightly larger ℓ1-norm compared to the trace constraint.

�e optimization problem (3.12) is also solved using the projected subgradient method sum-

marized in Algorithm 3.1 with kmax = 1000 iterations. �e solution of the projected subgradient is

shown in Fig. 3.2(a). �e performance of the projected subgradient algorithm is compared to the

solution from SeDuMi denoted by fopt, i.e., the convergence ( f kbest− fopt)/ fopt is shown in Fig. 3.2(b).
Even though the convergence of the projected subgradient algorithm is very slow, the estimated sup-

port a�er a few hundred iterations can be used along with randomized rounding to further re�ne

the solution. �e computation time on the same computer for the projected subgradient algorithm

that solves (3.12) is around 8.84 seconds for 1000 iterations while SeDuMi takes around 4.03 seconds

to solve the SDP problem in (3.12).

A practical estimator does not meet the CRB in some cases (for instance at low SNRs or �nite

data records). �erefore, the sensors selected with a speci�c Re would lead to an underestimate of

the desired MSE. We can account for this gap by choosing Re appropriately. To this end, we give

the entire solution path of the selected sensors for di�erent values of Re in Fig. 3.3(a). �e solution

path can be e�ciently computed by increasing Re . �e sensors corresponding to some Re can then

be used to meet the desired MSE requirement. �e nonlinear model in (3.23) is solved in the least-

squares sense iteratively using Gauss-Newton’smethodwith 10 iterations [Kay, 1993]. �emaximum

root-MSE (RMSE), maximum root-CRB, average RMSE, and average root-CRB of the location esti-

mates of a target within the target area using the selected sensors (as shown in the solution path) for

di�erent values of Re are shown in Fig. 3.3(b). For the considered scenario, both the maximum and
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average root-CRB satisfy the performance constraint which is given by the inequality in (3.31). �e

performance constraint is shown as a red solid line in Fig. 3.3b.�emaximumRMSE does not satisfy

the accuracy requirement speci�ed by a certain Re , and this can be corrected by using an appropri-

ate (lower) Re . Moreover, for the considered scenario, the gap between the average RMSE and the

performance constraint is still reasonable. We also show the maximum RMSE on top of Fig. 3.3(a).

�e proposed framework can be applied to a variety of data models as long as (a1) and (a2)

are valid. �is is illustrated in [Chepuri and Leus, 2015b] for di�erent models based on bearing

measurements, received signal strength, and energy measurements.

Although the illustrated example is related to passive sensing, we underline that the proposed

sensor selection framework is not limited to passive sensors.

Remark 3.8 (Active sensor selection).

�e sensor selection problem can also be formulated for active sensing. In active sensing, the sensors

transmit probing signals (e.g., radar, sonar, remote sensing). �e selection parameter wm for active

sensing is a so� parameter used for joint selection and resource allocation [Chepuri et al., 2013b], i.e.,

wm ∈ [0, 1] is a resource (e.g., transmit energy) normalized to the maximum prescribed value, and

hence, it is dimensionless. �e relaxed active sensor selection problem takes the same form as in (3.12).

In fact, minimizing the ℓ1-norm in active sensor selectionminimizes the overall network resources (e.g.,

overall transmit energy).

3.7 Dependent observations

�roughout this chapter so far, we have assumed that the observations are a sequence of indepen-

dent random variables. �is assumption is reasonable if the sensors are solely responsible for the

noisy observations, for example, due to the internal thermal noise. If the observation signal itself

is stochastic in nature or if the observations are subject to external noises or interference, then As-

sumption 3.2 will be too idealistic. As a consequence of relaxingAssumption 3.2, the FIMwill not be

linear (or convex) inw anymore. Nevertheless, the FIM will still be a function ofw and sparse sam-

plers can be designed using nonlinear and o�en nonconvex optimization techniques. In some cases,

the solution can be computed using convex optimization techniques as illustrated in the following

example.

Suppose the unknown vector θ ∈ RN is related to the observations according to

x ∼N (h(θ), Σ) ,
where h(⋅) ∶ RN z→ R

M is a nonlinear function and Σ ∈ SN is the noise covariance matrix. As

before, we acquire the data using the sparse sensing functionΦ(w) to obtain y = Φ(w)x .
Using (3.2), we can compute the FIM, and it is given by

F(w , θ) = [ΦJ(θ)]T Σ−1(w) [ΦJ(θ)] , (3.24)

where for the sake of brevity we write Φ(w) = Φ. Here, J(θ) = ∂h(θ)/∂θT ∈ RM×N and

Σ(w) = ΦΣΦT ∈ RK×K
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is the submatrix of Σ(w), which includes only the entries corresponding to the selected measure-

ments. Clearly, the FIM (3.24) is no more additive or linear in w. Consequently, the constraint

λmin{F(w , θ)} ≥ λeig in its current form is not convex in w. �is is also true for the trace and

determinant constraints.

In what follows, we will provide some simpli�cations to express the minimum eigenvalue con-

straint as a convex constraint on w. Firstly, we write the noise covariance matrix Σ as

Σ = aI + S , (3.25)

where a nonzero a ∈ R is chosen such that S ∈ RM×M is invertible andwell-conditioned. Using (4.16)

in (3.24), we obtain

F(w , θ) = JT(θ)ΦT (aI +ΦSΦT)−1ΦJ(θ).
We now state the following property.

Property 3.1. IfΦTΦ = diag(w), then
ΦT (aI +ΦSΦT)−1Φ = S−1 − S−1 [S−1 + a−1diag(w)]−1 S−1. (3.26)

Proof. By de�nition ΦTΦ = diag(w). Applying the matrix inversion lemma [Kay, 1993]

C(B−1+CTA−1C)−1CT = A− A(A+ CBCT)−1A,
with C = ΦT , B−1 = aI, and A = S−1, it is easy to verify (3.26).

�erefore, from Property 3.1, we can simplify F(w , θ) to
F(w , θ) = JT(θ)S−1J(θ) − JT(θ)S−1 [S−1 + a−1diag(w)]−1 S−1JT(θ), (3.27)

where by de�nition ΦTΦ = diag(w). In contrast to (3.24), the design parameter w appears only

once in (3.27), which makes the problem much easier. Using the Schur complement, the constraint

λmin{F(w , θ)} ≥ λeig can now be equivalently expressed under a > 0 as an LMI:

⎡⎢⎢⎢⎢⎢⎣
S−1 + a−1diag(w) S−1J(θ)

JT(θ)S−1 JT(θ)S−1J(θ) − λeigIN
⎤⎥⎥⎥⎥⎥⎦
⪰ 0M+N , (3.28)

which is linear (thus, convex) in w. �e above LMI is of size M + N and it is larger than the size-N

LMI (3.9), which is related to the independent observation case. Note that the constraint (3.28) also

depends on the unknown parameter vector θ. We remark here that for linear measurementmodels,

the above constraint is independent of the unknown parameter vector θ. In other words, in that

case, J(θ) will be independent of θ and will simply be the regression matrix itself.
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3.7.1 Convex relaxation

�e discrete sparse sensing design problem for nonlinear dependent Gaussian observations is ob-

tained by replacing the LMI constraint (3.10b) with (3.28). �e resulting nonconvex optimization

problem can then be relaxed to a convex optimization problem along similar lines as explained in

Section 3.5.1 or Section 3.5.3. For example, the sparsity-enhancing iterations, i.e., the re-weighted

ℓ1-norm optimization problem (cf. (3.19) and Algorithm 3.2) for the dependent case is given by

ŵ[i] = argmin
w ∈RM

M

∑
m=1

wm

ŵm[i − 1] + δ

s.to

⎡⎢⎢⎢⎢⎢⎣
S−1 + a−1diag(w) S−1J(θ)

JT(θ)S−1 JT(θ)S−1J(θ) − λeigIN
⎤⎥⎥⎥⎥⎥⎦
⪰ 0M+N , ∀θ ∈ U ,

0 ≤ wm ≤ 1, m = 1, . . . ,M .

(3.29)

Inwhat follows, we will illustrate the sparse sensing design for dependentGaussian observations

applied to sensor placement for source localization.
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Figure 3.4: Sensor placement for �eld estimation. Here, the uncorrelated and correlated sensors are denoted
by squares (◻) and diamonds (◇), respectively. �e source domain is indicated by circles (○), while the
selected sensors are indicated by (∗). (a) Illustration of a �eld generated by a unit amplitude point source at
location θ = [25, 25]T m according to (3.30). Out of M = 80 available sensors 14 sensors are selected. (b)
Sensor selection is solved using log-based heuristics. �e thresholds are computed using Re = 20 m, and
Pe = 0.9. We use e = 1, β = 1 and σ 2

e = 2 × 10−5.
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3.7.2 Numerical example

We consider a similar setup as in Section 3.6, but with another popular measurement model as

detailed next. In applications related to �eld estimation, (active/passive) radar, and sonar, it is im-

portant to estimate the location of a point source that emits or re�ects energy. Suppose the sensors

measure the energy generated by a point source at location θ ∈ RN . �e measurements are given as

ym = hm(θ) + nm , m = 1, 2, . . . ,M , (3.30)

where e is the known �eld intensity emitted or re�ected by the point source, the propagation func-

tion for some gain β ≥ 0 ismodeled as an isotropic exponential attenuation hm(θ) =√eβ/(β + d2m),
and nm is the noise. Recall from Section 3.6 that dm = ∥θ − am∥2 . In this case, we have

h(θ) = [hm(θ), h2(θ), . . . , hM(θ)]T
and n = [n1, n2, . . . , nM]T with n ∼N (0, Σ).

We consider the scenario shown in Fig. 3.4 with M = 80 sensors. We assume that the noise

correlation matrix is of the form

Σ = [ Σhorz 0

0 Σvert
] ∈ RM×M ,

where Σhorz is the noise correlation matrix corresponding to the horizontally located candidate

sensors (denoted by (◇) in Fig. 3.4) and Σvert is the noise correlation matrix corresponding to

the vertically located candidate sensors (indicated by (◻) in Fig. 3.4). We further assume that

Σhorz = σ2e [(1 − ρ)I + ρ11T] with correlation co-e�cient ρ and nominal noise variance σ2e , and
Σvert = σ2e I. �at is, the vertically located candidate sensors are uncorrelated while the horizon-

tally located candidate sensors are equally correlated.

We use the following simulation parameters: e = 1, β = 1 and σ2e = 2 × 10−5, Re = 20 m,

ρ = 0.5, and Pe = 0.9. Fig. 3.4(a) shows the sensor placement obtained by solving Algorithm 3.2,

but with (3.18) replaced with (3.29) and with imax = 10 and δ = 10−8. Fig. 3.4(b) shows the selected
sensor index. We underline the following observations. Firstly, the sensors from the same region

are selected as in Fig. 3.1(a). �is is due to the structural similarity of the FIMs corresponding to

the models (3.23) and (3.30). Secondly, to achieve the desired performance requirement we see that

fewer number of correlated sensors are selected as compared to the number of selected uncorrelated

sensors. Finally, as observed in the simulations, for this particular numerical example, the ℓ1-norm

based solution does not result in a sparse selection.

We next end this chapter with some concluding remarks.

3.8 Discussion

In this chapter we discussed discrete sparse sensing for estimation problems. In particular, we fo-

cussed on observations that follow a nonlinearmodel. We used a number of scalar functions related



3.A. Performance thresholds 51

to the Cramér-Rao bound to design the sparse sensing function. �e Cramér-Rao bound was used

as a weaker surrogate for the error covariance matrix, which for nonlinear models does not admit a

closed-form expression. �e original nonconvex optimization problem is relaxed using convex re-

laxation techniques, which can then be e�ciently solved in polynomial time. To handle large-scale

problems, we have also presented a projected subgradient algorithm. �e proposed framework is

applied to sensor placement design for localization.

3.A Performance thresholds

Trace and minimum eigenvalue constraints

We can relate the accuracy requirement and CRB using Chebyshev’s inequality [Cover and�omas,

2012]

Pr(∥ε∥2 ≥ Re) ≤ tr{C}/R2
e

which can be equivalently expressed as Pr(∥ε∥2 ≤ Re) ≤ 1 − tr{C}/R2
e . Combining this inequality

together with Pr(∥ε∥2 ≤ Re) ≥ Pe in (3.7) results in the following su�cient condition

tr{C} ≤ λtr = (1 − Pe)R2
e . (3.31)

Each eigenvalue ofC−1 is greater than λmin(F), and as a result, tr{C} ≤ Nλ−1min(F). Hence, a stronger
su�cient condition (with a smaller feasible set) is Nλ−1min(F) ≤ (1 − Pe)R2

e , or equivalently [Wang

et al., 2009]

λmin(F) ≥ λeig = N

R2
e

( 1

1 − Pe ) .
Determinant constraint

�e determinant constraint is related to the volume or the mean radius of the con�dence ellipsoid

that contains ε = θ − θ̂ with probability Pe . Such a con�dence ellipsoid can be expressed as

E = {ε ∣ εTF−1ε ≤ ξ},
where ξ is a constant that depends on Pe . Assuming F has ordered eigenvalues λmax ≥ λ2⋯ ≥ λmin,

the length of the nth semi-axis of the ellipsoid E will be√ξ/λn. �e geometric mean radius of the

con�dence ellipsoid E is given by

R̄e =
√
ξ/(det{F})1/2N ,

which gives a quantitative measure of how informative the observations are. For the estimates to be

within the con�dence ellipsoid E , we use the constraint
ln det{F} ≥ 2N ln

√
ξ

R̄e
= λdet ,
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where R̄e and
√
ξ specify the required accuracy, and are assumed to be known. A typical choice

for ξ is ξ = F−1
X 2

N

(Pe). Here, F−1X 2
N

is the cumulative distribution function of a chi-squared random

variable with N degrees of freedom. �is performance measure is related to the D-optimality.

3.B Projected Newton’s method

In order to analyze the complexity of the interior point methods, we brie�y describe the projected

Newton’s method. �e Newton’s method for an SDP problem in the inequality form is adapted to

suit our problem [Boyd and Vandenberghe, 2004, p. 619].

�e optimization problem in (3.12) can be approximated using the log-determinant barrier func-

tion which is given as

argmin
w∈[0,1]N

ψ(w) = t1TMw − ln det{ M

∑
m=1

wmFm − λeigIDN},
where t > 0 is a parameter to tune the approximation. �e projected Newton’s update equation is

given by

wk+1 = PW (wk − αkH−1ψ (wk)gψ(wk)) , (3.32)

where the (i , j)th entry of the Hessian matrix is given by

[Hψ(wk)]i, j = ∂2ψ(w)
∂wi∂w j

∣
w=wk

= tr{S−1F iS
−1F j},

and the ith entry of the gradient vector is given by

[gψ(wk)]i = ∂ψ(w)
∂wi

∣
w=wk

= t + tr{S−1F i}.
Here, we have introduced the matrix S = ∑M

m=1wmFm − λeigIDN , and recall the projection operatorPW(⋅) de�ned in (3.15). �e step-length αk is chosen by line-search.

3.C Power iterations

We brie�y describe the power iterations [Golub and Van Loan, 1996] to compute the minimum

eigenvalue of a matrix F ∈ SN . Assuming F has ordered eigenvalues λmax ≥ λ2⋯ ≥ λmin, the power

iterations

vk+1 = Fvk

∥Fvk∥2 , and λk+1 = (vk+1)TFvk+1∥vk+1∥2 ,

converge to the maximum eigenvector vmax andmaximum eigenvalue λmax, respectively, as k →∞.

Here, we use v0 = [1, 0TN−1]T . By forming amatrix F̄ = λmaxIN−F which has the dominant eigenvalue

λmax − λmin, we can apply the above power iterations on F̄ to compute λmax − λmin and vmin, and

thus the minimum eigenvalue of F and it’s corresponding eigenvector.
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Chapter 4

Sparse Sensing for Filtering
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4.1 Introduction

In this chapter we will extend the discrete sparse sensing framework for estimation introduced in

Chapter 3 to nonlinear �ltering problems. �e proposed framework is useful for a variety of applica-

tions related to target/bearing tracking, dynamic �eld estimation, and nonlinear �ltering in general,

where the sensors (or measurements) are scheduled or activated parsimoniously to increase their

battery lifetime as well as to reduce the communications and inference costs. �e time-varying state
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parameters are described through a state-space model, which is assumed to be known. Given the

state-space model, we will design sparse sensing mechanisms and develop the associated risk func-

tions that quantify the �ltering accuracy.

Over the past decade, sensor scheduling/polling problems for state estimation of linear dynam-

ical systems (i.e., linear �ltering problems) have been extensively studied with di�erent �avors, such

as di�erent optimization criteria from experiment design, myopic (one-step ahead) and nonmy-

opic (a longer time horizon) scheduling, heuristic (submodular, convex, among others) algorithms,

and budget constraints; see [Hernandez et al., 2004, Zuo et al., 2007,Krause, 2008, Joshi and Boyd,

2009,Fu et al., 2012,Jiang et al., 2013,Liu et al., 2014,Zhan et al., 2010]. For example, [Joshi and Boyd,

2009] proposed convex relaxation techniques, whereas [Krause, 2008] proposed greedy algorithms

using submodular cost functions for sensor scheduling. In [Liu et al., 2014], the design of optimal

periodic sensor scheduling (over an in�nite time horizon) with restrictions on the total number of

sensor activations was studied for additive linear Gaussian models. �e optimal experiment design

problems are well-studied for observations that follow a linear model with uncorrelated noise com-

ponents for which the MSE covariance matrix has a known closed form. However, it is in general

di�cult to compute the error covariance matrix in closed form for nonlinear dynamical systems.

�erefore, the above methods cannot be used directly.

We organize this chapter into three parts discussing sparse sensing mechanisms for: indepen-

dent observations, dependent observations, and structured state sequences. To begin with, we focus

on nonlinear state-space models (non additive and/or non Gaussian) with independent observa-

tions. In [Masazade et al., 2012], sensor selection for target tracking based on extended Kalman

�ltering has been proposed, in which the selection is performed by designing a sparse gain matrix.

Moreover, [Masazade et al., 2012] focuses on an additive Gaussian nonlinearmodel, that is linearized

around the (noisy) past state estimate. �is chapter, on the other hand, deals with general nonlinear

models, without an explicit linearization. For a general nonlinear �ltering problem, we use a number

of scalar measures (from experiment design) of the posterior Cramér-Rao bound matrix. We saw

in Chapter 3 that for nonlinear estimation problems the risk functions based on the Cramér-Rao

bound depend on the true parameter. Similarly, for nonlinear �ltering problems the risk functions

based on the posterior Cramér-Rao bound depend on the current as well as the previous true state

parameters. �e sensing patterns are time-varying, and we do not need actual measurements to de-

sign them (i.e., they are data independent andmodel-driven). However, running a nonlinear �lter in

parallel and incorporating the entire history of (actual) measurements up to that point signi�cantly

simpli�es the design problem. We further model the evolution of the sensing pattern in time to

control its smoothness. �is is bene�cial for mobile sensing (e.g., sensing with sensors mounted on

bicycles or automobiles), for instance. Next, we extend the framework to include nonlinear additive

Gaussian models with correlated measurements.

We also study discrete sparse sensing for time-varying structured signals. In particular, we will

illustrate this framework with time-varying sparse signals with possibly time-varying sparsity pat-

terns and/or order. �is has received a lot of attention in the recent past through compressive sensing

(CS) [Baraniuk, 2007]. Time-varying sparse signal reconstruction has been studied in the past lead-

ing to various forms of sparsity-aware �lters [Vaswani, 2008, Angelosante et al., 2009, Carmi et al.,
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2010,Malioutov et al., 2010], and are applied to problems like visual surveillance [Warnell et al., 2012]

and target localization [Farahmand et al., 2014]. We study the design of sensing matrices for such

problems; however, the focus will not be on the signal recovery itself.

Sensingmatrix design for sparse recovery has been studied in various forms. For example, in [El-

dar and Kutyniok, 2012, Ch. 6], [Haupt et al., 2009] the variance of the distribution from which the

(random) sensing matrices are generated is designed such that the average information gain is max-

imized. �e Bayesian CS framework [Ji et al., 2008] allows to quantify the sparse reconstruction

error through the so-called error bars, which again allows to adaptively design the sensing matrices.

Both [Haupt et al., 2009] and [Ji et al., 2008] use experiment design techniques with performance

measures like di�erential entropy to adaptively learn the sensing matrix starting from a randomma-

trix. In [El Badawy et al., 2014], a greedy algorithm based on a submodular performance measure

has been proposed for sensing operator design for a signal lying in the union of subspaces. However,

the sensing design schemes discussed above are mostly limited to time-invariant signals and/or sys-

tems without any state-space representation. Hence, they are not adaptive in the true sense, and are

not meant for tracking the signal variation over space and/or time. On the other hand, the proposed

sensingmatrix is designed at each time step based on the entire history of measurements and known

dynamics described through a state-space model. Towards the end, we will also discuss a few ex-

tensions of the proposed framework to include general structured signals, such as group sparse and

smooth signals.

4.2 Sensing time-varying observations

We consider a nonlinear measurement model for observing an unknown dynamic parameter θk ∈
R

N×1 at time k:

xk,m = hk,m(θk , nk,m),m = 1, 2, . . . ,M , (4.1)

where hk,m(⋅, ⋅) is a nonlinear functional of the unknown vector θk and the noise component nk,m .

�e spatial (and/or temporal) measurements at temporal block k, {xk,m}Mm=1, are stacked in themea-

surement vector xk = [xk,1 , xk,2 , . . . , xk,M]T ∈ RM×1.

�e unknown parameter is assumed to obey the following dynamical model:

θk+1 = Akθk + uk , (4.2)

where Ak ∈ RN×N is the state transition matrix and uk ∈ RN×1 is the process noise that accounts for

any unmodeled dynamics. Here, we model uk ∼ N (0, Σu), where Σu ∈ RN×N represents the state

noise covariance matrix.

At each time instance k, we acquire the data xk via the discrete sparse sensing mechanism that

was introduced in Chapter 2. Speci�cally, we acquire data as

yk = diagr(wk)xk = Φk(wk)xk
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whereΦk(wk) = diagr(wk) ∈ {0, 1}K×M is the sparse sensing matrix whose entries are determined

by the time-varying selection vector

wk = [wk,1 ,wk,2 , . . . ,wk,M]T ∈ {0, 1}M .

Here, the time-varying variable wk,m = (0)1 indicates whether xk,m is (not) selected.

We are interested in cases where K ≪ M and K is not known. �e reduced dimension data

vector yk ∈ RK is used instead of xk ∈ RM together with (4.2) to solve the nonlinear �ltering prob-

lem. �erefore, our aim is to design, for each k, a sparsest wk (and, hence a sequence of matrices{Φk(wk), k ∈ N}) based on the entire history of measurements up to that point {y1 , y2, . . . , yk−1},
such that a desired accuracy on the (a posteriori) estimate of θk is guaranteed. For such nonlinear

�ltering problems, the risk function f (wk) that quanti�es the �ltering accuracy is discussed next.

4.3 f (w) for �ltering

For general nonlinear �ltering problems, it is di�cult to compute the posterior error covariance

matrix in closed form that is suitable for optimization. �erefore, along the lines of Section 3.3 of

Chapter 3, we will discuss a weaker surrogate that can be optimized instead of the posterior error

covariance.

We now recall Assumption 3.1 from Chapter 3 as:

Assumption 4.1 (Regularity condition). �e log-likelihoodof the measurements ln pk(y; θk) satis�es
the regularity condition, that is, E{ ∂ ln pk(y;θk)

∂θ } = 0, for all k, where pk(y; θk) is the probability
density function (pdf) of yk at time instance k parameterized by the unknown vector θk .

Under the above assumption, the a posteriori estimate of θk denoted by θ̂k∣k satis�es the well-

known posterior Cramér-Rao bound (PCRB) inequality given by

E{(θ̂k∣k − θk)(θ̂k∣k − θk)T} ≥ Ck(θk) = F−1k (θk), (4.3)

where Ck(θk) is the PCRB matrix and Fk(θk) is the posterior Fisher information matrix (FIM),

which is given by the following recursion [Tichavsky et al., 1998]:

Fk(wk , θk , {θκ−1}kκ=1) =
Fprior ,k−1({θκ−1}

k
κ=1)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(Σu + AkF

−1
k−1({θκ−1}kκ=1)AT

k )−1 + Fobs,k(wk , θk) ∈ RN×N ,
(4.4)

with the FIM related to the observations given by

Fobs,k(wk , θk) = E⎧⎪⎪⎨⎪⎪⎩(
∂ ln pk(y; θk)

∂θk
)(∂ ln pk(y; θk)

∂θk
)T⎫⎪⎪⎬⎪⎪⎭ ∈ R

N×N . (4.5)

�e �rst term of (4.4) is the prior information related to the history up to time instance k − 1.
We now introduce the independence assumption.
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Assumption 4.2 (Independent observations). �e observations {xk,m}Mm=1 at time k are a sequence

of independent random variables.

Under Assumption 4.2, the information measure from each observation is additive in the vari-

ables {wk,m}Mm=1, which is intuitive as each independentmeasurement contributes some information

(we have seen this property before in Chapter 3). Using this property, we can further simply (4.4) to

arrive at

Fk (wk , θk , {θκ−1}kκ=1) = Fprior,k−1({θκ−1}kκ=1) + M

∑
m=1

wk,mFk,m(θk), (4.6)

where

Fk,m(θk) = E⎧⎪⎪⎨⎪⎪⎩(
∂ ln pk,m(x; θk)

∂θk
)(∂ ln pk,m(x; θk)

∂θk
)T⎫⎪⎪⎬⎪⎪⎭ ∈ R

N×N

with pk,m(x; θk) being the pdf of xk,m at time instance k parameterized by the unknown vector θk .

�e posterior FIM (4.6) depends on the true state θk at time k as well as all the previous states.

Remark 4.1 (Additive Gaussian linear state-space models).

For a linear measurement model: xk,m = hTk,mθk + nk,m ,m = 1, 2, . . . ,M, (i.e., hk,m(θk , nk,m) ∶=
hTk,mθk + nk,m) where hk,m ∈ RN is the regressor. Assuming that the noise components {nk,m}Mm=1 are
i.i.d. Gaussian with variance σ2, the FIM for linear �ltering is given by

Fk(wk) = (Σu + AkF
−1
k−1A

T
k )−1 + 1

σ2

M

∑
m=1

wk,mhk,mh
T
k,m . (4.7)

�e PCRB for linear state-space models in additive Gaussian noise is equal to the posterior error co-

variance, and it is independent of the unknown state vectors.

As a performance measure, we constrain the posterior estimation error εk = θ̂k∣k − θk to be

within an origin centered circle of radius Re with a probability higher than Pe , i.e.,

Pr(∥εk∥2 ≤ Re) ≥ Pe , (4.8)

where Re and Pe are speci�ed to achieve a desired accuracy. �is accuracy constraint is satis�ed by

the two popular experiment design criteria (cf. Section 3.3 of Chapter 3):

1. Trace constraint, which is related to theA-optimality measure. A su�cient condition for (4.8)

is (see Appendix 3.A)

f (wk) ∶= tr{(Fk(wk , θk , {θκ−1}kκ=1))−1} ≤ λtr = (1 − Pe)R2
e .

