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Abstract—A framework to track the position and orientation
of a moving rigid body is proposed. We consider a setup in which
a few wireless sensors are mounted on a rigid body. The topology
of how these sensors are mounted on the rigid body is known;
however, the absolute position of the sensors or the rigid body
itself is unknown. Using range-only measurements between the
sensors and a few anchors (nodes with known absolute positions),
and a simple kinematic model, we propose an unconstrained,
unitarily-constrained, and event-triggered estimator based on
Kalman filtering techniques.

I. INTRODUCTION

Localization is one of the important tasks in wireless sensor
networks (WSNs). Localization is typically based on range
measurements between the sensors and a few anchors (nodes
with known absolute positions). A plethora of algorithms on
localization exists, an overview can be found in [1]. For non-
static nodes, a variety of state-estimation algorithms to track
the position of the sensors based on Kalman filters (KFs),
including the extended and unscented versions of the KF have
been proposed [2].

Previously, we proposed a framework for rigid body lo-
calization [3], [4], in which we jointly estimate the position
and orientation of a static rigid body, without using any inertial
measurements. Instead, we use only range measurements. This
is useful for monitoring and maneuvering orbiting satellites,
unmanned aircrafts, underwater vehicles, and robots.

Tracking the position and orientation of mobile rigid bodies
is also a well-studied topic, however, they are generally treated
separately [5]. While most of the existing orientation estima-
tion methods make use of inertial measurement units (IMUs),
which include sensors like accelerometers in combination with
gyroscopes, positioning is typically achieved using GPS. This
paper is a sequel to the rigid body localization in [3]. The
main contribution of this paper is the proposed framework to
track a mobile rigid body. More specifically, we jointly track
its position and orientation. Using range measurements, and a
simple kinematic model, we propose an unconstrained Kalman
filter (KF), a unitarily-constrained KF (UC-KF), and an event-
triggered KF (ET-KF). The proposed framework can also be
used as an add-on to correct the drift errors associated with
IMUs, or in environments where inertial measurements and/or
positioning via GPS is not possible.

II. PROBLEM FORMULATION

A. System model
Consider a network with M anchors (nodes with known

absolute locations) and N sensors. The sensors are mounted
on the rigid body (e.g., at the factory), and the topology of
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Fig. 1: A rigid body undergoing a rotation and translation.

how these sensors are mounted is known. In other words,
we connect a so-called reference frame to the rigid body, as
illustrated in Fig. 1, and in that reference frame, the coordinates
of the nth sensor are given by the known 3 × 1 vector
cn = [cn,1, cn,2, cn,3]T . The sensor topology is determined
by the matrix C = [c1, c2, . . . , cN ] ∈ R3×N . Let the absolute
coordinates of the mth anchor and the nth sensor at time k
be denoted by a 3× 1 vector am and sn,k, respectively. These
absolute positions of the anchors and the sensors (at time k) are
collected in the matrices A = [a1, a2, . . . , aM ] ∈ R3×M and
Sk = [s1,k, s2,k, . . . , sN,k] ∈ R3×N , respectively. The absolute
position of the sensors or the rigid body itself is not known.

The pairwise distance between the mth anchor and the
nth sensor is typically obtained by ranging. The squared-range
measurements between the mth anchor and the nth sensor at
time k can be expressed as

dmn,k = ‖am − sn,k‖
2
2 + nmn,k

= ‖am‖2 − 2aTmsn,k + ‖sn,k‖
2 + nmn,k,

(1)

where nmn,k is the observation noise that takes into account
the ranging error and the effect of squaring the range mea-
surements. We assume nmn,k as a zero mean random process
having a variance σ2

m = σ2‖am − s1,k‖2 [4].

B. Known sensor geometry
A Stiefel manifold in three dimensions, commonly denoted

by V3,3 = {Q ∈ R3×3 : QTQ = QQT = I3}, is the set of
all 3× 3 unitary matrices Q = [q1,q2,q3] ∈ R3×3.

