
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 18, SEPTEMBER 15, 2014 4911

Rigid Body Localization Using Sensor Networks
Sundeep Prabhakar Chepuri, Student Member, IEEE, Geert Leus, Fellow, IEEE, and

Alle-Jan van der Veen, Fellow, IEEE

Abstract—A framework for joint position and orientation esti-
mation of a rigid body using range measurements is proposed. We
consider a setup in which a few sensors are mounted on a rigid
body. The absolute position of the rigid body is not known. How-
ever, we know how the sensors are mounted on the rigid body, i.e.,
the sensor topology is known. The rigid body is localized using
noisy range measurements between the sensors and a few anchors
(nodes with known absolute positions), and without using any iner-
tial measurements.We propose a least-squares (LS), and a number
of constrained LS estimators, where the constrained estimators
solve an optimization problem on the Stiefel manifold. As a bench-
mark, we derive a unitarily constrained Cramér–Rao bound. Fi-
nally, the known topology of the sensors can be perturbed during
fabrication or if the body is not entirely rigid. To take these per-
turbations into account, constrained total-least-squares estimators
are also proposed.

Index Terms—Constrained Cramér–Rao bound, constrained
least-squares, constrained total-least-squares, rigid body localiza-
tion, sensor networks, Stiefel manifold, unitary constraints.

I. INTRODUCTION

O VER the past decade, advances in wireless sensor tech-
nology have enabled the usage of wireless sensor net-

works (WSNs) in different areas related to sensing, monitoring,
and control. Wireless sensors are nodes equipped with a radio
transceiver and a processor, capable of wireless communica-
tions and computational operations. A majority of the applica-
tions that use WSNs rely on a fundamental aspect of either as-
sociating the location information to the data that is acquired by
spatially distributed sensors (e.g., in environment monitoring),
or to identify the location of the sensor itself (e.g., in security,
rescue, logistics). Identifying the sensor’s location is a well-
studied topic [2]–[4], and it is commonly referred to as sensor
localization.
Localization can be either absolute or relative. In abso-

lute localization, the aim is to estimate the absolute position
of the sensor(s) using a few reference nodes whose abso-
lute positions are known. Hence, these reference nodes are
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commonly referred to as anchors. Absolute localization prob-
lems are typically solved using measurements from certain
physical phenomena, e.g., time-of-arrival (TOA), time-dif-
ference-of-arrival (TDOA), received signal strength (RSS),
or angle-of-arrival (AOA) [2]–[6]. Localization can also be
relative, in which case the aim is to estimate the constellation
of the sensors or the topology of the network, and determining
the location of a sensor relative to the other sensors is suffi-
cient. Classical solutions to relative localization are based on
multi-dimensional scaling (MDS) using squared-range mea-
surements [7], [8]. There exists a plethora of algorithms based
on these two localization paradigms, and they recently gained a
lot of interest to facilitate low-power and efficient localization
solutions especially in global positioning system (GPS) denied
environments.
In this paper, we take a step forward from the classical sensor

localization, and provide a different flavor of localization, called
rigid body localization. In rigid body localization, we use a few
sensors on a rigid body and exploit the knowledge of how the
sensors are mounted on the body to jointly estimate the position
as well as the orientation of the rigid body.

A. Applications and Prior Works

Rigid body localization has potential applications in a va-
riety of fields. To list a few, it is useful for location services
involving underwater (or in-liquid) systems, orbiting satellites,
mechatronic systems, aircrafts, underwater vehicles, ships,
robotic systems, or automobiles. In such applications, classical
localization of the node(s) is not sufficient. For example, in an
autonomous underwater vehicle (AUV), or an orbiting satellite,
the sensing platform is not only subject to motion but also to
rotation. Hence, next to position, determining the orientation
of the body also forms a key component, and is essential for
controlling, maneuvering, and monitoring purposes.
The orientation is sometimes referred to as attitude

(aerospace applications) or tilt (for industrial equipments
and consumer devices). Traditionally, position and orientation
are treated separately even though they are closely related. The
orientation of a body is usually measured using inertial mea-
surement units (IMUs) comprised of accelerometers [9] and
gyroscopes. However, IMUs generally suffer from accumulated
errors often referred to as drift errors. The drift calibration is
typically achieved using different sensor technologies including
vision, magnetometers, ultra wide band (UWB), or GPS [10],
[11], leading to dependencies between these technologies.
Sometimes these different sensors cannot be coherently fused,
for instance magnetometer based calibration needs an undis-
torted magnetic environment, which is typically difficult to
guarantee.
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GPS-based attitude determination [12]–[14] is closely related
to our work, in which multiple antennas on a platform are used.
Here, the attitude is estimated from GPS carrier phase measure-
ments which involves a complicated integer problem with no
unique solution in general.

