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ABSTRACT

A fully-asynchronous network with one target sensor and a
few anchors (nodes with known locations) is considered. Lo-
calization and synchronization are traditionally treated as two
separate problems. In this paper, localization and synchro-
nization is studied under a unified framework. We present
a new model in which time-stamps obtained either via two-
way communication between the nodes or with a broadcast
based protocol can be used in a simple estimator based on
least-squares (LS) to jointly estimate the position of the tar-
get node as well as all the unknown clock-skews and clock-
offsets. The Cramér-Rao lower bound (CRLB) is derived for
the considered problem and is used as a benchmark to analyze
the performance of the proposed estimator.

Index Terms— Clock synchronization, clock-skew, clock-
offset, localization, wireless sensor networks.

1. INTRODUCTION

Localization and clock synchronization are two key compo-
nents of any self-organizing location-aware wireless sensor
network (WSN). A WSN enables distributed information pro-
cessing tasks like data sampling, information fusion, and other
time-based tasks [1]. Every node in the network has an au-
tonomous clock. These individual clocks in a WSN drift from
each other due to imperfections in the oscillator, aging and
other environmental variations. It is essential to calibrate these
imperfections from time to time to achieve a network-wide
time coherence. A plethora of algorithms for clock synchro-
nization can be found in [2]. For the data to be meaning-
ful, the location where the data is acquired is often required.
Computing the location of the nodes is commonly called lo-
calization, and is a well-studied topic [3].

Even though localization and clock synchronization are
tightly coupled, traditionally they are treated as two sepa-
rate problems. Recently, for an anchorless and a fully asyn-
chronous network, a global least-squares (GLS) estimator based
on a two-way time-stamp exchange protocol for joint clock
synchronization and ranging has been proposed in [4]. Ex-
ploiting the broadcast nature of the wireless medium, an asym-

metrical time-stamping and passive listening (ATPL) protocol
was proposed in [5] for joint clock synchronization and rang-
ing. Subsequently, the estimated pairwise distances can be
used as an input to the least-squares (LS) based range-squared
method for localization. Joint estimation of the position and
the clock parameters of a sensor based on the two-way time-
stamp exchange protocol has been considered in [6], where
an synchronous network is considered where only the sensor
node suffers from clock-skews and clock-offsets and the an-
chors are assumed to be synchronized. In [7], localization
of the sensor node in a fully-asynchronous network has been
studied, where the main focus is on localization but also cer-
tain approximations of the clock parameters are required to
solve the problem.

In this paper, we again consider fully-asynchronous net-
work consisting of one sensor and a few anchors, and inves-
tigate localization and clock synchronization under a unified
framework. We propose a linear data model for joint localiza-
tion and clock synchronization. The data model is generic in
the sense that it can be used with either the two-way ranging
protocol or the ATPL protocol. This is used in an estima-
tor based on LS to jointly estimate the position of the sensor
node and all the unknown clock-skews and clock-offsets. The
Cramér-Rao Lower Bound (CRLB) is derived for the consid-
ered problem and is used as a benchmark to analyze the per-
formance of the proposed estimators.
Notation:
Upper (lower) bold face letters are used for matrices (column
vectors); (·)T denotes transposition; � (�) refers to element-
wise matrix or vector product (division); (.)�2 denotes the
element-wise matrix or vector squaring; bdiag(.) a block di-
agonal matrix with the matrices in its argument on the main
diagonal; 1N (0N ) denotes the N × 1 vector of ones (zeros);
IN is an identity matrix of size N ; E(.) denotes the expecta-
tion operation; ⊗ is the Kronecker product.

2. NETWORK MODEL

We consider a fully-asynchronous network with M anchors
and one sensor (node 0) as shown in Fig. 1. We assume one
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Fig. 1: An illustration of the network model, together with
the know and unknown parameters. Light shaded lines refer
to the passive listening links.

of the nodes has a relatively stable clock oscillator and is used
as a clock reference. All the other nodes suffer from clock-
skews and clock-offsets. The network model considered here
is the same as the model considered in [5].

All the nodes are distributed over an l-dimensional space,
with l = 2 (plane) or l = 3 (3-D space). Let the vector
xi ∈ Rl×1 denote the coordinates of the ith node. The co-
ordinates of all the anchors are collected in a matrix X =
[x1,x2, . . . ,xM ] ∈ Rl×M . The unknown coordinates of the
sensor are collected in x0. The distance between the ith node
and the jth node is denoted by

dij = dji = ‖xi − xj‖2 =
√
‖xi‖2 − 2xT

i xj + ‖xj‖2
(1)