The absolute position of the nth sensor at time k can be
written as

sn,k = cn,1q1,k + cn,2q2,k + cn,3q3,k + tk

= Qkcn + tk, (2)

where tk ∈ R3×1 denotes the translation at time k. The
combining weights cn are the known coordinates of the nth
sensor in the reference frame, as introduced in Section II-A.
The unknown unitary (rotation) matrix Qk ∈ V3,3 tells us how
the rigid body has rotated in the reference frame at time k.
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As in (2), the absolute position of all the sensors at time k
can be written as an affine function of the Stiefel manifold

Sk = QkC+ tk1
T
N =

Θk
︷ ︸︸ ︷

[ Qk tk ]

Ce
︷ ︸︸ ︷
[

C

1T
N

]

, (3)

where Θk ∈ R3×4 is the unknown transformation matrix.
Tracking the transformation matrix is equivalent to tracking
the position and orientation of the moving rigid body.

III. STATE-SPACE MODEL

A. Measurement model

Collecting the squared-range measurements between the
nth sensor and all the anchors, we can write (1) in a vector
form as

dn,k = a− 2AT sn,k + ‖sn,k‖
21M + nn,k, (4)

where dn,k = [d1n,k, d2n,k, . . . , dMn,k]T ∈ RM×1,
a = [‖a1‖2, ‖a2‖2, . . . , ‖aM‖2]T ∈ RM×1, and nn,k =
[n1n,k, . . . , nMn,k]T ∈ RM×1. The noise covariance matrix
will be Σ = E{nn,kn

T
n,k} = diag(σ2

1 ,σ
2
2 , . . . ,σ

2
M ) ∈ RM×M .

We eliminate the vector ‖sn,k‖21M in (4) using an M ×
(M−1) isometry decomposition of PM = IM−1M1T

M/M =
UMUT

M , such that UT
M1M = 0M−1. Pre-multiplying both

sides of (4), we arrive at

UT
M (dn,k − a) = −2UT

MAT sn,k +UT
Mnn,k. (5)

We next whiten (5) by multiplying both sides of (5) with a
pre-whitening matrix W ∈ R(M−1)×(M−1), which leads to

WUT
M (dn,k − a) = −2WUT

MAT sn,k +WUT
Mnn,k, (6)

where we define W such that W(UT
MΣUM )W = IM−1.

Stacking (6) for all the N sensors, we obtain

WUT
MDk = −2WUT

MATSk +WUT
MNk, (7)

where Dk = [d1,k,d2,k, . . . ,dN,k] − a1T
N ∈ RM×N , and

Nk = [n1,k,n2,k, . . . ,nN,k] ∈ RM×N . Substituting (3) in (7)
we arrive at the following linear observation model

WUT
MDk = −2WUT

MATΘkCe +WUT
MNk

which can be written as

D̄k = ĀΘkCe + N̄k, (8)

where D̄k = WUT
MDk ∈ R(M−1)×N , Ā = −2WUT

MAT ∈
R(M−1)×3, and N̄k = WUT

MNk ∈ R(M−1)×N . Vectorizing
(8) leads to the measurement model

d̄k = Hθk + n̄k, (9)

where H = (CT
e ⊗ Ā) ∈ RN(M−1)×12 (⊗ is the Kronecker

product), d̄k = vec(D̄k) ∈ R(M−1)N×1, n̄k = vec(N̄k) ∈
R(M−1)N×1, and the unknown 12× 1 vector θk is given by

θk = vec(Θk) = [qT
k , t

T
k ]

T with qk = vec(Qk).

The covariance matrix of n̄k will be E{n̄kn̄
T
k } = I(M−1)N [3].

B. Kinematic model
We consider a simple kinematic model for the motion of

rigid bodies, in which the motion of the body is defined by the
following two parameters: (a) the rate of change of rotation
which depends on the angular velocity, and (b) the rate of
change of translation which depends on the linear velocity.