B. Contributions

We propose a framework for joint position and orientation
estimation of a rigid body in a three-dimensional space by bor-
rowing techniques from classical sensor localization, i.e., using
only range measurements between all the sensor-anchor pairs.
We consider a rigid body on which a few sensor nodes are
mounted. The absolute position of the rigid body is not known.
However, the topology of how the sensors are mounted on the
rigid body is known up to a certain accuracy. The orientation
of the rigid body is expressed as a rotation matrix and the ab-
solute position of the rigid body (instead of the absolute posi-
tion of each individual sensor) as a translation vector. In other
words, the absolute position of the sensors is expressed as an
affine function of the Stiefel manifold.
The maximum likelihood (ML) estimators for the original

problem involve solving a constrained (non-convex) non-linear
least-squares (NLS) problem, which is in general difficult
to solve. In order to simplify this problem, we linearize the
problem by squaring the measurements. We use the linearized
model in a least-squares (LS) estimator to jointly estimate the
rotation matrix (to begin with, its structure is ignored) and the
translation vector. Since rotation matrices are unitary matrices,
we also propose a unitarily constrained least-squares (CLS)
estimator and a simplified unitarily constrained least-squares
(SCLS) estimator, both of which solve an optimization problem
on the Stiefel manifold. The solutions from the proposed
estimators can be used as an initialization to solve the max-
imum-likelihood estimators or the original non-linear LS
problem if needed. We also derive a unitarily constrained
Cramér–Rao bound (CCRB), which is used as a benchmark for
the proposed estimators.
In many applications, the sensor topology might not be ac-

curately known, i.e., the known topology can be noisy. These
perturbations are typically introduced while mounting the sen-
sors during fabrication or if the body is not entirely rigid. To ac-
count for such perturbations, we propose a unitarily constrained
total-least-squares (CTLS) estimator and a simplified unitarily
constrained total-least-squares (SCTLS) estimator. The perfor-
mance of the proposed estimators is analyzed using simulations.
Using a sensor array with a known geometry not only enables
orientation estimation, but also yields a better localization per-
formance. The initial results on rigid body localization using
range measurements, viz., SCLS and SCTLS were proposed
in [1].
The proposed framework of rigid body localization can also

be used as an add-on to the existing IMU based systems to cor-
rect the drift errors, or in environments where inertial measure-
ments and/or positioning via GPS is not feasible. The proposed
framework is based on a static position and orientation, unlike
most of the orientation estimators which are based on inertial
measurements and a certain dynamical state-space model (e.g.,

see [10]). Hence, our approach is useful when there is no dy-
namic model available. We should stress, however, that the pro-
posed framework is also suitable for the estimation (tracking)
of dynamic position and orientation using a state-constrained
Kalman filter for instance, and some initial results on this topic
can be found in [15].

C. Outline and Notations

The remainder of the paper is organized as follows. The con-
sidered problem is described in Section II. The LS estimators
based on perfect knowledge of the sensor topology are discussed
in Section III, and the unitarily constrained Cramér–Rao bound
is derived in Section IV. The TLS estimators to account for per-
turbations on the topology are discussed in Section V. Numer-
ical results based on simulations are provided in Section VI. Fi-
nally, the paper concludes with some remarks in Section VII.
The notations used in this paper are described as follows.

Upper (lower) bold face letters are used for matrices (column
vectors). denotes transposition. refers to a block
diagonal matrix with the elements in its argument on the main
diagonal. denotes the vector of ones (zeros).
is an identity matrix of size . denotes the expectation

operation. is the Kronecker product. denotes the pseudo
inverse, i.e., for a full column-rank tall matrix the pseudo in-
verse (or the left-inverse) is given by , and
for a full row-rank wide matrix the pseudo inverse (or the
right-inverse) is given by . The right- or
left-inverse will be clear from the context. is an
vector formed by stacking the columns of its matrix argument
of size . is an matrix formed by the in-
verse operation on an vector. denotes
the condition number of a matrix . We use the matrix prop-
erty . Further, denotes
the element-wise squaring of a vector , and denotes the
matrix trace operator. A covariance matrix is denoted by bold
upper case with specified subscripts: denotes the covari-
ance matrix of a random vector . Finally, is defined from
the Cholesky decomposition .