2. Minimum eigenvalue constraint, which is related to the E-optimality measure. A su�cient

condition for (4.8) related to the eigenvalue constraint is (see Appendix 3.A)

f (wk) ∶= λmin {Fk (wk , θk , {θκ−1}kκ=1)} ≥ λeig = N

R2
e

( 1

1 − Pe ) .
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�e above inequality can be alternatively expressed as the following linear matrix inequality

(LMI):

Fprior,k−1({θκ−1}kκ=1) + M

∑
m=1

wk,mFk,m(θk) ⪰ λeigIN . (4.9)

We underline here that the determinant constraint similar to Section 3.5.5 of Chapter 3 can also be

used as a reasonable performance measure. Unless the process noise is zero (e.g., a deterministic

trajectory), the true states are not known. However, in practice θk takes values within a certain

domain denoted by the set Uk . �erefore, we constrain (4.9) for all θκ ∈ Uκ , κ = 0, 1, 2, . . . , k.
As discussed in Chapter 3, the trace constraint, which can also be represented by LMIs, has a

larger feasible set as compared to the minimum eigenvalue constraint. However, the resulting opti-

mization problem is computationally less attractive compared to theminimumeigenvalue constraint

(as we show later on in Section 3.5.5). For this reason, we focus on the minimum eigenvalue (LMI)

constraint from now on.

4.4 Problem statement

�e adaptive discrete sparse sensing (a.k.a. adaptive sensor selection) problem can be interpreted as

the problem of choosing the best subset of sensors out of the M available sensors to acquire mea-

surements for time step k such that a certain accuracy on the estimate θ̂k∣k is guaranteed. �us, the

adaptive sensor selection problem can be formally stated as follows.

Problem 4.1 (Adaptive discrete sparse sensing). Given the state-space model (4.1) and (4.2), at each

time step k, based on the entire history of measurements up to that point �nd a sparsest wk ∈ {0, 1}M
, which satis�es the accuracy constraint Fprior,k−1({θκ−1}kκ=1) +∑M

m=1wk,mFk,m(θk) ⪰ λeigIN , ∀θκ ∈Uκ , κ = 0, 1, 2, . . . , k.
At each time step, the above design problem is a specialization of the discrete sparse sensing

problem (P0) introduced in Chapter 2, that is,

argmin
wk

∥wk∥0 (4.10a)

s.t. Fprior,k−1({θκ−1}kκ=1) + M

∑
m=1

wk,mFk,m(θk) ⪰ λeigIN ,
∀θκ ∈ Uκ , κ = 0, 1, 2, . . . , k , (4.10b)

wk ∈ {0, 1}M . (4.10c)

�is is a nonconvex Boolean optimization problem. Clearly, the number of LMI constraints (4.10b)

depends on ∣Uk ∣ and this increases with k, that is, the number of LMI constraints is ∑k
κ=0 ∣Uκ ∣. For

example, if ∣Uκ ∣ = D,∀κ, then at time step k, the optimization problem (4.10) will have Dk size-N
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LMI constraints. To reduce the computational complexity, the prior Fisher Fprior,k−1({θκ−1}kκ=1) can
be simply evaluated at the past estimates

θ̃k−1 ∶= θ̂k−1∣k−1 ,
obtained by solving any nonlinear �lter (e.g., extended Kalman �lter, unscented Kalman �lter, or

particle �lters). �at is, we approximate Fk(wk , θk , {θκ−1}kκ=1) as

Fk(wk , θk) ≈
Fprior ,k−1(θ̃ k−1)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(Σu + AkF

−1
k−1(θ̃k−1)AT

k )−1 + Fobs,k(wk , θk) ∈ RN×N ,

�erefore, running an extended Kalman �lter in parallel (and incorporating the history of actual

measurements) signi�cantly reduces the number of constraints. Henceforth, we will not write the

prior FIM Fprior,k−1(θ̃k−1) as an explicit function of θ̃k−1, i.e., we will simply write it as Fprior,k−1 . As

a consequence, (4.10) simpli�es to

argmin
wk

∥wk∥0 (4.11a)

s.t. Fprior,k−1 + M

∑
m=1

wk,mFk,m(θk) ⪰ λeigIN ,∀θk ∈ Uk , (4.11b)

wk ∈ {0, 1}M . (4.11c)

�e posterior error covariance matrix and the prediction computed in the extended Kalman �lter

algorithm (see Appendix 4.A) can be used as a guideline to determine Uk (we will discuss this with
an example in Section 4.6).

4.5 Solvers

In this section, we provide an algorithm to solve the proposed optimization problem. In addition,

we also model the evolution of wk in time, which is useful to control the transient nature of the

sensing patterns.

4.5.1 Convex approximation based on ℓ1-norm

�e optimization problem in (4.10) is nonconvex due to the ℓ0(-quasi) norm cost function and the

Boolean constraint. We use the traditional best convex surrogate for the ℓ0(-quasi) norm based on

the ℓ1-norm heuristic, and the Boolean constraint is relaxed to the convex box constraint [0, 1]M .
Due to this box constraint, the ℓ1-norm will simply be the a�ne function 1TMwk . �e relaxed opti-
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mization problem is of the form (R0) introduced in Chapter 2, and is given as

ŵk = argmin
wk

1TMwk (4.12a)

s.t. Fprior,k−1 + M

∑
m=1

wk,mFk,m(θk) ⪰ λeigIN , ∀θk ∈ Uk , (4.12b)

0 ≤ wk,m ≤ 1,m = 1, 2, . . . ,M , (4.12c)

where the LMI constraint (4.12b) is convex on wk ∈ [0, 1]M .
�e relaxed optimization problem is a standard semide�nite programming problem that can

be solved e�ciently in polynomial time using o�-the-shelf solvers like SeDuMi [Sturm, 1999] or

the projected subgradient algorithm developed in Section 3.5.2 of Chapter 3. Further, a concave

surrogate based on the sum-of-logarithms can be used to approximate the ℓ0(-quasi) norm to obtain

sparsity enhancing iterations as discussed in Section 3.5.3 of Chapter 3. An approximate Boolean

solution can then be recovered by randomization rounding as explained in Section 3.5.4 ofChapter 3.

4.5.2 Smooth sensing

We nowmodel the evolution ofwk in time. A smooth evolution of the selection vector is important

for mobile sensing to control the transient nature of a mobile sensor—a spatial sampling device.

In other words, smoothness in the selection vector ensures an easy hand-o� between the selected

sensors.

�e evolution of the selection vector is modeled as a linear recursion

wk = Bkwk−1 + νk , (4.13)

where Bk ∈ RM×M could be a banded matrix and νk ∈ RM is the process noise vector. �e smooth-
ness depends on the construction of the matrix Bk . In order to incorporate the smoothing e�ect on
the sensing pattern between subsequent time instances, we use the sparse estimate ŵk−1 instead of
wk−1. �e optimization problem taking into account the smoothness is given as

ŵk ,sm = argmin
w k

1TMwk + µ ∥wk − Bkŵk−1,sm∥22 (4.14a)

s.t. Fprior,k−1 + M∑
m=1

wk ,mF k ,m(θk) ⪰ λIN ,∀θk ∈ Uk , (4.14b)

0 ≤ wk ,m ≤ 1,m = 1, 2, . . . ,M , (4.14c)

where µ is the smoothness controlling parameter.

4.6 Numerical example: sensor scheduling

Wenowapply the developed theory of adaptive sparse sensing to sensor scheduling for target tracking

based on distance measurements. �e sensor scheduling problem can be interpreted as the problem
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of polling (or activating) the best subset of sensors from a large pool of available sensors, such that

a desired tracking accuracy is achieved. Sensor scheduling is typically used to increase the lifetime

of battery powered sensor nodes, but also to reduce the communications and inferring costs.

At each time step k, the selected sensors are used to estimate the state vector θk = [pTk , ṗTk ]T ∈
R
4×1, where pk ∈ R2×1 is the target position vector and ṗk ∈ R2×1 is the velocity vector. We assume

that M sensors are, respectively, located at known two-dimensional positions {am}Mm=1. �ey are

each capable of measuring the distance to the target. �at is, we assume the measurement model

xk,m = ∥pk − am∥2 + nk,m
= dk,m + nk,m , m = 1, 2, . . . ,M ,

where nk,m ∼ N (0, σ2k,m) with σ2k,m = σ2/d−2k,m and σ2 is the nominal noise variance. We use σ2 =
2 × 10−5.

We consider an area of 60 × 60 square meter with M = 49 equally spaced sensors as shown in

Fig. 4.1(a). We use the following parameters for simulations [Moon and Stirling, 2000]:

Ak =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 τs 0
0 1 0 τs
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Σu = 10−2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ3s
3

0
τ2s
2

0

0
τ3s
3

0
τ2s
2

τ2s
2

0 τs 0

0
τ2s
2

0 τs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with sampling time τs = 2.5 s. �e dynamic model is initialized with p0 ∼ N (12, 2.778I2) and
ṗ0 ∼ N (212, 0.01I2) to emulate a target heading towards the north-east direction. We also run an

extended Kalman �lter in parallel and it is initialized with θ̂0∣0 = 0, and P0∣0 = 1000I2. For the

sake of completeness, we have summarized the extended Kalman �lter algorithm in Appendix 4.A.

�e stochastic matrix Bk is designed such that the transition to the one-hop sensor grid points and

staying in the current state takes equal probabilities. In other words, in Fig. 4.1(a), the corner most

grid point has 3 one-hop neighbors, hence, it can move to any of these one-hop neighbors each with

a probability of 1/4 or stay in the current state with a probability of 1/4. �e parameters determining

the accuracy are set to Re = 25 cm and Pe = 0.90 to compute λeig.

We do notmake velocitymeasurements, hence, we constrain only the FIM related to the distance

measurements. Assuming that the FIM is composed of the following submatrices

Fk(wk , θk) = [ Fk,pp Fk,pṗ

Fk, ṗp Fk, ṗ ṗ
] ,

then using the Schur complement, the a posteriori position estimate p̂k∣k satis�es the following PCRB

inequality E{(p̂k∣k − pk)(p̂k∣k − pk)T} ≥ F̃−1k (wk , θk), where
F̃k(wk , θk) = Fk,pp − Fk,pṗF

−1
k, ṗ ṗFk, ṗp
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assuming F−1k, ṗ ṗ exists. Similarly, assume that the prior FIM is also composed of the following sub-

matrices

Fprior,k(θk) = [ Fprior,k,pp Fprior,k,p ṗ

Fprior,k, ṗp Fprior,k, ṗ ṗ
] .

Using the Schur complement and some straightforward matrix properties, we can show that

F̃k(wk , θk) = F̃prior,k−1 + M

∑
m=1

wk,mFk,m(pk) ∈ R2×2,

where we de�ne

F̃prior,k = Fprior,k,pp − Fprior,k,pṗF
−1
prior,k, ṗ ṗFprior,k, ṗp .

�erefore, for the case when only a part of the state parameters are measured, the LMI constraints

in (4.10b) should be modi�ed to

F̃prior,k + M

∑
m=1

wk,mFk,m(pk) ⪰ λeigI2, ∀θk ∈ Uk .
For a practical implementation of the algorithm, we constructUk based on the predicted estimate

θ̂k∣k−1 and the covariance matrix Pk∣k−1 (see Appendix 4.A). More speci�cally, Uk is designed to have
points within a circle of radius 5

√
tr{Pk∣k−1} centered around θ̂k∣k−1 . Since θ̂k∣k−1 ∼ N (θk , Pk∣k−1),

the true state lies within a circle of radius 5
√
tr{Pk∣k−1} with an overwhelming probability.

Here, we discretize Uk with 25 points as shown in Fig. 4.1(a) and Fig. 4.1(c) (indicated as the

target area in green color). For the sake of easy visibility, we plot the results in the time interval(3τs , 10τs), as the target area is very large for initial estimates. Even though the predicted estimates

are not necessarily on top of the true state, the true location will be within the target area with an

overwhelming probability. Due to the assumed path-loss model, the sensors close to the target area

are selected. �e sensor activation time pattern without (µ = 0) and with (µ > 0) smooth sensing is

shown in Fig. 4.1(b) and Fig. 4.1(d), respectively. An approximate Boolean solution is obtained by

simply rounding all the nonzero entries of ŵ to one. �e number of selected sensors with µ = 0.5
is larger as compared to the case with µ = 0. However, the sensors stay active for a longer duration
ensuring a smooth hand-o� between the selected sensors.

4.7 Dependent observations

So farwe have assumed that the observations aremutually independent randomvariables. If we relax

Assumption 4.1, then we can accommodate a much larger class of observation models, for example,

to include ambient noises or stochastic state variables. However, by relaxingAssumption 4.1, the FIM

information matrix related to the observations Fobs,k(wk , θk), will not be linear inwk , whichmakes

the optimization over wk much harder (i.e., nonconvex and nonlinear, in general). In this section,

we will extend the results developed for sparse sensing for estimation with dependent Gaussian

nonlinear measurements in Section 3.7 of Chapter 3 to �ltering tasks.
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Figure 4.1: Sensor scheduling for target tracking based on range measurements for the time interval
(3τs , 10τs). (a) and (c) trajectory of the true state for a certain realization, predicted estimate from the EKF,
and the target area Uk . (b) and (d) sensor activation time pattern for µ = 0 (without smoothing) and µ = 0.5
(with smoothing), respectively.

Suppose the measurements (4.1) at time instance k are of the form

xk = hk(θk) + nk ,



64 Chapter 4. Sparse Sensing for Filtering

where hk ∶ RN ↦ R
M is a nonlinear functional of the unknown vector θk and nk is zero-mean

Gaussian noise with variance Σk ∈ RM×M . For the above model, the FIM related to the observations

(cf.(4.5)) will be

Fobs,k(wk , θk) = (Φk(wk)Jk(θk))T Σ−1k (wk) (Φk(wk)Jk(θk)) , (4.15)

where Jk(θk) = ∂hk(θk)/∂θTk ∈ RM×N and

Σk(wk) = Φk(wk)ΣkΦ
T
k (wk) ∈ RK×K

is a submatrix of Σk that includes only the entries corresponding to the selected measurements. �e

FIM (4.15) is no more additive or linear in wk .

Let us express the noise covariance matrix Σk as

Σk = akIM + Sk , (4.16)

where any scalar ak ∈ R is chosen such that Sk ∈ RM×M is invertible and well-conditioned. Using

Property 3.1 from Chapter 3, we can simplify Fobs,k(wk , θk) to
Fobs,k(wk , θk) = JTk (θk)S−1k Jk(θk)

− JTk (θk)S−1k [S−1k + a−1k diag(wk)]−1 S−1k JTk (θk), (4.17)

where in contrast to (4.15), the design parameter wk appears only once in (4.17), which makes the

problem much easier to solve.

Finally, using the Schur complement, the constraint λmin{Fk(wk , θk)} ≥ λeig can now be equiv-

alently expressed under ak > 0 as a size-(M + N) LMI:

⎡⎢⎢⎢⎢⎢⎣
S−1k + a−1k diag(wk) S−1k Jk(θk)

JTk (θk)S−1k Fprior,k−1 + JTk (θ)S−1k Jk(θk) − λeigIN
⎤⎥⎥⎥⎥⎥⎦
⪰ 0M+N . (4.18)

�e constraint (4.18) also depends on the unknown parameter vector θk , which otherwise would be

independent of θk for additive linear Gaussian measurementmodels. For the dependent noise case,

we also solve (4.10), but by replacing the size-N LMI in (4.10b) with the size-(M + N) LMI (4.18).

4.8 Structured signals

In this section, wewill discuss sparse sensingmechanisms for �ltering problems involving structured

signals (more generally, �ltering with equality constraints on the state variables). In particular, we

will illustrate sparse sensing for state sequences that are sparse in nature.

Suppose the time-varying vector of interest θk ∈ RM at time k follows a linear model corrupted

by additive noise:

xk = Hkθk + nk , (4.19)
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where θk ∈ RM (in contrast to the rest of this chapter, without loss of generality, here we assume

M = N) has just a few nonzero coe�cients, i.e., ∥θk∥0 ≪ M and Hk denotes some known linear

basis of size M ×M. �e additive noise vector nk ∈ RM is assumed to be zero-mean Gaussian with

covariance matrix Σ = σ2IM .
Under the assumption that the parameter vector θk is sparse, CS theory asserts an exact recovery

of θk from observations which are typically much smaller than M, i.e, signals acquired via a linear

compression matrix. We now demonstrate that discrete sparse sensing mechanisms can be used for

designing time-varying compression matrices as well as determining the optimal compression rate

to reach a desired information gain or mean squared error. More speci�cally, we design Φk(wk) ∈{0, 1}K×M to acquire the data as before, i.e.,

yk = Φk(wk)xk . (4.20)

For K ≪ M, the sampling matrix will be a compression matrix, and the measurement vector will be

much shorter than xk . Note that the sampling matrixΦk and sparsity pattern (including the sparsity

order) of the vector θk can both be time-varying.

One way to model the evolution of time-varying sparse sequences (more generally, states with

structural constraints) is through the pseudo-measurement formulation [Julier and LaViola, 2007,

Carmi et al., 2010, Farahmand et al., 2014], where it is assumed that θk evolves according to the

following model

dynamics: θk+1 = Akθk + uk ; (4.21a)

pseudo-measurement: 0 = g(θk) + ek , (4.21b)

where Ak is an M ×M state-transition matrix, uk ∈ RM is the process noise, g(θk) is a structure-
constraining function, and ek is zero-mean unit-variance noise. For example, tomodel sparse states,

g(⋅) can include any one of the well-known approximations of the ℓ0(-quasi) norm such as the

ℓ1-norm (γk∑M
m=1 ∣θk,m ∣)1/2, the inverse Gaussian function (γk∑M

m=1(1 − exp(−θ2k,m/2σ2g )))1/2 with
shape parameter σ2g , or the sum-of-logarithms function (γk∑M

m=1 log(∣θk,m ∣ + δ))1/2 with δ > 0.

Here, γk is the tuning parameter and θk,m denotes themth entry of θk . With the square root in each

of these functions, the extra least-squares error term for the pseudo-measurement will be equivalent

to the sparsity-inducing regularizer. Note that this formulation also accommodates a much richer

class of structured signals as discussed later on in Section 4.8.3.

In the considered adaptive sparse sensing problem,we are basically replacing the random mea-

surement operation traditionally used in the CS framework with a deterministic and structured

sensing operation, which is more favorable for practical implementation. In what follows, we will

develop risk functions that accommodate such structural constraints.

4.8.1 Risk function

�e linear system (4.20) and (4.21a) can be solved using the celebrated Kalman �lter algorithm [Kay,

1993]. We now recall Remark 4.1, where the posterior FIM (equal to the posterior error covariance
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matrix) for the state-space equations (4.20) and (4.21a) without the pseudo-measurement was given

by (4.7), that is,

F(wk) = (Σu + AkF
−1
k−1A

T
k )−1 + 1

σ2

M

∑
m=1

wk,mhk,mh
T
k,m ,

where hk,m ∈ RM×1,m = 1, 2, . . . ,M , are the rows of Hk .

Due to the compression (K ≪ M), the conventional Kalman �lter in less meaningful (especially

for sparse recovery), unless the inherent sparsity of the state sequence is taken into account. We

do this through an (independent) extra pseudo-measurement (4.21b). For the state-space equations

(4.20) and (4.21), the additional measurement modi�es the posterior FIM to

Fk(θk ,wk) = (Σu + AkF
−1
k−1A

T
k )−1 + ∂g(θk)∂g(θk)T + 1

σ2

M

∑
m=1

wk,mhk,mh
T
k,m , (4.22)

where ∂g(θ) ∈ RM is the (sub)gradient of g(θ) towards θ evaluated at θk . In fact, the above expres-

sion is the posterior error covariance of the extended Kalman �lter, when the true state θk in (4.22)

is replaced with the prediction θ̂k∣k−1 = Ak θ̂k−1∣k−1 , where the past estimate can be computed using

any of the favorite sparse recovery algorithms or using an iterative extended Kalman �lter [Carmi

et al., 2010, Farahmand et al., 2014,Vaswani, 2008].

As before, we could use either one of the constraints discussed in Section 4.3, i.e., use f (wk) ∶=
tr{(Fk(θk ,wk))−1} ≤ λtr or f (wk) ∶= λmin{Fk(θk ,wk)} ≥ λeig with Fk(θk ,wk) in (4.22) in place

of (4.12c) to solve (4.12).

4.8.2 Example: CS-based target tracking

In this section, we illustrate the developed theory with the following target tracking example. Let

pk = [pk,x , pk,y]T ∈ R2 denote the position of the target at time instance k and am ∈ R2 denote the

position of themth sensor. Let us assume that there areM such locations where we can place these

sensors. �e sensors are capable of measuring the signal strength as

hk,m(pk) = βs

β + ∥pk − am∥22 ,m = 1, 2, . . . ,M , (4.23)

with a constant β > 0. Here, s denotes the signal strength. We linearize (4.23) aroundM grid points{gm}Mm=1, where the target could be potentially located. As a result, we arrive at the linear grid-based
model given by

xk,m = hTk,mθk + nk,m ,m = 1, 2, . . . ,M ,

where hk,m = [hk,m(g1), hk,m(g2), . . . , hk,m(gM)]T ∈ RM is time-invariant, but θk is time-varying.

All the entries of the vector θk ∈ RM are equal to zero except for themth entry, θk,m , which is equal

to the target signal strength s at time k if and only if the target is located at the mth grid point, i.e.,

for pk = gm . Note that the number of grid points can be much larger than the number of (selected)

sensors.
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We are interested in tracking a target moving along the grid points gm = [m,m]T for m =
0, 1, . . . , 29 as shown in Fig. 4.2(a). �is can be modeled as

θk+1 = Aθk + uk ,

where the entries of the initial vector θ0 are all zero except for the �rst entry θ1,1 = s. Here, the

state-transition matrix is a shi� matrix, i.e.,

A =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ⋯ 0

1 0 ⋯ 0⋮ ⋱ ⋱ ⋮
0 ⋯ 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ RM×M .

In scenarios like the one considered here, compression via random linear projections would still

need all theM sensors with no reduction in the sensing and communications cost. On the contrary,

sparse sensing enables a completely decentralized sensing, and it needs only K ≪ M sensors.

In this example, the sparsity pattern is time-varying, but the sparsity order is �xed. We stress

here that the proposed framework is not limited to signals with a �xed sparsity order. We use the

following parameters in the simulations: �e number of grid points/candidate sensors M = 30,

K = 5, β = 100, s = 10, and σ = 10−3. �e sensors are deployed uniformly at random within a

30 × 30 m2 surveillance area as shown in Fig. 4.2(a).

We use fk(wk) ∶= tr{(Fk(θk ,wk))−1} and λtr is chosen such that N = 5 sensors are selected at

each time step. We evaluate Fk(θk ,wk) at the prediction θ̂k∣k−1 = Aθ̂k−1∣k−1 , where the past estimate

is obtained by solving the following ℓ1-norm regularized least squares:

θ̂k∣k = argmin
θk

∥θ̂k∣k−1 − θk∥2P−1
k∣k−1

+ ∥yk −Φk(wk)Hθk∥2Σ−1 + g2(θk), (4.24)

with g(θk) = √2γk∥θk∥1 (here, ∥θk∥1 = 1Tθk as the entries of θk are all nonnegative), Pk∣k−1 =
APk−1∣k−1A

T + Σu, and

Pk∣k = (P−1k∣k−1+ γk
2∥θk∥1 11T
+ 1

σ2
∑M

m=1
hk,mh

T
k,m)−1.

Here, γk is a tuning parameter. We initialize θ̂0∣0 = 1M , P0∣0 = IM , Σu = 0.01IM , and we compute γk
using the method described in [Farahmand et al., 2014].

�e relaxed optimization problem is solved using SeDuMi [Sturm, 1999]. Fig. 4.2(b) illustrates

the solution path for k = 1, 2, . . . , 25 s. �e Boolean solution is recovered using deterministic round-

ing. �e sensors selected for time step k = 25 s are also shown in Fig. 4.2(a). In this example, the

same subset of sensors are selected for k > 10 because the matrices H and A, and the sparsity order

are not changing with time. In otherwords, the selected sensors optimize the average error, averaged

over the entire track.



68 Chapter 4. Sparse Sensing for Filtering

0 5 10 15 20 25 30
0

5

10

15

20

25

30

 

 

target track
Sensors
Selected sensors

x-axis coordinates [m], time [s]

y-
ax
is
co
o
rd
in
at
es
[m

],
ti
m
e
[s
]

(a)

0 5 10 15 20 25

5

10

15

20

25

30

R
o
w
s
o
f
th
e
d
ic
ti
o
n
ar
y
H

k

time step k

(b)

Figure 4.2: Tracking a target using a grid-based model with M = 30 and K = 5. (a) A target is moving

along the straight line px ,k = py ,k = k, i.e., it moves with a constant velocity of
√
2 m/s. �e selected sensors

shown correspond to k = 25 s. (b) �e solution path illustrating the selected rows of the dictionary Hk for
k = 1, 2, . . . , 25 s.

4.8.3 Extensions to other structured signals

In this section, we highlight some important generalizations of the proposed framework for struc-

tured signals, which are o�en studied together with the CS framework. �e sparsity prior can be

extended to amuch broader class of structured signals, including structured sparse signals (or block-

sparse signals) [Friedman et al., 2010], smooth (i.e., sparsity of the coe�cients and also sparsity of

their di�erences) [Tibshirani et al., 2005], to list a few. Depending on the structure of the state,

the g(θk) has to be modi�ed accordingly. More speci�cally, for structured sparse signals we use a

regularizer that accounts for block sparsity, i.e.,

g(θk) ∶= (γk G

∑
i=1

∥θk,i∥2)
1/2

,

where the state vector θk is grouped into G subvectors each of length N/G as

θk = [θTk,1 , θTk,2 , . . . , θTk,G]T .
Similarly, for signal smoothness, we use the regularizer

g(θk) ∶= (γk,1∥θk∥1 + γk,2 M−1

∑
m=1

∣θk,m − θk,m−1 ∣)
1/2

,

where γk,1 and γk,2 are tuning parameters.
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4.9 Discussion

In this chapter we have discussed discrete sparse sensing for state estimation in nonlinear dynamical

systems. In particular, we have focused on �ltering problems of three types: independent observa-

tions, additive Gaussian dependent observations, and structured state sequences. For designing

sparse sensing patterns, we have used scalar measures related to the posterior Cramér-Rao bound,

which depend on the previous as well as the current true states. �e sensing patterns are designed

one step ahead in time, hence can be computed o�ine.

4.A Extended Kalman �lter

For the sake of completeness, we provide the steps involved in the Extended Kalman �lter, which is

used for state estimation with nonlinear additive Gaussian models; see [Kay, 1993] for more details.

Given the state-space equations

xk = hk(θk) + nk ,

θk+1 = Akθk + uk ,

where hk(⋅) ∶ RN ↦ R
M is a nonlinear function of the unknown state parameter vector θk ∈ RN ,

Ak ∈ RN×N is the state-transition matrix, and nk ∼ N (0, Σ) and uk ∼ N (0, Σu) are the measure-

ment and process noise vectors of lengthM × 1, respectively.
Suppose that the estimate θ̂k−1∣k−1 and its covariance matrix Pk−1∣k−1 are available from the pre-

vious time step. At current time step k, the prediction and its covariance are given as

θ̂k∣k−1 = Ak θ̂k−1∣k−1 ,

Pk∣k−1 = AkPk−1∣k−1A
T
k + Σu .

