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Abstract—Near-field source localization is an important aspect
in many diverse areas such as acoustics, seismology, to list a
few. The planar wave assumption frequently used in far-field
source localization is no longer valid when the sources are in the
near field. Near-field sources can be localized by solving a joint
direction-of-arrival and range estimation problem. The original
near-field source localization problem is a multi-dimensional non-
linear optimization problem which is computationally intractable.
In this paper, we use a grid-based model and by further
leveraging the sparsity, we can solve the aforementioned problem
efficiently using any of the off-the-shelf !1-norm optimization
solvers. When multiple snapshots are available, we can also
exploit the cross-correlations among the symmetric sensors of the
array and further reduce the complexity by solving two sparse
reconstruction problems of lower dimensions instead of a single
sparse reconstruction problem of a higher dimension.

I. INTRODUCTION
Source localization is an important aspect for target tracking

and location-aware services, and has many applications in
the field of seismology, acoustics, radar, sonar, and oceanog-
raphy. Bearing or direction-of-arrival (DOA) estimation for
narrowband signals is an extensively studied topic [1], [2].
DOA estimation can be categorized into two types, based
on the distance between the source and the antenna array:
(a) far-field (e.g., r ! 2D2/λ), and (b) near-field source
localization, where r is the range between the source and
the phase-reference of the array, D is the array aperture, and
λ is the wavelength of the source signal. In far-field source
localization, the wavefront of the signal impinging on the
array is assumed to be planar [1], [3]. However, the curvature
of the wavefront is no longer negligible when sources are
located close to the array (i.e., in the near field or Fresnel
region). Therefore, the algorithms that leverage the planar-
wave assumptions for DOA estimation are no longer valid. In
this work, we focus on near-field source localization, which is
traditionally done by a joint DOA and range (distance between
the source and the phase-reference of the array) estimation.
Traditional approaches to the near-field localization problem

extend techniques like multiple signal classification (MUSIC)
to a two-dimensional field [4]. However, the performance of
the MUSIC algorithm deteriorates at low SNRs and when the
sources are correlated. In [5], the wavefront is assumed to
be piece-wise linear, and the uniform linear array (ULA) is
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divided into several subarrays. The wavefront of the signal
impinging on each subarray is then assumed to be planar.
By using the method proposed in [1], [3] at each subarray,
the location can be estimated after gathering the DOA of
each subarray. In [6]–[8], instead of using the piece-wise
linear approximation, a quadratic approximation (the so-called
Fresnel approximation) of the wavefront is made, which makes
the wavefront neither planar nor spherical. The phase delay
is no longer linear with the position of the antenna element,
instead, it varies quadratically with the array position and it is
characterized by the azimuth (DOA) and range of the sources
(see [6] for more details). However, the array has to satisfy
the Nyquist sampling rate criterion in space, i.e., the spacing
between two adjacent antennas needs to be less than half a
wavelength.
In this paper, we localize multiple narrowband near-field

sources by jointly estimating their DOA and range. Using the
sparse representation framework, we form an overcomplete
basis constructed using a sampling grid that is related to the
possible source locations. By doing so, the original non-linear
parameter estimation problem is transformed into a linear ill-
posed problem. Assuming the spatial spectrum is sparse, we
can localize the sources with high resolution by solving the
well-known "1-regularized least-squares optimization problem.
When multiple snapshots are available, using the Fresnel
approximation and assuming that the sources are uncorrelated,
we can decouple the DOA and range in the correlation domain.
This allows us to significantly reduce the complexity, by solv-
ing two inverse problems of smaller dimensions one by one,
instead of solving one inverse problem of a higher dimension.
The key contribution of this paper is this complexity reduction
along with high resolution near-field source localization.

II. PROBLEM FORMULATION

Consider K narrowband sources present in the near field
impinging on an array of M = 2p + 1 sensors as illustrated
in Fig. 1. Without loss of generality, it is assumed that the
phase reference of the array is at the origin, and the sensors
are placed at location indices in the range [−p, p]. Denoting
the spacing between two adjacent sensors as δ, the position
of the m-th sensor will be mδ where m ∈ [−p, p]. The signal
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Fig. 1: A linear array receiving a signal from a near-field point
source.

received by the m-th sensor at time t can be expressed as

ym(t) =
K
∑

k=1

sk(t) exp(j
2π

λ
(rm,k − rk)) + wm(t), (1)

where
rm,k =

√

rk +m2δ2 − 2mδrk sin(θk) (2)

represents the distance between the m-th sensor and the k-
th source, rk is the range from the k-th source to the phase
reference, sk(t) is the signal radiated by the k-th source
characterized by the DOA-range pair (θk, rk), λ denotes the
wavelength, and wm(t) denotes the additive noise.
Stacking the measurements in y(t) =