II. PROBLEM FORMULATION AND MODELING

A. Problem Formulation

Consider a network with anchors (nodes with known
absolute locations) and sensors in a 3-dimensional space.
The sensors are mounted on a rigid body as illustrated in
Fig. 1. The wireless sensors are mounted on the rigid body
(e.g., at the factory), and the topology of how these sensors are
mounted is known up to a certain accuracy. In other words,
we connect a so-called reference frame to the rigid body, as
illustrated in Fig. 1, and in that reference frame, the coordi-
nates of the th sensor are given by the known 3 1 vector

. The sensor topology is basically de-
termined by the matrix . Let the
absolute coordinates of the th anchor and the th sensor be de-
noted by a 3 1 vector and , respectively, where is not
known. The absolute positions of the anchors and the sensors
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Fig. 1. An illustration of the sensors on a rigid body undergoing a rotation and
translation.

are collected in the matrices
and , respectively.
1) Rigid Body Transformation: A Stiefel manifold [16] in

three dimensions, denoted by , is the set of all 3 3 unitary
matrices , i.e.,

The absolute position of the th sensor can be written as an
affine function of a point on the Stiefel manifold, i.e.,

(1)

where denotes the unknown translation. More specif-
ically, the parameter vector refers to the unknown position of
the rigid body. The combining weights are the known coordi-
nates of the th sensor in the reference frame. This means that
the unknown unitary matrix actually tells us how the rigid
body has rotated in the reference frame. When there is no ro-
tation, then we have . The relation in (1) is sometimes
also referred to as the rigid body transformation. The rotation
matrices can uniquely represent the orientation of a rigid body
unlike Euler angles or unit quaternions (see [17] for more de-
tails). The rigid body transformation is also used in computer
vision applications [18]–[20].
With (1), the absolute position of all the sensors can be written

as

(2)

where is the unknown transformation matrix.
2) Range Measurements: The proposed framework is gen-

eral and can be applied to range estimates obtained from any one
of the standard ranging techniques (e.g., two-way ranging based
on TOAmeasurements [2], [5]). The framework is valid as long
as the range estimates between all the sensor-anchor pairs are
available. Further, we assume that the body position is nearly

static during the ranging process, i.e., the linear and angular ve-
locities are negligible compared to the propagation speed.
Let the range (or the Euclidean distance) between the th

anchor and the th sensor be denoted by .
The noisy range measurement between the th anchor and the
th sensor can be expressed as

(3)

where is the stochastic noise resulting from
the ranging process. The ranging noise ;

is a sequence of independent random vari-
ables whose variance is assumed to be known or easily
estimated.
3) Problem Statement: Having introduced the rigid body

transformation in (1) and the measurement model (3) we can
now formally state the rigid body localization problem as fol-
lows.

Problem statement (Rigid Body Localization): Given one
range measurement between each sensor-anchor pair, i.e.,
as in (3), the ranging noise variance , for
and , the positions of the anchors , and the
topology of the sensors on the rigid body determined by the
matrix , jointly estimate the position and orientation

of the rigid body.
The ML estimator for jointly estimating the orientation and

translation is to solve the following optimization problem

(4a)

(4b)

The above problem is a non-linear and a non-convex optimiza-
tion problem, and is in general difficult to solve. To simplify
this problem, we next linearize the model in (3), which can then
be solved using linear LS based estimators. The solution from
the proposed estimators can then be used as an initialization to
solve the above NLS problem if needed.

B. Squared-Range Measurements

The model in (3) is non-linear in , , and . Therefore, we
linearize the non-linear model in (3) by squaring it. Squaring
the measurements in (3) results in a noise term with a non-neg-
ative known mean1 . Subtracting that mean from the
squared-range measurements between the th anchor and the
th sensor, we obtain

(5)

where

(6)

1For low noise levels, this non-negative mean which is simply the variance
of the range error in (3) can be ignored.
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is the new zero-mean noise term due to squaring. Collecting
these new squared-range measurements between the th sensor
and all the anchors in

we can write (5) in a vector form as

(7)

where

is known, and

Subtracting the knowns in (7) from the measurements, we
arrive at

(8)

We next eliminate the vector in (8) using an isometry
decomposition of the projection matrix

where is an matrix obtained by collecting
orthonormal basis vectors of the null-space of such that

. Pre-multiplying both sides of (8) with ,
we arrive at

(9)

Stacking (9) for all the sensors, we obtain

(10)

where we define the following matrices:

The linear model in (10) can then be compactly expressed as

(11)

where we have introduced the following matrices:

Vectorizing (11) leads to

(12)

where

Using the rigid body transformation in (2), we can relate the
measurements in (11) and the transformation matrix . Sub-
stituting (2) in (11), we arrive at the following linear model

(13)

which can then be vectorized to

(14)

where

is the unknown parameter vector that has to be estimated.
The covariance matrix of the noise in (14) is denoted by

where is the covariance matrix of , and is de-
veloped in Appendix A. To whiten2 the noise, the vectorized
model in (14) (equivalently the model in (12)) is transformed to

(15)

In the next section, we propose several estimators of from
the processed squared-range measurements .

