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Abstract—Existing solutions to the sensor placement problem
are based on sensor selection, in which the best subset of avail-
able sampling locations is chosen such that a desired estimation
accuracy is achieved. However, the achievable estimation accuracy
of sensor placement via sensor selection is limited to the initial
set of sampling locations, which are typically obtained by grid-
ding the continuous sampling domain. To circumvent this issue,
we propose a framework of continuous sensor placement. A con-
tinuous variable is augmented to the grid-based model, which al-
lows for off-the-grid sensor placement. The proposed offline design
problem can be solved using readily available convex optimization
solvers.

Index Terms—Convex optimization, joint sparsity, sensor place-
ment, sensor selection, sparse sensing, sparsity.

I. PROBLEM STATEMENT

S ENSOR networks are widely used in a variety of applica-
tions like environmental monitoring, security and safety,

to list a few. Sensors are devices capable of sensing a certain
physical phenomenon, processing data, and communicating
information to a central unit. Sensors are geographically de-
ployed, and the data acquired by such distributed sensors are
often used to solve statistical inference problems like field (e.g.,
heat, sound) estimation, target localization, and so on.
The number of sensors available are often limited due to var-

ious factors like availability of physical or data storage space,
economical constraints, or due to energy-efficiency reasons.
Such a restriction on the number of sensors naturally limits the
estimation accuracy. Moreover, selecting different sampling lo-
cations for the sensors generally leads to different values of the
mean-squared-error. In this article, we are interested in finding
the best placement of the sensors such that a desired estimation
accuracy is ensured and the number of sensors are as low as
possible. In other words, the focus will be on designing a sparse
sensing technique to capture only informative data, thereby
reducing the costs associated with sensing, data storage, and
communication overheads.
Let denote the observation signal with a continuous-

domain argument, where without loss of generality (w.l.o.g.)
denotes the sampling domain. We will restrict ourselves
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to the one-dimensional spatial domain, but the ideas presented
can be applied directly to higher dimensions and even to tem-
poral or spatio-temporal domains1. Assume that represents
the measured physical field over a continuous one-dimensional
space , and it satisfies the linear model

(1)

where collects the parameters to be estimated,
is the known linear model representing the mapping be-

tween the parameters and the measurements, and is the
noise. For example, in field estimation, might contain the
source location and its field intensity. Furthermore, we assume

for and . In other words, is com-
pletely described by its variation in the interval
where we can place the sensors.
The fundamental question of interest is—where to place the

sensors such that the estimation error is as low as possible? We
next state the problem more precisely.
Continuous sensor placement problem. Given the model
and a desired mean-squared-error of the estimate, find the

placement of the sensors in the range such that the
number of sampling locations is minimum and the desired mean-
squared-error is achieved.

II. STATE OF THE ART

A. Sensor Selection

The traditional solution to the sensor placement problem
is to grid the interval and to choose the best spa-
tial locations among them [1]–[7]. The field is measured at

discrete locations
obtained by regularly sampling the continuous

space, where denotes the sampling interval; and it determines
the resolution of the discrete field.
Let be the discrete-domain measurements,

denote the discretized model, and
represent the error. Using the above notations, we can

write the discrete-domain version of (1) as

(2)

We need to design how to choose the minimum number of sam-
pling locations out of initial ones such that a desired estima-
tion performance of the inverse problem (2) can be guaranteed.
This problem is referred to as sensor selection.

1More generally, could lie in a -dimensional space, e.g., represents
a (three-dimensional) spatio-temporal observation domain.
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For the linear model (2) with spatially white noise of variance
, it is straightforward to compute the mean-squared-error of

the least-squares estimate as

(3)

where the notation denotes the trace operator.
The problem of choosing the best subset of sampling loca-

tions (or sensors) out of given locations is combinatorial
in nature. To simplify this problem, solutions based on greedy
methods [1], [2] and convex optimization [4], [5], [7]–[9] are
proposed. Sensor selection can be formulated as the design of
a Boolean selection vector. More specifically, the problem is to
design a selection vector

where indicates whether the sensor is (not) selected.
Introducing the selection variable in (3), sensor selection can be
expressed as the following cardinality minimization problem

(4)

where the -(quasi) norm counts the number of non-zero entries
of , and the threshold specifies the desired mean-squared-
error. The above optimization problem is a non-convex Boolean
program. To further simplify this problem, standard convex re-
laxations are used. For example, the -(quasi) norm is relaxed
with a convex -norm or the sum-of-logs [4], and the Boolean
constraint is relaxed to the convex set .