�e update equations include the posterior estimate and posterior covariance matrices, which are

computed using:

θ̂k∣k = θ̂k∣k−1 + Pk∣k−1H
T
k∣k−1(Hk∣k−1Pk∣k−1H

T
k∣k−1 + Σ)−1(xk − hk(θ̂k∣k−1)),

Pk∣k = Pk∣k−1 − Pk∣k−1H
T
k∣k−1(Hk∣k−1Pk∣k−1H

T
k∣k−1 + Σ)−1Hk∣k−1Pk∣k−1 ,

where hk(⋅) is linearized around the prediction to obtain

Hk∣k−1 = ∂hk(θ)
∂θT

∣
θ=θ̂k∣k−1

∈ RM×N .
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Sparse Sensing for Detection
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5.1 Introduction

In this chapter, we will study the discrete sparse sensing framework for another important statisti-

cal inference problem, that is, detection. Statistical detection is pertinent to applications in sensor

networks, radar and sonar systems, wireless cognitive radio networks, biometrics, social networks,

imaging platforms, to list a few. We assume that the �eld is sampled by (spatially or temporally)

distributed sensors, and these samples are delivered to a central unit. �e central unit then makes
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a single global decision as to the true hypothesis using binary hypothesis testing. More speci�cally,

the observations at each sensor are related to the state of nature H, where the random variable H
is drawn from a binary alphabet set {H0 ,H1}. In the Bayesian setting, we assume that the prior

probabilities π0 = Pr(H0) and π1 = Pr(H1) are known, whereas in the Neyman-Pearson setting, the

prior probabilities are not known.

5.1.1 Related earlier works

�e minimum error probability criterion is a standard performance measure for design problems

related to statistical detection such as signal design [Grettenberg, 1963, Kadota and Shepp, 1967,

Kailath, 1967], censoring [Rago et al., 1996], sampling design [Yu and Varshney, 1997], and so on.

However, in most cases, optimizing the error probabilities is very di�cult. �is may be because

these error probabilities do not admit a known closed form or their expression is too complicated

for numerical optimization. �erefore, weaker performance criteria that are easier to evaluate and

optimize are o�en used. A number ofmeasures related to the distance between the conditional prob-

abilities are widely used in the design of experiments as proxies for the error probability [Kailath,

1967,Rago et al., 1996,Yu andVarshney, 1997,Bajovic et al., 2011,Chamberland andVeeravalli, 2007].

Some of the prominent distance measures that are o�en used are the Kullback-Leibler distance, J-

divergence, Cherno� information, and Bhattacharyya distance.

A related topic in the context of energy-e�cient distributed detection is data censoring, wherein

the uninformative sensor observations are not transmitted to the central unit [Rago et al., 1996,Ap-

padwedula et al., 2008,Blum and Sadler, 2008]. However, in censoring, data still has to be acquired

in order to choose informative sensors, thus, it incurs a sensing cost. �at is, censoring schemes are

data dependent as opposed to the proposed data-independent sparse sensing schemes that can be

designed o�ine. In other words, the actual measurements are not needed and only model informa-

tion is used.

5.1.2 Main results

We focus on both the Bayesian as well as the Neyman-Pearson setting for binary hypothesis testing.

�e sparse sensing operation is designed based on a number of distancemeasures that belong to the

general class of Ali-Silvey distances [Ali and Silvey, 1966].

�e main question addressed in the chapter is similar to that of [Cambanis and Masry, 1983,

Bahr and Bucklew, 1990, Yu and Varshney, 1997, Bajovic et al., 2011, Quan et al., 2009, Sung et al.,

2005], but with the following di�erences. Firstly, the proposed framework is general, that is, it is not

limited to Gaussian observations, especially for conditionally independent observations. Secondly,

we propose a sparsity-promoting cost function to design structured samplers to achieve the lowest

sensing cost as compared to the previously adopted periodic, regular, or random samplers. �emain

contributions of this chapter that broaden the existing literature are listed below.

• For conditionally independent observations, the best subset of sensors is the one with the

smallest local average root-likelihood ratio and largest local average log-likelihood ratio in the
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Bayesian and Neyman-Pearson setting, respectively. �is leads to an explicit solution for the

sensing design problem that is optimal in terms of the error exponents. As a special case,

for Gaussian observations with common covariances and uncommon means under both hy-

potheses, the selected sensors are also optimal in terms of the error probabilities (initial results

for the Gaussian case were reported in [Chepuri and Leus, 2015a]). �e computational com-

plexity of the proposed solvers is independent of the number of candidate sensors, and is as

low as O(K), where K is the number of selected sensors (or sampling locations).

• For conditionally dependent observations, we focus on the Gaussian setting. When the mean

vectors are uncommon and covariance structure is common under both hypotheses, the sens-

ing design problem can be relaxed to a convex optimization problem. Although this leads to

a suboptimal solution, we propose a randomized rounding technique that leads to a near-

optimal solution. Furthermore, in this case, for nonidentical sensor observations, we show

that the number of sensors required to achieve a prescribed detection performance decreases

signi�cantly as the correlation among them increases (i.e., when the sensors become more

coherent), which is in complete contrast to the case of identical sensor observations. When

the covariances are uncommon and means are common under both hypotheses, the sensing

design problem remains nonconvex, except for the J-divergence optimization.

5.2 Sensing conditionally distributed observations

Consider a network with M candidate sensors. �ese candidate sensors might represent temporal,

spatial, or even spatio-temporal samples. �e observations are related to the following model

H0 ∶ xm ∼ pm(x∣H0), m = 1, 2, . . . ,M , (5.1a)

H1 ∶ xm ∼ pm(x∣H1), m = 1, 2, . . . ,M , (5.1b)

where the probability density function (pdf) of the observation at themth sensor, xm , conditioned

on the state of natureH is denoted by pm(x∣Hi) for i = 0, 1. Further, the observations are collected
in x = [x1 , x2, . . . , xM]T ∈ RM . �e pdf of x underH0 andH1 is denoted by p(x∣H0) and p(x∣H1),
respectively.

We acquire the data x via a linear sensing operation, where the sensing task is modeled through

a vector whose entries belong to a binary alphabet, i.e., through

w = [w1 ,w2, . . . ,wM]T ∈ {0, 1}M ,

where the variable wm = (0)1 indicates whether the mth sensor is (not) selected. More speci�cally,

we de�ne the sensing matrix Φ(w) = diagr(w) ∈ {0, 1}K×M , to acquire the data as

y = diagr(w)x = Φ(w)x ,
where K is not assumed to be known. Note that we are interested in cases where K ≪ M. �e

reduced dimension data vector y ∈ RK is used instead of x ∈ RM to solve the detection problem. In
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this chapter, we seek a sparsestw, i.e., a vector with many zeros and just a few nonzero entries, such

that a prescribed global detection performance is achieved.

5.3 Problem statement

Let Ĥ denote an estimate of the state of natureH, based on a certain decision rule. In the Neyman-

Pearson setting, the optimal detector is the well-known Neyman-Pearson detector that minimizes

the probability of miss detection (type II error),

Pm = Pr(Ĥ ≠H1∣H1)
for a �xed probability of false alarm (type I error),

Pf = Pr(Ĥ =H1∣H0).
In the Bayesian setting, given the prior probabilities πi = Pr(Hi) for i = 0, 1, the optimal detector

minimizes the Bayesian error probability,

Pe = Pr(Ĥ ≠H) = π0Pf + π1Pm ,
or more generally, the detector minimizes the Bayes’ risk. Having introduced the data model, we

now formally state the design problem of interest.

Problem 5.1 (Sparse sampler design). Given the data model (5.1), design a sparsest Boolean vector w

that results in a prescribed

(i) Bayesian probability of error, Pe , in the Bayesian setting, or

(ii) probability of miss detection, Pm, for a �xed probability of false alarm, Pf , in the Neyman-Pearson

setting.

Mathematically, the sparse sensing problem for distributed detection can be formulated as

P-B ∶ argmin
w∈{0,1}M

∥w∥0
s.to Pe(w) ≤ e; (5.2a)

P-N ∶ argmin
w∈{0,1}M

∥w∥0
s.to Pf (w) ≤ α , and Pm(w) ≤ β, (5.2b)

where e, α and β are, respectively, the desired Bayesian probability of error, maximum false-alarm

rate and miss-detection rate. Here, Pe(w), Pf (w), and Pm(w) denote the error probabilities due
to the selected sensor subset indicated by the nonzero entries of w. When prior probabilities are

available, we solve P-B (P denotes problem and B denotes Bayesian), otherwise in the Neyman-

Pearson setting we solve P-N (N denotes Neyman-Pearson).

In order to ease the design, we next discuss some performance measures that can substitute the

error probabilities in the above optimization problems.
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5.4 f (w) for detection

�e error probabilities Pe , Pm or Pf might not admit a known closed-form expression or their ex-

pressions might not be favorable for numerical optimization. In this section, we will discuss several

weaker and simpler substitutes, which can be optimized instead of the error probabilities. �ese

substitutes are based on the notion of distance (closeness or divergence) between the two distribu-

tions of the observations under test. �ey lead to tractable, if not always optimal (in terms of the

error probabilities), design procedures for sampler design. Nevertheless, optimizing the distance

measures improves the performance of any practical system.

Let the likelihood ratio of the two hypotheses under test be de�ned as

l(y) = p(y∣H1)
p(y∣H0) .

In what follows, we consider a number of distance measures that belong to the general class of Ali-

Silvey distances [Ali and Silvey, 1966], which are of the form

ψ (E∣Hi
{ϕ [l (y)]}) ,

where ψ(⋅) is an increasing real-valued function, ϕ[⋅] is a continuous convex function on (0,∞),
and the notationE∣Hi

{ϕ [l(y)]} indicates that ϕ [l(y)] is averaged under the pdf p(y∣Hi) for either
i = 0 or i = 1.

5.4.1 �e Bayesian setting

�e Bayes detector minimizes Pe , and makes a decision based on comparing the optimal statistic to

a threshold:

log l(y) = log p(y∣H1)
p(y∣H0)

H0≶
H1

log
π0
π1

.

In the Bayesian setting, our goal is to choose the best subset of sensors that results in a prescribed

Bayesian probability of error Pe . �e best achievable exponent in the Bayesian probability of er-

ror is parameterized by the Cherno� information (sometimes also referred to as the Cherno� dis-

tance) [Cover and�omas, 2012, Cherno� ’s theorem], and it is given by

C(H1∥H0) = − log min
0≤n≤1

∫ [p(y∣H1)]n[p(y∣H0)]1−ndy
= − log min

0≤n≤1
E∣H0
{[l(y)]n}. (5.3)

Due to the involved minimization over n, the Cherno� information in (5.3) is di�cult to optimize

over w. �erefore, we use a special case of the Cherno� information called the Bhattacharyya dis-

tance as the optimization criterion, where the Bhattacharyya distance is obtained by �xing n = 0.5
in (5.3). �e Bhattacharyya distance is given by

B(H1∥H0) = − log ρ, (5.4)
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where the Bhattacharyya coe�cient [Kailath, 1967] or the Hellinger integral [Kadota and Shepp,

1967], ρ, is given by

ρ = ∫
√
p(y∣H1)p(y∣H0)dy = ∫ p(y∣H0)

¿ÁÁÀ p(y∣H1)
p(y∣H0)dy

= E∣H0
{√l(y)} .

(5.5)

It is easy to verify from (5.5) that the Bhattacharya distance is symmetric, whichmeansB(H1∥H0) =B(H0∥H1). More importantly, upper and lower bounds for the Bayesian probability of error can be

obtained using the Bhattacharyya coe�cient. �e bounds are given as follows [Kadota and Shepp,

1967, Appendix A], [Kailath, 1967]:

1

2
min(π0, π1)ρ2 ≤ Pe ≤√π0π1ρ. (5.6)

�erefore, in place of the Bayesian error probability, we minimize the Hellinger integral, or equiva-

lently, maximize the Bhattacharyya distance.

Furthermore,when ∫ [p(y∣H1)]n[p(y∣H0)]1−ndy is symmetric in n and the observations are in-

dependent and identically distributed, the Bhattacharyya distance is exponentially the best [Kailath,

1967], i.e.,

Pe
as.= exp (−B(H1∥H0)) for Pe → 0.

We now introduce the following assumption:

Assumption 5.1 (Conditional independence). �e sensor observations are statistically independent,

conditioned on the hypothesisH.
Under Assumption 5.1, the likelihood ratio simpli�es to

l(y) = p(y∣H1)
p(y∣H0) =

M

∏
m=1

[lm(x)]wm

where lm(x) = pm(x∣H1)/pm(x∣H0) is the local likelihood ratio related to the mth sensor, and

pm(x∣Hi) for i = 0, 1 are the conditional pdfs of x for the mth sensor. Here, the conditional pdf of

the selected sensors is of reduced dimension, i.e., it does not include the measurements that are set

to zero.

Besides being a reasonable measure, the Bhattacharya distance is much simpler to optimize un-

der Assumption 5.1 because of the following result:

Proposition 5.1 (Linearity of the Bhattacharyya distance). �e considered sparse sensing mechanism

preserves the additivity of the Bhattarcharyya distance under Assumption 5.1, i.e., we can express

fB(w) ∶= B(H1∥H0) = M

∑
m=1

wmBm(H1∥H0), (5.7)
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where Bm(H1∥H0) = − logE∣H0
{√lm(x)}. (5.8)

Proof. See Appendix 5.A

�us, Proposition 5.1 enables us to optimize fB(w) over w (subscript B denotes Bayesian). We

underline here that fB(w) assumes only the knowledge of the data model and does not need ac-

tual measurements, hence the sensing operation can be designed o�ine. We also remark that the

Cherno� information (5.3) is not additive for conditionally independent observations, unlike the

Bhattacharyya distance.

Before discussing the optimization criterion for the Neyman-Pearson setting, we end this sub-

section with the following remark that generalizes the sampling design in the Bayesian setting.

Remark 5.1 (Bayes risk). Let Ci j be the cost if we decideHi whenH j is true. A generalization of the

minimum Pe detector, is to minimize the Bayes risk

R = 1

∑
i=0

1

∑
j=0

Pr(Hi ∣H j)Pr(H j),
where we arrive at a special case ofR = Pe for C00 = C11 = 0,C10 = C01 = 1. �is results in the sensing

design problem

argmin
w∈{0,1}M

∥w∥0 s.to R(w) ≤ er ,
where R(w) denotes the Bayes risk due to the selected sensor subset indicated by the nonzero entries

of w, and er is the desired Bayes risk.

�e bounds in (5.6) can be generalized to [Kobayashi and�omas, 1967]

R0 +R2ρ
2 ≤R ≤R0 +√R1ρ,

whereR0 = π0C00+π1C11,R1 = π0π1(C11−C01)(C00−C10), andR2 =R1/(π0(C00−C10)+π1(C11−
C01)). �erefore, maximizing the Bhattacharyya distance (or minimizing the Hellinger integral) is a

reasonable optimality criterion also for a more general minimum Bayes risk detector.

5.4.2 �e Neyman-Pearson setting

When the prior probabilities are not known, we solve the Neyman-Pearson problem, where one of

the error probabilities (Pf , for example) is �xed while the second error probability, Pm is minimized.

More speci�cally, the decision is based upon the log-likelihood ratio test

log l(y) = log p(y∣H1)
p(y∣H0)

H0≶
H1

γ, (5.9)

where γ is the threshold obtained by setting Pf = α. In what follows, we discuss two distance mea-

sures that we can optimize in the Neyman-Pearson setting.
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Kullback-Leibler distance

For a Neyman-Pearson problem, the best achievable error exponent in the probability of error (Pm,

for example) is given by the relative entropy or Kullback-Leibler distance K(H1∥H0) [Cover and
�omas, 2012, Stein’s lemma]. �at is, for a �xed value of Pf ,

log Pm
as.= −K(H1∥H0) for Pm → 0.

�e Kullback-Leibler distance is the average log-likelihood ratio, and is given by [Kullback, 2012]

K(H1∥H0) = E∣H1
{log l(y)}

= ∫ log l(y)p(y∣H1)dy. (5.10)

A lower bound on Pm for a �xed Pf , say α (0 ≤ α ≤ 1) can be obtained using [Kullback, 2012, pp.

74-75 and tables in pp. 378-379]

K(H1∥H0) ≥ α log( α

1 − Pm )
+ (1 − α) log (1 − α

Pm
) = g(Pm). (5.11)

Since g(Pm) is a strictly monotonic function, we can write

Pm ≥ g−1(K(H1∥H0)). (5.12)

For example, a very small (close to zero) α simpli�es (5.12) to Pm ≥ exp (−K(H1∥H0)). �e follow-

ing theorem gives an upper bound on Pm.

�eorem 5.1 (Upper bound on Pm). If the variance of the log-likehood ratio is v
2, then

Pm ≤ 1

1 + (K(H1∥H0)−log γ)
2

v2

, (5.13)

where the threshold γ corresponds to a desired Pf = α.
Proof. See Appendix 5.B.

�erefore, the bounds in (5.12) and (5.13) make the maximization of K(H1∥H0) a reasonable
optimality criterion. We stress here that the above bounds (5.12) and (5.13) are valid even when

Assumption 5.1 is not true.

�e following property of the Kullback-Leibler distance further allows its easy numerical opti-

mization.
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Proposition 5.2 (Linearity of the Kullback-Leibler distance). �e considered sparse sensing mecha-

nism preserves the additivity of the Kullback-Leibler distance under Assumption 5.1, i.e., we can express

fN,1(w) ∶= K(H1∥H0) = M

∑
m=1

wmKm(H1∥H0), (5.14)

where Km(H1∥H0) = ∫ log lm(x)pm(x∣H1)dx
= E∣H1

{log lm(x)} (5.15)

with lm(x) = pm(x∣H1)/pm(x∣H0) being the local likelihood ratio that was de�ned earlier.

Proof. See Appendix 5.C

�erefore, Proposition 5.2 allows us to maximize fN,1(w) overw (subscript N denotes Neyman-

Pearson).

Remark 5.2. For the problem that minimizes the probability of false alarm Pf for a �xed probability

of miss detection Pm, the Kullback-Leibler distance

K(H0∥H1) = −E∣H0
{log l(y)}

= −∫ log l(y)p(y∣H0)dy (5.16)

has to be optimized. Note that the Kullback-Leibler distance is not symmetric, i.e., K(H0∥H1) ≠K(H1∥H0). Furthermore, Proposition 5.2 holds with the 0 and 1 subscripts interchanged in equa-

tions (5.14) and (5.15), which leads to the objective

fN,2(w) ∶= M

∑
m=1

wmKm(H0∥H1). (5.17)

J-divergence

�e symmetric form of the Kullback-Leibler distance, J-divergence, is another frequently used crite-

rion in the design of experiments. �e J-divergence is de�ned as

D(H1∥H0) = K(H1∥H0) +K(H0∥H1). (5.18)

A lower bound on (Pf + Pm)/2 can be obtained using [Kullback, 2012]

D(H1∥H0) ≥ 2[Pf + Pm
2

log( (Pf + Pm)/2
1 − (Pf + Pm)/2)

+(1 − Pf + Pm
2
) log( 1 − (Pf + Pm)/2(Pf + Pm)/2 )] ,
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and the results from�eorem 5.1 can be generalized to arrive at an upper bound. �e J-divergence

is also a reasonable measure in the Bayesian setting with π0 = 0.5 as the Bayesian error probabil-

ity Pe = (Pf + Pm)/2 can be both upper and lower bounded by D(H1∥H0). However, for other
prior probabilities an upper bound on Pe can be obtained in terms ofD(H1∥H0) only for Gaussian
observations [Kadota and Shepp, 1967].

�e J-divergence is also additive for conditionally independent observations, i.e.,

fN,3(w) ∶= D(H1∥H0) = M

∑
m=1

wmDm(H1∥H0),
where

Dm(H1∥H0) = Km(H1∥H0) +Km(H0∥H1). (5.19)

�e additive property of the J-divergence is straightforward to verify, and it follows directly from

Proposition 5.2.

Note that all the distance measures introduced in this section admit a closed-form expression

irrespective of the observation distributions. �e solvers for designing the sensing operation based

on the developed performance measures are presented next.

5.5 Solvers

�e performance measures derived in Section 5.4 greatly simplify the sensing design problems P-B

and P-N, which are otherwise di�cult to solve. �e simpli�ed problem is stated as follows.

Problem 5.2 (Simpli�ed sparse sensing design). Under Assumption 5.1, given M candidate sensors

characterized by the conditional pdfs {pm(x∣Hi)}Mm=1 for i = 0, 1, design a sparsest vector w such that

a desired

(i) Bhattacharyya distance in the Bayesian setting, or

(ii) Kullback-Leibler distance (or J-divergence) in the Neyman-Pearson setting,

is achieved.

�ese sampling design problems are, respectively, expressed as the following cardinality mini-

mization problems

S-B ∶ argmin
w∈{0,1}M

∥w∥0 s.to fB(w) ≥ λB; (5.20a)

S-N ∶ argmin
w∈{0,1}M

∥w∥0 s.to fN(w) ≥ λN, (5.20b)
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where λB and λN specify the required Bhattacharyya distance and Kullback-Leibler distance (or J-

divergence), respectively. �e optimization problems S-B and S-N (S denotes simpli�ed problem)

are Boolean linear programming problems. In place of fN(w) in (5.20b), either one of the three

performancemeasures fN,1(w), fN,2(w), or fN,3(w) can be used; however, there is no general answer
to the question of how does one performance metric compare with the other. �ese problems are of

the form (P0) introduced in Chapter 2.

For the sake of brevity, we collect the distances {Bm(H1∥H0)}, {Km(H1∥H0)}, {Km(H0∥H1)},
or {Dm(H1∥H0)} in a common vector denoted by d ∈ RM . �e optimization problems in (5.20)

can then be expressed in a general form as

argmin
w∈{0,1}M

∥w∥0 s.to dTw ≥ λ, (5.21)

where the threshold corresponds to λ ∶= λB or λ ∶= λN for the Bayesian or Neyman-Pearson set-

ting, respectively, with 0 ≤ λ ≤ 1Td. Boolean linear programming problems are in general hard to

solve [Matoušek and Gärtner, 2007]. However, S-B and S-N are some of the few special cases of a

Boolean linear program that have an explicit solution. We give the solution to the considered o�ine

sampling design problem in the following theorem.

�eorem 5.2 (Sparse sampler for distributed detection). Assuming the entries of d are (pre-)sorted

in descending order and the entries of w are sorted accordingly. �e optimal solution w to (5.21) has

entries equal to 1 at the �rst K̂ entries corresponding to the largest entries in d, where

K̂ =min{i ∈ {1, 2, . . . ,M}∣d1 + d2 +⋯di ≥ λ}. (5.22)

Proof. �e proof is straightforward, thus, not detailed.

In essence, the integer program (5.21) has an explicit solution and it is optimal for (5.21). �e

solution can be interpreted as follows: recalling K̂ from (5.22), the best subset of sensors out of the

M candidate sensors are those K̂ sensors having the smallest local average root-likelihood ratio and

largest local average log-likelihood ratio in the Bayesian and Neyman-Pearson setting, respectively.

�e appeal of the proposed solution lies in its simplicity. Computationally, the proposed solver is

very attractive, for example, with a complexity of O(M logM), which is essentially the complexity

of the involved sorting algorithm [Papadimitriou, 2003]. A parallel implementation on di�erent

processors (i.e., still in an o�ine centralized setting) of the ordering algorithm further reduces the

complexity toO(K̂) using a back-o� mechanism as detailed next: �e distancemeasure dm is made

available to the central unit a�er a time c/dm, where c is a known positive constant, and the central

unit computes the sum of the received values. If the accumulated sum exceeds the desired threshold

λ, the central unit declares a transmission stop1. �us, only the K̂ largest distance values are gathered

at the central unit.

1If more than one distance is made available at the same time, we randomly pick as many as we need.
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Inmany applications, wemight know the number of sensors to select (e.g., wemight have already

purchased the hardware and we want to use all of them). �at is, for a �xed sampler size K, the

sensing design problem can be expressed as

E-B ∶ argmin
w∈{0,1}M

Pe(w) s.to ∥w∥0 = K; (5.23a)

E-N ∶ argmin
w∈{0,1}M

Pm(w)
s.to Pf (w) ≤ α ,∥w∥0 = K ,

or

argmin
w∈{0,1}M

Pf (w)
s.to Pm(w) ≤ β,∥w∥0 = K ,

(5.23b)

where E-B (E-N) represents the equivalent Bayesian (equivalent Neyman-Pearson) problem, and α
and β are, respectively, the maximum false-alarm rate and miss-detection rate to be satis�ed. By

appropriately choosing the thresholds e, α and β in (5.2), we can obtain the optimal objective value

of (5.2) equal to K, for which P-B (P-N) and E-B (E-N) are equivalent.

We can also simplify E-B and E-N using the Bhattacharyya and Kullback-Leibler distance (or

J-divergence) as proxies for the error probabilities, respectively, to arrive at a general form given by

argmax
w∈{0,1}M

dTw s.to ∥w∥0 = K , (5.24)

where it is straightforward to verify that the optimal objective value is given by the sum of the K

largest entries of d.

We underline that the proposed solver is valid as long as Assumption 5.1 holds, and the obser-

vations need not necessarily be Gaussian distributed.

5.6 Illustrative examples

In this section, we illustrate the developed theory of o�ine sampling design for binary hypothesis

testing with a few examples. �e sensing operation is designed such that a desired detection per-

formance determined by the Bhattacharyya distance, Kullback-Leibler distance, or J-divergence is

achieved. We begin with some examples of Gaussian observations and later on extend it to expo-

nential observation distributions.

5.6.1 Gaussian observations

Uncommon means and common covariances

Detecting signals in Gaussian noise is a well-studied problem in detection theory. In particular,

it �nds applications in spectrum sensing, target detection, and communications, to list a few. For
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binary signals in Gaussian noise, that is, observations with uncommon means and common covari-

ance structure under both hypotheses, the conditional distributions are given by

H0 ∶ x ∼N (θ0, Σ)H1 ∶ x ∼N (θ1, Σ), (5.25)

where N (θ , Σ) denotes a Gaussian distribution with mean vector θ and covariance matrix Σ, the

mean vectors θ i = [θ i,1 , θ i,2 , . . . , θ i,M]T ∈ R
M for i = 0, 1 as well as the covariance matrix Σ =

diag(σ21 , σ22 , . . . , σ2M) ∈ RM×M are assumed to be perfectly known. �e error probabilities admit the

following expressions [Moon and Stirling, 2000, pg. 475]

Pf (w) = Q⎛⎝γ + s(w)/2√
s(w)

⎞⎠ ;
Pm(w) = 1 −Q⎛⎝γ − s(w)/2√

s(w)
⎞⎠ ,

(5.26)

where γ is the threshold de�ned in (5.9),

s(w) = 1

σ2
(θ1 − θ0)Tdiag(w)Σ−1(θ1 − θ0) (5.27)

is the signal-to-noise ratio (sometimes referred to as the de�ection coe�cient), andQ is the comple-

mentary Gaussian cumulative distribution function

Q(x) = ∞

∫
x

1√
2π

exp (−y2/2)dy.
Note that the signal-to-noise ratio (5.27) is also linear in w. �e Bayesian error probability is given

by [Moon and Stirling, 2000, pg. 494]

Pe(w) = π0Q⎛⎝γ
′ + s(w)/2√

s(w)
⎞⎠

+ π1
⎡⎢⎢⎢⎢⎣1 −Q

⎛
⎝
γ′ − s(w)/2√

s(w)
⎞
⎠
⎤⎥⎥⎥⎥⎦ ,

(5.28)

where γ′ = log (π0/π1) is the threshold in the Bayesian setting.

For the detection problem (5.25), the local Bhattacharrya distance, Kullback-Leibler distance,

and J-Divergence can be computed respectively as

Bm(H1∥H0) = 1

8σ2m
(θ0,m − θ1,m)2,

Km(H1∥H0) = Km(H0∥H1) = 1

2σ2m
(θ0,m − θ1,m)2 ,

Dm(H1∥H0) = 1

σ2m
(θ0,m − θ1,m)2.
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We next remark the following interesting observation. All the three distance measures are equal

to the signal-to-noise ratio up to a constant. �at is, B(H1∥H0) = s(w)/8, K(H1∥H0) = s(w)/2,
and D(H1∥H0) = s(w). However, these relations are not universal (e.g., they do not hold for non-

Gaussian observations). �is facts allow us to state the following fundamental result in sampling

design for conditionally independent Gaussian observations with common covariance:

�eorem 5.3. For Gaussian observations with uncommon means and common covariance structure

under both hypotheses, maximizing the signal-to-noise ratio over all the possible sampler choices is

optimal for P-B and P-N.