III. LINEAR LEAST-SQUARES ESTIMATORS

To begin with, we first look at the (topology-agnostic) clas-
sical LS-based location estimator.

A. Classical LS-Based Localization (Topology-Agnostic)

We use the classical (weighted) LS estimator of from in
(15) to estimate the absolute position of the sensors as

(16)

which is unique if has full column-rank, which requires
. Finally, we have

2The noise covariance is parameter dependent, and hence, for whitening it we
use an estimated covariance matrix as discussed in Section VI.
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In this classical LS-based localization, the knowledge about the
known sensor topology is not exploited, and the absolute posi-
tion of each sensor is estimated separately.

B. Unconstrained LS Estimator

Note that the unknown parameter vector has a structure be-
cause is a unitary matrix. We propose to esti-
mate ignoring its structure from in (15) using the following
(weighted) LS estimator

(17)

The estimator in (17) will have a unique solution if the matrix
has full column-rank, i.e., and are both full-

column rank, and this requires . Finally, we
have

(18)

C. Unitarily Constrained Estimators

The LS estimate obtained in (18) is typically (in pres-
ence of noise) not a rotation matrix. Hence, we next propose two
LS estimators with a unitary constraint on . Both these esti-
mators solve an optimization problem on the Stiefel manifold.
For this purpose, we decouple the rotations and the transla-

tions in (2) by eliminating the all-one vector , and hence the
matrix . In order to eliminate , we use an isometry ma-
trix , and as earlier, this matrix is obtained by the isometry
decomposition of , given by

where is an matrix obtained by collecting
orthonormal basis vectors of the null-space of such that

. Right-multiplying both sides of (2) with
leads to

(19)

Combining (11) and (19) we get the following linear model

which can be further simplified as

(20)

where we have introduced the following matrices:

Vectorizing (20), we obtain

(21)

where , , , and
. The covariance matrix of the noise in (21) is

denoted by

We will estimate based on a (weighted) LS formulation with
a unitary constraint, as given by

(22a)

(22b)

The optimization problem in (22) is nonconvex due to the
quadratic equality constraint, and does not generally admit a
known closed-form solution. However, such optimization prob-
lems can be solved iteratively as will be discussed later on. Be-
fore presenting the iterative algorithm, we will first look at a
simplified version of (22).
1) Simplified Unitarily Constrained LS (SCLS) Estimator:

The optimization problem in (22) can be simplified and brought
to the standard form of an orthogonal Procrustes problem (OPP)
with a non-iterative known solution. The OPP is generally used
to compute rotations between subspaces.
Assuming that has full column-rank (this can be ensured

with optimal anchor placement [21]), andmultiplying both sides
of (20) with , we obtain

(23)

where and . The simplified unitarily
constrained LS (SCLS) problem is then given as

(24)

The SCLS estimator in (24) is suboptimal for the original
problem in (22) due to the colored noise in (23).
Theorem 1 (Solution to the SCLS Problem): The constrained

LS problem in (24) admits a non-iterative known solution given
by , where and are obtained from the
singular value decomposition (SVD) of in
which matrices , are unitary, and

is diagonal. The obtained solution is unique if and only if
is non-singular.
Proof: See [22, pg. 601].

Remark 1 (Alternative SCLS Formulation): Instead of
pseudo inverting in (20) to arrive at (23), we can alterna-
tively pseudo-invert in (20) to arrive at another OPP given
by

(25)

where . The OPP in (25) has a closed-form solution
, where the unitary matrices and

are obtained from the SVD of .
Pseudo inverting can often assure better conditioning as

the topology matrix is usually designed at the factory. However,
the alternative SCLS formulation in (25) cannot be used in case
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of perturbations on the sensor positions, which is discussed in
Section V. Hence, from now on we will not consider the ap-
proach in Remark 1.
Subsequently, the SCLS estimate of the translation can be

computed using obtained by solving (24). We can write
(14) equivalently as

(26)

where , and .
Substituting in the above model, and
moving the knowns to the left side, we get the following linear
model

The SCLS estimate for the translations is given by the following
LS estimate

(27)

