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Abstract—Sensor selection is a crucial aspect in sensor network
design. Due to the limitations on the hardware costs, availability
of storage or physical space, and to minimize the processing
and communication burden, the limited number of available
sensors has to be smartly deployed. The node deployment should
be such that a certain performance is ensured. Optimizing the
sensors’ spatial constellation or their temporal sampling patterns
can be casted as a sensor selection problem. Sensor selection
is essentially a combinatorial problem involving a performance
evaluation over all possible choices, and it is intractable even for
problems of modest scale. Nevertheless, using convex relaxation
techniques, the sensor selection problem can be solved efficiently.
In this paper, we present a brief overview and recent advances on
the sensor selection problem from a statistical signal processing
perspective. In particular, we focus on some of the important
statistical inference problems like estimation, tracking, and de-
tection.
Index Terms—Sensor placement, sensor selection, sparsity,

convex optimization, sensor networks, statistical inference.

I. INTRODUCTION
Sensors are widely used in a variety of applications and

services related to field monitoring, safety and security, logis-
tics, and surveillance, to list a few. Every sensor is capable of
sensing, processing, and communicating to other nodes or a
central unit (often referred to as a fusion center). This enables
spatially deployed sensor nodes to function as a network,
which has to carry out one or more specified tasks. Each sensor
often provides an excessively large dataset from which we seek
to extract relevant information by optimally (pre-)processing
the data. For example, such processing includes identifying
the informative observation and discarding redundant or iden-
tical ones. In other words, this is simply a sensor selection
problem which can be interpreted as the problem of choosing
the best subset of sensors that guarantees some prescribed
performance.
The number of sensors used to perform these specific tasks

are often limited. This may be due to limitations on the
hardware costs, availability of storage or physical space, or
to reduce the burden of processing and communication. For
location-related services (like source localization and field
estimation), the spatial deployment of sensors is important,
as certain spatial constellations can significantly deteriorate
the performance. Sensor deployment can also be interpreted
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as a sensor selection problem in which the best subset of the
available sensor locations are selected subject to a performance
constraint. Sensor selection has been applied to a wide variety
of problems: dynamical systems [1]–[5], network monitor-
ing [6], field estimation [7], array optimization [8], source-
informative sensor identification [9], anchor placement [10],
and outlier detection [11].
The purpose of this partly tutorial paper is to describe the

sensor selection problem from a statistical signal processing
perspective, and to provide a brief overview with a specific
emphasis on some recent advances based on results from [12]–
[15].

II. OPTIMIZATION PROBLEM

Sensor selection can be formulated as the problem of
designing a selection vector whose entries are chosen from
a prescribed finite alphabet set. More specifically, the problem
is to design a selection vector

w = [w1, w2, . . . , wM ]T ∈ {0, 1}M ,

such that the number of selected sensors are minimized and a
certain performance is achieved. Here, the variable wm = (0)1
indicates that the sensor is (not) selected, and M is the
number of sensors available. Mathematically, sensor selection
is a constrained cardinality minimization problem where the
constraints are based on some appropriate performance mea-
sure, f(w). The performance measure can take a number of
different forms depending on whether the inference problem
is an estimation problem or a detection problem. In essence,
the performance measure quantifies the system requirement,
i.e., the estimation accuracy or detection probability.
We can write the sensor selection problem as the following

generic constrained optimization problem:

argmin
w

‖w‖0 (1a)

s.to f(w) ≤ λ, (1b)
w ∈ {0, 1}M , (1c)

where the threshold λ specifies the accuracy requirement and
also induces the sparsity in w. Naturally, the optimization
problem in (1) can also be casted as

argmin
w

f(w) (2a)

s.to ‖w‖0 = K, (2b)
w ∈ {0, 1}M , (2c)



whereK is the desired number of sensors. The problems in (1)
and (2) are equivalent in the sense that with a certain threshold
λ∗, K sensors can be selected. The problem of the form (1)
might be appropriate for certain designs where the number K
is not known in which case λ has to be designed. However, if
K is a priori known, then the problem of the form (2) is the
obvious choice. In this paper, we will focus on sensor selection
solvers of the form (1), while the obtained results also hold for
solvers of the form (2) with some straightforward adaptation.
The optimization problem in (1) is a non-convex optimiza-

tion problem with a non-convex cost function given as (1a).
The non-convex Boolean constraint (1c) incurs a combinatorial
search over all the 2M (or

