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ABSTRACT
We consider the anchor placement problem in localization
based on one-way ranging, in which either the sensor or the
anchors send the ranging signals. The number of anchors de-
ployed over a geographical area is generally sparse, and we
show that the anchor placement can be formulated as the de-
sign of a sparse selection vector. Interestingly, the case in
which the anchors send the ranging signals, results in a joint
ranging energy optimization and anchor placement problem.
We make abstraction of the localization algorithm and instead
use the Cramér-Rao lower bound (CRB) as the performance
constraint. The anchor placement problem is formulated as
an elegant convex optimization problem which can be solved
efficiently in polynomial time.

1. INTRODUCTION

Localization is an important and extensively studied topic
in wireless sensor networks (WSNs). Localization can be
performed using a plethora of algorithms [1] (and refer-
ences therein), which exploit inter-node measurements like
time-of-arrival (TOA), time-difference-of-arrival (TDOA),
angle-of-arrival (AOA), or received signal strength (RSS).

The performance of any location estimator depends not
only on the algorithm but also on the placement of the an-
chors (nodes with known locations). Anchor placement is a
key challenge in localization system design, as certain anchor
positions not only deteriorate the performance but also result
in ambiguities or identifiability issues. In [2], the effect of
anchor placement is studied using the geometric dilution of
precision (GDOP). The idea of GDOP is borrowed from the
global positioning system (GPS) and it is obtained from the
Cramér-Rao lower bound (CRB) with simplifying assump-
tions on the noise model, i.e., equal variances on all the range
estimates. This assumption is valid for GPS due to the ap-
proximately equal distances between the anchors (the satel-
lites) and the nodes, but it does not translate well to WSNs
where the noise variance is proportional to the distance (typi-
cally different) between the anchors and the sensor.

This work was supported in part by STW under the FASTCOM project
(10551) and in part by NWO-STW under the VICI program (10382).

The anchor placement is a subset selection problem which
can be interpreted as the problem where we divide a specific
anchor area A into M grid points and select the positions of
the K anchors as the best K grid points out of M grid points,
where K � M . Here, the K selected anchors are deemed
the best, if they guarantee a certain minimal accuracy on the
location estimates within a specific sensor area S. In practice,
K is not known, and this makes anchor selection a combina-
torial problem involving an exhaustive search over all the 2M

possible anchor positions, and the computation over S is even
more cumbersome.

Sensor (subset) selection subject to a performance con-
straint based on convex relaxations has been studied for a
linear data model in [3] (see also references therein). Un-
like [3], the proposed framework can also be used for non-
linear measurement models. In addition, the resulting op-
timization problem has linear objective function with linear
constraints which simplifies the performance analysis.

In this paper, we consider TOA-based ranging, however,
we do not restrict ourselves to a particular localization algo-
rithm. Instead, we use the CRB as a performance constraint.
The anchor placement problem is studied for the following
two cases of TOA-based one-way ranging: a) the anchors
send the ranging signals (OW-A) and b) the sensor sends the
ranging signals (OW-S). The anchor placement problem is
formulated as the design of a sparse selection vector. For
the OW-A case, the sparse solution yields the ranging ener-
gies that the anchors should adopt leading to a solution for
the joint ranging energy optimization and anchor placement
problem, and for the OW-S case the sparse solution yields the
optimal anchor positions. We can formulate the anchor place-
ment problem as a semidefinite programming (SDP) problem.

2. SYSTEM MODEL AND PRELIMINARIES

We consider a two-dimensional network with one sensor lo-
cated in the sensor area S and M possible anchors located at
theM grid points of the anchor areaA. Let the coordinates of
the sensor and themth anchor be denoted by the 2×1 vectors
s and am, respectively, where s is assumed to be unknown
but known to be within S. We further assume that all the
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nodes are time-synchronized (using [4] for instance). Let the
pairwise distance between the sensor and the mth anchor be
denoted by d(am, s) = ‖am − s‖2. The pairwise distances
are obtained by ranging and they are generally noisy.
2.1. Anchors send the ranging signals: OW-A