Since we solve the SCLS estimates in an unweighted LS sense,
we need not compute the related noise covariance estimates.
2) Unitarily Constrained LS (CLS) Estimator: The CLS es-

timates are obtained by solving the optimization problem that
was introduced earlier in (22), which we recall as

(28a)

(28b)

The optimization problem in (28) is a generalization of
the OPP, and is sometimes also referred to as the weighted
orthogonal Procrustes problem (WOPP) [23]. Unlike the OPP
of (24), which has a closed-form analytical solution, the opti-
mization problem (28) does not admit a closed-form solution.
However, it can be solved using iterative methods based on
either Gauss-Newton’s method, Newton’s method [23], or
steepest descent [24]. In this paper, we restrict ourselves to
Gauss-Newton’s method for solving (28) because of the avail-
ability of a good initial value (e.g., the closed-form solution
from Theorem 1) for the iterative algorithm.
The optimization problem in (28) is a LS problem on the

Stiefel manifold. To simplify the notations we write (28) in a
more general form:

(29)

and for solving (28) we use

(30)

The algorithm is derived in Appendix B, and it is summarized
as Algorithm 1. A more profound treatment on WOPP is found
in [23].

Algorithm 1: CLS based on Gauss-Newton’s method.

1. Compute initial value ,

2. initialize , , iteration counter , , and .

3. while

4. compute using (48)

5. compute a Gauss-Newton step

6. compute the optimal step-length using (50).

7. update , where is defined in
(46).

8. increment .

9. compute .

10. end while.

As before, the estimate for the translation can then be com-
puted using in (26). The CLS estimate for
the translation is given by the following (weighted) LS estimate

D. Topology-Aware (TA) Localization

A complementary by-product of the rigid body localization
is the topology-aware localization. In this case, the position and
orientation estimation is not the main interest, but the absolute
position of each sensor node has to be estimated, given that
the sensors follow a certain topology. This latter information
can be used as a constraint for estimating the sensor positions
rather than estimating them separately. For the rigidity con-
straint, using and obtained from either the SCLS or CLS
estimator, we can then compute the absolute positions of each
sensor on the rigid body as

(31)

IV. UNITARILY CONSTRAINED CRAMÉR–RAO BOUND

Suppose we want to estimate the unknown vector
from the range measure-

ments corrupted by independent noise
for , and , where the obser-
vations follow the non-linear model (3). We can compute the
CRB for any unbiased estimator of as described next.

A. Unconstrained CRB

The covariance matrix of any unbiased estimate of the param-
eter vector satisfies [25]
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where the Fisher information matrix (FIM) is given by

This is the Cramér–Rao bound theorem and
is the Cramér–Rao lower bound (CRB). Let us define

for . The com-
putation of the CRB for observations with Gaussian likelihoods
is straightforward, and is given as (32) at the bottom of the
page.

B. Constrained CRB

The FIM in (32), does not take into account the unitary con-
straint on the matrix , i.e., . Generally, if the pa-
rameter vector is subject to some continuously differen-
tiable (non-redundant) constraints , then with these
constraints, the resulting constrained CRB is lower than the un-
constrained CRB. In [26], it is shown that the constrained CRB
(CCRB) has the form

(33)

where is the FIM for the unconstrained estimation problem
as in (32), and an isometry matrix is obtained
by collecting orthonormal basis vectors of the null-space of the
gradient matrix

The non-redundant constraints ensure that the matrix is
full row-rank, and implies

while . For the unitarily constrained CRB
(CCRB) denoted by , we have to consider the
unitary constraint , which can be expressed by the
following non-redundant constraints

(34)

where the symmetric redundant constraints are discarded. The
gradient matrix for the constraints in (34) can be computed as
follows

An orthonormal basis of the null-space of the gradient matrix is
finally given by

The CCRB for TA-localization can be easily derived from
using the transformation of parameters [25].

Theorem 2 (Biased Estimator): An unbiased constrained es-
timator for does not exist, except for the noiseless case.

Proof: See Appendix C.
Due to Theorem 2, the mean-squared-error (MSE) of any uni-

tarily constrained estimator will be lower than the CCRB for
high noise levels. However, at low noise levels, the bias tends
to zero, and the CCRB gives a good lower bound on the MSE
of the unitarily constrained estimators.