Proof. �e proof is straightforward. It can be derived based on results from [Cambanis and Masry,

1983] and the monotonicity of theQ function. �us, it is omitted.

As an example, consider the sinusoidal detection problem with M = 15 candidate sensors. �e

means are θ0,m = 0 and θ1,m = cos 2π f m with f ∶= 0.33 for m = 1, 2, . . . ,M. Furthermore, we

use σ2 = 1, π0 = 0.3, π1 = 0.7, and α = 0.01. In this example, we use a smaller dimension for

M to compare the results with the optimal solution of (5.23). Nevertheless, the proposed solvers

based on ordering easily scale to higher dimensional problems. We solve (5.23) using exhaustive

search over all the (M
K
) combinations for di�erent values of K such that the error probabilities (5.26)

and (5.28) are optimized. �is is labelled as “Neyman-Pearson/Bayesian optimal” in Fig. 5.1. For

this particular example, due to �eorem 5.3, the simpli�ed sensing design problem can be solved

optimally also in terms of error probabilities. �is is evident from Fig. 5.1, where the solution based

on ordering the distance measures (labelled as “Neyman-Pearson/Bayesian simpli�ed, sorting”) is

on top of the optimum solution based on exhaustive search. �e shaded regions in Fig. 5.1 indicate

the error probabilities with the worst to best subset of K sensors (including any possible subset of K

sensors) for di�erent numbers of selected sensors. In particular, the error probabilities with random

sampling (or any other sub-optimal sampling), for example, [Cambanis andMasry, 1983,Sung et al.,

2005], would span the shaded region.

Remark 5.3 (Choosing λ). For a desired Pm, say β, and �xed Pf , say α, the threshold λ ∶= λN (for a

desired signal-to-noise ratio) can be computed using (5.26). Speci�cally,

λN = (Q−1(α) −Q−1(1 − β))2.
When λ does not admit a closed form (e.g., with other distributions), the solution path can be used as a

guideline to choose λ that results in a desired error probability (o�en needs to be computed numerically);

for example, see Fig. 5.2 to compute λ ∶= λB, where we solve (5.21)with the same simulation parameters

as before.

Uncommon covariances and commonmeans

Detecting a change in variance is also frequently encountered in practice, for example, while mea-

suring a physical phenomenon with di�erent sensors each characterized with di�erent noise levels
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Figure 5.1: �e (Bayesian/Neyman-Pearson) probability of error for (5.25)with di�erent numbers of selected
sensors K out of M = 15 sensors for independent observations. �e shaded regions indicate the performance
with the worst to best subset of K sensors.

both across the sensors and under both hypotheses. �e conditional distributions in this case are

given by

H0 ∶ x ∼N (θ , Σ0)
H1 ∶ x ∼N (θ , Σ1) , (5.29)

where θ is the known mean vector and the diagonal matrix Σi = diag(σ2i,1 , σ2i,2 , . . . , σ2i,M) for i = 0, 1
is known. �e local log-likelihood ratio is

log lm(x) = 1

2
log

σ20,m
σ21,m
+ x2 ( 1

2σ20,m
− 1

2σ21,m
) .

Quantifying the performance of the detector, i.e., expressing Pm, Pf , and Pe in closed form is more

di�cult than before, as the pdf of l(x) can be obtained only by numerical integration [Moon and

Stirling, 2000]. However, the proposed performance measures admit known expressions as given

next. �e local Bhattacharyya distance between the conditional distributions in (5.29) is given by

Bm(H1∥H0) = 1

2
log (σ20,m + σ21,m

2σ0,mσ1,m
) , (5.30)

the local Kullback-Leibler distance is given by

Km(H1∥H0) = 1

2
( σ21,m
σ20,m
− 1 − log σ21,m

σ20,m
) , (5.31)
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Figure 5.2: �e solution path illustrates the Bayesian error probability for di�erent values of the threshold
λB. We use M = 15. �e number of selected sensors K̂ for a speci�c value of the threshold is also shown.

andKm(H0∥H1) is obtained by interchanging the subscripts 0 and 1 in the above equation. Finally,

the J-divergence is given by

Dm(H1∥H0) = 1

2
( σ21,m
σ20,m
+ σ20,m
σ21,m
− 2) . (5.32)

Assume that

Σ0 = [ 0.1 0

0 0.01
] and Σ1 = [ 0.5 0

0 0.25
]

and that we want to �nd the best sensor out ofM = 2 candidate sensors (K = 1). A quick calculation

shows that d2 > d1 for all distances (i.e., the local distance measure of the second sensor is larger

than that of the �rst sensor). �us, the solution to the S-B (and S-N) will be w = [0, 1]T . �is is

intuitive as the conditional variance of the second sensor has a larger gap as compared to that of the

�rst sensor, hence the second sensor is more informative.

5.6.2 Exponential observations

Exponentially distributed observations occur while detecting a complex Gaussian signal at the out-

put of a noncoherent receiver. �e conditional distributions for exponentially distributed observa-

tions for m = 1, 2, . . . ,M , are given by

H0 ∶ xm ∼ µ0,m exp (−µ0,mx)
H1 ∶ xm ∼ µ1,m exp (−µ1,mx) , (5.33)
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where x ∈ [0,∞). �e local log-likelihood ratio is

log lm(x) = log µ1,m

µ0,m
+ x(µ0,m − µ1,m).

Using (5.8), the local Bhattacharyya distance can be computed as

Bm(H1∥H0) = − log√4µ0,mµ1,m
µ0,m + µ1,m .

Similarly, the local Kullback-Leibler distance can be computed as

Km(H1∥H0) = log µ0,m

µ1,m
+ µ1,m

µ0,m
− 1,

Km(H0∥H1) is obtained by interchanging the subscripts 0 and 1 in the above equation, and the local
J-divergence is given as

Dm(H1∥H0) = 2 log µ1,m

µ0,m
+ µ20,m − µ21,m

µ0,mµ1,m
.

�ese measures can be directly used in the proposed solvers to design sparse samplers.

5.7 Dependent observations

�roughout most of this chapter so far, we have assumed that the observations are conditionally

independent. �is assumption is generally valid if the sensors are responsible for the noise in the

observations (i.e., receiver noise). However, if the sensors are subject to external noise or if the signal

itself is stochastic in nature, then Assumption 5.1 might not be reasonable anymore. Consequently,

the additive property of the considered distance measures is also no more valid.

�e simpli�ed design problem for this general case (i.e., without any independence assump-

tion), again consists of �nding a sparsest w that results in a prescribed distance measure, where we

express the Bhattacharyya distance, Kullback-Leibler distance, or J-divergence in terms of w. �e

solution to the above generic problem is hard, nevertheless, we can solve it using standard nonlin-

ear and o�en nonconvex optimization techniques for a given problem instance (see the example in

Section 5.7.2). However, in some cases, a solution can be computed e�ciently. As an example, the

Gaussian observation case with uncommon means is detailed next.

5.7.1 Gaussian observations with uncommon means

Let us consider the case of binary signal detection in Gaussian noise, and assume the related condi-

tional distributions are given by H0 ∶ x ∼N (θ0, Σ)
H1 ∶ x ∼N (θ1, Σ), (5.34)
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where the mean vectors θ0 and θ1 as well as the covariance matrix Σ ∈ RN×N are assumed to be

perfectly known. Note that this model is a generalization of (5.25) with a nondiagonal covariance

matrix. �e results from�eorem 5.3 generalize to dependent observations. �us, the error prob-

abilities in (5.2) (or (5.23)) can without loss of optimality be replaced with the signal-to-noise ratio

(which is also related to the considered distance measures up to a constant)

s(w) ∶= [Φ(w)m]T Σ−1(w) [Φ(w)m] , (5.35)

where we use m = θ1 − θ0 and
Σ(w) = Φ(w)ΣΦT(w) ∈ RK×K

is a submatrix of Σ that includes only the entries corresponding to the selectedmeasurements. More

speci�cally, we want to solve the problem

argmin
w∈{0,1}M

∥w∥0 s.to s(w) ≥ λ, (5.36)

where λ is the desired signal-to-noise ratio (or distance measure, or error probability). However, in

this case, the simpli�ed problem does not admit an explicit solution. �e optimal sampling scheme

maximizes s(w) in (5.35) over all possible w ∈ {0, 1}M such that w is as sparse as possible. �is

incurs a combinatorial search over all the 2M possible combinations. For example, with M = 100

candidate sensors, a performance evaluation of about 1030 possible choices is needed whose direct

enumeration is clearly impossible.

�e sampling design w for (5.34) has the following properties:

1. It depends on the �rst and second order moments of the observations.

2. �e mth sampling point depends on the correlation between the sensors.

We next propose some simpli�cations to solve this problem sub-optimally in polynomial time,

yet with a performance that is comparable to the optimal one. Firstly, we write the covariancematrix

Σ as

Σ = aI + S , (5.37)

where a nonzero a ∈ R is chosen such that S ∈ RM×M is invertible andwell-conditioned. Using (5.37)

in (5.35), we obtain

s(w) = mTΦT(w) [aI +Φ(w)SΦT(w)]−1Φ(w)m. (5.38)

Using Property 3.1 from Chapter 3, we can simplify s(w) to
s(w) = mTS−1m

−mTS−1 [S−1 + a−1diag(w)]−1 S−1m.
(5.39)
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Note that in contrast to (5.38), the design parameter w only shows up at one place in (5.39), which

makes the problemmuch easier. Using the Schur complement, the performance constraint in (5.36),

i.e.,

mTS−1 [S−1 + a−1diag(w)]−1 S−1m ≤ λ′
with λ′ ∶= λ−mTS−1m can be equivalently expressed as a linear matrix inequality inw under a > 0,
i.e.,

[ S−1 + a−1diag(w) S−1m

mTS−1 λ′
] ⪰ 0, (5.40)

and therefore, it is convex inw. �e parameter a should be chosen such that S is invertible and well-

conditioned. Furthermore, because of (5.40) thematrix S−1+a−1diag(w) should be positive de�nite.
�is can be achieved, for example, by choosing a such that it satis�es the condition 0 < a < λmin{Σ},
since wm ≥ 0 for m = 1, 2, . . . ,M. Although the constraint (5.40) is convex on w, the optimization

problem (5.36) is still not a convex problemdue to the ℓ0-(quasi) normcost function and the Boolean

constraint.

Convex relaxation

�e Boolean constraint set is relaxed to its convex hull, i.e., 0 ≤ wm ≤ 1, m = 1, 2, . . . ,M , and we

also relax the ∥w∥0 constraint in (5.36) to its best convex approximate 1Tw. �us, the relaxed convex

problem,more speci�cally, a semi-de�nite programming problem, is given as (cf. (R0) fromChapter

2)

argmin
w

1Tw

s.to [ S−1 + a−1diag(w) S−1m

mTS−1 λ′
] ⪰ 0,

0 ≤ wm ≤ 1,m = 1, 2, . . . ,M .

(5.41)

For a �xed K, the equivalent problem of the form (5.24) can be relaxed to

argmax
w

s(w)
s.to 1Tw = K ,

0 ≤ wm ≤ 1,m = 1, 2, . . . ,M ,

which simpli�es to

argmin
w

mTS−1 [S−1 + a−1diag(w)]−1 S−1m
s.to 1Tw = K ,

0 ≤ wm ≤ 1,m = 1, 2, . . . ,M .

(5.42)
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Algorithm 5.1 Randomized Rounding

1. Given the solution w⋆ of (5.41) or (5.43) and a number of randomizations L.

2. for l = 1 to L

3. generate wm,l = 1 with a probability w⋆m
(or wm,l = 0 with a probability 1 −w⋆m)
for m = 1, 2, . . . ,M, wherew⋆m = [w⋆]m .

4. end

5. de�ne w l = [w1,l , . . . ,wM,l ]T and the index set of the candidate estimates

satisfying the constraints as

Ω ≜
⎧⎪⎪⎪⎨⎪⎪⎪⎩
{l ∣ s(w l) ≥ λ, l = 1, 2, . . . , L}, for (5.41)

{l ∣ ∥w l∥0 = K , l = 1, 2, . . . , L}, for (5.43).

6. If the set Ω is empty, go back to step 2.

7. output approximate solution w⋆round = w l⋆ , where

l⋆ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
argmin

l∈Ω
∥w l∥0 , for (5.41)

argmax
l∈Ω

s(w l), for (5.43).

Here, only the second term of (5.39), which depends on w is optimized (minimization is due to its

negative sign). Writing (5.42) in the epigraph form [Boyd and Vandenberghe, 2004], we obtain

argmin
w ,t

t

s.to 1Tw = K ,
[ S−1 + a−1diag(w) S−1m

mTS−1 t
] ⪰ 0,

0 ≤ wm ≤ 1,m = 1, 2, . . . ,M ,

(5.43)

with auxiliary variable t ∈ R.
Subsequently, the selected sensors (i.e., an approximate Boolean solution) can be computed

using randomization techniques based on the solution from (5.41) or (5.43) as described in Al-

gorithm 5.1. �e relaxed convex problem can be solved using o�-the-shelf so�ware, for example,

SeDuMi [Sturm, 1999].
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Figure 5.3: Error probabilities for (5.34) with di�erent numbers of selected sensors K out of M = 15 sensors.
�e shaded regions indicate the performance with the worst to best subset of K sensors.

Numerical example

To illustrate sparse sensing with dependent observations, we recall the simulation parameters from

Section 5.6.1, but instead of independent noise, we use an autoregressive correlationmatrix Σ, which

is a Toeplitz matrix of the form

Σ = σ2
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ ρ2 ⋯ ρM−1

ρ 1 ρ
ρ2 ρ 1 ⋮⋮ ⋱

ρM−1 ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.44)



92 Chapter 5. Sparse Sensing for Detection

with a known correlation coe�cient ρ ∈ [0, 1] and variance σ2 = 1. Such a Σ is useful for modeling

correlations between distributed sensors; for example, it can represent a spatially decaying correla-

tion function. �e convex relaxed problem (5.43) is solved using SeDuMi [Sturm, 1999].

�e probability of error, i.e., Pm in the Neyman-Pearson setting and Pe in the Bayesian setting for

di�erent numbers of selected sensors is shown in Fig. 5.3. We underline the following observations.

�e solution with randomized rounding (L = 50) is shown in Fig. 5.3 for ρ = {0.25, 0.75} with a =
0.11 in (5.37). For low values of the correlation coe�cient, ρ, the convex relaxationwith deterministic

rounding is very close to optimal. For larger values of ρ, the solution of the relaxed problem with

randomized rounding is still very close to optimal for large values of K, but less optimal for small

values ofK. As observed in the simulations, for L = 50≪ 215, the sensing designwith randomization

is near-optimal in terms of the error probability.

Correlation versus number of selected sensors

In this subsection, we focus on the number of sensors required to achieve a certain detection perfor-

mance when the sensors becomemore coherent, i.e., as the correlation coe�cient ρ approaches 1. To
illustrate this, let us consider the numerical example introduced in Section 5.6.1 with f ∈ {0, 0.33},
but with an equi-correlated covariance matrix of the form

Σ ∶=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ ⋯ ρ
ρ 1 ⋯ ρ⋮ ⋮ ⋱ ρ
ρ ρ ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= (1 − ρ)IM + ρ1M1TM , (5.45)

with a known correlation coe�cient ρ ∈ [0, 1]. Note that for such a covariance matrix, any a ≠ 1− ρ
leads to an invertible S in (5.37) that can be used in the solver (5.41).

We �rst consider the case when f = 0, where all the M sensors have the same mean value,

i.e., m is the all-one vector up to a constant scaling. We refer to them as identical sensors. In

this case, any subset of sensors is also the best subset of sensors, hence, random sensing is opti-

mal. As the correlation coe�cient ρ approaches 1, the amount of information (Kullback-Liebler dis-

tance/Bhattacharyya distance/J-divergence/signal-to-noise ratio) contributed by any random subset

of K > 1 sensors is the same as that of the contribution from K = 1 sensor; see Fig 5.4(a). �us, even

with all the sensors selected the detection performance is limited to that of the performance with

one sensor. �is is a well-known result from distributed detection that extends to sampling design

problems [Chamberland and Veeravalli, 2007].

A more interesting case, in particular for sensing design problems, is when the sensors are not

identical ( f = 0.33), i.e., m has all di�erent entries. When the sensors are not identical, as the

correlation coe�cient ρ approaches 1, the amount of information contained in the best subset of K >
1 sensors increases signi�cantly; see Fig. 5.4(b). More speci�cally, with equi-correlated yet di�erent

observations, to achieve a certain detection performance, the number of sensors required decreases

signi�cantly as the correlation coe�cient ρ increases. �emaximumachievable signal-to-noise ratio

is proportional to the inverse of theminimum eigenvalue of Σ(w), which is λ−1min{Σ(w)} = 1/(1−ρ),
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Figure 5.4: �e signal-to-noise ratio for di�erent values of the correlation coe�cient ρ. (a) Identical sensors
( f = 0). (b) Nonidentical sensors ( f = 0.33).

for any sampler size K ≠ 0. �e optimal sparse sampler would choose the entries ofm that are most

aligned to the eigenvector corresponding to the minimum eigenvalue of Σ(w) (hence, as ρ → 1 the

signal-to-noise ratio is large). Similarly, if the entries ofm are parallel to eigenvector corresponding

to the maximum eigenvalue of Σ(w), that is, the all-one vector, then the signal-to-noise ratio is

minimized; this is the case in Fig 5.4(a).

5.7.2 Gaussian Observation with Uncommon Covariances

We now provide some extensions and o�er guidelines for determining sparse sensing mechanisms

for testing between two covariance matrices. �at is, when the covariance structures are di�erent

under both hypotheses. Suppose the conditional distribution are given by

H0 ∶ x ∼N (θ , Σ0)
H1 ∶ x ∼N (θ , Σ1), (5.46)

where the mean vector θ ∈ RN as well as the N × N covariance matrices Σ0 and Σ1 are assumed to

be perfectly known. �is model is a generalization of (5.29) with nondiagonal covariance matrices.

As with (5.29), the distancemeasures are not equal to each other. Using (5.5), the Bhattacharyya

distance for the observations of the form y = Φ(w)x can be computed as

B(H1∥H0) = 1

2
log det{Σ01(w)}

− 1

4
(log det{Σ0(w)} + log det{Σ1(w)}) , (5.47)
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where Σi(w) = Φ(w)ΣiΦ
T(w) for i = 01, 0, 1, with 2Σ01 = Σ0 + Σ1. Similarly, using (5.10), we can

show that the Kullback-Leibler distance is given by

K(H1∥H0) = 1

2
(tr{Σ−10 (w)Σ1(w)} − ∥w∥0
− log det{Σ−10 (w)Σ1(w)}) . (5.48)

Here, Σ−10 (w)Σ1(w) is the signal-to-noise ratiomatrix.

We can express the Bhattacharyya andKullback-Leibler distance as a di�erence of concave func-

tions by relaxingw ∈ {0, 1}M to [0, 1]M . �at is, we can express (5.47) and (5.48) as

f (w) = f0(w) − f1(w),
where f0(w) and f1(w) are concave functions of its arguments; see Appendix 5.D for the explicit

expressions of f0(w) and f1(w). As a consequence, the relaxed problem (for �xed K)

argmin
w∈[0,1]M

f1(w) − f0(w) s.to 1Tw = K ,

is not a convex problem as the cost is not a convex function of its argument and has to be solved

using nonconvex optimization techniques.

One such heuristic to solve the di�erence of convex problems is the convex-concave proce-

dure [Yuille and Rangarajan, 2003], where the concave term (here, f1(w)) is replaced with its a�ne

approximation (more generally, any reasonable convex approximation of f1(w)) while the convex
portion , i.e., − f0(w) is retained. �e resulting convex problem is iteratively solved to obtain a local

optimum.

�e J-divergence can be computed using (5.18) as

D(H1∣∣H0) = 1

2
tr{Σ−10 (w)Σ1(w)}
+ 1

2
tr{Σ−11 (w)Σ0(w)} − ∥w∥0 . (5.49)

We next show that maximizing the J-divergence over w can be cast as a convex problem.

Let the covariance matrices Σ0 = Σ1/2
0 Σ

T/2
0 and Σ1 = Σ1/2

1 Σ
T/2
1 , respectively, admit the decompo-

sition

Σ0 = a0I + S0 ,
and

Σ1 = a1I + S1 ,
with scalars a0 and a1 chosen such that S0 and S1 are invertible. Using Property 3.1 from Chapter 3,
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we can show that the J-divergence (5.49) is equivalent to

D(H1∣∣H0) = 1

2
tr{S−10 Σ1

− S−10 [S−10 + a−10 diag(w)]−1 S−10 Σ1}
+ 1

2
tr{S−11 Σ0

− S−11 [S−11 + a−11 diag(w)]−1 S−11 Σ0} − ∥w∥0 .
�us, maximizing the J-divergence over w for a �xed K is the same as minimizing

1

2
tr{S−10 [S−10 + a−10 diag(w)]−1 S−10 Σ1}
+ 1

2
tr{S−11 [S−11 + a−11 diag(w)]−1 S−11 Σ0}

over w. To cast this as a convex problem, we introduce two variables

Z0 = ΣT/2
1 S−10 [S−10 + a−10 diag(w)]−1 S−10 Σ

1/2
1 ;

Z1 = ΣT/2
0 S−11 [S−11 + a−11 diag(w)]−1 S−11 Σ

1/2
0 ,

and obtain

argmin
w ,Z0 ,Z 1

1

2
tr{Z0} + 1

2
tr{Z1}

s.to 1Tw = K ,
Σ
T/2
1 S−10 [S−10 + a−10 diag(w)]−1 S−10 Σ

1/2
1 ⪯ Z0

Σ
T/2
0 S−11 [S−11 + a−11 diag(w)]−1 S−11 Σ

1/2
0 ⪯ Z1

0 ≤ wm ≤ 1,m = 1, 2, . . . ,M .

(5.50)

�e second and the third constraint can be, respectively, expressed as an LMI in w, i.e.,

⎡⎢⎢⎢⎣
Z0 S−10 Σ

1/2
1

Σ
T/2
1 S−10 S−10 + a−10 diag(w)

⎤⎥⎥⎥⎦ ⪰ 0,
⎡⎢⎢⎢⎣

Z1 S−11 Σ
1/2
0

Σ
T/2
0 S−11 S−11 + a−11 diag(w)

⎤⎥⎥⎥⎦ ⪰ 0.
An approximate Boolean solution has to be subsequently computed using randomized rounding.

�e optimization problem of the form (5.20) with unknown K can be derived along similar lines

by relaxing the ∥w∥0 in the cost function. Before we end this section, wemake the following remarks.
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• For Gaussian observations, we recall that an upper bound on Pe and Pm can be obtained in

terms of J-divergence. Hence, optimizing J-divergence is reasonable under the Bayesian and

Neyman-Pearson setting.

• For general Gaussian dependent observations (with uncommon means and uncommon co-

variances under both hypotheses), the design problems are straightforward combinations of

the problems derived in Sections 5.7.1 and 5.7.2.

5.8 Discussion

In this chapter, we have developed a framework for structured and sparse sampler design for dis-

tributed detection problems. In particular, we have addressed binary hypothesis testing in both the

Bayesian and Neyman-Pearson setting. �e proposed framework can be directly applied to sensor

placement/selection, sample selection, and fully-decentralized data compression, where we seek the

best subset of sensor/sampling locations or data samples that results in a desired detection proba-

bility. To simplify the design problem, we have used a number of distance measures that quantify

the closeness or divergence between the conditional distributions of the observations. We give an

explicit solution for the sampling design problem with conditionally independent observations and

the results are summarized as follows. �e best sensors are the ones with the smallest local average

root-likelihood ratio and largest local average log-likelihood ratio in the Bayesian and Neyman-

Pearson setting, respectively. �e framework has also been generalized to conditionally dependent

observations, with a thorough analysis for the Gaussian case. In that context, we have shown that,

for uncommon means and common covariances under both hypotheses, the number of noniden-

tical Gaussian sensors required to achieve a desired detection performance reduces signi�cantly as

the sensors become more coherent.

5.A Proof of Proposition 5.1

In this section, we prove that the additivity of the Bhattacharyya distance is preservedwith compres-

sion using Φ(w). Using the conditional independence Assumption 5.1, the Bhattacharyya distance

in (5.5) can be expressed as

B(H1∥H0) = − logE∣H0
{√l(y)}

= − logE∣H0
{ M

∏
m=1

[lm(x)]wm/2}
= − log M

∏
m=1

E∣H0
{[lm(x)]wm/2} ,
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where lm(x) is the local likelihood ratio at themth sensor. Sincewm ∈ {0, 1}, we can further simplifyB(H1∥H0) to
B(H1∥H0) = − log M

∏
m=1

(E∣H0
{√lm(x)})wm

=
M

∑
m=1

−wm logE∣H0
{√lm(x)}

=
M

∑
m=1

wmBm(H1∥H0).

5.B Upper bound on Pm

To derive the upper bound on Pm stated in�eorem 5.1, we use Chebyshev’s inequality [Hoe�ding,

1963]

Pr(X −E{X} ≥ t) ≤ 1

1 + t2

v2

, (5.51)

where X is a random variable with variance v2 and t > 0. �en, Pm simpli�es to

Pm = Pr (log l(y) ≤ log γ∣H1)
= Pr (log l(y) −E∣H1

{log l(y)}
≤ log γ −E∣H1

{log l(y)}∣H1)
= Pr (log l(y) −K(H1∥H0) ≥ K(H1∥H0) − log γ∣H1) ,

where the last equation has the same form as the inequality (5.51) with t = log γ − K(H1∥H0).
Note that the Kullback-Leibler distance is nonnegative, i.e.,K(H1∥H0) ≥ 0 with equality only whenH0 =H1, and log γ ≤ 0.

If the variance of log l(y) is v2, then, from (5.51), we have

Pm ≤ 1

1 + (K(H1∥H0)−log γ)2
v2

�is completes the proof.

5.C Proof of Proposition 5.2

In this section, we prove that the additivity of the Kullback-Leibler distance for independent ob-

servations is preserved with compression using Φ(w). Assuming Assumption 5.1 holds, then the
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Kullback-Leibler distance in (5.10) can be expressed as

K(H1∥H0) = E∣H1
{log l(y)}

= E∣H1
{log M

∏
m=1

[lm(x)]wm}
= E∣H1

{ M

∑
m=1

wm log lm(x)}
=

M

∑
m=1

wmE∣H1
{log lm(x)}

=
M

∑
m=1

wmKm(H1∥H0),
where lm(x) is the local likelihood ratio at themth sensor.

5.D Expressions for f0(w) and f1(w)

Let the covariance matrices Σ01, Σ0 and Σ1, respectively, admit a decomposition of the form Σ01 =
a01I + S01, Σ0 = a0I + S0, and Σ1 = a0I + S0. Here, the scalars a01, a0, and a1 are, respectively, chosen

such that the matrices S01, S0, and S1 are invertible.

Using the Sylvester’s determinant identity

det{A+ BC} = det{A}det{I + CA−1B}, (5.52)

we can express, for example,

det{ΦΣ0Φ
T} = det{a0I +ΦS0Φ

T}
= aM0 det{I + a−10 ΦTΦS0}
= aM0 det{I + a−10 diag(w)S0}.