The ranging signals sent by the anchors are scheduled such
that they can be separated at the sensors. Let the mth anchor
broadcast a ranging signal

√
emsa(t) of energy em at time

Tm,s, and upon reception at the sensor, the TOA T̂s,m is esti-
mated. The range estimate of the sensor to the mth anchor is
then given by

d̂a(am, s) = c(Tm,s − T̂s,m) (1)

where c is the propagation speed of a wave in the medium.
Under the assumption that a line-of-sight (LOS) channel
exists between the sensor and the mth anchor, it is moti-
vated in [5, and reference therein] that the range estimate
d̂a(am, s) is Gaussian distributed as N (d(am, s), σ

2
m,s)

with variance σ2
m,s = e−1

m
ρa
γ2 . Here, ρa = c2Ns/2

F̄ 2
a

with

F̄ 2
a =

∫∞
−∞(2πF )2|Sa(F )|2dF∫∞
−∞ |Sa(F )|2dF the mean square bandwidth of

the ranging signal (Sa(F ) being the Fourier transform of
sa(t)), and with Ns/2 the two-sided power spectral den-
sity (PSD) of the additive white Gaussian noise (AWGN)
at the sensor. Further, the signal suffers an attenuation of
γ2 = αd(am, s)

−β , with α and β the path gain at 1 m and
path-loss coefficient, respectively.
2.2. Sensor sends the ranging signal: OW-S

In the OW-S case, the sensor broadcasts a ranging signal√
ess(t) of energy es at time Ts,m, and upon reception at the

mth anchor, the TOA T̂m,s is estimated. As earlier, the range
estimate of the sensor to the mth anchor is given by

d̂s(am, s) = c(Ts,m − T̂m,s) (2)

which is again assumed to be Gaussian distributed with
variance σ2

s,m = e−1
s

ρs
γ2 , where ρs = c2Na/2

F̄ 2 with F̄ 2 =∫∞
−∞(2πF )2|S(F )|2dF∫∞
−∞ |S(F )|2dF the mean square bandwidth of the rang-

ing signal (S(F ) being the Fourier transform of s(t)), and
with Na/2 the two-sided PSD of the AWGN at the anchor.

3. PERFORMANCE MEASURE

We make abstraction of the localization algorithm, however,
we assume that the TOA estimates are unbiased and achieve
the CRB asymptotically. Even though this assumption is too
optimistic for a practical system, the CRB has a very attrac-
tive mathematical structure resulting in a selection problem
that can be efficiently solved using convex optimization tech-
niques. Moreover, the CRB optimal anchor positions can im-
prove the performance of any practical localization algorithm.

The CRB for OW-A and OW-S can be derived based on
the CRB for TOA-based two-way ranging [5].

3.1. CRB for OW-A

For OW-A, the CRB of s is denoted by Ca ∈ R2×2, and is
computed as follows

C−1
a = Fa(e, s) =

M∑
m=1

emFa,m(s) (3)

where Fa,m(s) = αρ−1
a d(am, s)

−β−2(s − am)(s − am)T

and Fa(e, s) is the Fisher information matrix (FIM). Here, the
vector e = [e1, e2, . . . , eM ]T is the joint selection and anchor
ranging energy vector that has to be designed, where a non-
zero entry of e not only indicates that the anchor position is
selected but also represents the ranging signal energy that the
selected anchor should adopt.

3.2. CRB for OW-S

Similarly for OW-S, the CRB of s is denoted by Cs ∈ R2×2,
and is computed as follows

C−1
s = Fs(w, s) =

M∑
m=1

wmFs,m(s) (4)

where Fs,m(s) = esαρ
−1
a d(am, s)

−β−2(s− am)(s− am)T

and Fs(w, s) is the FIM. Here, w = [w1, . . . , wM ]T ∈
{0, 1}M is the selection vector to be designed, where wm =
1(0) indicates that the related anchor is (not) selected.
3.3. Identifiability and ambiguity

The FIM is singular when both the anchors and the sensor
are collinear for which the CRB will be infinity. Hence, a
CRB-optimal anchor placement would avoid the CRB being
infinity. However, when only the anchors (even if M ≥ 3)
are collinear (excluding the sensor) a “mirror” ambiguity is
obtained, and this effect cannot be seen with the FIM, and sur-
prisingly the FIM will be non-singular. Hence, a (local) CRB-
optimal anchor placement can still result in such ambiguities.
Such solutions can be avoided with additional constraints or
prior information on the parameters, e.g., by a constraint on
the sensor area, such as an orthant or a half plane.