V. UNITARILY CONSTRAINED TOTAL-LEAST-SQUARES

In the previous section, we assumed that the position of the
sensors on the rigid body in the reference frame, i.e., the matrix
, is accurately known. In practice, there is no reason to be-

lieve that errors are restricted only to the range measurements
and there are no perturbations on the initial sensor positions.
Such perturbations can be introduced for instance during fabri-
cation or if the body is not entirely rigid (e.g., wing flexing of
an aircraft).
Let us assume that the position of the th sensor in the refer-

ence frame is noisy, and let us denote the perturbation on
by , and the perturbation on by

. The covariance matrix of the
perturbation is denoted by . In other
words, we assume that the perturbations
are a sequence of independent and identically distributed (i.i.d.)
random vectors. To account for such errors in themodel, we next
propose total-least-squares (TLS) estimators again with unitary
constraints.

A. Simplified Unitarily Constrained TLS (SCTLS) Estimator

Taking the perturbations on the known topology into account,
the data model in (20) will be modified as

(32)
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where . Multiplying both sides of the above equation
with , we get

(35)

The solution to the datamodel in (35) admits a classical TLS for-
mulation, but with a unitary constraint. The SCTLS optimiza-
tion problem is given by

(36)

Similar to SCLS, the optimization problem in (36) admits a
known closed-form solution which makes it simplified com-
pared to the weighted problem discussed in the next section.
Also, the noise in (35) is not white leading to a suboptimal
solution.
Theorem 3 (Solution to SCTLS): The SCTLS problem in (36)

has the same solution as the simplified unitarily constrained LS
problem, i.e., .

Proof: See Appendix D.
We next estimate the translation vector . Taking the pertur-

bations into account, we can modify the model in (13) as

which can be vectorized and further simplified to

(37)

Using in the above model, the SCTLS estimator for the
translation taking perturbations into account, is then given by
the following (unweighted) LS problem

The algorithms to compute the SCTLS estimates are the same
as that of the SCLS estimator. As before, we solve SCTLS in
an unweighted LS sense, therefore, we need not estimate the
related noise covariance matrix for whitening.

B. Unitarily Constrained TLS (CTLS) Estimator

Similar to the CLS formulation, the TLS estimator can be de-
rived without pseudo inverting the matrix . The data model in
(20) taking into account the perturbations on the known sensor
topology is then given by

(38)

which can be further vectorized as

(39)

where , and .

Assuming that the pre-whitening matrix takes the block di-
agonal form with

, the CTLS optimization problem is given by

(40)

Theorem 4 (Solution to CTLS): Assuming that the covariance
matrix of the perturbation vector is a scaled identity matrix, the
unitarily constrained TLS problem in (40) has the same solution
as a specifically weighted CLS, i.e., it is the solution to

(41)

where matrix was defined earlier, and
is the specific weighting matrix defined in (57).

Proof: See Appendix E.
The optimization problem (41) does not have a closed-form

solution, and has to be solved iteratively using for instance
Gauss-Newton’s method (summarized in Algorithm 1) with

(42)

The CTLS estimates for the translations can be computed
similar to SCTLS as earlier, however, for CTLS we first pre-
whiten the noise. The covariance of the noise in (37) is de-
noted by an matrix

. We can then use a weighted LS estimator to
estimate the translations accounting for the perturbations. The
CTLS translation estimates are given by

VI. SIMULATION RESULTS

We consider sensors mounted on the vertices of a rigid
body (rectangle based pyramid as in Fig. 1) with

and anchors fixed at location

Let us define a function that maps angles
in degrees along each dimension into a rotation matrix, and its
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inverse which maps a rotation matrix into
corresponding angles in degrees (see [27] for details on con-
verting angles to a rotation matrix and vice versa). Collecting
the angles in a 3 1 vector , the rota-
tion matrix is then generated according to . We use a
translation vector . The simulations are aver-
aged over independentMonte-Carlo experiments.
The performance of the proposed estimators is analyzed in

terms of the root-mean-squared-error (RMSE) of the estimates
of , , and , and are respectively given as

where and denote the estimates during the thMonte-
Carlo experiment. Since the rotation matrix estimated using the
unconstrained LS estimator is not a valid rotation matrix, we
first project it onto using (51) before converting it into cor-
responding angles.
We use the same noise variance for all the range measure-

ments, i.e., for , and
. The covariance matrix of the noise , i.e., (see

Appendix A)

depends on the unknown parameter

Hence, to whiten it, we use the noisy range measurements

in (3) instead of to compute the estimated covariance matrix

We use this estimated covariance matrix for pre-whitening the
noise. Simulations are provided for different values of the nom-
inal ranging noise .
In Fig. 2, the RMSE of the estimates , , and for different

values of is shown. The estimators in Fig. 2 are LS based
where the topology of the sensors is assumed to be accurately
known. Due to Theorem 2, the RMSE of for the constrained
estimators is lower than the CCRB at high noise levels. The
saturation of the RMSE in Fig. 2(a) for follows from
the following lemma.
Lemma 1 (Frobenius Norm Induced Distance): For any ma-

trix and , such that, and , the
Frobenius norm induced distance is always upper bounded by

, i.e., .