Let ti be the local time at the ith node and t be the refer-
ence time. We then assume that the relation between the local
time and the reference time can be given by a first-order affine
clock model [4],

ti = ωit+ φi ⇔ t = αiti + βi (2)

where ωi ∈ R+ is the clock-skew, φi ∈ R is the clock-offset,
αi = ω−1

i and βi = −ω−1
i φi are the synchronization parame-

ters of the ith node. Without loss of generality, we use anchor
M as absolute time reference, i.e., [ωM , φM ] = [1, 0]. The
unknown synchronization parameters are collected in α =
[α0, α1, . . . , αM−1]T and β = [β0, β1, . . . , βM−1]T . The un-
known clock-skews and clock-offsets are respectively given
by

ω = 1M �α and φ = −β �α. (3)

Nodes in the network can communicate with each other
either via a two-way communication protocol [4] or an ATPL
protocol [5] as illustrated in Fig. 1.

3. PROBLEM FORMULATION

In this paper, we focus on the two-way communication proto-
col for deriving the data model. The transmission and recep-
tion time-stamps are recorded independently at local time co-
ordinates both during the forward and the reverse links. The
time-stamp recorded at the ith node when the kth iteration
message departs to the jth node is denoted by T (k)

ij , and upon
arrival of the corresponding message, the jth node records the
time-stamp T (k)

ji . For the sake of generality, we do not put any
constraints on the sequence of forward links and reverse links
or the number of time-stamps recorded [4, 5].

The time-of-flight for a line-of-sight (LOS) transmission
between the ith node and the jth node can be defined as τij =
ν−1dij , where ν denotes the speed of a wave in a medium.
Using (2), τij can be written in terms of the local clock coor-
dinates as

τij = (αjT
(k)
ji + βj)− (αiT

(k)
ij + βi) + n

(k)
ij (4)

where n(k)
ij denotes the aggregate measurement error on the

time-stamps.
In all there are K time-stamps recorded at each node and

the time-stamps recorded at the ith node are collected in tij =

[T
(1)
ij , T

(2)
ij , . . . , T

(K)
ij ]T ∈ RK×1. The direction (forward or

reverse) of the kth link is denoted by e(k)
ij , where e(k)

ij = 1 for

transmission from node i to node j and e(k)
ij = −1 for trans-

mission from node j to node i. The direction information is
collected in a vector eij = [e

(1)
ij , e

(2)
ij , . . . , e

(K)
ij ]T ∈ RK×1.

The error vector is denoted by nij = [n
(1)
ij , n

(2)
ij , . . . , n

(K)
ij ]T ∈

RK×1.
For the sake of exposition, we consider the example of a

network with M = 3 anchors and one sensor (node 0) with
a of two-way communication protocol between each of the
sensor-anchor pairs. Let the clock parameters corresponding
to the ith node be collected in a vector ci = [αi, βi] and
τ 0 = [τ0,1, τ0,2, . . . , τ0,M ]T ∈ RM×1. The pairwise dis-
tances of the sensor to each anchor will be d0 = ντ 0. We
can now write (4) for all the K time-stamps collected in a
matrix-vector form shown in (5) on top of this page. Mov-
ing the known columns corresponding to c3 = [1, 0]T (clock
reference) to one side, we can re-write (5) shown in (6) on
top of this page. The generalization of (6) for any M > 2 is



straightforward.
In case we adopt the broadcast based ATPL protocol, the

matrix A will have additional rows corresponding to the pas-
sive listening links [5]. The detailed derivation of the linear
data model for the ATPL protocol can be found in [5].

The generalized linear model for either the two-way com-
munication or ATPL protocol can be written as

Aθ = t + n (7)

where A ∈ RKM×3M , θ ∈ R3M×1, t ∈ RKM×1, and n ∈
RKM×1 with the structures detailed in (6) for the two-way
communication protocol or in [5] for the ATPL protocol.

The aim of this work is to estimate the position x0 of
the target node along with all the unknown clock parameters.
The position of the target node x0 can be computed using the
range estimates obtained by solving (7). This is presented as
a two-step approach in the next section, where in the first step
we estimate the unknown clock parameters and the pairwise
distances of the sensor to each anchor, and use this estimated
pairwise distances to compute the position of the target node
in the second step. Alternatively, we can formulate a single
estimation problem to jointly compute the position of the tar-
get node as well as all the unknown clock parameters and this
is the main contribution of this paper.

4. TWO-STEP APPROACH

In the two-step approach, we first solve for all the unknown
clock parameters and the pairwise distances of the sensor to
each anchor and then use the range estimates in a LS estimator
to compute the location.
4.1. Joint synchronization and ranging: step I

For K ≥ 3, matrix A is tall and left-invertible. Hence, the
unknown parameters in θ can be estimated using LS, i.e.,

θ̂ = (ATA)−1AT t. (8)

Subsequently, the clock-skews ω, clock-offsets φ can be ob-
tained using the relation in (3), and the pairwise distances of
the sensor to each anchor using the relation d̂0 = ντ̂ 0.
4.2. Localization from estimated pairwise distances: step II

Pairwise distances form a major input to any localization scheme.
Using the pairwise distance estimates obtained in (8), the co-
ordinates of the sensor node can be estimated using range-
squared localization algorithms.