B. Contribution

The main contribution of this article is a framework of con-
tinuous sensor placement, which allows for off-the-grid sensor
placement. This is fundamentally different from the state-of-
the-art sensor placement solutions based on sensor selection.

III. SENSITIVITY TO GRIDDING

Existing solutions to the sensor placement problem are based
on sensor selection. The performance of sensor placement via
sensor selection is highly limited by the choice of the initial grid
as the resolution might be too low, especially when is fast
varying compared to the chosen grid. We illustrate this effect
with the following numerical example.
Consider the linear model in (1) with the following specifi-

cations. Let the parameter vector be of length . Con-
sider a sum of sinusoids model for
with for . Let

and for . We
use the following parameters: , , m,

The noise variance is .

Fig. 1. The field is measured at discrete locations with
m and m. The mean-squared-error bound is set to 0.026, leading to
50 selected sensors.

A. Coarse Gridding

Assume that the field can be measured at poten-
tial locations. Let us consider the following case of candidate
sampling locations m. Using (3), we can
compute the mean-squared-error and it is 1.47. The optimal
mean-squared-error using 5 sensors, on the other hand, is around
0.16.
We remark the following two observations. Firstly, the

mean-squared-error resulting from the sensors at the above
sampling locations is much lower than the optimal mean-
squared-error. Secondly, any subset of these sensors will
naturally also result in a mean-squared-error lower than 1.47.
Hence, due to the involved discretization, coarse gridding
does not necessarily lead to the best placement in terms of the
mean-squared-error.

B. Fine Gridding

Alternatively, the initial grid can be very dense with the can-
didate sampling locations at infinitesimal distance apart. This is
obtained by choosing a very small . The sensor selection solver
would then choose many sensors within one or more virtual spa-
tial bins.
For the setup discussed in the previous subsection, the sensor

selection for a fine grid with potential sensors is
illustrated in Fig. 1. The sensors within the most informative
bin are selected first before going to the next informative bin,
and so on, till the desired mean-squared-error is achieved.
The fine gridding has two main drawbacks. Firstly, it might

not be practically feasible to place the sensors so close to each
other. In addition, the reason why more sensors are selected
within a certain bin is to improve the signal-to-noise ratio
(SNR). However, instead of placing additional (expensive)
sensors within a certain bin, the SNR can be improved by other
(cheaper) means, e.g., temporal averaging using a single sensor.
Finally, note that the solvers based on convex optimization
techniques incur a cubic complexity making fine gridding also
computationally less viable.
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IV. PROPOSED CONTINUOUS SENSOR PLACEMENT

The motivation behind a coarse discretization for sensor
placement was computational tractability, but its performance
is limited by the choice of the initial grid. On the contrary, fine
gridding suffers from a high computational complexity and
multiple closely spaced sensors for SNR improvement.
In this section, we present the proposed continuous sensor

placement framework. To realize this, we augment the discrete
model by including additional variables that account for the con-
tinuous nature of the sampling domain. The convex optimiza-
tion based sensor selection solver is then adapted to solve this
augmented formulation.

A. Taylor Interpolation

If is sufficiently smooth (i.e., its first-order derivative
exists and is continuous), then local shifts of can be ap-
proximated using its derivative based on a first-order Taylor ex-
pansion:

(5)

where are the points on the initial grid, represents
the continuous variable around with , and

is the derivative. Such first-order interpola-
tions have also been used in the context of sparse signal recovery
to overcome problems due to gridding (see [10], [11]). Note that
by using this idea, gridding actually results in binning, where we
can place at most one sensor per bin. As a remark, other alterna-
tive interpolation techniques (e.g., polar interpolation [10]) can
be considered.

B. Performance Measure

Before presenting the optimization problem and its solver
for continuous sensor placement, we first derive a performance
measure that determines the sensor placement. As in (3), we
can compute the mean-squared-error based on the approxima-
tion (5) by completing the squares, i.e.,

(6)

Introducing the Boolean selection vector in (6) we obtain the
performance function

(7)

where with , and
with . Note that (the

notation denotes element-wise squaring).