A constrained CRB generally gives a lower bound for pa-
rameters with such deterministic constraints. A constrained
CRB is derived from the unconstrained CRB and a non-
redundant constraint set. However, for orthant or half plane
constraints, it is shown in [6] that the unconstrained CRB
is the same as the constrained CRB, and does not yield a
lower bound. Hence, throughout this paper, we use the un-
constrained CRB in (3)-(4) as a performance measure and we
will select our S carefully.

3.4. Constraint for accurate positioning

Using the definition of accurate positioning from the Federal
communication commission (FCC) [1], for every s within S
we constrain the localization error ξ = ŝ − s to be within an
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origin-centered circle of radius Re with a probability higher
than Pe, i.e., ∀s ∈ S,Pr(‖ξ‖2 ≤ Re) ≥ Pe. The values of
Re and Pe define the accuracy required and are assumed to be
known.

Sufficient conditions to satisfy this accuracy requirement
for OW-A and OW-S are λmin(e, s) ≥ λ and λmin(w, s) ≥
λ, respectively [1, 5]. Here, λmin(e, s) and λmin(w, s) are
the smallest eigenvalues of the matrices Fa and Fs, respec-
tively, and the threshold λ for a Gaussian distributed location
estimate is given by λ = 2

R2
e

ln( 1
1−Pe

) and for an unknown
distribution by λ = 2

R2
e
( 1

1−Pe
) [1, 5].

More specifically, we lower bound the eigenvalues of
the FIMs Fa(e, s) and Fs(w, s), so that the related CRB is
upper bounded. The inequality constraints λmin(e, s) ≥ λ
and λmin(w, s) ≥ λ are equivalent to the following lin-
ear matrix inequalities (LMIs):

∑M
m=1 emFa,m(s) � λI2

and
∑M
m=1 wmFs,m(s) � λI2, respectively, where A � B

means that A−B is a positive semidefinite matrix, and I2 is
a 2 × 2 identity matrix. It is well known that the solution set
of e and w satisfying these respective LMIs is convex [7].

4. SPARSITY-EXPLOITING ANCHOR PLACEMENT

Let us now assume that M possible anchors are placed on a
discrete grid obtained by uniformly sampling an anchor area
A. And remember that the location of the sensor is unknown
within a sensor area S. In many localization applications, it
makes sense to assume that a limited number of anchors ser-
vice a prescribed geographical area. This assumption natu-
rally leads to the design of a sparse vector for optimal anchor
placement. More specifically, we aim to design a sparse joint
selection and ranging energy vector e and a sparse selection
vector w for OW-A and OW-S, respectively.

4.1. OW-A: Joint anchor placement and ranging energy
optimization

When the anchors send the ranging signals, the optimization
problem can be written as

argmin
e∈RM

‖e‖0

s.t.

M∑
m=1

emFa,m(s)− λI2 � 0, ∀s ∈ S

0M×1 ≤ e ≤ eb1M×1,

(5)

where the `0-(quasi) norm refers to the number of non-zero
entries of e, i.e., ‖e‖0 := |{m : em 6= 0}|. In addition to the
performance constraint, an energy source is positive-valued,
and is generally constrained by a prescribed value eb due to
the practical limitations of a source. Here, the threshold λ
is indirectly the sparsity-inducing parameter (for a fixed eb),
where λ→ 0 implies a sparser solution.

It is well known that the `0-norm optimization is NP-hard
and non-convex. A computationally tractable solution is to

use the traditional convex surrogate for the `0-norm, which
leads to the following optimization problem:

e∗ = arg min
e∈RM

1Te = ‖e‖1

s.t.