(

K
M

)

for the optimization problem
of the form (2) where K is known a priori) possible combi-
nations. To simplify this problem, standard convex relaxations
are used. The "0-(quasi) norm in (1a) is relaxed to the "1-
norm, and the Boolean constraint in (1c) is relaxed to the box
constraint [0, 1]M . As a result, the following relaxed sensor
selection problem is obtained

argmin
w

‖w‖1 (3a)

s.to f(w) ≤ λ, (3b)
w ∈ [0, 1]M . (3c)

An approximate Boolean solution can then be recovered
from the solution of the above convex optimization problem
either by simple thresholding or randomized rounding [13].
Alternatively, the "0-(quasi) norm can be approximated using
the sum-of-logs,

∑M
m=1 ln (wm+δ) with δ > 0, which results

in an iteratively weighted "1-norm optimization problem [13].
Typically, log-based heuristics result in a sparser solution, and
thus better approximate the "0-(quasi) norm.
We shall discuss different performance measures f(w) for

estimation, filtering, and detection problems in Sections III
and IV, respectively.

III. ESTIMATION AND FILTERING

In this section, we discuss sensor selection for estimation
and filtering. We will focus on non-linear measurement models
(linear models being a special case) which are frequently
encountered in problems related to source/target localization
and field estimation.

A. Sensor selection for estimation
Consider the following measurement model

ym = hm(θ, nm),m = 1, 2, . . . ,M, (4)

where θ ∈ RN is the unknown parameter vector, hm(·) is
(in general) a non-linear function, and nm is the measurement
noise. The sensors can be either active or passive sensors.
From the viewpoint of estimation, the sensor selection

problem can now be described as follows. Out of the M
potential sensors choose the best subset of sensors (≥ N )
that yields the lowest error covariance.
The error covariance matrix is denoted by

E =: E{(θ̂ − θ)(θ̂ − θ)T } ∈ R
M×M ,

where θ̂ is an estimate of θ. The sensor selection is determined
by evaluating scalar functions of the error covariance E. In
literature, the most prominent choices of the functions are
related to:
1) A-optimality: average-variance criterion, tr{E}.
2) E-optimality: largest-eigenvalue criterion, λmax{E}.
3) D-optimality: determinant criterion, ln det{E}.

All the above criteria are related to the error concentration
ellipsoid defined by (θ̂ − θ)TE−1(θ̂ − θ) ≤ 1. The average-
variance criterion is the sum of the semi-axes of this ellipsoid,
or the mean-squared-error (MSE). Moreover, a weighted trace
criterion can be used when one or more elements of the
unknown parameter are relatively more important than the
others. The largest-eigenvalue criterion is the semi-major axis
of the error ellipsoid, or the worst-case error. The determinant
criterion finally is related to the volume or the geometric
mean of the semi-axes of the error concentration ellipsoid.
All the performance measures are equally credible, although
neither of them completely characterizes the error covariance.
There is no general answer to the question of how does one
performance metric compare with the other. See [16], [17] for
a more detailed discussion on this issue.
In many cases, the matrix E cannot be computed in closed-

form or its expression is too complicated for numerical op-
timization. For example, when the observations are related
to a non-linear model as in (4) or to linear additive non-
Gaussian noise models. For such cases, we can use the
Cramér-Rao bound (CRB), a weaker performance criterion but
easier to evaluate and optimize [13]. The error covariance of
any unbiased estimate θ̂ ∈ RN of the unknown parameter is
related to the CRB through the inequality [18]

E{(θ − θ̂)(θ − θ̂)T } ≥ C(θ) = F−1(θ),

where C(θ) is the CRB matrix. The Fisher information matrix
(FIM), F(θ) ∈ RN×N is given by

F(θ) =
M
∑

m=1

E

{

(

∂ ln p(ym; θ)

∂θ

)(

∂ ln p(ym; θ)