However, the CCRB computed using (33) does not saturate
in this range as there exists no unbiased estimator for high noise
values as discussed in Theorem 2. Fig. 2(b) shows the RMSE in
degrees, which gives an insight into how the error on the range
measurements translates to the error on the estimated rotations.
For the considered scenario, the range error that yields a posi-
tioning accuracy of the order of 10 cm also yields an orientation
error accuracy of the order of 0.1 deg.
The bias of both the SCLS and CLS estimators is shown in

Fig. 2(c), and it can be seen that the bias tends to zero for
(as discussed in Theorem 2), whereas the unconstrained

LS is an unbiased estimator. The bias is computed as

We can see a significant (close to an order of magnitude) im-
provement in the performance of the location estimates when
the knowledge of the topology is exploited as compared to the
topology-agnostic case (see Fig. 2(d)). The performance of the
SCLS estimator is similar (slightly worse) to that of the itera-
tive CLS estimator. The resulting gap between the RMSE and
the root-CRB is reasonable, and thus the proposed estimators
are robust to the linearization via squaring.
Fig. 3 illustrates the effect of a bad anchor geometry, where

we use an ill-conditioned matrix with a condition number of
100. The performance of the SCLS estimators (based on pseudo
inverting ) deteriorates for scenarios with a bad anchor ge-
ometry, however, the performance of the CLS estimators is not
affected. Nevertheless, if the topology is not subject to pertur-
bations, the solution proposed in Remark 1 can be used for sce-
narios with a bad anchor geometry, in which a well-conditioned
can always be designed.

The convergence (i.e., , where

defined in (48)) of Gauss-Newton’s method with m
for the optimal step-size and a fixed step-size is shown in Fig. 4.
We can see that it is sufficient to use a fixed step-size at
low noise levels. As observed from the simulations, the iterative
algorithm requires typically ten or fewer iterations.
In order to analyze the performance of the estimators for

the case when the sensor topology is perturbed, we corrupt the
sensor coordinates in the reference frame with a zero mean i.i.d.
Gaussian random process of standard deviation .
The RMSE of the estimates of , , and using the uncon-
strained LS, SCLS/SCTLS, CLS and CTLS estimators is shown
in Fig. 5. The performance of these estimators is similar to that
of the LS-based estimators, except for the error floor, and this is
due to the model error (perturbations on the sensor topology).
The estimators hit the error floor for lower values of as in-
creases. With an ill-conditioned matrix , the performance of
the SCLS/SCTLS (and the unconstrained LS) estimator is worse
than the CLS and CTLS estimators.

VII. CONCLUSIONS

A framework for joint position and orientation estimation of
a rigid body based on range measurements is proposed.We refer
to this problem as rigid body localization. Sensor nodes can be
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Fig. 2. (a) RMSE of the estimated rotation matrix . The RMSE of the constrained estimators is upper bounded as discussed in Remark 1. (b) RMSE in degrees
of the estimated rotations. (c) Bias in the SCLS and CLS estimators for . Bias tends to zero for low noise variance. (d) RMSE of the estimated translation vector
along with the solution from the classical LS-based localization.

mounted on the rigid bodies (e.g., satellites, robots) during fab-
rication at the factory, and the geometry of how these sensors are
mounted is known a priori up to a certain accuracy. However,
the absolute position of the rigid body is not known. The orig-
inal non-linear problem is linearized via squaring of the range
measurements. The squared-range measurements between the
anchors and the sensors on the rigid body can then be used to
estimate the position and the orientation of the body. The posi-
tion and orientation of the rigid body is determined by a transla-
tion vector and a rotation matrix, respectively. Ignoring the fact
that the rotation matrix is unitary, an unconstrained estimator is
proposed. A number of unitarily constrained LS estimators is
also proposed, all of which solve an optimization problem on
the Stiefel manifold. All the proposed estimators are robust to
linearization via squaring. For good anchor geometries, the per-
formance of the SCLS estimator with a closed-form solution is
already reasonable. The gap between the RMSE and root-CCRB
of the SCLS and CLS estimates is negligible, however, the esti-
mators do not achieve the CCRB. In addition to this, constrained
TLS estimators that take into account the inaccuracies in the
known sensor topology are also proposed.