[y−p(t), . . . , yp(t)]T ∈ CM×1, we get

y(t) =
K
∑

k=1

a(θk, rk)sk(t) +w(t), for t = t1, t2, . . . , tT ,

(3)
where T denotes the number of snapshots, a(θk, rk) ∈
CM×1 is the so-called steering vector, and w(t) =
[w−p(t), . . . , wp(t)]T ∈ CM×1 is the noise vector. The non-
linear measurement model in (3) can be concisely written as

y(t) = A(θ, r)s(t) +w(t), (4)

where A(θ, r) = [a(θ1, r1), a(θ2, r2), . . . , a(θK , rK)] ∈
CM×K is the array manifold matrix, and s(t) =
[s1(t), . . . , sK(t)]T ∈ CK×1 is the source vector.

Problem statement (Near-field localization). Given the mea-
surements y(t), and the mapping (θ, r) → A(θ, r), find the
unknown locations of the near-field sources characterized by
(θk, rk) for all k, as well as their number K .

III. GRID-BASED MODEL

We provide a framework for localizing multiple near-
field sources based on sparse reconstruction techniques. More
specifically, we aim to jointly estimate the DOA θ =
[θ1, θ2, . . . , θK ]T and the range r = [r1, r2, . . . , rK ]T . In this
section, a single snapshot case is considered, with T = 1 in
(4). The problem in (4) as it appears is a non-linear parameter
estimation problem, where the matrix A(θ, r) depends on the

unknown source locations (θ, r). In order to jointly estimate
both the DOA and range using the data model in (4), a multi-
dimensional non-linear optimization over both θ and r is
required. This optimization problem is clearly computationally
intractable.
Suppose all possible source locations reside in the domain

θk ∈ [θmin, θmax] and rk ∈ [rmin, rmax] for all k = 1, . . . ,K .
We can then cast the joint DOA-range estimation problem
as a sparse reconstruction problem, where we discretize the
θ-interval into Nθ and r-interval into Nr bins of resolution
∆θ and ∆r, respectively. This discretization results in an
overcomplete representation of A in terms of the sampling
grid (θ̄, r̄) that includes all the source locations of interest
with θ̄ = [θ̄1, θ̄2, . . . , θ̄Nθ

]T and r̄ = [r̄1, r̄2, . . . , r̄Nr
]T . We

construct a matrix with steering vectors corresponding to each
potential source location as its columns:

A(θ̄, r̄) = [a(θ̄1, r̄1), a(θ̄1, r̄2), . . . , a(θ̄N , r̄N )] ∈ C
M×N ,

where N = NθNr. The matrix A is now known, and does not
depend on the unknown variables (θ, r). Note that the number
of potential source locations N will typically be much greater
than the number of sources K or even the number of sensors
M .
The signal is now represented by an N × 1 vector x(t),

where every source can be found as a non-zero weight
xn(t) = sk(t) if source k comes from (θ̄n, r̄n) for some k and
is zero otherwise, i.e., the dominant peaks in x(t) correspond
to the true source locations. The discrete grid-based model for
a single snapshot is given by

y =
N
∑

n=1

a(θ̄n, r̄n)xn +w

= A(θ̄n, r̄n)x+w.

(5)

This model allows us to transform the non-linear parameter
estimation problem into a sparse recovery problem based
on the central assumption that the vector x is sparse. An
ideal measure for the sparsity of x is its "0(-quasi) norm
‖x‖0, and mathematically we must solve for argmin ‖x‖0
subject to ‖y −A(θ̄n, r̄n)‖

2
2 ≤ ε, where the parameter ε

controls how much noise we wish to allow. However, this
is a mathematically intractable combinatorial problem even
for modestly sized problems. Hence, to simplify this problem
we use an "1-norm regularization, which is the traditional
best convex surrogate of the "0(-quasi) norm. The inverse
problem can be solved using an "1-regularized least-squares
(LS) methodology which is given by

x̂ = arg min
x∈CN×1

‖y−A(θ̄, r̄)x‖
2
2 + µ‖x‖1, (6)

where µ is the sparsity regulating parameter. This optimization
problem can be solved using any of the popular solvers
available off-the-shelf (e.g., iterative thresholding, matching
pursuit).