The kinematic rotation update equation is given by
Qk = FQ,kQk−1 (10)

where the matrix FQ,k ∈ V3,3 has a closed-form solution
following from the Rodrigues formula [6, pg. 370]:
FQ,k = exp(Ωk)

= I3 +
Ωk

‖τsωk‖2
sin(‖τsωk‖2) +

Ω2
k

‖τsωk‖
2

2

(1− cos(‖τsωk‖2)),

where τs is the sampling time, and the skew-symmetric matrix

Ωk =

[
0 −ω3,k ω2,k

ω3,k 0 −ω1,k

−ω2,k ω1,k 0

]

∈ R
3×3,

is the angular velocity matrix constructed from the angular
velocity vector ωk = [ω1,k,ω2,k,ω3,k]T ∈ R3×1. Since the
matrix FQ,k ∈ V3,3, the following is always true: Qk ∈ V3,3,
if and only if, Qk−1 ∈ V3,3. The angular velocity dynamics in
(10) is usually perturbed (due to slight speed corrections, for
instance). Taking these perturbations into account the rotation
update equation in (10) can be written as

Qk = F′
Q,kQk−1 (11)

where F′
Q,k = exp(Ωk + Ek) with a skew-symmetric matrix

Ek constructed using ek that correspond to the perturbations
on ωk. Here, we assume that E{ekeTk } = σ2

ωI3. The process
noise depends on the state variable, hence, we use an approx-
imate model

Qk = FQ,kQk−1 + ZQ,k, (12)
which when vectorized leads to

qk = (I3 ⊗ FQ,k)qk−1 + zq,k, (13)
where zq,k = vec(ZQ,k) is the process noise with
E{zq,kzTq,k} = σ2

qI9.
The update equation for the translational displacement is

given by
tk = tk−1 + τsṫk + zt,k (14)

where ṫk is the linear velocity which is subject to some random
noise denoted by zt,k with E{zt,kzTt,k} = σ2

t I3. Stacking (13)
and (14), we arrive at the kinematic model

θk = Fkθk−1 + uk + zk, (15)
where Fk = diag(I3 ⊗ FQ,k, I3) ∈ R12×12 is the block
diagonal state-transition matrix, uk = τs[0T

9 , ṫ
T
k ]

T ∈ R12×1

is the known control vector, and zk = [zTq,k, z
T
t,k]

T ∈ R12×1

is the process noise with a block diagonal covariance matrix
M = E{zkzTk } = diag(σ2

QI9,σ
2
t I3).

Recalling (15) and (9), we have the state-space model
θk = Fkθk−1 + uk + zk, (16a)
d̄k = Hθk + n̄k, (16b)

where we assume that the dynamic model is known.
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IV. PROPOSED ESTIMATORS

A. Unconstrained Kalman filter (KF)

For the state-space model in (16), the derivation of an
(unconstrained) KF is well-known [2]. Assuming that the
estimate θ̂k−1 and the error covariance matrix E{(θ̂k−1 −
θk−1)(θ̂k−1 − θk−1)T } = Pk−1 are available from the
previous time step k−1, then at time k, the KF state predictor
and its error covariance are obtained as

θ̂k|k−1 = Fkθ̂k−1 + uk (17a)
Pk|k−1 = E{(θ̂k|k−1 − θk)(θ̂k|k−1 − θk)

T }

= FkPk−1F
T
k +M. (17b)

We can view θ̂k|k−1 in (17a) as an additional noisy measure-
ment of θk, such that

θ̂k|k−1

︷ ︸︸ ︷
[

q̂k|k−1

t̂k|k−1

]

=

θk
︷ ︸︸ ︷
[

qk

tk

]

+

ek|k−1

︷ ︸︸ ︷
[

eq,k|k−1

et,k|k−1

]

(18)

where

E{ek|k−1e
T
k|k−1} = Pk|k−1 = diag(Pq,k|k−1,Pt,k|k−1).

Here, Pq,k|k−1 and Pt,k|k−1 relate to eq,k|k−1 and et,k|k−1,
respectively. Stacking (16b) and (18), we form an augmented
measurement vector

[

θ̂k|k−1

d̄k

]

=

[

I12
H

]

θk +

[
ek|k−1

n̄k

]

(19)

where the augmented noise vector has a block diagonal co-
variance matrix diag(Pk|k−1, I). The (unconstrained) KF is
obtained by solving (19) in the weighted least-squares (WLS)
sense, i.e., solving the optimization problem