APPENDIX A
DERIVATION OF THE COVARIANCE MATRIX

In this section, we develop the covariance matrix used for
pre-whitening. Modeling the noise on the range measurements

as a zero-mean additive white Gaussian process having a
variance , we can compute the statistics (up to the second-
order) of the zero-mean noise in (6), i.e.,

(43)

as

where we use the fact that, if then
and . Collecting

, in the vector
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Fig. 3. Effect of bad anchor geometry ( ): (a) RMSE of the
estimated rotation matrix . (b) RMSE in degrees of the estimated rotations.
(c) RMSE of the estimated translation vector .

, in the vector

and , in the vector

Fig. 4. Convergence of Gauss-Newton iterations for range error .

we can write (43) compactly as

where

We can then compute the mean of as and
the covariance matrix of as

where

and

...
...

. . .
...

APPENDIX B
GAUSS-NEWTON ITERATIONS ON THE STIEFEL MANIFOLD

The Newton method to solve the WOPP is developed in [23],
and it is adapted to suit our problem. In this section, we derive
the Gauss-Newton iterations to solve the LS problems on the
Stiefel manifold.
The CLS and CTLS problems solve an optimization problem

on the Stiefel manifold of the form

(44)

We can represent any unitary matrix in the vicinity of a given
unitary matrix as

(45)

where the operator is defined as

(46)
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Fig. 5. Results for a perturbed topology . We use . (a) RMSE of
the estimated rotation matrix . (b) RMSE in degrees of the estimated rotations.
(c) RMSE of the estimated translation vector .

and is a skew-symmetric matrix

with . We use the matrix exponential
to map a point onto the Stiefel manifold .

We linearize the matrix exponential by using a first-order ex-
pansion of the matrix exponential

Using this linearization3 in (45) we get

We can then express as

which is a function of , i.e.,

(47)

where

(48)

Next, we solve the optimization problem in (44) iteratively
as follows. Using (47) in (44), we can transform the unitarily
constrained optimization problem into an unconstrained mini-
mization problem. More specifically, during the -th iteration
we compute the Gauss-Newton search direction by minimizing
the following unconstrained LS problem

(49)

and subsequently compute the rotation update

Here, is the step size. The optimal step size is obtained by
solving

(50)

whose solution is the root of the polynomial equation obtained
by expanding the matrix exponential [23], or can be computed
simply by line search. With a good initial point and at low noise
levels we can take .
The solution of the SCLS algorithm can be used as an

initial point for the iterative algorithm. Alternatively, the initial
point can be computed by orthonormalizing the solution of the
unconstrained LS solution . The latter orthonormalization
procedure solves a special case of OPP, and is given as

(51)

3Instead of a matrix exponential, a Cayley transformation
can be alternatively used, which can be then linearized by using

a first-order expansion of (see [23]). As a result, we get
a similar expression .
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(56)

APPENDIX C
PROOF OF THEOREM 2

We prove the claim of Theorem 2 by contradiction. Let there
exist an unbiased constrained estimator such that .
Then where is the estimation error such that

or . Since , we have
, and hence

(52)

Using and taking expectations on both sides, (52)
can be further simplified to

(53)

Due to the assumption that , the left-hand side of (53)
is zero, but, the right-hand side is strictly less than zero. Hence
a contradiction occurs, unless the noise is zero.

APPENDIX D
PROOF OF THEOREM 3

The proof from [18] is provided here to aid the understanding
of the proof of the next theorem. For any , we can re-write the
constraint in (36) as

Using the unitary constraint on , and pseudo-inverting the
wide matrix we get

We can now re-write the objective in (36) to compute the min-
imum-norm square solution

The solution to the SCTLS problem is then obtained by op-
timizing the term depending only on , i.e., by maximizing

. This is the same cost as that of the SCLS problem
(see [22, pg. 601]). Hence, the solution to the unitarily con-
strained TLS problem is

(54)

where the matrices and are obtained by computing the
SVD of .

APPENDIX E
PROOF OF THEOREM 4

For any the constraint in the optimization problem (39) can
be written as

(55)

Multiplying both sides of (55) with the pseudo-inverse of the
wide-matrix given by

we get the minimum-norm solution to the system
of equations in (55) which is given by (56) at the top of the page.

Assuming that the covariance matrix of the perturbation
vector is a scaled identity matrix, it is straightforward to verify
that the objective in (40) using (56) simplifies to

where

(57)

Hence, the solution to the optimization problem (40) is equiva-
lent to a specifically weighted CLS.
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