Bhattacharyya distance

Ignoring the terms that are independent of the optimization variable w, we can express the Bhat-

tacharyya distance (5.47) as

f (w) = f0(w) − f1(w),
where

f0(w) ∶= 1

2
log det{I + a−101diag(w)S01}
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and

f1(w) ∶= 1

4
(log det{I + a−10 diag(w)S0}

+ log det{I + a−11 diag(w)S1}) ,
are concave functions on w ∈ [0, 1]M .
Kullback-Leibler distance

Using Property 3.1 from Chapter 3, we can write the �rst term of (5.48), that is,

tr{Σ−10 (w)ΦΣ1Φ
T} = tr{ΦTΣ−10 (w)ΦΣ1}

as

tr{S−10 Σ1 − S−10 [S−10 + a−10 diag(w)]−1 S−10 Σ1}.
�e above function can be expressed as a convex function in w (e.g., using the epigraph form). �e

second term of (5.48) can be relaxed to a convex function 1Tw. �e last term of (5.48), that is,

log det{Σ−10 (w)Σ1(w)} is equivalent to
log det{ΦΣ1Φ

T} − log det{ΦΣ0Φ
T} =

log det{I + a−11 diag(w)S1} − log det{I + a−10 diag(w)S0}.
�us, we can equivalently express (5.48) as f (w) = f0(w) − f1(w) with

f0(w) ∶= −tr{S−10 [S−10 + a−10 diag(w)]−1 S−10 Σ1} − 1Tw
+ log det{I + a−11 diag(w)S1}

and

f1(w) ∶= log det{I + a−10 diag(w)S0},
which are concave in w.
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6.1 Introduction

In the sparse sensing schemes considered so far in this thesis, the focus was on discrete sparse sens-

ing. �at is, we were selecting sparse sensing patterns from a discrete set of candidates, e.g., temporal

samples, sensor positions, which were obtained by gridding the output space, in order to reach a de-

sired inference performance. In this chapter, we will discuss continuous (or o�-the-grid) sparse

sensing, where we can take samples anywhere in the continuous output space (i.e., we can sample in

between the grid points). Continuous sparse sensing will reduce the sensing costs for a given infer-

ence performance, or in other words, it will improve the inference performance for a �xed sampler

size.

To realize continuous sparse sensing, we start with a discretized output space and model every

sampling point in the continuous sampling space as a discrete sampling point plus a continuous per-

turbation. �en, we solve for the smallest set of possible discrete points as well as the best possible

perturbations that result in a desired inference performance. Although we focus on the estimation
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taskwith linearmodels in this chapter, the proposed approach can be generalized to nonlinearmod-

els and also other inference tasks (e.g., �ltering and detection) discussed in this thesis. Depending

on the nature of the inference task, the risk function that quanti�es the inference quality will de-

pend on the discrete sampling points as well as their perturbations. In sum, the main contribution

of this chapter is a framework of continuous sparse sensing, which allows for o�-the-grid sensor

placement.

Let x(t) denote the observation signal with a continuous-domain argument, where without

loss of generality t ∈ [0, T] denotes the sampling domain. We will restrict ourselves to the one-

dimensional spatial domain, but the ideas presented can be applied directly to higher dimensions

and even to temporal or spatio-temporal domains. Assume that x(t) represents themeasured phys-

ical �eld over a continuous one-dimensional space t, and it satis�es the linear model

x(t) = hH(t)θ + n(t) (6.1)

where θ ∈ RN collects the parameters to be estimated, h(t) ∈ CN is the known linear model rep-

resenting the mapping between the parameters and the measurements, and n(t) is the noise. Fur-
thermore, we assume h(t) = 0 for t < 0 and t > T . In other words, h(t) is completely described by

its variation in the interval t ∈ [0, T].
�e fundamental question of interest is—where to sample x(t) in order to reach a desired in-

ference performance? We next state the problem more precisely.

Problem 6.1. Given the model (6.1) and a desired estimation accuracy, �nd the optimal sampling

locations in the range [0, T] such that the number of samples is minimum and the desired estimation

accuracy is achieved.

6.2 Sensitivity to Gridding

We now recall the sensing model (2.3) that we introduced in Chapter 2, where we discretize (e.g., by

regular sampling) the output space with M points denoted by {tm}Mm=1. �e inference performance

(estimation accuracy, in this case) is limited by the choice of the initial grid points {tm}Mm=1 as the
resolution might be too low, especially when h(t) is fast varying compared to the chosen grid.

Let xm = x(tm) be the discrete-domain observations, hm = h(tm) denote the discretizedmodel,

and nm = n(tm) represent the noise. We assume that the noise is white Gaussian with variance σ2

(for spatial sampling, the sensor noise variance is independent of the sampling density). Using the

above notations, we can write the discrete-domain version of (6.1) as

xm = hHmθ + nm ,m = 1, 2, . . . ,M . (6.2)

�e data x = [x(t1), x(t2), . . . , x(tM)]T is acquired through the discrete sparse sensing operation

as

y = Φ(w)x = diagr(w)x ,
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where we design a sparsest vector

w = [w1 ,w2, . . . ,wM] ∈ {0, 1}M
by solving (P0) introduced in Chapter 2 with f (w) = σ2tr{(∑M

m=1wmhmh
H
m)−1}. �at is, we solve

argmin
w∈{0,1}M

∥w∥0
s.to σ2tr{( M

∑
m=1

wmhmh
H
m)−1} ≤ λ.

(6.3)

Recall that f (w) = σ2tr{(∑M
m=1wmhmh

H
m)−1} is the Cramér-Rao bound (equal to themean squared

error of the least squares estimation) for linearmodels in Gaussian noise; see Remark 3.1 fromChap-

ter 3.

We now illustrate the sensitivity to griddingwith the following numerical example. Consider the

linear model in (6.1) with the following speci�cations. Let the parameter vector θ be of length 2× 1.
Consider a sum of sinusoids model for h(t) = [h1(t), h2(t)]T with hi(t) = ∑Pi

p=1 αp,i sin(2π fp,i t)
for i = 1, 2. Let f i = [ f1,i , . . . , fPi ,i]T and α i = [α1,i , . . . , αPi ,i]T for i = 1, 2. We use the following

parameters: P1 = 5, P2 = 5, T = 10, σ2 = 1,
f 1 = [0.1, 0.33, 0.67, 0.78, 0.95]T ,
f 2 = [0.15, 0.7, 0.4, 0.58, 0.85]T ,
α1 = [0.5, 0.65, 0.3,−0.15, 0.45]T ,
α2 = [−0.25,−0.33,−0.6, 0.95,−0.25]T .

6.2.1 Coarse Gridding

Assume that the �eld can be measured at M = 5 potential locations. Let us consider the following
case of candidate sampling locations tm ∶= {1, 3, 5, 7, 9}. �e mean squared error resulting from the

samples at these locations is 1.47. �e optimal mean squared error using 5 samples, on the other

hand, is around 0.16.

We remark the following two observations. Firstly, the mean squared error resulting from the

samples at the above locations is much lower than the optimal mean squared error. Secondly, any

subset of these 5 samples will naturally also result in a mean squared error larger than 1.47. Hence,

due to the involved discretization, coarse griddingmight not lead to the desiredmean squared error

even if all candidate samples/sensors are selected.

6.2.2 Fine Gridding

Alternatively, the initial grid can be very dense with the candidate sampling locations at in�nitesimal

distance apart. �en (6.3) would choose many sensors within one or more virtual sampling bins.
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Figure 6.1: �e �eld is measured at M = 201 discrete locations obtained by uniformly gridding the interval[0, 10]m. �e mean squared error bound is set to λ = 0.026, leading to K = 50 selected sensors.

For the setup discussed in the previous subsection, for a �ne grid with M = 201 candidate sam-

pling points the solution to the relaxed version of (6.3) is illustrated in Fig. 6.1. �e sensors within

the most informative bin are selected �rst before going to the next informative bin, and so on, till

the desired mean squared error is achieved.

�e �ne gridding has two main drawbacks. Firstly, it might not be practically feasible to sample

so close to each other. In addition, the reason why more samples are selected within a certain bin is

to improve the signal-to-noise ratio. In case of spatial sampling, it might be desirable to restrict the

number of spatial samples. �at is, instead of placing additional (expensive) sensors within a certain

bin, the signal-to-noise ratio can be compensated by other (cheaper)means, e.g., temporal averaging

using a single sensor. Finally, note that the solvers based on convex optimization techniques incur a

cubic complexity making �ne gridding also computationally less viable.

6.3 Sensing model based on binning

�emotivation behind a coarse discretization in discrete sparse sensingwas computational tractabil-

ity, but its performance is limited by the choice of the initial grid. On the contrary, �ne gridding suf-

fers from a high computational complexity and multiple closely spaced sensors for signal-to-noise

ratio improvement. In this section, we present the sparse sensing model based on binning, which
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allows to sample anywhere in the continuous sampling domain. Speci�cally, we take one sample per

bin. To realize this, we augment the discrete model by including additional variables that account

for the continuous nature of the sampling domain.

We now recall the sparse sensing model that we introduced in Chapter 2, where we acquire x(t)
through a continuous-domain sparse sensing functionw(t) = ∑K

m=1 δ(t−τm)with unknown indices{τm}Km=1 and unknown number of samples K, as

y(t) = w(t)x(t) = K

∑
m=1

x(τm)δ(t − τm).
By discretizing (e.g., regular sampling) the output space with M ≫ K points denoted by {tm}Mm=1
we alternatively modeled y(t) as (cf. (2.3))

y(t) = M

∑
m=1

wmx(tm)δ(t − tm)
where wm = (0)1 indicates whether sample x(tm) is (not) selected. Here, the assumption was that

the {τm}Km=1 lie on the discrete grid.

When they do not lie on the discrete grid we follow a binning approach. If x(t) is su�ciently

smooth (i.e., its �rst-order derivative exists and is continuous), then local shi�s of x(t) can be ap-

proximated using its derivative based on a �rst-order Taylor expansion:

x(tm + pm) ≈ xm + pmx′m , m = 1, 2, . . . ,M , (6.4)

where {tm}Mm=1 are the discrete sampling points, pm represents the continuous perturbation around

tm with ∣pm ∣ < 0.5δ (δ denotes the bin size), and x′m is the derivative of x(t) towards t evaluated at

tm, i.e., x
′
m = ∂x(t)

∂t ∣t=tm . Using this approximation, we arrive at an o�-the-grid sensing model, i.e.,

we can model y(t) as
y(t) = M

∑
m=1

wm (xm + pmx′m) δ(t − tm). (6.5)

Such �rst-order interpolations have also been used in the context of sparse signal recovery in contin-

uous compressive sensing to overcome problems due to gridding, but at the input grid [Ekanadham

et al., 2011, Zhu et al., 2011]. As a remark, alternative interpolation techniques (e.g., polar interpola-

tion [Ekanadham et al., 2011]) can be considered.

Stacking {wm}Mm=1 in vector w, {pm}Mm=1 in vector p, and {x′m}Mm=1 in vector x′, we can write the

discrete-domain counterpart of (6.5) as

y = Φ(w) [x + diag(x′)p] = diagr(w) [x + diag(x′)p] , (6.6)

where y stacks {ym}Mm=1.
For the linear model (6.1), we can then represent the o�-the-grid samples as

ym = wm [(hm + pmh′m)Hθ + nm] ,m = 1, 2, . . . ,M , (6.7)
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M = 5 M = 11 M = 21 M = 41 M = 81
Sensor selection 1.47 0.47 0.28 0.20 0.18

Continuous sparse sensing (proposed) 1.32 0.36 0.22 0.18 0.17

Table 6.1: Mean squared error with 5 selected sensors for di�erent grid densities.

where h′m = ∂h(t)
∂t ∣t=tm . Note that by using this idea, gridding actually results in binning, where we

take at most one sample per bin. In what follows, we will derive the risk function that depends on

w and p for the linear inverse problem.

6.4 Risk function for continuous sparse sensing

As discussed in Chapter 3, for statistical estimation problems, we use scalar measures of the Fisher

information matrix to quantify the estimation accuracy. �e computation of the FIM for a linear

model (6.7) is straightforward (cf. (3.5) from Chapter 3). It is given by

F(w , p) = M

∑
m=1

wmhmh
H
m +wmp

2
mh
′
mh
′H
m

+wmpm(h′mhHm + hmh′Hm ).
�e A-optimality criterion (cf. Section 3.1.1 from Chapter 3), which is the trace of the inverse

FIM, for linearGaussianmodels corresponds to themean squared error of the least squares estimate.

Introducing variables u = [u1 , u2, . . . , uM]T with um = wmp
2
m (which can also be written as um =

w2
mp

2
m), and v = [v1 , v2, . . . , vM]T with vm = wmpm, we can write the risk function that we optimize

as

f (u, v ,w) = σ2tr{(∑M

m=1
wmhmh

H
m + umh′mh′Hm

+ vm(h′mhHm + hmh′Hm ))−1}, (6.8)

where u = v⊙2.
In contrast to discrete sparse sensing, the risk function in this case, depends on additional pa-

rameters that are related to the perturbation of the discrete sampling points.

6.5 Solver

�e optimization variables (u, v ,w) in (6.8) are related through a structure. Recall that wm = 1

indicates that themth sample is selected. Only whenwm is nonzero, the corresponding continuous
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variables um and vm are nonzero1. In other words, the vectors u, v, andw all share the same support

set. Hence, instead of simply minimizing the cardinality of w as in (P0) that was introduced in

Chapter 2, we can exploit the structure and jointly optimize their cardinality tominimize the number

of samples, and thus selecting the smallest set of perturbations associated with the discrete sampling

points. De�ning the matrix Z = [u, v ,w] ∈ R
M×3, the proposed continuous sensor placement

problem can be formulated as

argmin
Z

∥Z∥2,0 (6.9a)

s.to f (u, v ,w) ≤ λc, (6.9b)

Z = [u, v ,w],
u = v⊙2 , (6.9c)

wm ∈ {0, 1},m = 1, 2, . . . ,M , (6.9d)

− 0.5δ < vm < 0.5δ,m = 1, 2, . . . ,M , (6.9e)

0 < um < 0.25δ2,m = 1, 2, . . . ,M , (6.9f)

where the ℓ2/ℓ0-(quasi) norm counts the number of nonzero rows of Z as follows ∥Z∥2,0 ∶= ∣{m ∶√
u2m + v2m +w2

m ≠ 0}∣, and the convex constraint (6.9b) speci�es the estimation accuracy through

a threshold λc (c denotes continuous). Since the continuous variable pm takes values in the range[−0.5δ, 0.5δ], we obtain the convex box constraints (6.9e) and (6.9f). �e optimization problem

(6.9) is nonconvex due to: (a) cardinality cost, (b) Boolean constraint (6.9d), and (c) quadratic

equality (6.9c). �erefore, it is (in general) di�cult to solve (6.9) optimally.

6.5.1 Convex relaxation

Wenowuse some standard convex relaxation techniques to simplify (6.9) and solve it sub-optimally.

�e ℓ2/ℓ0-(quasi) norm is relaxed with its best convex approximation, i.e., an ℓ2/ℓ1-mixed norm

de�ned as ∥Z∥2,1 ∶= ∑M
m=1

√
u2m + v2m +w2

m . �e Boolean wm ∈ {0, 1} constraint is replaced with

a convex set wm ∈ [0, 1]. �e constraint (6.9c) is equivalently expressed as u = diag(U), where
U = vvH is a rank-1matrix with [U]i, j≠i = 0, ∀i , j. Dropping the rank constraint onU and replacing

the equality with an inequality as

U ⪰ vvH⇔ [ U v

vH 1
] ⪰ 0,

1We are not interested in a nonzero um or vm when wm = 0.



108 Chapter 6. Continuous Sparse Sensing

we arrive at the relaxed continuous sensor placement problem:

argmin
Z ,U

∥Z∥2,1
s.to f (u, v ,w) ≤ λc,

Z = [u, v ,w],
[ U v

vH 1
] ⪰ 0,

diag(U) = u, [U]i, j≠i = 0,∀i , j,
0 ≤ wm ≤ 1,m = 1, 2, . . . ,M ,

− 0.5δ < vm < 0.5δ,m = 1, 2, . . . ,M ,

0 < um < 0.25δ2,m = 1, 2, . . . ,M .

(6.10)

Subsequently, an approximate Boolean solution forw has to be recovered either by deterministic

or randomized rounding as discussed in Chapter 3. Finally, the sensor placements are given by

shi�ing the locations of the selected sensors according to v. �e relaxed optimization problem can

be solved using o�-the-shelf solvers like SeDuMi [Sturm, 1999]. Weunderline here that the proposed

sensor placement is not limited to the initial chosen grid points, and we basically replace grid points

with bins allowing one sensor per bin. However, this feature comes at an additional complexity

compared to that of solving the sensor selection problem with a �xed discrete grid. �e increase

in complexity is due to the additional variables like the continuous perturbation parameter and the

associated box constraints.

Furthermore, the proposed algorithm is a single step approach. However, it is also possible to

compute the initial points from discrete sparse sensing in step-1, and based on these initial points,

iteratively solve for the sampling locations using gradient descent techniques to �nd good local so-

lutions in step-2. But, such a two-step approach can result in a local optimum. Moreover, it will be

a complex iterative approach, which can be completely di�erent from the solution of the proposed

approach.

6.5.2 Numerical example

To validate the proposed continuous sparse sensing approach, we refer to the sum of sinusoids ex-

ample introduced earlier in Section 6.2. Let the initial coarse grid includeM = 11 sampling locations{tm = (m − 1)δ ∣m ∈ {1, 2, . . . , 11}} with δ = 1. Note that the proposed framework is not limited to

the sum of sinusoids model, but is valid for any general known model.

Fig. 6.2(a) illustrates the sensor placement via discrete sparse sensing (speci�cally, sensor selec-

tion [Joshi and Boyd, 2009]). �e best subset of sensors is computed by solving the relaxed version

of (6.3). For sensor selection, we choose λ ∶= 0.47 such that 5 sensors are selected out of 11 available

sensors. For the considered scenario, themean squared error achieved with such a sensor placement

is ≈ 0.47.
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Figure 6.2: �e �eld is measured at M = 11 discrete locations with δ = 1 and T = 10. (a.) Sensor placement
via sensor selection. (b.) Proposed continuous sparse sensing. A di�erent threshold λ is used for (a) and (b),
such that 5 sensors are selected.

Fig. 6.2(b) illustrates the results from the proposed continuous sensor placement obtained by

solving the relaxed optimization problem (6.10). We use λc = 0.064, which has also been chosen

such that 5 sensors are selected. �e mean squared error achieved with the proposed placement

is ≈ 0.36, which is lower than the mean squared error obtained by the sensor placement through

sensor selection. �e threshold λc is an underestimate of the mean squared error (unlike λ), and
this is due to the approximation in (6.4). �e threshold corresponding to a certain mean squared
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error can be chosen by computing the solution path for di�erent λc values.
Finally, in Table 6.1 we evaluate themean squared error with 5 selected sensors obtained by solv-

ing the sensor selection problem and the proposed continuous placement for di�erent grid densities.

�e optimization problems are solved in MATLAB using SeDuMi [Sturm, 1999]. We consider dif-

ferent grid densitiesM = {5, 11, 21, 41, 81} and in each case we use a threshold that selects 5 sensors.

�e continuous sensor placement o�ers better mean squared error with a reasonable increase in

complexity.

6.6 Discussion

We have proposed a framework of continuous sparse sensing in this chapter, where we select sparse

sensing patterns from a continuous domain instead of a discrete one. We model an o�-the-grid

sampling point as an on-the-grid sampling point plus a perturbation assuming that the continuous-

domain function is su�ciently smooth. In other words, we can take samples in between the grid

points. Expressing the inference quality determining risk as a function of the discrete sampling

points and their perturbations, we have designed a continuous sparse sensing operator by solving a

convex program.
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7.1 Introduction

Sensor networks can be designed to faithfully represent distributed signals (e.g., a spatially varying

phenomenon such as the temperature �eld). In other words, a sensor network can be used as a

spatial sampling device. Further, to acquire multidimensional distributed signals that exist in space

and time, we also need to perform sampling in time. �e temporal sampling is achieved using the

sensor’s analog-to-digital converters or time-to-digital converters, for example. Each sensor has an

independent sample clock (i.e., oscillator), and its stability basically determines the alignment of the

temporal sampling grid across the sensors. �is temporal sampling grid is perfectly aligned if all the

sensors share a common clock. When uncommon, the individual clocks dri� from each other due to

imperfections in the oscillator, aging, and other environmental variations. �is dri�will result in the

misalignment of the temporal sampling grid across the sensors. �erefore, clock synchronization
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among di�erent nodes each having its own autonomous clock forms a key component of a sensor

network.

A plethora of clock synchronization algorithms based on the time-of-�ight measurements of

the messages have been proposed [Noh et al., 2008, Freris et al., 2010, Wu et al., 2011, Rajan and

van der Veen, 2011], which could operate via a two-way time-stamp exchange [Wu et al., 2011] or

pairwise broadcast synchronization (PBS) [Noh et al., 2008]. Assuming an a�ne (i.e., �rst order)

clock model and one of the nodes as a reference, the unknown clock skews and clock o�sets of the

remaining nodes in a network can be estimated using least squares based on the two-way time-stamp

exchange protocol [Rajan and van der Veen, 2011]. �is is achieved by exploiting the redundancy

due to all possible pairwise links in the network. Sensor nodes are usually battery powered. �us, all

the tasks of a sensor network, including synchronization, should be carefully performed to ensure

longer operating lifetime. For synchronization, thismeans tominimize the number of transmissions

between nodes during which the time-stamps are recorded.

In this chapter, we extend the joint clock synchronization and ranging algorithm of [Rajan and

van der Veen, 2011] to fully harness the broadcast nature of the wireless medium. By doing so, the

number of active transmissions between the nodes can be signi�cantly reduced for a �xed synchro-

nization accuracy. In otherwords, the synchronization accuracy can be improved for a �xed number

of active transmissions. To realize this, we propose an asymmetrical time-stamping and passive lis-

tening (ATPL) protocol. �eATPL protocol is based on the protocols proposed in [Wang et al., 2011]

and [Noh et al., 2008]. �emain goal of [Noh et al., 2008] was synchronization and did not focus on

ranging (distance between the nodes was assumed to be known). �e algorithm proposed in [Wang

et al., 2011] also exploits the broadcast property and focused on localization of a target node in an

asynchronous network, however, estimation of the clock parameters was not explicitly considered.

In the ATPL protocol, during communication between a pair of nodes, time-stamps are recorded

and exchanged. Besides this, the remaining nodes in the network also passively listen and record

the time-stamps with their respective clocks, in a cooperative way. However, they do not respond

back to either of the active node pair. In addition, the protocol does not put any constraint on the

sequence of transmissions, and this together with passive listening results in asymmetrical links,

and hence, asymmetrical time-stamps. �e ATPL protocol is energy-e�cient in the sense that we

obtain more information just by passive listening, and reception usually consumes less power than

transmission. For a fully asynchronous network with one sensor andM anchors, we propose a least

squares estimator based on the time stamps recorded using the ATPL protocol for jointly estimating

all the unknown clock skews, clock o�sets, and pairwise distances of the sensor to each anchor.

7.2 Systemmodel

We consider a fully asynchronous network with M anchors (nodes with known relative locations)

and one sensor (node 0). We assume that one of the nodes has a relatively stable clock oscillator

and is used as a clock reference. All the other nodes su�er from clock skews and clock o�sets. �e

network model considered here is a special case of the model in [Rajan and van der Veen, 2011], as
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Figure 7.1: �e ATPL protocol with the ith anchor transmitting. Solid (dotted) lines refer to the active (pas-
sive) links. Dark (light) shaded lines refer to the forward (reverse) link.

the pairwise distances of certain nodes (anchors) are now assumed to be known.

�e distance between the ith and the jth node is denoted by di, j = d j,i . �e distance between

the sensor and the ith anchor is denoted by d0,i = di,0 , and is unknown. Let ti be the local time at

the ith node and t be the reference time. We assume that the relation between the local time and

the reference time can be given by a �rst order a�ne clock model [Rajan and van der Veen, 2011],

ti = ωi t + ϕi ⇔ t = αi ti + βi (7.1)

where ωi ∈ R+ is the clock skew, ϕi ∈ R is the clock o�set, αi = ω−1i and βi = −ω−1i ϕi are the

synchronization parameters of the ith node. Without loss of generality, we assume that node M has

a stable clock, i.e., [ωM , ϕM] = [1, 0]. �e unknown synchronization parameters are collected in

α = [α0 , α1, . . . , αM−1]T and β = [β0 , β1 , . . . , βM−1]T . �e unknown clock skews and clock o�sets

are, respectively, given by

ω = 1M ⊘ α and ϕ = −β ⊘ α. (7.2)

�e transmission and reception time-stamps are recorded both during the forward link (ith

active anchor to the sensor) and the reverse link (sensor to the ith active anchor). �e time-stamp

recorded at the ith node when the kth iteration message departs is denoted by T
(k)
i , and on arrival

of the correspondingmessage, the jth node records the time-stamp R
(k)
i, j . Note that the time-stamps

recorded at the sensor will be either T
(k)
0 or R

(k)
i,0 .

7.3 Passive listening protocol

In the two-way time-stamp exchange protocol between the ith anchor and the sensor, the remaining

nodes of the network are idle. In theATPL protocol, we propose that all the remainingM−1 anchors
passively listen to the communication between the ith anchor and the sensor, and record the time-

stamps R
(k)
i, j≠0 of their respective local clocks. By doing so, we obtain more information with extra



116 Chapter 7. Wireless Clock Synchronization

R
(1)
i,0

R
(2)
i,0

T
(3)
0

R
(k−1)
i,0

R
(1)
i,j R

(2)
i,j R

(3)
0,j R

(k−1)
i,j

T
(k)
0

R
(k)
0,j

R
(3)
0,i R

(k)
0,i

T
(1)
i T

(2)
i T

(k−1)
i

R
(4)
i,j

R
(4)
i,0

T
(4)
i

Sensor

ith anchor
initiating

jth anchor
listening

Figure 7.2: An example sequence of the recorded time-stamps. Solid (dotted) lines refer to the active (passive)
links. Dark (light) shaded lines refer to the forward (reverse) link.

equations corresponding to transmissions between a) active anchor and other passive anchors, and

b) sensor and remaining passive anchors. �is is additional to the equations corresponding to the

active anchor sensor pair as compared to the two-way time-stamp exchange. �e ATPL protocol

initiated by the ith anchor is illustrated in Fig. 7.1. An illustration of the sequence of time-stamps

recorded during the ATPL protocol is shown in Fig. 7.2.

In the proposed protocol, we do not put any constraints on the sequence of forward links and

reverse links [Rajan and van der Veen, 2011], i.e., the reverse link need not always follow the forward

link as in [Freris et al., 2010,Wu et al., 2011, Noh et al., 2008]. �is means that the sensor need not

respond to the request from the anchor immediately. �erefore the processing time at the sensor or

the network delay typically considered in clock synchronization algorithms [Freris et al., 2010,Wu

et al., 2011,Wang et al., 2011, Noh et al., 2008] need not be taken into account as long as the clock

parameters are stable within certain reasonable limits.

Remark 7.1. (Protocol modes): Possible ways of executing the ATPL protocol aremode a)Anchor node

i makes Ki transmissions and the sensor replies back with K0 messages, with K0 not necessarily equal to

Ki and the transmissions need not be sequential. �is is repeated by all the remaining anchors; mode

b) each anchor node i makes Ki transmissions, and, in the end the sensor replies only once with K0

messages; and mode c) m-out-of-M anchors (m ≤ M) make transmissions, and the sensor replies as

described in either mode a or mode b.