IV. FRESNEL APPROXIMATION
Using the Taylor series expansion of (2), and approximating

this up to the second order, we get the so-called Fresnel
approximation, which is given by

rm,k ≈ rk −mδ sin θk +m2δ2
cos2 θk
2rk

.

We can now approximate τm,k = 2π
λ
(rm,k − rk) as

τm,k ≈ −m
2πδ

λ
sin(θk) +m2πδ

2

λrk
cos2(θk)

= mωk +m2φk (7)

where we re-parameterize the DOA and range, respectively as

ωk = −
2πδ

λ
sin(θk) and φk =

πδ2

λrk
cos2(θk). (8)

Using the approximation for τm,k in (1), we get

ym(t) ≈
K
∑

k=1

sk(t)e
j(mωk+m2φk) + wm(t). (9)

Stacking the measurements from all the M sensors, we get

y(t) =
K
∑

k=1

ã(ωk,φk)sk(t) +w(t), for t = t1, t2, . . . , tT ,

(10)
where ã(ωk,φk) = [e−jpωkejp

2φk , . . . , 1, . . . , ejpωkejp
2φk ]T ∈

CM×1 is the modified steering vector. The output of the ULA
can now be written as the following non-linear measurement
model

y(t) = Ã(ω,φ)s(t) +w(t), (11)

where

Ã(ω,φ) = [ã(ω1,φ1), ã(ω2,φ2), . . . , ã(ωK ,φK)] ∈ C
M×K

is the array manifold, and s(t) and w(t) are the source and
noise vectors, respectively.
As before, we can construct an overcomplete representation

also for Ã using the sampling grid (θ̄, r̄) that includes all
possible source locations. This discretization results in a
known matrix with steering vectors corresponding to each
potential source location as its columns:

Ã(ω̄, φ̄) = [ã(ω̄1, φ̄1), ã(ω̄1, φ̄2), . . . , ã(ω̄N , φ̄N )] ∈ C
M×N ,

where ω̄n = − 2πδ
λ

sin(θ̄n) and φ̄n = πδ2

λr̄n
cos2(θ̄n) for all

n ∈ {1, . . . , N}. The discrete grid-based model is finally given
by

y(t) = Ã(ω̄, φ̄)x(t) +w(t), (12)

and the corresponding inverse problem for a single snapshot
can be solved using an "1-regularized least-squares optimiza-
tion problem as earlier. Solving the near-field localization
problem using sparse regression with or without Fresnel ap-
proximation for a single snapshot incurs the same complexity.
Moreover, this approximation can even deteriorate the range
estimation (for more details see [6]). However, when multiple
snapshots are available, the structure of the Fresnel approxi-
mated array manifold matrix allows us to significantly reduce
the computational complexity.

V. TWO-STEP ESTIMATOR WITH MULTIPLE SNAPSHOTS

When there are multiple measurements available, we can
stack (5) for the batch of T measurements into a matrix

Y = A(θ̄, r̄)X+W (13)

where Y = [y(t1), . . . ,y(tT )] ∈ CM×T , and matrices X and
W are defined similarly. An important point to be noted here
is that the matrix X is sparse only spatially, and is generally
not sparse in time. A straightforward approach would be to
use a joint sparsity promoting "2/"1-norm regularization, or
an "1-SVD [9] algorithm to solve the inverse problem. In
this paper, we propose to reduce the involved computational
complexity of 2D-gridding by solving an inverse problem of
smaller dimensions in two-steps. We do this by exploiting the
spatial cross-correlation between the symmetric sensors, and
the fact that the structure of the Fresnel approximated model
naturally decouples the DOA and range.
We now make the following assumptions1:

(a1) The source signals are mutually independent
and are modeled as independent identically
distributed (i.i.d.) complex circular random
variables with zero mean and covariance matrix
Et{s(t)sH(t)} = diag(σ2

s,1, . . . ,σ
2
s,K).

(a2) The noise is modeled as a zero-mean spatially white
Gaussian process, and it is independent of the source
signals. The noise covariance matrix is given by
Et{w(t)wH(t)} = σ2

wI.
Under assumptions (a1) and (a2), the spatial correlation be-
tween the m-th and n-th sensor can be written as
ry(m,n) = Et{ym(t)y∗n(t)}

=
K
∑

k=1

σ2
s,ke

j(m−n)ωk+j(m2
−n2)φk + σ2

wδ(m− n)

where δ(.) represents the Dirac function, Et{sk(t)s∗k(t)} =
σ2
s,k denotes the signal power of the k-th source, and σ2

w is
the noise variance. Notice that when n = −m the spatial
correlation is independent of the parameter φk [10], [11], and
we arrive at

ry(−m,m) = Et{y−m(t)y∗m(t)}

=
K
∑

k=1

σ2
s,ke

−2mωkj + σ2
wδ(−2m). (14)