M∑
m=1

emFa,m(s)− λI2 � 0, ∀s ∈ S

0M×1 ≤ e ≤ eb1M×1.

(6)

The purpose of the `1-norm in (6) is twofold: promote the
sparsity of the spatially distributed anchors and more impor-
tantly minimize the “total” ranging energy of the network.
This is a SDP problem in a standard dual form, and its solu-
tion upper bounds the dual feasible e, i.e., e∗ ≤ 1Te.

The optimization problem in (6) has multiple global so-
lutions, due to the fact that the `1-norm is not strictly con-
vex. Even though the `1-norm minimizes the total ranging
energy of the network, it does not necessarily minimize the
number of anchor nodes. On the other hand, the non-convex
(intractable) `0-norm optimization leads to a higher energy.
To improve upon the `1-norm solution, we propose an alter-
native (convex) optimization algorithm, which also results in
a correct solution, but with a fewer number of anchors. For
this purpose, we modify (6) and use the sparsity-enhancing it-
erative re-weighted `1-norm minimization [8] originally used
for linear `1-regularized least-squares (LS) problems in com-
pressed sensing (CS).

4.2. Sparsity-enhancing iterative algorithm for OW-A

The iterative re-weighted `1-norm minimization [8] algorithm
is adapted to suit our problem. Let u = [u1, . . . , uM ]T ∈ RM
denote the weight vector. The iterative algorithm proceeds as
follows:

1. Initialize the iteration counter k = 0 and the weight vector
u(0) = 1M .

2. Solve the weighted `1-norm minimization problem

argmin
e(k) ∈RM

u(k)T e(k)

s.t.

M∑
m=1

e(k)m Fa,m(s)− λI2 � 0, ∀s ∈ S

0M×1 ≤ e(k) ≤ eb1M×1.

(7)

for the optimum e(k) in the k-th iteration.
3. Update the weight vector u(k)

i = 1

ε+|e(k)
i |

, for each i =

1, . . . ,M .
4. Stop on convergence, or when k attains a specified maximum

number of iterations kmax, else, increment k and go to step 2.

The weight updates force the small entries of the vector e(k)

to zero and avoid inappropriate suppression of larger entries.
The parameter ε > 0 is the threshold which provides stability,
and guarantees that the zero valued entry of |e(k)| does not
strictly prohibit a nonzero estimate at the next step.
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Fig. 1: Joint anchor placement and energy optimization for OW-A, for Pe = 0.95, eb = 10J, and Re = 4cm.

4.3. OW-S: Anchor grid point selection

In the OW-S case, where the sensor sends the ranging signals,
a similar optimization problem can be formulated for the se-
lection of the anchor grid points, which is given by

w∗bp = arg min
w∈{0,1}M

1Tw = ‖w‖1

s.t.

M∑
m=1

wmFs,m(s)− λI2 � 0, ∀s ∈ S.
(8)

The optimization problem in (8) is a non-convex Boolean
programming problem. However, this can be brought to
the standard dual SDP form using the Lagrangian relax-
ation wm(wm − 1) = 0, and introducing a new variable
W = wwT with elements [W]mn,m, n = 1, . . . ,M [7].
The optimization problem is then given by

(w∗sdp,W
∗
sdp) = argmin

w∈RM ,W∈RM×M

1Tw = ‖w‖1

s.t.

M∑
m=1

wmFs,m(s)− λI2 � 0, ∀s ∈ S

[W]mm = wm, m = 1, . . . ,M,[
W w
wT 1

]
� 0.

(9)
Here, the rank-1 constraint on W is relaxed, and (9) can be
solved efficiently in polynomial time. The SDP in (9) pro-
vides a good approximation for the Boolean problem in (8),
and the solutions for (8) and (9) are upper bounds for the dual
feasible w, i.e., w∗bp ≤ w∗sdp ≤ 1Tw. From w∗sdp, the ap-
proximate Boolean solution to w can be obtained using ran-
domization techniques.