A suitable protocol mode can be adopted depending on the performance requirement and the

energy constraint per node.

Remark 7.2. (Centralized or distributed): �e computation can be done in a centralized way in a

fusion center (FC). However, there is an involved communication load in transmitting the time-stamps

recorded at each node to a FC.
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An FC based approach can be avoided by including the time-stamps R
(k)
i,0 , k = 1, 2, . . . ,Ki in the

payload when the sensor responds to the ith anchor. However, additional broadcast messages to dis-

tribute the time-stamps a) R
(k)
0,i , b) R

(k)
i, j and R

(k)
0, j are still required. �is approach would avoid trans-

mission of the computed unknown parameters to the nodes, that is required with an FC based approach.

Moreover, it allows each node to independently perform computations in a distributed fashion.

7.4 Estimator

�e time-of-�ight for a line-of-sight (LOS) transmission between the ith and the jth node can be

de�ned as τi, j = ν−1di, j , where ν denotes the speed of a wave (electromagnetic or acoustic) in a

medium. Using (7.1), τi, j can be written in terms of the time-stamps recorded using respective local

clocks of the ith and jth node as

τi, j = (α jR
(k)
i, j + β j) − (αiT

(k)
i + βi) + n(k)i, j

(7.3)

where n
(k)
i, j denotes the aggregate measurement error on the time-stamps.

�e transmission and reception time-stamps recorded at the ith and the jth node are, respec-

tively, collected in vectors

t i = [T(1)i , T
(2)
i , . . . , T

(Ki)
i ]T ∈ RKi×1

and

r i, j = [R(1)i, j , R(2)i, j , . . . , R
(Ki)
i, j ]T ∈ RKi×1 ,

where Ki is the number of transmissions made by the ith node. �e error vector is denoted by

ni, j = [n(1)i, j , n(2)i, j , . . . , n
(Ki)
i, j ]T ∈ RKi×1.

For the sake of exposition, we consider a network with one sensor (node 0) and M = 2 anchors
(node 1 and node 2) and the following example protocol: (i) node 1 makes K1 transmissions, node 0

and node 2 passively listen, (ii) node 2 makes K2 transmissions, node 0 and node 1 passively listen,

and �nally (iii) sensor node 0 respondswith K0 messages and node 1 and node 2 passively listen. �is

is an example of protocol mode b that was described earlier.

Collecting the clock parameters of the ith node in a vector bi = [αi , βi]T , we can now write the

equations of the form given in (7.3), obtained for all the K = K0 + K1 + K2 time-stamps recorded in

a matrix-vector form as



118 Chapter 7. Wireless Clock Synchronization

Node 0 responds j = 1(i = 0) j = 2
Node 1 transmits j = 0(i = 1) j = 2
Node 2 transmits j = 0(i = 2) j = 1

A ∈R2K×9 , K=K0+K1+K2³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t0 1K0 −r0,1 −1K0 0K0 0K0 1K0 0K0 0K0

t0 1K0 0K0 0K0 −r0,2 −1K0 0K0 1K0 0K0−r1,0 −1K1 t1 1K1 0K1 0K1 1K1 0K1 0K1

0K1 0K1 t1 1K1 −r1,2 −1K1 0K1 0K1 1K1−r2,0 −1K2 0K2 0K2 t2 1K2 0K2 1K2 0K2

0K2 0K2 −r2,1 −1K2 t2 1K2 0K2 0K2 1K2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0
b1
b2
τ0,1
τ0,2
τ1,2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

n ∈R2K×1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹µ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n0,1

n0,2

n1,0

n1,2

n2,0

n2,1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

}n0

}n1

}n2

.

(7.4)

�e ordering of the rows of the system matrix A is arbitrary and does not imply the order of trans-

mission. �e columns of A corresponding to τ0,1, τ0,2, and τ1,2 have two nonzero subvectors each as
τi, j = τ j,i .
Remark 7.3. (Rank-de�ciency): �e linear model in (7.4) does not have a unique solution, unless we

impose certain constraints. Here, we do that by assigning node 2 as the clock reference, i.e., b2 = [1, 0]T .
We de�ne the vector τ0 = [τ0,1 , τ0,2 , . . . , τ0,M]T ∈ RM×1, where the entries of τ0 are not known.

Note that τ1,2 = ν−1d1,2 corresponds to the distance between thenodes 1 and 2, and is known. Moving

all the knowns (columns corresponding to b2 and τ1,2) to one side, (7.4) simpli�es to the generalized

linear model given as

Node 0 responds j = 1(i = 0) j = 2
Node 1 transmits j = 0(i = 1) j = 2
Node 2 transmits j = 0(i = 2) j = 1

Ā∈R2K×6³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t0 1K0 −r0,1 −1K0 1K0 0K0

t0 1K0 0K0 0K0 0K0 1K0−r1,0 −1K1 t1 1K1 1K1 0K1

0K1 0K1 t1 1K1 0K1 0K1−r2,0 −1K2 0K2 0K2 0K2 1K2

0K2 0K2 −r2,1 −1K2 0K2 0K2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

θ ∈R6×1³·µ⎡⎢⎢⎢⎢⎢⎣
b0
b1
τ0

⎤⎥⎥⎥⎥⎥⎦

=

x ∈R2K×1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

−
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0K0 0K0 0K0−r0,2 −1K0 0K0

0K1 0K1 0K1−r1,2 −1K1 1K1

t2 1K2 0K2

t2 1K2 1K2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[ b2
τ1,2
] + n.

(7.5)
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�e generalization of the data model (7.5) for any M > 2 is straightforward and can be easily

derived along the same lines. �e generalized linear model based on the ATPL protocol is given by

Āθ = x + n (7.6)

where Ā ∈ RKM×3M , θ ∈ R3M×1, x ∈ RKM×1 and n ∈ RKM×1, all having a similar structure as that of

(7.5).

Remark 7.4. (Correlated error vector): In case of broadcasting, the entries of the error vector n are not

uncorrelated due to a common error on the transmit time-stamp T
(k)
i .

We assume that the aggregate error n
(k)
i, j in (7.3) is due to the additive stochastic noise compo-

nents on the time-stamps, T
(k)
i denoted by e

(k)
i and the time-stamps, R

(k)
i, j denoted by e

(k)
i, j . We

model the aggregate error in (7.3) as

n
(k)
i, j = e(k)i + e(k)i, j (7.7)

where both e
(k)
i and e

(k)
i, j aremodeled as zeromean i.i.d. Gaussian [Patwari et al., 2005]with variance

0.5σ2, such that, E{e(k)i e
(k)
i, j } = 0 for i ≠ j. (�is is a simpli�ed noise model and more accurate

models could be considered.)

We can compute the noise covariance matrix as Σ = diag(Σ0 , Σ1 , . . . , ΣM) ∈ RMK×MK , where

Σi = E{nin
T
i }. For M = 2, we �nd

Σ i = [ σ 2IK i 0.5σ 2IK i

0.5σ 2IK i σ 2IK i

] ∈ R2K i×2K i (7.8)

�e structure of Σ can be generalized for any M > 2 in a similar way, leading to Σi = 0.5σ2(1M1TM +
IM)⊗ IKi ∈ RMKi×MKi .

We can now prewhiten the observation model in (7.5) by forming Σ−1/2Ā and Σ−1/2x. For K ≥ 3,
Ā is tall and is le�-invertible. Hence, the unknown parameters in θ can be estimated using least

squares, i.e.,

θ̂ = (ĀT
Σ−1Ā)−1ĀT

Σ−1x . (7.9)

Subsequently, the clock skews ω, clock o�sets ϕ can be obtained using the relation in (7.2), and the

pairwise distances of the sensor to each anchor using the relation d0 = ντ0.
Remark 7.5. (Sensor does not respond):

When only one of the nodes transmits, say node 1, Ā in (7.5) will not have rows corresponding to

transmissions of node 0 and node 2, and it is rank-de�cient as the columns two and �ve are dependent.

�is also holds when only either node 2 or node 0 transmits.

If only anchor nodes transmit, and the sensor does not respond, then Ā will not have rows corre-

sponding to transmissions of node 0. In that case, Ā will be again rank-de�cient, as column two is a

linear combination of columns �ve and six. �erefore, for (7.6) to have a unique solution, the sensor

should respond at least once, i.e., K0 = 1 with K ≥ 3.
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�e possibility that the sensor node responds with only one message in the end makes the pro-

tocol energy-e�cient.

In sum, the proposed algorithm takes into account: (1) known distances between anchors, and

(2) the broadcast property, which results in additional observations and a correlated error as com-

pared to the pairwise transmissions without passive listening.

7.5 Cramér-Rao lower bound

It follows from the Cramér-Rao lower bound (CRB) theorem that the covariance of any unbiased

estimate ̂̄θ of the unknown parameter θ̄ satis�es the well-known inequality [Kay, 1993]

E{(θ̄ − ̂̄θ)(θ̄ − ̂̄θ)T} ≥ F−1,
where θ̄ = [ωT , ϕT , dT

0 ]T and F ∈ R3M×3M is the Fisher information matrix. If the error n in (7.6) is

zero-mean Gaussian with covariance matrix Σ, then F can be computed as F = JTΣ−1J, where J is a
Jacobian matrix. �e Jacobian matrix is given by

J = ∂(Āθ − x)
∂θ̄

T
= [Jω Jϕ Jd 0

] ∈ RKM×3M (7.10)

with sub-blocks

Jω = ∂(Āθ − x)
∂ωT

= −(ĀSα − ĀSβ ⊙ 1KMϕT)⊘ (1KMωT)⊙2 ,
Jϕ = ∂(Āθ − x)

∂ϕT
= −ĀSβ ⊘ 1KMωT ,

Jd0
= ∂(Āθ − x)

∂dT
0

= ν−1ĀSτ0

where Sα , Sβ, and Sτ0 are selection matrices to select the columns of Ā corresponding to α, β, and

τ0, respectively.

7.6 Simulations

A network with one sensor and 10 anchors is considered for simulations. Both the sensor and the

anchor nodes are deployed randomly within a range of 100m. Clock skews ω and clock o�sets ϕ

are uniformly distributed in the range [1− 100ppm, 1+ 100ppm] and [−1 s, 1 s], respectively. We use

an observation interval of 100 s during which the clock parameters are �xed and ν = 3 × 108m/s.
�e time-stamps are corrupted with an i.i.d. Gaussian process having a standard deviation σ =
1 ns [Patwari et al., 2005].
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�e proposed estimator based on the ATPL protocol is compared with the global least squares

(GLS) algorithm proposed in [Rajan and van der Veen, 2011, Fig. 3(c)], as it is already shown to

outperform other existing synchronization algorithms. We apply the GLS algorithm based on two-

way communication between each sensor-anchor pair.

Fig. 7.3 shows the root mean square error (RMSE) of the estimates ϕ and ω, and d0 for di�erent

number ofmessages,K. We show simulations formode a andmode c of theATPL protocol described

in Section 7.3. It can be seen from the �gures that the proposed algorithm performs better than

GLS in both the considered scenarios due the additional links obtained from passive listening. �e

proposed algorithm also achieves the theoretical root CRB (RCRB).

7.7 Discussion

In this chapter, we have considered a fully asynchronous network with one sensor and M anchors.

We have proposed a least squares estimator to synchronize the sample clocks of wireless sensors

based on the ATPL protocol that fully exploits the broadcast nature of the wireless medium. We

estimate all the unknown clock skews and clock o�sets along with the pairwise distances of the

sensor to each anchor. �e proposed estimator is shown to be e�cient, asymptotically meeting the

theoretical CRB, and it outperforms available algorithms. Pairwise distances form a major input to

any localization scheme as we see in the next chapter.
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8.1 Introduction

In this chapter, we provide a di�erent �avor of localization, called rigid body localization. In rigid

body localization, we use a few sensors on a rigid sensing platform and exploit the knowledge of how

the sensors are mounted on the body (i.e., sensor placement on the platform) to jointly estimate the

position as well as the orientation of the rigid body based on distance measurements.
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8.1.1 Applications and prior works

Rigid body localization has potential applications in a variety of �elds. To list a few, it is useful for lo-

cation services involving underwater (or in-liquid) systems, orbiting satellites, mechatronic systems,

aircra�s, underwater vehicles, ships, robotic systems, or automobiles. In such applications, classi-

cal localization of the node(s) is not su�cient. For example, in an autonomous underwater vehicle

(AUV), or an orbiting satellite, the sensing platform is not only subject to motion but also to rota-

tion. Hence, next to position, determining the orientation of the body also forms a key component,

and is essential for controlling, maneuvering, and monitoring purposes.

�e orientation is sometimes referred to as attitude (aerospace applications) or tilt (for indus-

trial equipments and consumer devices). Traditionally, position and orientation are treated sepa-

rately even though they are closely related. �e orientation of a body is usually measured using

inertial measurement units (IMUs) comprised of accelerometers [Salhuana, 2012] and gyroscopes.

However, IMUs generally su�er from accumulated errors o�en referred to as dri� errors. �e dri�

calibration is typically achieved using di�erent sensor technologies including vision, magnetome-

ters, ultra wide band (UWB), or GPS [Hol et al., 2009,Hol, 2011], leading to dependencies between

these technologies. Sometimes these di�erent sensors cannot be coherently fused, for instancemag-

netometer based calibration needs an undistortedmagnetic environment, which is typically di�cult

to guarantee.

GPS-based attitude determination [Wahba, 1965,Cohen, 1992,Juang andHuang, 1997] is closely

related to our work, in which multiple antennas on a platform are used. Here, the attitude is esti-

mated from GPS carrier phase measurements which involves a complicated integer problem with

no unique solution in general.

8.1.2 Contributions

We propose a framework for joint position and orientation estimation of a rigid body in a three-

dimensional space by borrowing techniques from classical sensor localization, i.e., using only range

measurements between all the sensor-anchor pairs. We consider a rigid body on which a few sensor

nodes are mounted. �e absolute position of the rigid body is not known. However, the topology of

how the sensors aremounted on the rigid body is known up to a certain accuracy. �e orientation of

the rigid body is expressed as a rotationmatrix and the absolute position of the rigid body (instead of

the absolute position of each individual sensor) as a translation vector. In other words, the absolute

position of the sensors is expressed as an a�ne function of the Stiefel manifold.

�emaximum likelihood (ML) estimators for the original problem involve solving a constrained

(nonconvex) nonlinear least-squares (NLS) problem, which is in general di�cult to solve. In order

to simplify this problem, we linearize the problem by squaring the measurements. We use the lin-

earizedmodel in a least-squares (LS) estimator to jointly estimate the rotationmatrix (to begin with,

its structure is ignored) and the translation vector. Since rotation matrices are unitary matrices, we

also propose a unitarily constrained least-squares (CLS) estimator and a simpli�ed unitarily con-

strained least-squares (SCLS) estimator, both of which solve an optimization problem on the Stiefel
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manifold. �e solutions from the proposed estimators can be used as an initialization to solve the

maximum-likelihood estimators or the original nonlinear LS problem if needed. We also derive a

unitarily constrained Cramér-Rao bound (CCRB), which is used as a benchmark for the proposed

estimators.

Inmany applications, the sensor topologymight not be accurately known, i.e., the known topol-

ogy can be noisy. �ese perturbations are typically introduced while mounting the sensors during

fabrication or if the body is not entirely rigid. To account for such perturbations, we propose a uni-

tarily constrained total-least-squares (CTLS) estimator and a simpli�ed unitarily constrained total-

least-squares (SCTLS) estimator. �e performance of the proposed estimators is analyzed using

simulations. Using a sensor array with a known geometry not only enables orientation estimation,

but also yields a better localization performance. �e initial results on rigid body localization using

range measurements, viz., SCLS and SCTLS were proposed in [Chepuri et al., 2013a].

�e proposed framework of rigid body localization can also be used as an add-on to the existing

IMU based systems to correct the dri� errors, or in environments where inertial measurements

and/or positioning via GPS is not feasible. �e proposed framework is based on a static position

and orientation, unlike most of the orientation estimators which are based on inertial measurements

and a certain dynamical state-space model (e.g., see [Hol et al., 2009]). Hence, our approach is

useful when there is no dynamic model available. We should stress, however, that the proposed

framework is also suitable for the estimation (tracking) of dynamic position and orientation using

a state-constrained Kalman �lter for instance, and some initial results on this topic can be found

in [Chepuri et al., 2013d].

8.2 Problem formulation and modeling

8.2.1 Problem formulation

Consider a network with M anchors (nodes with known absolute locations) and N sensors in a 3-

dimensional space. �e sensors are mounted on a rigid body as illustrated in Fig. 8.1. �e wireless

sensors are mounted on the rigid body (e.g., at the factory), and the topology of how these sensors

are mounted is known up to a certain accuracy. In other words, we connect a so-called reference

frame to the rigid body, as illustrated in Fig. 8.1, and in that reference frame, the coordinates of

the nth sensor are given by the known 3 × 1 vector cn = [cn,1 , cn,2 , cn,3]T . �e sensor topology is

basically determined by the matrix C = [c1, c2, . . . , cN] ∈ R3×N . Let the absolute coordinates of

the mth anchor and the nth sensor be denoted by a 3 × 1 vector am and sn, respectively, where sn
is not known. �e absolute positions of the anchors and the sensors are collected in the matrices

A = [a1 , a2, . . . , aM] ∈ R3×M and S = [s1 , s2, . . . , sN] ∈ R3×N , respectively.
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q3 = [0, 0, 1]T

Figure 8.1: An illustration of the sensors on a rigid body undergoing a rotation and translation.

Rigid body transformation

A Stiefel manifold [Eldén and Park, 1999] in three dimensions, denoted by V3,3, is the set of all 3× 3
unitary matrices Q = [q1 , q2, q3] ∈ R3×3, i.e.,

V3,3 = {Q ∈ R3×3 ∶ QTQ = QQT = I3}.
�e absolute position of the nth sensor can be written as an a�ne function of a point on the

Stiefel manifold, i.e.,

sn = cn,1q1 + cn,2q2 + cn,3q3 + t
= Qcn + t , (8.1)

where t ∈ R3×1 denotes the unknown translation. More speci�cally, the parameter vector t refers

to the unknown position of the rigid body. �e combining weights cn are the known coordinates

of the nth sensor in the reference frame. �is means that the unknown unitary matrix Q actually

tells us how the rigid body has rotated in the reference frame. When there is no rotation, then we

have Q = I3. �e relation in (8.1) is sometimes also referred to as the rigid body transformation. �e

rotation matrices can uniquely represent the orientation of a rigid body unlike Euler angles or unit

quaternions (see [Chaturvedi et al., 2011] for more details). �e rigid body transformation is also

used in computer vision applications [Arun, 1992,Horn et al., 1988,Horn, 1987].

With (8.1), the absolute position of all the sensors can be written as

S = QC + t1TN =
Θ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ[ Q t ]

Ce³¹¹¹¹¹¹·¹¹¹¹¹¹¹µ
[ C

1TN
], (8.2)
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whereΘ ∈ R3×4 is the unknown transformation matrix.

Range measurements

�e proposed framework is general and can be applied to range estimates obtained from any one of

the standard ranging techniques (e.g., two-way ranging based on TOAmeasurements [Patwari et al.,

2005, Chepuri et al., 2013c]). �e framework is valid as long as the range estimates between all the

sensor-anchor pairs are available. Further, we assume that the body position is nearly static during

the ranging process, i.e., the linear and angular velocities are negligible compared to the propagation

speed.

Let the range (or the Euclidean distance) between themth anchor and the nth sensor be denoted

by ρmn = ∥am − sn∥2. �e noisy range measurement between the mth anchor and the nth sensor

can be expressed as

ymn = ∥am − sn∥2 + vmn

= ∥am − (Qcn + t)∥2 + vmn ,
(8.3)

where vmn ∼ N (0, σ2mn) is the stochastic noise resulting from the ranging process. �e ranging

noise vmn ,m = 1, 2, . . . ,M; n = 1, 2, . . . ,N , is a sequence of independent random variables whose

variance σ2mn is assumed to be known or easily estimated.

Problem statement

Having introduced the rigid body transformation in (8.1) and the measurement model (8.3) we can

now formally state the rigid body localization problem as follows.

Problem 8.1 (Rigid body localization). Given one range measurement between each sensor-anchor

pair, i.e., ymn as in (8.3), the ranging noise variance σ2mn , for m = 1, 2, . . . ,M and n = 1, 2, . . . ,N, the

positions of the anchors A, and the topology of the sensors on the rigid body determined by the matrix

C, jointly estimate the position t ∈ R3×1 and orientation Q ∈ V3,3 of the rigid body.
�eML estimator for jointly estimating the orientation and translation is to solve the following

optimization problem

argmin
Q ,t

M

∑
m=1

N

∑
n=1

σ−2mn(ymn − ∥am − (Qcn + t)∥2)2 (8.4a)

s.to QTQ = I3. (8.4b)

�e above problem is a nonlinear and a nonconvex optimization problem, and is in general di�cult

to solve. To simplify this problem, we next linearize the model in (8.3), which can then be solved

using linear LS based estimators. �e solution from the proposed estimators can then be used as an

initialization to solve the above NLS problem if needed.
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8.2.2 Squared-range measurements

�e model in (8.3) is nonlinear in sn , Q, and t. �erefore, we linearize the nonlinear model in

(8.3) by squaring it. Squaring the measurements in (8.3) results in a noise term with a nonnegative

known mean1 σ2mn . Subtracting that mean σ2mn from the squared-range measurements between the

mth anchor and the nth sensor, we obtain

dmn = y2mn − σ2mn

= ∥am∥22 − 2aTmsn + ∥sn∥22 + nmn ,
(8.5)

where

nmn = 2ρmnvmn + v2mn − σ2mn (8.6)

is the new zero-mean noise term due to squaring. Collecting these new squared-range measure-

ments between the nth sensor and all the anchors in

dn = [d1n , d2n , . . . , dMn]T ∈ RM×1,

we can write (8.5) in a vector form as

dn = α − 2AT sn + ∥sn∥221M + nn , (8.7)

where

α = [∥a1∥22, ∥a2∥22, . . . , ∥aM∥22]T ∈ RM×1,

is known, and

nn = [n1n , n2n , . . . , nMn]T ∈ RM×1.

Subtracting the knowns in (8.7) from the measurements, we arrive at

dn − α = −2AT sn + ∥sn∥221M + nn . (8.8)

We next eliminate the vector ∥sn∥221M in (8.8) using an isometry decomposition of the projection

matrix

PM = IM − 1

M
1M1

T
M = UMU

T
M ∈ RM×M ,

where UM is an M × (M − 1) matrix obtained by collecting orthonormal basis vectors of the null-

space of 1M such thatUT
M1M = 0M−1. Pre-multiplying both sides of (8.8) with UT

M , we arrive at

UT
M(dn − α) = −2UT

MAT sn +UT
Mnn . (8.9)

Stacking (8.9) for all the N sensors, we obtain

UT
MD = −2UT

MATS +UT
MN , (8.10)

1For low noise levels, this nonnegative mean which is simply the variance of the range error in (8.3) can be ignored.
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where we de�ne the following M × N matrices:

D = [d1, d2, . . . , dN] − α1TN ,
and N = [n1, n2, . . . , nN].

�e linear model in (8.10) can then be compactly expressed as

D̄ = ĀS + N̄ , (8.11)

where we have introduced the following matrices:

D̄ = UT
MD ∈ R(M−1)×N ,

Ā = −2UT
MAT ∈ R(M−1)×3 ,

and N̄ = UT
MN ∈ R(M−1)×N .

Vectorizing2 (8.11) leads to

d̄ =
(M−1)N×3N³¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(IN ⊗ Ā) s + n̄, (8.12)

where
s = vec(S) ∈ R3N ,

d̄ = vec(D̄) ∈ R(M−1)N ,
and n̄ = vec(N̄) = (IN ⊗UT

M)vec(N) ∈ R(M−1)N .
Using the rigid body transformation in (8.2), we can relate the measurements D̄ in (8.11) and the

transformation matrix Θ. Substituting (8.2) in (8.11), we arrive at the following linear model

D̄ = ĀΘCe + N̄ , (8.13)

which can then be vectorized to

d̄ =
(M−1)N×9³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(CT

e ⊗ Ā) θ + n̄, (8.14)

where

θ = vec(Θ) = [qT1 , qT2 , qT3 , tT]T ∈ R12×1

is the unknown parameter vector that has to be estimated.

�e covariance matrix of the noise n̄ in (8.14) is denoted by

Rn̄ = (IN ⊗UT
M)Rn(IN ⊗UM) ∈ R(M−1)N×(M−1)N ,

2We use the matrix property vec(ABC) = (CT ⊗ A)vec(B).
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where Rn is the covariance matrix of n = vec(N), and is developed in Appendix 8.A. To whiten3 the
noise, the vectorized model in (8.14) (equivalently the model in (8.12)) is transformed to

d̄
′ = R−1/2n̄ d̄

= R−1/2n̄ ((IN ⊗ Ā)s + n̄)
= R−1/2n̄ ((CT

e ⊗ Ā)θ + n̄).
(8.15)

Here, the notation R
1/2
n is de�ned from the Cholesky decomposition Rn ∶= R1/2

n R
T/2
n .

In the next section, we propose several estimators of θ from the processed squared-range mea-

surements d̄
′
.

8.3 Linear least-squares estimators

To begin with, we �rst look at the topology-agnostic classical LS-based location estimator (i.e., ig-

noring the prior sensor placement information).

8.3.1 Classical LS-based localization (topology-agnostic)

We use the classical (weighted) LS estimator of s from d̄
′
in (8.15) to estimate the absolute position

of the sensors as

ŝ LS = argmin
s∈R3N

∥d̄′ − R−1/2n̄ (IN ⊗ Ā)s∥2
2

= (R−1/2n̄ (IN ⊗ Ā))†d̄′ ,
(8.16)

which is unique if IN ⊗ Ā has full column-rank. �is requires M ≥ 4. Finally, we have
Ŝ LS = unvec(̂s LS) ∈ R3×N .

In this classical LS-based localization, the knowledge about the known sensor topology is not ex-

ploited, and the absolute position of each sensor is estimated separately.

8.3.2 Unconstrained LS estimator

Note that the unknown parameter vector θ has a structure because Q = [q1 , q2, q3] is a unitary ma-

trix. Wepropose to estimate θ, ignoring its structure, from d̄
′
in (8.15) using the following (weighted)

LS estimator

θ̂ LS = argmin
θ

∥d̄′ − R−1/2n̄ (CT
e ⊗ Ā)θ∥22

= (R−1/2n̄ (CT
e ⊗ Ā))†d̄′ .

(8.17)

3�e noise covariance is parameter dependent, and hence, for whitening it we use an estimated covariance matrix R̂n

as discussed in Sec. 8.6.
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�e estimator in (8.17) will have a unique solution if the matrix CT
e ⊗ Ā has full column-rank, i.e.,

CT
e and Ā are both full-column rank, and this requires (M − 1)N ≥ 12. Finally, we have

Θ̂ LS = unvec(θ̂ LS) = [ Q̂ LS t̂ LS ] . (8.18)

8.3.3 Unitarily constrained estimators

�e LS estimate Q̂ LS obtained in (8.18) is typically (in presence of noise) not a rotation matrix.

Hence, we next propose two LS estimators with a unitary constraint on Q. Both these estimators

solve an optimization problem on the Stiefel manifold.