θ̂k =argmin
θk

‖P−1/2
k|k−1

(θ̂k|k−1 − θk)‖
2

2
+ ‖d̄k −Hθk‖

2

2
, (20)

whose solution is commonly referred to as the KF update
equation

θ̂k = θ̂k|k−1 +Kk(d̄k −Hθ̂k|k−1)
−1 (21)

where Kk = Pk|k−1H
T (HPk|k−1H

T + I)−1 is the Kalman
gain, and vec−1(θ̂k) = [Q̂k | t̂k]. The estimate has an error
covariance

Pk = E{(θ̂k − θk)(θ̂k − θk)
T } = diag(Pq,k,Pt,k)

= (I12 −KkH)Pk|k−1,
(22)

where Pq,k and Pt,k relate to the error covariance of q̂k and
t̂k, respectively. However, generally the solution Q̂k /∈ V3,3.
In order to ensure that the estimated Q̂k is a unitary matrix,
we propose two extensions.

B. Unitarily-constrained Kalman filter (UC-KF)

The UC-KF optimization problem is obtained by adding
a unitary constraint to (20) leading to the following unitarily-
constrained WLS (UC-WLS) problem

θ̂k =argmin
θk

‖P−1/2
k|k−1

(θ̂k|k−1 − θk)‖
2

2
+ ‖d̄k −Hθk‖

2

2

s.t. QT
k Qk = I3.

(23)

In order to solve the UC-WLS problem, we decouple the
rotation and translation collected in θk = [qT

k , t
T
k ]

T in (18)
and (16b) that corresponds to the first and the second term of
(23), respectively.

Let us define an N×(N−1) isometry matrixUN obtained
by collecting orthonormal basis vectors of the null-space of 1N

such that 1T
NUN = 0T

N−1. Recall that (16b) is a vectorized
version of (8), and by right-multiplying both sides of (8) with
UN we can project out the row vector 1T

N in Ce, and hence,
decouple rotation from translation. Right-multiplying UN on
both sides of (8) we get

D̃k = ĀQkC̄+ Ñk,

where D̃k = D̄kUN ∈ RK with K = (M − 1) × (N − 1),
C̄ = CUN ∈ R3×(N−1), and Ñk = N̄kUN ∈ RK . This can
be then vectorized as

d̃k = H̄qk + ñk, (24)

where H̄ = C̄T ⊗ Ā, d̃k = vec(D̃k), and ñk = vec(Ñk) with
E{ñkñ

T
k } = I(M−1)(N−1). As before, we augment the first

sub-row of (18) and (24) to get
[

q̂k|k−1

d̃k

]

=

[
I9

H̄

]

qk +

[
eq,k|k−1

ñk

]

(25)

The optimization problem in (25) is solved using an
iterative algorithm based on Newton’s method described in [3],
which solves the following optimization problem over a Stiefel
manifold

q̂k,UC =argmin
qk

‖P−1/2
q,k|k−1

(q̂k|k−1 − qk)‖
2

2
+ ‖d̃k − H̄qk‖

2

2

s.t. Qk ∈ V3,3

which is equivalent to solving the problem [3]

q̂k,UC = argmin
qk

‖f(qk)− b‖22 s.t. Qk ∈ V3,3, (26)

where we use the following (K + 9)× 1 vectors

f(qk) :=

[

P
−1/2
q,k|k−1

H̄

]

qk, and b :=

[

P
−1/2
q,k|k−1

qk|k−1

d̃

]

.

Substituting the solution Q̂k,UC = vec-1(q̂k,UC) of (26) in
(8), we get the residual D̄k − ĀQ̂k,UCC = Ātk1

T
N + N̄k.

Augmenting the vectorized version of this residual and the
second sub-row of (18), we get

[

t̂k|k−1

r̄t

]

=

[

I3
1N ⊗ Ā

]

tk +

[

et,k|k−1

n̄k

]

, (27)

where r̄t = vec(D̄k − ĀQ̂k,UCC) is the residual vector. The
UC-WLS estimate of the translation is obtained by solving a
standard WLS problem

t̂k,UC = argmin
tk

‖P−1/2
t,k|k−1(t̂k|k−1 − tk)‖

2

2

+‖r̄t − (1N ⊗ Ā)tk‖
2
2.