∂θ

)T
}

=
M
∑

m=1

Fm(θ),

(5)

with ln p(ym; θ) the log-likelihood of the measurements which
is the probability density function (pdf) of ym parameterized
by the unknown vector θ. Here, we assume that the pdf
p(ym; θ) satisfies the regularity conditions which is a prereq-
uisite for the CRB to exist. The expression in (5) is valid as
long as the observations across the sensors are independent.
The expression in (5) indicates that every measurement pro-
vides some additional information, and thus the information
provided by all the measurements reduces the uncertainty.
We can now write the FIM in (5) using the variable w

as F(w, θ) =
∑M

m=1 wmFm(θ). In other words, we use the
selection variable to choose the most informative sensors. We
evaluate the functions of the FIM (or the CRB) matrix F(w, θ)



based on the A-, E-, and D-optimality measures that were
discussed earlier. Specifically, we have for
1) A-optimality: f(w) := tr{(

∑M
m=1 wmFm(θ))−1}.

2) E-optimality: f(w) := λmax{(
∑M

m=1 wmFm(θ))−1}.
3) D-optimality: f(w) := ln det{(

∑M
m=1 wmFm(θ))−1}.

Note that the above performance measures depend on the
unknown parameter. In practice, the unknown parameter θ

takes values within a certain known domain denoted by U .
Hence, for non-linear models the constraint (3b) should be
satisfied for every point within the domain U .
A specialization of the non-linear model in (4) is the linear

Gaussian measurement model

ym = hT
mθ + nm,m = 1, 2, . . . ,M.

For such models, the FIM (performance measure) is indepen-
dent of the unknown parameter vector and is simply given
by

F =
M
∑

m=1

hmhT
m.

In that case, there is no need to constrain the performance
for every point within U . This is the key difference between
sensor selection for linear and non-linear models.
Each one of the performance measures discussed above is

a convex function of w. As a result, using one of the above
measures as constraints in (3b), the relaxed sensor selection
problem will be a convex optimization problem. For example,
let us consider the MSE (A-optimality) criterion. Writing
the relaxed sensor selection (3) in the epigraph form, we
obtain [12]

argmin
w∈RM ,x∈RN

‖w‖1

s.to xn ≥ δ
T
n





(

M
∑

m=1

wmFm(θ)

)−1


 δn, ∀θ ∈ U

xn ≥ 0, n = 1, 2, . . . , N,

0 ≤ wm ≤ 1, m = 1, 2, . . . ,M,

1T
Nx ≤ λ,

where x = [x1, x2, . . . , xN ]T ∈ RN is a variable, and δn is
the nth unit vector in RN . This can be transformed into a
semi-definite programming (SDP) problem, and hence, can be
solved efficiently. The SDP problem is given by

argmin
w∈RM ,x∈RN

‖w‖1

s.to

[
∑M

m=1wmFm(θ) δn

δ
T
n xn

]

' 0N+1, ∀θ ∈ U ,

xn ≥ 0, n = 1, 2, . . . , N,

0 ≤ wm ≤ 1, m = 1, 2, . . . ,M,

1T
Nx ≤ λ.

(6)

The computational complexity of the relaxed sensor se-
lection problem based on SDP is of the order of M3. For
large-scale problems, i.e., when the number of sensors is very

large (≥ 1000), low-complexity algorithms (with cheaper per
iteration costs) are often needed. One such computationally
less intensive implementation of the relaxed sensor selection
problem is based on the projected subgradient algorithm [13].
Alternative approaches to convex optimization based sensor
selection exploit the submodularity of the objective function
using proxies for the MSE, like the mutual information [19]
or the frame potential [7]. The submodularity of the ob-
jective function helps in developing low-complexity greedy
algorithms, which sequentially adds sensors that maximize the
increase in the cost.
In addition to the performance constraints, logical con-

straints [12] like select sensor i only when sensor j is chosen
(via the inequality wi ≤ wj), or select at least one of the
sensors i or j (via the inequality wi + wj ≥ 1 ) can also be
imposed.