For this purpose, we decouple the rotations and the translations in (8.2) by eliminating the all-

one vector 1TN , and hence the matrix t1TN . In order to eliminate t1TN , we use an isometry matrix UN ,

and as earlier, this matrix is obtained by the isometry decomposition of PN , given by

PN = IN − 1

N
1N1

T
N = UNU

T
N ,

whereUN is anN×(N−1)matrix obtained by collecting orthonormal basis vectors of the null-space

of 1N such that 1TNUN = 0TN−1. Right-multiplying both sides of (8.2) with UN leads to

SUN = QCUN . (8.19)

Combining (8.11) and (8.19) we get the following linear model

D̄UN = ĀQCUN + N̄UN ,

which can be further simpli�ed as

D̃ = ĀQC̄ + Ñ , (8.20)

where we have introduced the following matrices:

D̃ = UT
MDUN ∈ R(M−1)×(N−1) ,

C̄ = CUN ∈ R3×(N−1) ,

and Ñ = UT
MNUN ∈ R(M−1)×(N−1) .

Vectorizing (8.20), we obtain

d̃ =
K×9³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(C̄T ⊗ Ā) q + ñ, (8.21)

where K = (M − 1)(N − 1), d̃ = vec(D̃), q = vec(Q), and ñ = vec(Ñ). �e covariance matrix of the

noise ñ in (8.21) is denoted by

Rñ = (UT
N ⊗UT

M)Rn(UN ⊗UM) ∈ RK×K .
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We will estimate Q based on a (weighted) LS formulation with a unitary constraint, as given by

argmin
Q

∥R−1/2ñ (d̃ − (C̄T ⊗ Ā)q)∥2
2

(8.22a)

s.to q = vec(Q), QTQ = I3. (8.22b)

�e optimization problem in (8.22) is nonconvex due to the quadratic equality constraint, and

does not generally admit a known closed-form solution. However, such optimization problems can

be solved iteratively as will be discussed later on. Before presenting the iterative algorithm, we will

�rst look at a simpli�ed version of (8.22).

Simpli�ed unitarily constrained LS (SCLS) estimator

�e optimization problem in (8.22) can be simpli�ed and brought to the standard form of an or-

thogonal Procrustes problem (OPP) with a noniterative known solution. �e OPP is generally used

to compute rotations between subspaces.

Assuming that Āhas full column-rank (this can be ensuredwith optimal anchor placement [Chep-

uri et al., 2013b]), and multiplying both sides of (8.20) with Ā
†
, we obtain

Ď = QC̄ + Ň , (8.23)

where Ď ∶= Ā
†
D̃ and Ň ∶= Ā

†
Ñ . �e simpli�ed unitarily constrained LS (SCLS) problem is then

given as

Q̂ SCLS = argmin
Q

∥Ď − QC̄∥2F
s.to QTQ = I3.

(8.24)

�e SCLS estimator in (8.24) is suboptimal for the problem in (8.22) due to the colored noise Ň in

(8.23).

�eorem 8.1 (Solution to the SCLS problem). �e constrained LS problem in (8.24) admits a nonit-

erative known solution given by Q̂ SCLS = VUT , where V and U are obtained from the singular value

decomposition (SVD) of ĎC̄
T =∶ VΣUT in which matrices V ∈ R3×3, U ∈ R3×3 are unitary, and

Σ ∈ R3×3 is diagonal.�e obtained solution is unique if and only if ĎC̄
T
is nonsingular.

Proof. See [Golub and Van Loan, 1996, pg. 601].

Remark 8.1 (Alternative SCLS formulation). Instead of pseudo inverting Ā in (8.20) to arrive at

(8.23), we can alternatively pseudo-invert C̄ in (8.20) to arrive at another OPP given by

Q̂ A-SCLS = argmin
Q

∥D̆ − ĀQ∥2F
s.to QTQ = I3,

(8.25)
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where D̆ ∶= D̃C̄
†
. �e OPP in (8.25) has a closed-form solution Q̂ A-SCLS = UVT , where the unitary

matrices U ∈ R3×3 and V ∈ R3×3 are obtained from the SVD of Ā
T
D̆ =∶ UΣVT .

Pseudo inverting C̄ can o�en assure better conditioning as the topology matrix is usually de-

signed at the factory. However, the alternative SCLS formulation in (8.25) cannot be used in case of

perturbations on the sensor positions, which is discussed in Sec. 8.5. Hence, from now on we will

not consider the approach in Remark 8.1.

Subsequently, the SCLS estimate of the translation t can be computed using Q̂ SCLS obtained by

solving (8.24). We can write (8.14) equivalently as

d̄ = [ (CT ⊗ Ā) (1N ⊗ Ā) ] [q
t
] + n̄, (8.26)

where (CT ⊗ Ā) ∈ R(M−1)N×9, and (1N ⊗ Ā) ∈ R(M−1)N×3. Substituting q̂ SCLS ∶= vec(Q̂ SCLS) in the

above model, and moving the knowns to the le� side, we get the following linear model

d̄ − (CT ⊗ Ā)q̂ SCLS = (1N ⊗ Ā)t + n̄.
�e SCLS estimate for the translations is given by the following LS estimate

t̂ SCLS = argmin
t

∥d̄ − (CT ⊗ Ā)q̂ SCLS − (1N ⊗ Ā)t∥22
= (1N ⊗ Ā)†(d̄ − (CT ⊗ Ā)q̂ SCLS).

(8.27)

Since we solve the SCLS estimates in an unweighted LS sense, we need not compute the related noise

covariance estimates.

Algorithm 8.1 CLS based on Gauss-Newton’s method.

1. Compute initial value Q0 ∶= Q̂ SCLS ,

2. initialize L, z, iteration counter k = 0, ε, and ε0.
3. while εk > ε
4. compute J using (8.48)

5. compute a Gauss-Newton step

xk = (JT J)−1JT(z − Lvec(Qk))
6. compute the optimal step-length αk using (8.50).

7. update Qk+1 = QkΩ(αkxk),
where Ω(⋅) is de�ned in (8.46).

8. increment k = k + 1.
9. compute εk+1 = ∥J

T(z−Lvec(Qk))∥2
∥J∥F∥z−Lvec(Qk)∥2

.

10. end while.
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Unitarily constrained LS (CLS) estimator

�e CLS estimates are obtained by solving the optimization problem that was introduced earlier

in (8.22), which we recall as

Q̂ CLS = argmin
Q

∥R−1/2ñ (d̃ − (C̄T ⊗ Ā)q)∥2
2

(8.28a)

s.to q = vec(Q), QTQ = I3 . (8.28b)

�e optimization problem in (8.28) is a generalization of the OPP, and is sometimes also re-

ferred to as the weighted orthogonal Procrustes problem (WOPP) [Viklands, 2008]. Unlike the OPP

of (8.24), which has a closed-form analytical solution, the optimization problem (8.28) does not

admit a closed-form solution. However, it can be solved using iterative methods based on either

Gauss-Newton’s method, Newton’s method [Viklands, 2008], or steepest descent [Manton, 2002].

In this chapter, we restrict ourselves to Gauss-Newton’s method for solving (8.28) because of the

availability of a good initial value (e.g., the closed-form solution from�eorem 8.1) for the iterative

algorithm.

�e optimization problem in (8.28) is a LS problem on the Stiefel manifold. To simplify the

notations we write (8.28) in a more general form:

argmin
Q

∥z − Lvec(Q)∥22
s.to Q ∈ V3,3 ,

(8.29)

and for solving (8.28) we use

z ∶= R−1/2ñ d̃ ∈ RK×1 ,

and L ∶= R−1/2ñ (C̄T ⊗ Ā) ∈ RK×9 .
(8.30)

�e algorithm is derived in Appendix 8.B, and it is summarized as Algorithm 8.1. A more profound

treatment on WOPP is found in [Viklands, 2008].

As before, the estimate for the translation t can then be computed using q̂ CLS ∶= vec(Q̂ CLS) in
(8.26). �e CLS estimate for the translation is given by the following (weighted) LS estimate

t̂ CLS = argmin
t

∥d̄′ − R−1/2n̄ ((CT ⊗ Ā)q̂ SCLS + (1N ⊗ Ā)t)∥2
2

= (R−1/2n̄ (1N ⊗ Ā))†(d̄′ − R−1/2n̄ (CT ⊗ Ā)q̂ CLS).
8.3.4 Topology-aware (TA) localization

A complementary by-product of the rigid body localization is the topology-aware localization. In

this case, the position and orientation estimation is not the main interest, but the absolute position

of each sensor node has to be estimated, given that the sensors follow a certain topology. �is latter
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information can be used as a constraint for estimating the sensor positions rather than estimating

them separately. For the rigidity constraint, using Q̂ and t̂ obtained from either the SCLS or CLS

estimator, we can then compute the absolute positions of each sensor on the rigid body as

Ŝ TA = Q̂C + t̂1TN . (8.31)

8.4 Unitarily constrained Cramér-Rao bound

Suppose we want to estimate the unknown vector θ = [qT1 , qT2 , qT3 , tT]T ∈ R12×1 from the range

measurements ymn corrupted by independent noise vmn ∼ N (0, σ2mn) for n = 1, 2, . . . ,N , and m =
1, 2, . . . ,M, where the observations follow the nonlinear model (8.3). We can compute the CRB for

any unbiased estimator of θ as described next.

8.4.1 Unconstrained CRB

�e covariance matrix of any unbiased estimate of the parameter vector θ satis�es [Kay, 1993]

E{(θ̂ − θ)(θ̂ − θ)T} ≥ C CRB = F−1 ,

where the Fisher information matrix (FIM) F is given by

F =
M

∑
m=1

N

∑
n=1

E

⎧⎪⎪⎨⎪⎪⎩(
∂ ln p(ymn ; θ)

∂θ
)(∂ ln p(ymn ; θ)

∂θ
)T⎫⎪⎪⎬⎪⎪⎭ .

�is is theCramér-Rao bound theorem and C CRB is the Cramér-Rao lower bound (CRB). Let us

de�ne ce,n = [cTn , 1]T ∈ R4 for n = 1, 2, . . . ,N . �e computation of the CRB for observations with

Gaussian likelihoods is straightforward, and is given as

F(θ) = M

∑
m=1

N

∑
n=1

(ce,n ⊗ I3)(am − (Qcn + t))(am − (Qcn + t))T(cTe,n ⊗ I3)
σ2mn∥am − (Qcn + t)∥22 ∈ R12×12 . (8.32)

8.4.2 Constrained CRB

�eFIM in (8.32), does not take into account the unitary constraint on thematrixQ, i.e., QTQ = I3.
Generally, if the parameter vector θ is subject to some P continuously di�erentiable (nonredundant)

constraints h(θ) = 0, then with these constraints, the resulting constrained CRB is lower than the

unconstrained CRB. In [Stoica and Ng, 1998], it is shown that the constrained CRB (CCRB) has the

form

E{(θ̂ − θ)(θ̂ − θ)T} ≥ C CCRB(θ) = M(MTFM)−1MT , (8.33)
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where F is the FIM for the unconstrained estimation problem as in (8.32), and an isometry matrix

M ∈ R12×(12−P) is obtained by collecting orthonormal basis vectors of the null-space of the gradient

matrix

G(θ) = ∂h(θ)
∂θT

∈ RP×12 .

�e nonredundant constraints ensure that the matrix G(θ) is full row-rank, and implies

G(θ)M = 0
while MTM = I12−P . For the unitarily constrained CRB (CCRB) denoted by C CCRB(θ), we have to
consider the unitary constraint QTQ = I3, which can be expressed by the following P = 6 nonre-

dundant constraints
h(θ) =[qT1 q1 − 1, qT2 q1 , qT3 q1 , qT2 q2 − 1,

qT3 q2, q
T
3 q3 − 1]T = 06 ∈ R6×1 ,

(8.34)

where the symmetric redundant constraints are discarded. �e gradient matrix for the constraints

in (8.34) can be computed as follows

G(θ) = ∂h(θ)
∂θT

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2qT1 0T3 0T3 0T3
qT2 qT1 0T3 0T3
qT3 0T3 qT1 0T3
0T3 2qT2 0T3 0T3
0T3 qT3 qT2 0T3
0T3 0T3 2qT3 0T3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R6×12.

An orthonormal basis of the null-space of the gradient matrix is �nally given by

M = 1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−q3 03 q2
03 −q3 −q1 03×3
q1 q2 03

03×3
√
2 I3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

�e CCRB for TA-localization can be easily derived from C CCRB(θ) using the transformation of

parameters [Kay, 1993].

�eorem 8.2 (Biased estimator). An unbiased constrained estimator for Q does not exist, except for

the noiseless case.

Proof. See Appendix 8.C.

Due to�eorem 8.2, the mean-squared-error (MSE) of any unitarily constrained estimator will

be lower than the CCRB for high noise levels. However, at low noise levels, the bias tends to zero,

and the CCRB gives a good lower bound on the MSE of the unitarily constrained estimators.
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8.5 Unitarily constrained total-least-squares

In the previous section,we assumed that the position of the sensors on the rigid body in the reference

frame, i.e., the matrix C, is accurately known. In practice, there is no reason to believe that errors

are restricted only to the range measurements and there are no perturbations on the initial sensor

positions. Such perturbations can be introduced for instance during fabrication or if the body is not

entirely rigid (e.g., wing �exing of an aircra�).

Let us assume that the position of the nth sensor in the reference frame cn is noisy, and let us

denote the perturbation on cn by en, and the perturbation on C = [c1 , c2, . . . , cN] by the matrix

E = [e1, e2, . . . , eN] ∈ R3×N . �e covariance matrix of the perturbation e = vec(E) is denoted by

Re = σ2e I3N . In other words, we assume that the perturbations en , n = 1, 2, . . . ,N , are a sequence

of independent and identically distributed (i.i.d.) random vectors. To account for such errors in the

model, we next propose total-least-squares (TLS) estimators again with unitary constraints.

8.5.1 Simpli�ed unitarily constrained TLS (SCTLS) estimator

Taking the perturbations on the known topology into account, the data model in (8.20) will be

modi�ed as

D̃ = ĀQ(C̄ + Ē) + Ñ ,

where Ē = EUN . Multiplying both sides of the above equation with Ā
†
, we get

Ď = Q(C̄ + Ē) + Ň . (8.35)

�e solution to the data model in (8.35) admits a classical TLS formulation, but with a unitary con-

straint. �e SCTLS optimization problem is given by

Q̂ SCTLS = argmin
Q

∥Ē∥2F + ∥Ň∥2F
s.to Ď = Q(C̄ + Ē) + Ň , and QTQ = I3.

(8.36)

Similar to SCLS, the optimization problem in (8.36) admits a known closed-form solution which

makes it simpli�ed compared to the weighted problem discussed in the next section. Also, the noise

Ň in (8.35) is not white leading to a suboptimal solution.

�eorem 8.3 (Solution to SCTLS). �e SCTLS problem in (8.36) has the same solution as the simpli-

�ed unitarily constrained LS problem, i.e., Q̂ SCTLS = Q̂ SCLS .

Proof. See Appendix 8.D.

We next estimate the translation vector t. Taking the perturbations into account, we can modify

the model in (8.13) as

D̄ = ĀQC + Āt1TN + ĀQE + N̄ ,
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which can be vectorized and further simpli�ed to

d̄ − (CT ⊗ Ā)q = (1N ⊗ Ā)t +
ν∈R(M−1)N³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(I ⊗ ĀQ)e + n̄ . (8.37)

Using q̂ SCLS in the above model, the SCTLS estimator for the translation taking perturbations into

account, is then given by the following (unweighted) LS problem

t̂ SCLS = argmin
t
∥d̄ − (CT ⊗ Ā)q̂ SCLS − (1N ⊗ Ā)t∥22

= (1N ⊗ Ā)†(d̄ − (CT ⊗ Ā)q̂ SCLS).
�e algorithms to compute the SCTLS estimates are the same as that of the SCLS estimator. As

before, we solve SCTLS in an unweighted LS sense, therefore, we need not estimate the related noise

covariance matrix for whitening.

8.5.2 Unitarily constrained TLS (CTLS) estimator

Similar to the CLS formulation, the TLS estimator can be derived without pseudo inverting the

matrix Ā. �e data model in (8.20) taking into account the perturbations on the known sensor

topology is then given by

D̃ = ĀQ(C̄ + Ē) + Ñ , (8.38)

which can be further vectorized as

d̃ = (I3(N−1) ⊗ ĀQ)c̄ + (I3(N−1) ⊗ ĀQ)ē + ñ, (8.39)

where c̄ = vec(C̄) ∈ R3(N−1), and ē = vec(Ē) ∈ R3(N−1).

Assuming that the pre-whitening matrix takes the block diagonal form

R
−1/2
k
∶= diag(σ−1e I3(N−1) , R

−1/2
ñ )

with k = [ēT , ñT]T , the CTLS optimization problem is given by

argmin
Q

∥σ−1e ē∥22 + ∥R−1/2ñ ñ∥2
2

s.to D̃ = ĀQ(C̄ + Ē) + Ñ ,

ē = vec(Ē), ñ = vec(Ñ),
QTQ = I3 .

(8.40)
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�eorem 8.4 (Solution to CTLS). Assuming that the covariance matrix of the perturbation vector is

a scaled identity matrix, the unitarily constrained TLS problem in (8.40) has the same solution as a

speci�cally weighted CLS, i.e., it is the solution to

Q̂ CTLS = argmin
Q

∥Λ1/2(d̃ − (C̄T ⊗ Ā)q)∥22
s.to QTQ = I3,

(8.41)

where matrix (C̄T ⊗ Ā) ∈ RK×9 was de�ned earlier, and Λ ∈ RK×K is the speci�c weighting matrix

de�ned in (8.57).

Proof. See Appendix 8.E.

�e optimization problem (8.41) does not have a closed-form solution, and has to be solved

iteratively using for instance Gauss-Newton’s method (summarized in Algorithm 8.1) with

z ∶= Λ1/2d̃ ∈ RK×1 ,

and L ∶= Λ1/2(C̄T ⊗ Ā) ∈ RK×9 .
(8.42)

�e CTLS estimates for the translations can be computed similar to SCTLS as earlier, however,

for CTLS we �rst pre-whiten the noise. �e covariance of the noise ν in (8.37) is denoted by an(M − 1)N × (M − 1)N matrix Rν ∶= σ2e (I ⊗ ĀĀ
T)+Rn̄ . We can then use a weighted LS estimator to

estimate the translations accounting for the perturbations. �e CTLS translation estimates are given

by

t̂ CTLS = argmin
t

∥R−1/2ν (d̄ − (CT ⊗ Ā)q̂ CTLS − (1N ⊗ Ā)t)∥2
2

= (R−1/2ν (1N ⊗ Ā))†R−1/2ν (d̄ − (CT ⊗ Ā)q̂ CTLS).
8.6 Simulation results

We consider N = 5 sensors mounted on the vertices of a rigid body (rectangle based pyramid as in

Fig. 8.1) with

C =
⎡⎢⎢⎢⎢⎢⎣
0.5 1.5 1.5 0.5 1

0 0 1.5 1.5 1

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦
m,

and M = 4 anchors �xed at location

A =
⎡⎢⎢⎢⎢⎢⎣

0 100 0 100

100 100 0 0

0 100 100 0

⎤⎥⎥⎥⎥⎥⎦
m.

Let us de�ne a functionR(⋅) ∶ R3 → V3,3 that maps angles in degrees along each dimension into a

rotationmatrix, and its inverseR−1(⋅) ∶ V3,3 → R
3 whichmaps a rotationmatrix into corresponding
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angles in degrees (see [Diebel, 2006] for details on converting angles to a rotation matrix and vice

versa). Collecting the angles in a 3 × 1 vector ϕ = [20,−25, 10]T deg, the rotation matrix is then

generated according to Q = R(ϕ). We use a translation vector t = [15, 5, 10]T m. �e simulations

are averaged over Nexp = 1000 independent Monte-Carlo experiments.

�e performance of the proposed estimators is analyzed in terms of the root-mean-squared-

error (RMSE) of the estimates of Q, ϕ, and t, and are respectively given as

RMSE(Q) = ⎛⎝ 1

Nexp

Nexp

∑
n=1

∥Q − Q̂(n)∥2F⎞⎠
1/2

,

RMSE(ϕ) = ⎛⎝ 1

Nexp

Nexp

∑
n=1

∥ϕ −R−1(Q̂(n))∥22⎞⎠
1/2

deg,

RMSE(t) = ⎛⎝ 1

Nexp

Nexp

∑
n=1

∥t − t̂(n)∥22⎞⎠
1/2

m,

where Q̂
(n)

and t̂
(n)

denote the estimates during the nth Monte-Carlo experiment. Since the rota-

tion matrix estimated using the unconstrained LS estimator is not a valid rotation matrix, we �rst

project it onto V3,3 using (8.51) before converting it into corresponding angles.
We use the same noise variance for all the range measurements, i.e., σmn = σ m for m =

1, 2, . . . ,M, and n = 1, 2, . . . ,N . �e covariance matrix of the noise n, i.e., (see Appendix 8.A)

Rn = diag(2ρ)Rvdiag(2ρ) + Rv⊙2 − µµT ,
depends on the unknown parameter

ρ = [ρ11 , ρ12 , . . . , ρM1, . . . , ρMN]T ∈ RMN .

Hence, to whiten it, we use the noisy range measurements

y = [y11 , y12 , . . . , yM1 , . . . , yMN]T ∈ RMN

in (8.3) instead of ρ to compute the estimated covariance matrix

R̂n = diag(2y)Rvdiag(2y) + Rv⊙2 − µµT .
We use this estimated covariance matrix for pre-whitening the noise. Simulations are provided for

di�erent values of the nominal ranging noise σ m.

In Fig. 8.2, the RMSE of the estimates Q, ϕ, and t for di�erent values of σ is shown. �e estima-

tors in Fig. 8.2 are LS based where the topology of the sensors is assumed to be accurately known.

Due to�eorem 8.2, the RMSE of Q for the constrained estimators is lower than the CCRB at high

noise levels. �e saturation of the RMSE in Fig. 8.2(a) for σ > 1 m follows from the following lemma.
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Figure 8.2: (a) RMSE of the estimated rotation matrix Q. �e RMSE of the constrained estimators is upper
bounded as discussed in Remark 1. (b) RMSE in degrees of the estimated rotations. (c) Bias in the SCLS and
CLS estimators for Q. Bias tends to zero for low noise variance. (d) RMSE of the estimated translation vector
t along with the solution from the classical LS-based localization.

�eorem 1 (Frobenius norm induced distance). For any matrix Q i and Q j, such that, Q i ∈ Vn,n and
Q j ∈ Vn,n , the Frobenius norm induced distance is always upper bounded by

√
2n, i.e., ∥Q i −Q j∥F ≤√∥Q i∥F + ∥Q j∥F =√2n.

However, the CCRB computed using (8.33) does not saturate in this range as there exists no

unbiased estimator for high noise values as discussed in�eorem 8.2. Fig. 8.2(b) shows the RMSE in

degrees, which gives an insight into how the error on the range measurements translates to the error

on the estimated rotations. For the considered scenario, the range error that yields a positioning

accuracy of the order of 10 cm also yields an orientation error accuracy of the order of 0.1 deg.

�e bias of both the SCLS and CLS estimators is shown in Fig. 8.2(c), and it can be seen that the
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Figure 8.3: E�ect of bad anchor geometry (cond(A) = 100): (a) RMSE of the estimated rotation matrix Q.
(b) RMSE in degrees of the estimated rotations. (c) RMSE of the estimated translation vector t.

bias tends to zero for σ < 0.1 m (as discussed in �eorem 8.2), whereas the unconstrained LS is an

unbiased estimator. �e bias is computed as

bias(Q) = ∥ 1

Nexp

Nexp

∑
n=1

vec(Q̂(n)) − vec(Q)∥2.
We can see a signi�cant (close to an order of magnitude) improvement in the performance of the

location estimates when the knowledge of the topology is exploited as compared to the topology-

agnostic case (see Fig. 8.2(d)). �e performance of the SCLS estimator is similar (slightly worse)

to that of the iterative CLS estimator. �e resulting gap between the RMSE and the root-CRB is

reasonable, and thus the proposed estimators are robust to the linearization via squaring.

Fig. 8.3 illustrates the e�ect of a bad anchor geometry, where we use an ill-conditioned matrix A

with a condition number of 100. �eperformance of the SCLS estimators (based on pseudo inverting
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Figure 8.4: Convergence of Gauss-Newton iterations for range error σ = 10−2 m.

Ā) deteriorates for scenarios with a bad anchor geometry, however, the performance of the CLS

estimators is not a�ected. Nevertheless, if the topology is not subject to perturbations, the solution

proposed in Remark 8.1 can be used for scenarios with a bad anchor geometry, in which a well-

conditioned C can always be designed.

�e convergence (i.e., εk ∶= ∥JT(z−Lvec(Qk))∥2
∥J∥F∥z−Lvec(Qk)∥2

, where J de�ned in (8.48)) of Gauss-Newton’s

method with σ = 10−2 m for the optimal step-size and a �xed step-size is shown in Fig. 8.4. We

can see that it is su�cient to use a �xed step-size αk = 1 at low noise levels. As observed from the

simulations, the iterative algorithm requires typically ten or fewer iterations.

In order to analyze the performance of the estimators for the case when the sensor topology is

perturbed, we corrupt the sensor coordinates in the reference framewith a zeromean i.i.d. Gaussian

random process of standard deviation σe = 1 cm. �e RMSE of the estimates of Q, ϕ, and t using the

unconstrained LS, SCLS/SCTLS, CLS and CTLS estimators is shown in Fig. 8.5. �e performance

of these estimators is similar to that of the LS-based estimators, except for the error �oor, and this

is due to the model error (perturbations on the sensor topology). �e estimators hit the error �oor

for lower values of σ as σ2e increases. With an ill-conditioned matrix A, the performance of the

SCLS/SCTLS (and the unconstrained LS) estimator is worse than the CLS and CTLS estimators.

8.7 Discussion

A framework for joint position and orientation estimation of a rigid body based on range measure-

ments is proposed. We refer to this problem as rigid body localization. Sensor nodes can bemounted

on the rigid bodies (e.g., satellites, robots) during fabrication at the factory, and the geometry of how

these sensors are mounted is known a priori up to a certain accuracy. However, the absolute posi-

tion of the rigid body is not known. �e original nonlinear problem is linearized via squaring of the
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Figure 8.5: Results for a perturbed topology C. We use σe = 1 cm. (a) RMSE of the estimated rotation matrix
Q. (b) RMSE in degrees of the estimated rotations. (c) RMSE of the estimated translation vector t.

rangemeasurements. �e squared-range measurements between the anchors and the sensors on the

rigid body can then be used to estimate the position and the orientation of the body. �e position

and orientation of the rigid body is determined by a translation vector and a rotationmatrix, respec-

tively. Ignoring the fact that the rotation matrix is unitary, an unconstrained estimator is proposed.

A number of unitarily constrained LS estimators is also proposed, all of which solve an optimization

problemon the Stiefelmanifold. All the proposed estimators are robust to linearization via squaring.