Note that in the UC-KF, we still use (22) for updating the
error covariance matrix and as such the covariance matrix is
overestimated in case of the UC-KF.
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Fig. 2: RMSE of the estimated rotation and translation.

C. Event-triggered KF-orthonormalization (ET-KF)
Even though the UC-KF is the desired estimator, it has the

disadvantage of computational complexity, since it involves
several Newton iterations for solving the UC-WLS at each
time step.

Since one expects that, for low noise/high sampling rate
settings, the unitarity conditions will hold approximately for a
few sampling intervals, a more reasonable approach is to use
an event-triggered methodology. Event-triggering is a growing
research topic in different fields, such as control, estimation,
and optimization [7]. For our estimation problem, event-
triggering means that we can decide whether to orthonormalize
the solution Q̂k from the KF based on the predefined threshold
‖Q̂T

k Q̂k − I3‖F > ε.
In event-triggered KF-orthonormalization (ET-KF) at each

time step, the (unconstrained) KF is first solved. Then we
evaluate ||Q̂T

k Q̂k − I3||F , and if it is bigger than ε, we
orthonormalize Q̂k by solving the following special case of
the orthogonal Procrustes problem [3]

Q̂k,ET = argmin
Qk

‖Qk − Q̂k‖
2

F s.t. Qk ∈ V3,3

= (Q̂kQ̂
T
k )

−1/2Q̂k.
(28)

Again, we use (22) for updating the error covariance matrix.
In this way, we can trade-off estimation accuracy and compu-
tational complexity.

V. SIMULATIONS
We consider a square based pyramid of size 1(l)× 1(w)×

1(h) m for the rigid body with N = 5 sensors mounted
on the vertices of the considered pyramid. Four anchors are
deployed uniformly at random within a range of 2 km. The
simulations are averaged over Nexp = 1000 independent
Monte-Carlo trials. We use the following parameters in the
simulations: σ = 0.0316 m, σt = 1 m, σω = σq = 0.1 deg/s.
We assume a constant velocity dynamics with ṫk = 13 m/s
and ωk = 13 deg/s. In each Monte-Carlo trial, the state
estimates are initialized with Q̂−1 = I3, t̂−1 = 03, and
a high error covariance of P−1 = 100I12. A trajectory of
20 time steps is generated during each trial according to the
kinematic model. The performances of the proposed estimators
are compared in terms of the root mean square error (RMSE)

of tk defined as RMSE(tk) =

√

1
Nexp

∑Nexp

n=1 ‖tk − t̂
(n)
k ‖

2

2,
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Fig. 3: Mean angular error of the orientation estimates.

where t
(n)
k denotes the estimate obtained during the n-

th Monte-Carlo experiment. To analyze the performance of
the rotation estimates, we define one more metric called
the mean angular error (MAE) defined as MAE(Qk) =
√

1
3Nexp

∑Nexp

n=1 tr(arccos(QT
k Q̂

(n)
k,norm), where we normalize

the columns of Q̂(n)
k as Q̂(n)

k,norm = [ q̂k,1

‖q̂k,1‖2

, q̂k,2

‖q̂k,2‖2

, q̂k,3

‖q̂k,3‖2

]

when Q̂
(n)
k /∈ V3,3, and Q̂

(n)
k and Q̂

(n)
k,norm correspond to

the estimate obtained during the nth Monte-Carlo trial. The
estimated RMSE of rotation and translation is computed using
√

1
Nexp

∑Nexp

n=1 tr(P(n)
q,k ) and

√

1
Nexp

∑Nexp

n=1 tr(P(n)
t,k ), respec-

tively, where P(n)
q,k and P

(n)
t,k correspond to the error covariance

during the nth Monte-Carlo trial (see solid green line in Fig. 2).

In Fig. 2, the RMSE of the rotation estimates is illustrated
for the proposed estimators, along with the estimated covari-
ance. The RMSE of the unconstrained KF follows the esti-
mated covariance. However, the constrained estimators have a
lower RMSE (see Fig. 3 for the MAE). The performance of the
translation estimates for the considered scenario is similar for
all methods. The RMSE of the ET-KF estimate for ε = 0.15
is higher than orthonormalizing at each step (indicated as KF-
ortho).
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