This means that by exploiting the cross-correlation between
the symmetric sensors, we can transform the original 2D (DOA
and range) estimation into a 1D (DOA) estimation. Stacking
(14) for all the symmetric sensors, we can build a virtual far-
field scenario:

ry = Aω(ω)rs + σ2
we, (15)

where ry = [ry(−p, p), . . . , ry(0, 0), . . . , ry(p,−p)]T ∈
CM×1, rs = [σ2

s,1, . . . ,σ
2
s,K ]T ∈ CK×1, and

e = [0T
p , 1,0

T
p ]

T ∈ CM×1, and the corresponding

1These assumptions are required only for the two-step estimator discussed
in Section V.



virtual array gain pattern for the k-th source
denoted by aω(ωk) can be expressed as aω(ωk) =
[e−j2pωk , . . . , 1, . . . , ej2pωk ]T ∈ CM×1, with the array
manifold Aω(ω) = [aω(ω1), aω(ω2), . . . , aω(ωK)] ∈ CM×K .
In practice, the vector ry containing the statistical correlations
is approximated using the measurements from (13).

A. Step-1: DOA estimation
As before, we can construct an overcomplete basis Aω but

now with only Nθ columns corresponding to potential source
directions of arrival (DOAs) using the sampling grid θ̄, i.e.,

Aω(ω̄) = [aω(ω̄1), . . . , aω(ω̄Nθ
)] ∈ C

M×Nθ ,

where ω̄n = − 2πδ
λ sin(θ̄n) for all n ∈ {1, . . . , Nθ} as defined

earlier. The signal is represented by an Nθ × 1 vector u(t),
where every source can be found as a non-zero weight un(t) =
sk(t) if source k comes from direction θ̄n for some k and is
zero otherwise, i.e., the dominant peaks in u(t) correspond to
the true source locations. The discrete grid-based model in the
correlation domain is then given by

ry = Aω(ω̄)u+ σ2
we. (16)

Note that the number of potential source DOAs Nθ will
typically be much greater than the number of sensors M also
in the correlation domain, and the model in (16) is still ill-
posed. Hence, we solve for the unknown vector u using an
"1-regularized LS minimization problem which is given by

û = arg min
u

‖ry −Aω(ω̄)u‖22 + µ1‖u‖1, (17)

where µ1 is the sparsity regulating parameter. Alternatively,
when the noise variance σ2

w is known, the unknown vector u
can be obtained by solving

arg min
u

‖ry −Aω(ω̄)u− σ2
we‖

2

2 + µ1‖u‖1.

B. Step-2: range estimation
Let θ̂ be the estimated DOAs from step-1, and K̂ denote

the number of DOAs detected (i.e., K̂ = ‖û‖0). We now
use the sampling grid (θ̂, r̄) to form an overcomplete basis
A(θ̂, r̄) ∈ CM×K̂Nr to arrive at

Y = A(θ̂, r̄)X̃+W, (18)

where X̃ is obtained by removing some specific rows of the
signal matrix X. In order to solve the inverse problem in (18)
we use the "1-SVD algorithm. Note that in step-2 for range
estimation we do not use the Fresnel approximation anymore.
For the sake of completeness, the "1-SVD algorithm in [9] is
briefly summarized as follows.
Let Y = UΣVH be the singular value decomposition

(SVD) of the data matrix. Keep a reduced M × K̂ matrix
Ysv = UΣDk = YVDk, where Dk = [Ik,0T

K̂×(T−K̂)
].

The reduced data matrix contains most of the signal power,
and forms the basis for the signal subspace. Similarly, let
X̃sv = X̃VDk and Wsv = WVDk, to arrive at

Ysv = A(θ̂, r̄)X̃sv +Wsv, (19)

which can be expressed in vector form (column by column)
as

ysv(k) = A(θ̂, r̄)x̃sv(k) +wsv(k), for k = 1, . . . , K̂.

Here, each column corresponds to a signal subspace singular
vector. The reduced data matrix is only spatially sparse, and
not in terms of the singular vector index k. In order to take
this effect into account, we use a different prior obtained by
computing the "2-norm of the singular values of a particular
spatial index of x̃sv(k), i.e., x̃('2)

m,sv =
√

∑K
k=1(x̃m,sv(k))2, for

m ∈ [−p, p]. Note that the "2-norm can be computed for all
snapshots instead of only the signal subspace singular vectors,
however, the former technique adds more computational com-
plexity especially when T ! K̂ [9]. Now, we can find the
range by minimizing

‖Ysv −A(θ̂, r̄)X̃sv‖
2
F + µsv‖x̃

('2)
sv ‖1,

where x̃
('2)
sv = [x̃('2)

−p,sv, . . . , x̃
('2)
p,sv]T , and the parameter µsv

controls the spatial sparsity.