For good anchor geometries, the performance of the SCLS estimator with a closed-form solution is

already reasonable. �e gap between the RMSE and root-CCRB of the SCLS and CLS estimates is

negligible, however, the estimators do not achieve the CCRB. In addition to this, constrained TLS

estimators that take into account the inaccuracies in the known sensor topology are also proposed.
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8.A Derivation of the covariance matrix Rn

In this section, we develop the covariance matrix Rn used for pre-whitening. Modeling the noise

on the range measurements vmn as a zero-mean additive white Gaussian process having a variance

σ2mn , we can compute the statistics (up to the second-order) of the zero-mean noise in (8.6), i.e.,

nmn = 2ρmnvmn + v2mn − σ2mn (8.43)

as
E{nmn} = 0,
E{(nmn − E{nmn})2} = 4ρ2mnσ

2
mn + 2σ4mn ,

E{(nmn − E{nmn})(nln −E{nln})} = 0, m ≠ l ,
and E{(nmn − E{nmn})(nml −E{nml})} = 0, n ≠ l ,

where we use the fact that, if vmn ∼ N (0, σ2mn) then E{v4mn} = 3σ4mn and E{v3mn} = 0. Collecting

ρmn ,m = 1, 2, . . . ,M; n = 1, 2, . . . ,N , in the vector

ρ = [ρ11 , ρ12 , . . . , ρM1, . . . , ρMN]T ∈ RMN ,

vmn ,m = 1, 2, . . . ,M; n = 1, 2, . . . ,N , in the vector

v = [v11, v12 , . . . , vM1, . . . , vMN]T ∈ RMN ,

and σ2mn ,m = 1, 2, . . . ,M; n = 1, 2, . . . ,N , in the vector

µ = [σ211 , σ212, . . . , σ2M1, . . . , σ
2
MN]T ∈ RMN ,

we can write (8.43) compactly as

n = diag(2ρ)v + v⊙2 − µ,
where

n = [n11 , n12, . . . , nM1, . . . , nMN]T ∈ RMN .

We can then compute the mean of n as E{n} = 0MN , and the covariance matrix of n as

Rn = E{(n − E{n})(n − E{n})T}
= diag(2ρ)Rvdiag(2ρ) + Rv⊙2 − µµT ∈ RMN×MN ,

where

Rv = diag(µ) ∈ RMN×MN ,

and

Rv⊙2 =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

3σ 4
11 σ 2

11σ
2
12 ⋯ σ 2

11σ
2
MN

σ 2
11σ

2
12 3σ 4

12 ⋯ ⋮⋮ ⋯ ⋱ ⋮
σ 2
11σ

2
MN ⋯ ⋯ 3σ 4

MN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ RMN×MN .
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8.B Gauss-Newton iterations on the Stiefel manifold

�e Newton method to solve the WOPP is developed in [Viklands, 2008], and it is adapted to suit

our problem. In this section, we derive the Gauss-Newton iterations to solve the LS problems on the

Stiefel manifold.

�e CLS and CTLS problems solve an optimization problem on the Stiefel manifold of the form

argmin
Q

∥z − Lvec(Q)∥22 s.to Q ∈ V3,3. (8.44)

We can represent any unitary matrix Q in the vicinity of a given unitary matrix Qk as

Q = Qk Ω(x), (8.45)

where the operator Ω(⋅) ∶ R3 → V3,3 is de�ned as
Ω(x) = exp(X(x)), (8.46)

and X(x) is a skew-symmetric matrix

X(x) =
⎡⎢⎢⎢⎢⎢⎣

0 −x1 −x2
x1 0 −x3
x2 x3 0

⎤⎥⎥⎥⎥⎥⎦
∈ R3×3,

with x = [x1 , x2, x3]T ∈ R3×1. We use the matrix exponential exp(X) to map a point x ∈ R3 onto the

Stiefel manifold V3,3.
We linearize the matrix exponential by using a �rst-order expansion of the matrix exponential

Ω(x) ≈ I3 + X .
Using this linearization4 in (8.45) we get

Q ≈ Qk(I3 + X).
We can then express Lvec(Q) as

Lvec(Q) ≈ Lvec(Qk) + Lvec(QkX),
which is a function of x, i.e.,

fk(x) = Lvec(Qk) + Jx , (8.47)

where

J = ∂Lvec(QkX)
∂xT

∈ RK×3. (8.48)

4Instead of a matrix exponential, a Cayley transformationΩ(x) = (I3+X)(I3+X)−1 can be alternatively used, which
can be then linearized by using a �rst-order expansion of (I3 + X)−1 ≈ I3 + X (see [Viklands, 2008]). As a result, we get

a similar expression Q ≈ Qk(I3 + 2X).
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Next, we solve the optimization problem in (8.44) iteratively as follows. Using (8.47) in (8.44), we

can transform the unitarily constrained optimization problem into an unconstrained minimization

problem. More speci�cally, during the k-th iterationwe compute theGauss-Newton search direction

by minimizing the following unconstrained LS problem

xk = argmin
x∈R3

ψ(x) = ∥z − fk(x)∥22
= (JT J)−1JT(z − Lvec(Qk)), (8.49)

and subsequently compute the rotation update

Qk+1 = QkΩ(αkxk).
Here, αk is the step size. �e optimal step size is obtained by solving

αk = argmin
α∈(0,1]

∥z − Lvec(QkΩ(αxk))∥22, (8.50)

whose solution is the root of the polynomial equation obtained by expanding the matrix exponen-

tial [Viklands, 2008], or can be computed simply by line search. With a good initial point and at low

noise levels we can take αk = 1.
�e solution Q̂ SCLS of the SCLS algorithm can be used as an initial point for the iterative al-

gorithm. Alternatively, the initial point can be computed by orthonormalizing the solution of the

unconstrained LS solution Q̂ LS. �e latter orthonormalization procedure solves a special case of

OPP, and is given as

Q0 ∶= argmin
Q

∥Q − Q̂ LS∥2F s.to QTQ = I3

= (Q̂ LSQ̂
T
LS)−1/2Q̂ LS .

(8.51)

8.C Proof of�eorem 8.2

We prove the claim of �eorem 8.2 by contradiction. Let there exist an unbiased constrained esti-

mator Q̂ such that Q̂ ∈ V3,3. �en Q̂ = Q +Ψ whereΨ is the estimation error such that E{Q̂} = Q
or E{Ψ} = 0. Since Q̂ ∈ V3,3, we have Q̂Q̂

T = I3, and hence

(Q +Ψ)(Q +Ψ)T = I3. (8.52)

Using QQT = I3 and taking expectations on both sides, (8.52) can be further simpli�ed to

tr{E{Ψ}QT} + tr{QE{ΨT}} = −E{∥Ψ∥2F}. (8.53)

Due to the assumption that E{Ψ} = 0, the le�-hand side of (8.53) is zero, but, the right-hand side

is strictly less than zero. Hence a contradiction occurs, unless the noise is zero.
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8.D Proof of�eorem 8.3

�e proof from [Arun, 1992] is provided here to aid the understanding of the proof of the next

theorem. For any Q, we can re-write the constraint in (8.36) as

[ Q −I3 ] [ Ē

Ň
] = − [ Q −I3 ] [ C̄

Ď
] .

Using the unitary constraint on Q, and pseudo-inverting the wide matrix [ Q −I3(N−1) ] we get
[ Ē

Ň
] = − 1

2
[ QT

−I3 ] [ Q −I3 ] [ C̄

Ď
]

= − 1
2
[ I3 −QT

−Q I3
] [ C̄

Ď
]

= − 1
2
[ C̄ −QT Ď

Ď − QC̄
] .

We can now re-write the objective in (8.36) to compute the minimum-norm square solution

tr{[ Ē
T

Ň
T ] [ Ē

Ň
]}

= 1

2
tr(C̄T

C̄ − ĎT
QC̄ − C̄T

QT Ď + ĎT
Ď)

= 1

2
∥C̄∥2F − tr(QC̄Ď

T) + 1

2
∥Ď∥2F .

�e solution to the SCTLS problem is then obtained by optimizing the term depending only on Q,

i.e., by maximizing tr{QC̄Ď
T}. �is is the same cost as that of the SCLS problem (see [Golub and

Van Loan, 1996, pg. 601]). Hence, the solution to the unitarily constrained TLS problem is

Q̂ SCTLS = VUT , (8.54)

where the matrices V and U are obtained by computing the SVD of ĎC̄
T = VΣUT .

8.E Proof of�eorem 8.4

For any Q the constraint in the optimization problem (8.39) can be written as

[ (I3(N−1) ⊗ ĀQ) −IK ] [ ē

ñ
]

= − [ (I3(N−1) ⊗ ĀQ) −IK ] [ c̄

d̃
] . (8.55)
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Multiplying both sides of (8.55) with the pseudo-inverse of the wide-matrix [(I3(N−1)⊗ ĀQ) ∣ − IK]
given by [ (I3(N−1) ⊗ ĀQ) −IK ]†

= [ I3(N−1) ⊗QT Ā
T

−I ] ((I3(N−1) ⊗ ĀĀ
T) + IK)−1 ,

we get the minimum-norm solution k = [ēT , ñT]T to the system of equations in (8.55) which is

given by

[ ē

ñ
] = − [ (I3(N−1) ⊗ QT Ā

T)−IK ]((I3(N−1) ⊗ ĀĀ
T) + IK)−1 [ (I3(N−1) ⊗ ĀQ) −IK ] [ c̄

d̃
] .

(8.56)

Assuming that the covariance matrix of the perturbation vector is a scaled identity matrix, it is

straightforward to verify that the objective in (8.40) using (8.56) simpli�es to

tr{[ ēT ñT ]Rk [ ē

ñ
]} = ∥Λ1/2(d̃ − (C̄T ⊗ Ā)q)∥22 ,

where

Λ1/2 = (σ−2e (I3(N−1) ⊗ ĀĀ
T) + R−1ñ )1/2 ((I3(N−1) ⊗ ĀĀ

T) + IK)−1 . (8.57)

Hence, the solution to the optimization problem (8.40) is equivalent to a speci�cally weighted CLS.
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9.1 Concluding remarks

Pervasive sensors collect massive amounts of data. As a consequence, it is becoming increasingly

di�cult to store and ship the acquired data to a central location for signal/data processing. �erefore,

to overcome these problems, we have focused on developing sensingmechanisms to extract as much

information as possible yet collecting fewer data, and thereby reducing storage and communication

requirements. In particular, in the �rst part of this thesis, we have addressed the question “How can

task-cognition be exploited to reduce the costs of sensing as well as the related storage and communi-

cations requirements?” To answer this question, the tool that we have exploited for data reduction

is sparse sensing. It consists of a deterministic sparse sensing function (guided by a sparse vector)

that is optimally designed to achieve a desired inference performance with the reduced number of

samples.

�e sparse sensing model to acquire continuous-domain and discrete-domain observations,

which we term as continuous sparse sensing and discrete sparse sensing, respectively, has been derived

in Chapter 2. One of the fundamental di�erences with compressive sensing (a well-known data re-

duction mechanism used for sparse signal recovery) is that in sparse sensing the underlying signals

need not be sparse. �is allows us to focus on general signal processing tasks such as estimation,

�ltering, and detection. �e developed theory can be applied to sensor placement, sensor/sample

selection, data compression, with an impact on a range of signal processing applications.
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Chapters 3, 4, and 5 have been, respectively, dedicated to discrete sparse sensing for estima-

tion, �ltering, and detection tasks. In all these chapters, the main questions that we have answered

are: “What are the reasonable inference performance metrics for estimation, �ltering, and detection

tasks?” and “Can we e�ciently optimize (e.g., using a polynomial time algorithm) such inference per-

formance metrics to obtain the sparse samplers of interest?”. To this end, we have derived convex risk

functions that include the sparse vector for speci�c inference tasks and thus, can be optimized via

convex programming. Relying on the assumption that the data model is perfectly known, we have

shown thatmeasures such as theCramér-Rao bound (CRB) for nonlinear estimation, posterior CRB

for �ltering, and Ali-Silvey distances (i.e., Bhattacharyya distance, Kullback-Leibler distance, or J-

divergence) for binary hypothesis testing can be used as reasonable inference performance metrics.

Furthermore, we have also shown that all these (ensemble) inference performance measures (A)

can be computed in closed form and are independent of the observations, thus enabling o�ine (or

data-independent) designs, and (B) can be optimized using a convex program, in many cases of in-

terest. �e optimization problem is relatively easier to solve when the observations are independent,

irrespective of their distributions. By choosing appropriate instantaneous (instead of ensemble) in-

ference performance metrics (that depend on data), the unifying approach presented in this thesis

can be extended to data-driven sparse sensing for machine learning problems, like clustering or clas-

si�cation, which provides room for further research.

In Chapter 6, we have presented the continuous sparse sensing framework. Here, unlike the dis-

crete case, we have shown that it is possible to sample in between the grid points, that is, anywhere in

the continuous observation domain. We have done this by modeling an o�-the-grid sampling point

as a discrete sampling point plus a perturbation. �en, the smallest set of possible discrete sampling

points is searched for, along with the best possible perturbations, in order to reach the desired infer-

ence performance. We have solved the continuous sparse sensing problem via convex programming

for linear inverse problems. �ere is still room for extending this framework (especially the solver)

to other inference tasks, like hypothesis testing and nonlinear estimation/�ltering with correlated

inputs.

Next, in the second part of this thesis, we have focused on some signal processing problems re-

lated to distributed sensing and sensor networks. More speci�cally, we have addressed the questions:

“How canwireless communications be exploited to synchronize spatially separated sample clocks?”, and

“How can we extend the classical localization paradigm to localize a sensing platform by exploiting the

knowledge of the sensor placement on the platform?”.

In Chapter 7, we have provided a solution to synchronize the sample clocks of the sensors by fully

exploiting the broadcast nature of the wireless medium, and using the time-of-�ight measurements

of the messages. We have assumed an a�ne clock model and that there exists at least one line-of-

sight path between the nodes, which are reasonable in many cases of interest. Speci�cally, we have

solved for all the unknown clock skews and clock o�sets using least squares. �e proposed estimator

is shown to be e�cient, asymptotically meeting the theoretical CRB. However, when there is no line-

of-sight path, the wireless clock synchronization remains challenging.

Finally, in Chapter 8, we have solved the rigid body localization (i.e., position and orientation

estimation) problem using only the distance measurements. To achieve this, we have exploited the
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prior information about the sensor placement on the platform. We have shown that the position

and orientation of the rigid platform can be represented by a rotation matrix and translation vector.

We have proposed a number of constrained least squares estimators, and we have also derived the

theoretical limits (i.e., CRB) for the position and orientation estimation problem using distance

measurements.

9.2 Directions for future research

�e research for this thesis has generated a number of new challenging research questions, which

remain open. In what follows, we conclude this thesis by listing some directions for future research.

9.2.1 Sparse sensing for constrained inverse problems

In Chapter 3, the focus was on designing sparse sensing mechanisms for nonlinear estimation prob-

lems. In particular, the goal was to sparsely sense the signal x that is related to an unknown (nonran-

dom) parameter vector θ through a known nonlinearmodel in order to achieve a desired estimation

accuracy. We have used scalar functions of the CRB as the inference performancemetric to quantify

the estimation accuracy. In many applications, the parameter space may be restricted to a known

subset of the Euclidean space through smooth functional constraints on the parameters. �e ques-

tion then is how can we design sparse sensing functions that take into account such constraints on

the unknown parameter. Note that this is di�erent from the Bayesian approach that we have dis-

cussed in Remark 3.4 of Chapter 3, where the assumption was that the parameter is random and the

prior information was related to its distribution.

If the parameter vector θ is subject to some continuously di�erentiable constraints g(θ) = 0,

then with these constraints, the resulting constrained CRB (CCRB) is lower than the unconstrained

CRB (cf. Section 8.4.2 from Chapter 8). In [Stoica and Ng, 1998], it is shown that the CCRB has the

form

E{(θ̂ − θ)(θ̂ − θ)T} ≥ C CCRB(w, θ) = M(MTF(w , θ)M)−1MT ,

where θ̂ denotes the estimate of θ, F(w , θ) is the FIM for the unconstrained estimation prob-

lem as de�ned in (3.2), and M is an isometry matrix whose columns form an orthonormal ba-

sis for the nullspace of the gradient matrix ∂g(θ)/∂θT . Here, w is the sparse sensing vector to

be designed. �e question is, can we optimize the risk functions (cf. Section 3.3 of Chapter 3)

f (w) ∶= tr{C CCRB(w , θ)} or f (w) ∶= λmax{C CCRB(w , θ)} using a convex program.

9.2.2 Sparse sensing for composite detection problems

In Chapter 5, the focus was on choosing the best subset of observations for a binary hypothesis test-

ing problem. In particular, the assumption was that the model parameters were perfectly known.
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�at is, our goal was to sparsely sense the signal x that follows, for example, the conditional distri-

butions:

H0 ∶ x ∼ h0(θ0 , n)
H1 ∶ x ∼ h1(θ1 , n),

where we assumed that the parameter vectors θ0 and θ1 of the functions h0 and h1 as well as the

probability density function of the noise n are perfectly known. When the parameter vectors θ0
and θ1 are unknown, we generally solve the so-called composite binary hypothesis testing problem

[Scharf, 1991].

For composite hypothesis testing problems, the question is, how to design sparse sensingmecha-

nisms. Clearly, the inference performancemetrics thatwere discussed in Section 5.4 ofChapter 5will

now depend on the unknown parameters. Consequently, the risk function of the form f (w, θ0 , θ1)
has to be optimized over the sparse sensing vector w, ∀θ0 and ∀θ1. �is is reminiscent of the risk

functions of the nonlinear estimation problem discussed in Chapter 3. �erefore, a way to solve the

sparse sensing problem would be to grid the parameter space (every grid point would result in an

additional performance constraint), or alternatively marginalize the unknown parameters using the

prior statistical information, when available. �is leads to a number of interesting questions, such

as: “is optimizing the signal-to-noise ratio optimal in terms of the error probabilities for Gaussian

composite hypothesis testing?” and “how much data reduction can be achieved via sparse sensing

for composite hypothesis testing as compared to (nonlinear) parameter estimation?”.

9.2.3 Distributed sparse sensing

�roughout this thesis, we have assumed that the signals were available only at a single instance in

space, frequency, or time. Suppose now that they are available at multiple instances, that is to say, the

signals are distributed. For example, imagine spatially separated sensors observing continuous-time

phenomena. �e question then is, howwe can jointly design the di�erent sparse sampling functions

at di�erent physical sensors to reach the best compression rate per sensor, subject to speci�c perfor-

mance guarantees.

While deriving sparse sensingmechanisms for estimation, �ltering, or detection, we always con-

sidered a single realization of the signal x was available and designed the sparse sensing function

Φ(w) to obtain the sparsely sensed signal y. Now if multiple realizations are available, e.g., when

x is a space-domain signal, we could gather this signal at di�erent time intervals or in di�erent fre-

quency bands. All these realizations can be sparsely sensed as before, by employing the same sensing

function at di�erent sensors. �is might not be the best thing to do, as we do not fully exploit the

available diversity to acquire the available multiple realizations using di�erent sensing functions. In

order to exploit the available diversity, clearly we should have the freedom to design di�erent sparse

sensing functions at di�erent physical sensors. For example, let x1 = [x1,1 , x2,1 , . . . , xM,1]T and x2 =[x1,2 , x2,2 , . . . , xM,2]T be the two available temporal snapshots of the spatial signal x = [xT1 , xT2 ]T .
We acquire such distributed multidimensional signals using two sparse vectors w1 andw2 related to
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two temporal snapshots (instead of one sparse vector) as

y = Φ(w1 ,w2)x ,
whereΦ(⋅, ⋅) denotes the sparse sensing function. �e question is how to design such sparse sensing

functions.

9.2.4 Clock synchronization in non line-of-sight scenarios

�e algorithms for wireless clock synchronization derived in Chapter 7 were based on time-of-�ight

measurements of messages between the sensor nodes. �is relies on a fundamental assumption

that there exists a line-of-sight path between the sensor nodes. �e framework in Chapter 7 can be

extended to multipath environments that include the line-of-sight path. �is can, for example, be

done by resolving the line-of-sight path using techniques like ray tracing or outlier rejectionmethods

(i.e., to look for the consistent system of equations). However, when there is no line-of-sight path,

synchronizing sample clocks is a challenging problem.

One possible way to synchronize clocks is to use a phased-lock loop — a well-known phase and

frequency tracking tool used in wireless communications. Let us de�ne a(t) as the output of an
oscillator [Allan, 1987]

a(t) = a0 sin(2π f0t + ψ(t)),
where f0 is the nominal frequency, a0 is the constant amplitude, and ψ(t) captures all the residual
phase deviations. For an ideal clock, ψ(t) = 0, ∀t. In Chapter 7, we have modeled only the �rst

order clock deviations and ignored the higher-order terms. �at is, the assumption was

ψ(t) ≈ ϕ + ωt = ϕ + 2π f t,
where t is the true time, ϕ is the phase o�set (or the clock o�set) and ω = 2π f is the frequency
o�set (or the clock skew). �e question is, can we use a phased-lock loop (or rather a dual phased-

lock loop) discussed in [Johnson and Sethares, 2004, pp. 200-202] at each sensor to track the phase

and frequency o�sets with respect to a synchronization beacon transmitted from a sensor with a

relatively stable clock. �e second question is, what are the theoretical limits on synchronization

based on such an approach.

9.2.5 Sensor, source placement, and closing the loop

In the �rst part of this thesis, the focus was on sensor placement, that is, to choose the best subset of

sensor locations, subject to speci�c inference performance guarantees. �e dual problem of sensor

placement is the source placement problem. �e source placement problem can be interpreted as

choosing the best subset of source locations in order to generate a desired �eld. Naturally, onewould

think of closing this loop through a joint sensor and source placement mechanism.

We will illustrate this with the rigid body localization problem that was discussed in Chapter 8.

In particular, the question is, what are the optimal sensor/anchor placement (on the �xed world)
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and optimal source placement on the rigid platform to achieve the desired localization accuracy. To

realize this, we can express the Fisher information matrix (cf. (8.32)) in terms of two sparse vectors,

where one vector is associated with the candidate anchor positions and the other one is associated

with the candidate sensor positions. �e resulting constrained CRB (cf. (8.33)) is then optimized to

jointly minimize the number of sensors and anchors. �e question of interest is, how e�ciently can

we solve this optimization problem.

In addition to the above list, there is still room for studying greedy (e.g., submodular) algorithms

for continuous and discrete sparse sensing problems that were considered in this thesis. Sparse

sensing for multiple hypothesis testing and developing a theory on relative position and orientation

estimation between rigid bodies in an anchorless scenario, also remain open.

�e ideas presented in this thesis with innovative perspectives on sparse sensing and distributed

sensing are certainly pertinent to the design of modern sensing systems. We hope that these ideas

will also open up new lines of research within the broad �eld of signal processing.



Notation

Vectors and matrices

x scalar

x vector denoted by lower bold face letters.

X matrix denoted by upper bold face letters.

XT Transpose of matrix X.

XH Hermitian of matrix X.

diag(⋅) block diagonal matrix with the elements in its argument on the main diagonal.

diagr(⋅) diagonal matrix with the argument on its diagonal but with the all-zero rows removed.[X]i, j denotes the (i , j)th entry of matrix X .[x]i denotes the ith entry of vector x.

1N N × 1 vector of all ones.
0N N × 1 vector of all zeros.
IN identity matrix of size N .

x⊙2 element-wise squaring of vector x.

tr{X} Trace of matrix X .

det{X} Determinant of matrix X .

λmin{X} minimum eigenvalue of a symmetric matrix X .

λmax{X} maximum eigenvalue of a symmetric matrix X.

X ⪰ Y X − Y is a positive semide�nite matrix

X ⊗ Y Kronecker product of matrix X and matrix Y .

X† = (XTX)−1XT Pseudo inverse (or the le�-inverse) of a full column-rank tall matrix X .

X† = XT(XXT)−1 Pseudo inverse (or the right-inverse) of a full row-rank wide matrix X.

vec(X) MN × 1 vector formed by stacking the columns of an M × N matrix X.

unvec(X) M × N matrix X formed by the inverse vec(X) operation on an MN × 1 vector.
cond(X) condition number of a matrix X .
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Stochastic processes

E{x} Expected value of random vector x.N (µ, Σ) Gaussian distribution with mean vector µ, covariance matrix Σ.

Pr(H) Probability of event H.

Norms and distances

∥w∥0 ℓ0-(quasi) norm, i.e., number of non-zero entries of vector w.∥w∥1 ℓ1-norm of vector w.∥w∥2 Euclidean (or ℓ2-)norm of vector w.∥w∥2A weighted squared ℓ2-norm wTAw.∥W∥2,0 ℓ2/ℓ0-(quasi) norm counts the number of nonzero rows of matrix Z.

Sets

R Real numbers

R+ Nonnegative real numbers

C Complex numbers

R
N Real length-N vectors

R
M×N Real M × N matrices

C
N Complex length-N vectors

C
M×N Complex M × N vectors{0, 1}N Boolean length-N vectors{0, 1}M×N Boolean M × N matrices

Z Integers

N Natural numbers

S
N Symmetric N × N matrices

S
N
+ Symmetric positive semi-de�nite N × N matrices

S
N
++ Symmetric positive de�nite N × N matrices∣A∣ cardinality of setA
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Summary

Sparse Sensing for Statistical Inference

�eory, Algorithm, and Applications

In todays society we are �ooded with massive volumes of data of the order of a billion gigabytes

on a daily basis from pervasive sensors. It is becoming increasingly challenging to locally store

and transport the acquired data to a central location for signal/data processing (i.e., for inference).

Consequently, most of the data is discarded blindly, causing serious performance loss. It is evident

that there is an urgent need for developing unconventional sensing mechanisms to extract as much

information as possible yet collecting fewer data. �us, reducing the costs of sensing as well as the

related memory and bandwidth requirements.

�e �rst aim of this thesis is to develop theory and algorithms for data reduction. We develop

a data reduction tool called sparse sensing, which consists of a deterministic and structured sens-

ing function (guided by a sparse vector) that is optimally designed to achieve a desired inference

performance with the reduced number of data samples. �e �rst part of this thesis is dedicated to

the development of sparse sensing models and convex programs to e�ciently design sparse sensing

functions.

Sparse sensing o�ers a number of advantages over compressed sensing (a state-of-the-art data

reduction method for sparse signal recovery). One of the major di�erences is that in sparse sensing

the underlying signals need not be sparse. �is allows us to consider general signal processing tasks

(not just sparse signal recovery) under the proposed sparse sensing framework. Speci�cally, we

focus on fundamental statistical inference tasks, like estimation, �ltering, and detection. In essence,

we present topics that transform classical (e.g., random or uniform) sensing methods to low-cost

data acquisition mechanisms tailored for speci�c inference tasks. �e developed framework can be

applied to sensor selection, sensor placement, or sensor scheduling, for example.

In the second part of this thesis, we focus on some applications related to distributed sampling

using sensor networks. Recent advances in wireless sensor technology have enabled the usage of

sensors to connect almost everything as a network. Sensor networks can be used a spatial sampling

device, that is, to faithfully represent distributed signals (e.g., a spatially varying phenomenon such

as the temperature �eld). On top of that, the distributed signals can exist in space and time, where

the temporal sampling is achieved using the sensor’s analog-to-digital converters, for example. Each
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sensor has an independent sample clock, and its stability essentially determines the alignment of the

temporal sampling grid across the sensors. Due to imperfection in the oscillators, the sample clocks

dri� from each other, resulting in the misalignment of the temporal sampling grids. To overcome

this issue, we devise a mechanism to distribute the sample clock wirelessly. Speci�cally, we perform

wireless clock synchronization based on the time-of-�ight measurements of broadcast messages. In

addition, clock synchronization also plays a central role in other time-based sensor network appli-

cations such as localization. Localization is increasingly gaining popularity in many applications,

especially for monitoring environments beyond human reach, e.g., using robots or drones with sev-

eral sensor units mounted on it. Consequently we now have to localize more than one sensor or

even localize the whole sensing platform. �erefore, we extend the classical localization paradigm

to localize a (rigid) sensing platform by exploiting the knowledge of the sensor placement on the

platform. In particular, we develop algorithms for rigid body localization, i.e., for estimating the

position and orientation of the rigid platform using distance measurements.

Given the central role of sensing and sensor networks, the results presented in this thesis impacts

a wide range of applications.

Sundeep Prabhakar Chepuri
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