B. Sensor selection for filtering
In this section, we consider an extension to the static

sensor selection problem discussed in the previous section.
We develop a framework for dynamic (or adaptive) sensor
selection pertinent to tracking time-varying parameters (e.g.,
target tracking). We assume that the unknown parameter θt

follows a dynamical model:

θt+1 = Atθt + vt, (7)

where At ∈ RN×N is an invertible state transition matrix
at time t, and vt ∈ RN×1 is the process noise at time t
that accounts for any unmodeled dynamics. Here, we model
vt ∼ N (0,Qt), where Qt ∈ RN×N represents the covariance
matrix. The measurement equation takes the same from as in
(4) except for an additional subscript t with which we denote
that the state parameter is time-varying. The measurement
equations are given as

yt,m = ht,m(θt, nt,m),m = 1, 2, . . . ,M, (8)

where yt,m is the measurement at time t, ht,m(·) is (in general)
a non-linear function, and nt,m is the measurement noise at
time t.
We consider the problem of selecting at each time step the

best subset of sensors out of M available state measurements
that guarantees a prescribed a posteriori estimation error. As
earlier, we use a selection vector

wt := [wt,1, wt,2, . . . , wt,M ]T ∈ {0, 1}M .

The sensor selection is determined by evaluating the poste-
rior CRB (PCRB) F−1

t (wt, θt). When the observations are
independent, the PCRB can be recursively expressed as [14]

Ft(wt, θt) = (Qt +AtF
−1
t−1(θt−1)A

T
t )

−1

+
M
∑

m=1

wt,mFt,m(θt),

= Jt−1(θt−1) +
M
∑

m=1

wt,mFt,m(θt),

(9)



where

Ft,m(θt) :=

(

∂ ln p(yt,m; θt)

∂θt

)(

∂ ln p(yt,m; θt)

∂θt

)T

.

Due to the non-linearity of the measurement model, the
posterior FIM (inverse PCRB) in (9) depends on the unknown
state at time t as well as the state at time t− 1. For additive
Gaussian noise models, using the past estimate θ̂t−1|t−1 and
the predicted estimate θ̂t|t−1 for θt−1 and θt, respectively,
results in the posterior covariance matrix. The past estimate
and prediction can be computed from an extended Kalman
filter (EKF) for instance [18]. One of the functions related
to A-, E-, or D-optimality of the error covariance matrix
computed using the past state estimate can then be used as
a performance measure to perform selection [20]. However,
since the past state estimate (not the true state) is used to
compute the covariance matrix, depending on the non-linearity
of the model and the noise variance, the selection will be
suboptimal. To alleviate this problem, we can constrain the
performance for every point within a domain around the
past estimate and the predicted estimate [14]. For example,
adaptive (relaxed) sensor selection based on the average-
variance criterion, can be formulated as

argmin
wt∈ [0,1]M

‖wt‖1 (10a)

s.to tr{(Jt−1(θt−1) +
M
∑

m=1

wt,mFt,m(θt))
−1} ≤ λ,

∀θt−1 ∈ Ut−1, ∀θt ∈ Ut, (10b)

where the domains Ut−1 and Ut are specified based on the past
a posteriori covariance matrix and the predicted covariance
matrix, respectively. The above problem can also be trans-
formed to an SDP, as in (6).
When the state-space equations follow a linear model yt :=

Htθt + nt, i.e., for a discrete-time linear dynamical system,
the PCRB is independent of the state. Hence, then there is no
need to constrain the performance within the domains Ut−1

and Ut. An important and obvious specialization is the case
when the dynamics matrix, regression matrix, and the related
noise covariance matrices are not time-varying (or slowly time-
varying). For such cases, the selection has to be performed
only when either the dynamics or regression matrix changes.
Furthermore, the selection can be simultaneously performed
over both space and time over a horizon t = 1, 2, . . . , T
(smoothing, moving horizon estimators, for instance). To
choose the best subset of space-time sensors corresponds to
simultaneously selecting the best subset of spatial sensors and
time instances to obtain the measurements (only spatial sensor
selection for each time step is described in this paper).