Remark 1 (Complexity reduction with multiple snapshots).
Jointly estimating the DOA and range by applying the "1-
SVD algorithm on the model (13) costs O((KNθNr)3). Using
the proposed two-step estimator, the complexity is reduced
significantly to O(KN3

r ) (reduction by a factor of O(N3
θ ))

with an additional complexity of solving the inverse problem
in (17), which costs for example, O(Nθ log(Nθ)) using the
iterative thresholding algorithm [12]. For a typical problem
with Nr = 15 andNθ = 180 points on the grid, the complexity
reduction is significant.

Remark 2 (Array geometry). Any array (uniform or non-
uniform) can be used to solve for the variables (θ, r) based
on the optimization problem in (6). For the two-step approach,
any symmetric array (uniform or non-uniform) can be used.

VI. SIMULATIONS
We consider a ULA with M = 15 sensors placed such that

the inter-sensor spacing is δ = λ/41, where λ represents the
wavelength of the narrowband source signals. For this array,
the far-field distance is beyond 2D2 = 24.5λ, and any source
within the range of 24.5λ from the array will be in the near
field.
We compare the proposed algorithms with matched-filter

beamforming [2] for a single snapshot scenario. For the
multiple snapshot scenario we compare the performance also
with the 2D-MUSIC algorithm [4]. The optimization problems
in the proposed algorithms are solved using CVX [13]. The
regularization parameter is chosen via cross-validation.
In Fig. 2, we illustrate the joint DOA and range estimation

obtained by solving the sparse regression problem for a
single snapshot scenario. We consider two sources at locations
(0◦, 5λ) and (10◦, 10λ). The SNR is 20 dB with T = 1. As
can be seen from the plots, high resolution can be achieved
by using the sparse modeling framework as compared to the

2To avoid aliasing when the virtual far-field model in (15) is used.
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Fig. 2: Joint DOA and range estimation. Two near-field sources with
DOAs: 0◦ and 10◦, and ranges 5λ and 10λ. SNR = 20 dB, and
T = 1. The sampling grid has a resolution of∆θ = 10◦ and∆r = λ.

conventional beamforming technique. The performance loss
with and without (w/o) the Fresnel approximation for the
considered scenario is negligible.
In Fig. 3, we show the proposed two-step estimator for

near-field source localization. We consider three near-field
sources at locations (0◦, 5λ), (0◦, 17λ), and (50◦, 8λ). The
simulations are provided for SNRs of 10 dB and 30 dB
with T = 200 snapshots. In the two-step estimator, we solve
for the DOAs in the correlation domain in which the range
parameters are naturally decoupled from the DOAs (due to the
Fresnel approximation). In the second step, we solve for the
range using the "1-SVD algorithm where we use the number
of sources as K̂ from step-1. Even though 2D-MUSIC can
achieve a high resolution in the DOA domain, its performance
deteriorates along the range domain especially when two
sources share the same DOA. The two-step approach would
further allow to increase the gridding resolution because of
the involved smaller overcomplete dictionary as compared to
the dictionary obtained from a 2D grid (cf. (5)).

VII. CONCLUSIONS

The classical near-field source localization problem is a non-
linear (joint DOA and range) parameter estimation problem.
The frequently used planar-wave assumption is no more valid
for near-field sources as the wavefronts are spherical. Using
the sparse representation framework, we transform the original
non-linear problem into a linear ill-posed inverse problem.
Based on the assumption that the spatial spectrum (i.e., the
number of point sources) is sparse, we can localize the
sources with a high resolution by solving an "1-regularized
sparse regression. Additionally, when multiple snapshots are
available and the sources are uncorrelated, the DOA and
range parameters are naturally decoupled in the correlation
domain. This enables us to solve two smaller dimension sparse
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Fig. 3: Two-step estimator. Three near-field sources at locations:
(0◦, 5λ), (0◦, 17λ), and (50◦, 8λ), and T = 200. The sampling grid
has a resolution of ∆θ = 1◦ and ∆r = 0.5λ.

regression problems instead of one higher dimension sparse
regression problem which leads to a significant complexity
reduction.
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