4.4. Sparsity-enhancing iterative algorithm for OW-S
The sparsity-enhancing iterative algorithm for OW-S can be
derived following similar lines as discussed in Section 4.2,
and it proceeds as follows:

1. Initialize the iteration counter k = 0 and the weight vector
u(0) = 1M .

2. Solve the weighted `1-norm minimization problem

argmin
w∈RM ,W∈RM×M

u(k)Tw

s.t.

M∑
m=1

wmFs,m(s)− λI2 � 0, ∀s ∈ S

[W]mm = wm, m = 1, . . . ,M,[
W w
wT 1

]
� 0.

(10)

for the optimum w(k) in the k-th iteration.

3. Update the weight vector u(k)
i = 1

ε+|w(k)
i |

, for each i =

1, . . . ,M .
4. Stop on convergence, or when k attains a specified maximum

number of iterations kmax, else, increment k and go to step 2.

The Boolean solution can again be obtained using randomiza-
tion.

Note that the sensor ranging energy es is not optimized.
Once the optimal anchor grid points are obtained, then es can
be easily optimized on the reduced size problem.

5. SIMULATION RESULTS
To test the proposed SDP-based algorithms, we use CVX.
CVX in turn calls SeDuMi, a MATLAB implementation of
the second-order interior-point methods for computations.

Remark (A practical algorithm). To solve the anchor place-
ment problem, we grid both the sensor and anchor areas.
Gridding the anchor area is natural from a practical view-
point, as the number of available anchor nodes or the avail-
able anchor locations is usually limited. The number of LMI
constraints is basically determined from the number of sen-
sor grid points. To control the computational complexity of
the optimization problem, gridding the sensor area is reason-
able, as the CRB would interpolate for points between the
sensor grid points1.

1A more profound treatment of the gridding of the sensor area can be
found in [5].
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Fig. 2: Anchor placement for OW-S, for Pe = 0.95, es = 10J, and Re = 5cm.

We simulate a network with M = 80 anchor grid points
and for two example scenarios of the sensor area S consisting
of 608 and 25 sensor grid points as shown in Fig. 1 and Fig. 2,
respectively. Here, we have sampled S to generate discrete
sensor grid points. We use the following parameters for the
simulations: α = 1, β = 2, c = 3× 108 ms−1, ω

2π = 8 GHz,
Ns/2 = 0 dBW/Hz, and ε = 10−8. The constraint on the
anchor ranging energy is eb = 10J, and the sensor ranging
energy es = 10J is used.

The optimal anchor placement for the OW-A case, based
on `1-norm minimization of (6) and the iterative `1-norm
minimization is illustrated in Fig. 1b and Fig. 1c, respec-
tively. The algorithm selects the anchor grid points close to
the sensor area due to the assumed path-loss model. There
exits many similar solutions, however, we are interested in
the best solution. This effect can be seen in the not so sparse
`1-norm solution, while the iterative `1-norm solution en-
hances the sparsity, yet yielding a correct solution. Fig. 1a
shows the optimal ranging energies that the anchors should
adopt.

Fig. 2a illustrates the anchor selection for a circular an-
chor grid with M = 80 points for OW-S. Here, we con-
sider a relatively small sensor area. For the `1-norm solu-
tion, all the grid points are nominally the same, and the se-
lection weights are spread over all the nodes. However, the
iterative `1-norm solution enhances the sparsity. Fig. 2a also
shows an approximate Boolean solution computed using the
solution from the iterative algorithm followed by randomiza-
tion. Note that the randomization using the `1-norm solution
will not yield a meaningful Boolean solution, as the `1-norm
solution is not sparse for this scenario. Fig. 2b shows the
corresponding anchor placement using the iterative `1-norm
algorithm followed by randomization.

An exhaustive search based algorithm to select 14 grid
points out of 80 for the case shown in Fig. 1c would need(

80
13

)
× 608 ≈ 1017 searches over the constraint set, which

is clearly intractable. On the other hand, the complexity of
the proposed algorithms for both OW-A and OW-S cases are

polynomial in the number of variables and the number of con-
straints.
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