IV. DETECTION

Sensor selection for hypothesis testing problems has re-
ceived less attention compared to sensor selection for estima-
tion and filtering. This section is devoted to sensor selection

for event detection, which is fundamental for instance to radar,
sonar, communications, and spectrum sensing applications.
The observation at each sensor is related to the state of

nature H. Here, we consider a binary hypothesis testing
problem, where H takes one of two possible values, i.e., either
H0 or H1.
In the classical setting, the optimal detector is the Neyman-

Pearson detector which maximizes the probability of detection,
Pd for a fixed probability of false alarm, Pfa [21]. The sensor
selection problem for binary hypothesis testing can be inter-
preted as the problem to choose the best subset of sensors that
guarantees a certain prescribed detection probability. The opti-
mal sensor subset is the subset of sensors that maximizes Pd.
However, in many cases, optimizing of the error probabilities
is very difficult. This may be because these error probabilities
do not admit a known closed-form or the expressions are too
complicated for numerical optimization. Therefore, a weaker
performance criterion which is easier to evaluate and optimize
is often used. The relative entropy or the Kullback-Leibler
(KL) distance is a frequently used performance criterion for
design problems related to hypothesis testing [15], [22]. The
sensor selection problem in [15] is formulated as the design
of a selection matrix which is a non-convex optimization
problem (even after appropriate relaxation). However, similar
to the sensor selection framework developed for estimation and
filtering in Section III, we can also formulate sensor selection
for hypothesis testing problems. We next briefly describe the
convex optimization formulation.
Consider the following observation model

H0 : ym = nm, m = 1, 2, . . . ,M, (11a)
H1 : ym = hm(θ, nm), m = 1, 2, . . . ,M, (11b)

where nm is the measurement noise as defined earlier. The
observations are collected in y = [y1, y2, . . . , yM ]T ∈ RM .
Let the probability density function (pdf) of y under H0

and H1 be denoted by p(y| H0) and p(y| H1), respectively.
Defining the log-likelihood ratio as

l(y) := ln
p(y| H1)

p(y| H0)
,

the KL distance is given by

D(H1‖H0) = E|H1
{l(y)}

=

∫

l(y)p(y|H1)dy.
(12)

The notation E|H1
{l(y)} indicates that l(y) is averaged under

the pdf p(y|H1). Under the assumption that the observations
conditioned on H are independent across the sensors, the KL
distance can be expressed as [23]

D(H1‖H0) =
M
∑

m=1

Dm(H1‖H0), (13)

where
Dm(H1‖H0) =

∫

lm(y)pm(y|H1)dy.



Here, we define

lm(y) = ln
pm(y|H1)

pm(y|H0)

as the local log-likelihood ratio related to the mth sensor with
the conditional pdfs of y, pm(y|Hi) for i = 0, 1.
As the asymptotic (in the number of sensors) rate of con-

vergence of the probability of miss detection (Pm := 1−Pd)
to zero is parameterized by the KL distance, we want to max-
imize its value. Hence, using the selection variable w defined
earlier, for detection problems, the cost to be minimized is

f(w) := −
M
∑

m=1

wmDm(H1‖H0).

We can formulate the relaxed sensor selection problem for
hypothesis testing as

argmin
w

‖w‖1 (14a)

s.to
M
∑

m=1

wmDm(H1‖H0) ≥ λ, (14b)

0 ≤ wm ≤ 1, m = 1, 2, . . . ,M, (14c)

where λ specifies the required detection probability. A sim-
ilar extension can be made to detection problems under the
Bayesian setting in which prior probabilities are assigned to
the hypotheses H0 and H1. The sensor selection for detection
in the Bayesian setting then consists of choosing the best
subset of sensors that minimizes the probability of error.

V. CONCLUDING REMARKS

Sensor networks are predominantly used for field estima-
tion, localization, and environment monitoring, to list a few.
All these tasks typically solve a statistical inference problem
like detection, estimation, or filtering. One of the key aspects
in designing an efficient sensor network involves optimizing
the spatio-temporal sampling patterns. This includes node
deployment and sampling time selection. These problems are
casted as a sensor selection problem in which the best subset
of sensors that guarantees a prescribed estimation accuracy
or detection probability is selected. In this paper, we have
presented a brief overview on sensor selection based on con-
vex optimization techniques for problems that are frequently
encountered in statistical signal processing.
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