C. Optimization Problem

The optimization variables in (7) are related
through a structure. More specifically, the vectors , , and
all share the same support set. Hence, instead of simply

minimizing the cardinality of as in (4), we can exploit the
structure and jointly optimize their cardinality to minimize the
number of sensors, and thus promote sparse sensing. Defining
the matrix , the proposed continuous
sensor placement problem can be formulated as

(8a)

(8b)

(8c)

(8d)

(8e)

(8f)

where the -(quasi) norm counts the number of non-zero
rows of as follows
, and the convex constraint (8b) specifies the estimation

accuracy through a threshold ( denotes continuous).
Since the continuous variable takes values in the range

, we obtain the convex box constraints (8e)
and (8f). The optimization problem (8) is non-convex due
to: (a) cardinality cost, (b) Boolean constraint (8d), and (c)
quadratic equality (8c). Therefore, it is (in general) difficult to
solve (8) optimally.
We now use some standard convex relaxation tech-

niques to simplify (8) and solve it sub-optimally. The
-(quasi) norm is relaxed with its best convex approx-

imation, i.e., an -mixed norm defined as
. The Boolean con-

straint is replaced with a convex set . The constraint
(8c) is equivalently expressed as , where

is a rank-1 matrix with (the
notation collects the diagonal elements of its argument
in a vector, and denotes the ( ) th entry of the argument).
Dropping the rank constraint on and replacing the equality
with an inequality as

we arrive at the relaxed continuous sensor placement problem:

(9)
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Subsequently, an approximate Boolean solution for has to
be recovered either by deterministic or randomized rounding
[4]. Finally, the sensor placements are given by shifting the
locations of the selected sensors according to . The relaxed
optimization problem can be solved using off-the-shelf solvers
like CVX [12] or SeDuMi [13]. We underline here that the
proposed sensor placement is not limited to the initial chosen
grid points, and we basically replace grid points with bins
allowing one sensor per bin. However, this feature comes
at an additional complexity compared to that of solving the
sensor selection problem with a fixed discrete grid. The in-
crease in complexity is due to the additional variables like
the continuous perturbation parameter and the associated box
constraints.

D. Simulation Results

To validate the proposed sensor placement approach, we refer
to the sum of sinusoids example introduced earlier in Section III.
Let the initial coarse grid include sampling locations

with . Note that the
proposed continuous sensor placement framework is not limited
to the sum of sinusoidsmodel, but is valid for any general known
model.
Fig. 2(a) illustrates the sensor placement via sensor selection.

The best subset of sensors is computed by solving the relaxed
version of (4). For sensor selection, we choose such
that 5 sensors are selected out of 11 available sensors. For the
considered scenario, themean-squared-error achievedwith such
a sensor placement is .
Fig. 2(b) illustrates the results from the proposed continuous

sensor placement obtained by solving the relaxed optimization
problem (9). We use , which has also been chosen
such that 5 sensors are selected. The mean-squared-error
achieved with the proposed placement is , which is
lower than the mean-squared-error obtained by the sensor
placement through sensor selection. The threshold is an
underestimate of the mean-squared-error (unlike ), and this is
due to the approximation in (6). The threshold corresponding
to a certain mean-squared-error can be chosen by computing
the solution path for different values (see Section VI of [4]
for more details).
Finally, in Table I we evaluate the mean-squared-error

with 5 selected sensors obtained by solving the sensor se-
lection problem and the proposed continuous placement for
different grid densities. The optimization problems are solved
in MATLAB using SeDuMi [13]. We consider different grid
densities and in each case we use
a threshold that selects 5 sensors. The continuous sensor
placement offers better mean-squared-error with a reasonable
increase in complexity.

V. CONCLUSIONS

Sensor placement is a sampling design problem. Classic so-
lutions to the sensor placement problem are based on sensor
selection. In sensor selection, the continuous domain is first

Fig. 2. The field is measured at discrete locations with m and
m. A different threshold is used for (a) and (b), such that 5 sensors

are selected (a) Sensor placement via sensor selection (b) Proposed continuous
placement.

TABLE I
MEAN-SQUARED-ERROR WITH 5 SELECTED SENSORS

discretized leading to initial locations for placing the sen-
sors. Sensor selection then solves for the best subset of sam-
pling locations out of these potential locations subject to
a performance constraint. As a consequence, the estimation
accuracy is limited to the initial grid points. In this work,
we have proposed a continuous sensor placement framework
that allows for off-the-grid sensor placement to further im-
prove the performance. To this end, we have supplemented
the discrete model with additional variables that account for
the continuous nature of the domain. The proposed solver
promotes sparse sensing, and thus enables energy-efficient
sensing schemes.
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