Let us define a vector q = [‖x1‖2, ‖x2‖2, . . . , ‖xM‖2]T ∈
RM×1. Using (1), we can write the pairwise distance of the
sensor to each anchor in a vector form as

d0 � d0 = q− 2XTx0 + ‖x0‖21M

= X̄p + q,
(9)

where p = [xT
0 , ‖x0‖2]T and X̄ = [−2XT ,1M ] ∈ RM×(l+1).

Subsequently, the coordinates of the sensor can be estimated

using LS as follows

p̂ = (X̄T X̄)−1X̄T (d̂0 � d̂0 − q) (10)

provided M ≥ l + 1 such that the matrix X̄ is tall. The
anchor positions can be designed such that the matrix X̄ is
left-invertible.

5. THE JOINT ESTIMATOR

Although clock synchronization and localization problems are
tightly coupled, they have a non-linear relation as can be seen
in (9). In case we want to localize the sensor and also estimate
all the unknown clock parameters in one linear step, we have
to linearize the relation between the clock parameters and the
position.

In order to do such a joint localization and synchroniza-
tion, we exploit the linear relation between the range-squared
measurements and the coordinates of the sensor. Instead of
squaring the estimated pairwise distances in the second step
as in Section 4.2, we linearize the problem by squaring the
linear model in (7), and this is the main contribution of this
paper. A unified framework for localization and synchroniza-
tion is essential for applications in WSNs such as joint track-
ing of the position and the clock-parameters, for e.g., using a
standard Kalman filter.

Hadamard squaring the data model in (7) would result in
a linear model and is given by

(Aθ)� (Aθ) = (t + n)� (t + n) (11)

and can be further simplified to

(AT ◦AT )T (θ ⊗ θ) = (t + n)� (t + n) (12)

The linear model in (12) does not have a unique solution as
the system matrix (AT ◦AT )T is aKM×9M2 matrix which
is generally fat and thus not left-invertible. However, this can
be solved with certain approximations of the clock parameters
as in [7].

An alternative approach to linearizing the problem is by
taking the Kroneckor product of the measurements, i.e.,

(Aθ)⊗ (Aθ) = (t + n)⊗ (t + n). (13)

Using the matrix property PC ⊗QE = (P ⊗Q)(C ⊗ E),
we can further simplify (13) to the following linear model

Ā︷ ︸︸ ︷
(A⊗A)

θ̄︷ ︸︸ ︷
(θ ⊗ θ) = (t + n)⊗ (t + n)

=

t̄︷ ︸︸ ︷
t⊗ t +

w︷ ︸︸ ︷
n⊗ n + t⊗ n + n⊗ t

(14)

where Ā ∈ RK2M2×9M2

, and w ∈ RK2M2×1 is the new er-
ror vector. If the matrix A is full column-rank, then it follows
that the matrix Ā is also full column-rank.



We now introduce two new variables to resolve the clock
parameters without ambiguity after the squaring operation.
For the ith node, we define the variables

γi , α2
i and δi , αiβi, (15)

and collect parameters corresponding to the ith node in the
vector c̄i = [γi, δi]

T . The clock-skew ωi ∈ R+ is always
positive and the clock-offset φi ∈ R can be either positive or
negative. As a result, recovering clock-offsets from β2

i with-
out ambiguities would be difficult. Hence, we make use of the
cross-term δi = αiβi to recover the clock-offset. For all the
nodes in the network we have c̄ = [c̄T0 , c̄

T
1 , c̄

T
2 , . . . , c̄

T
M−1]T .

Let us define a permutation matrix Π ∈ R9M2×9M2

that sorts
the entries of θ̄, such that Πθ̄ = [c̄T , τ�2T

0 , zT ]T . Here, the
entries of the vector z ∈ RLz×1 with Lz = 9M2 − 3M , con-
sist of the nuisance parameters excluding c̄ and τ�2

0 from θ̄
and is of less interest.

We can now re-write (14) as follows

ĀΠT (Sc̄c̄ + ν−2Sdd�2
0 + Szz) = t̄ + w (16)

where Sc̄, Sd, and Sz̄ are the selection matrices to select
columns of ĀΠT corresponding to c̄, d�2

0 , and z, respec-
tively. Substituting (9) in (16), we get

ĀΠT (Sc̄c̄ + ν−2SdX̄ap + Szz) = t̄− ĀΠT ν−2Sdq + w.
(17)

We next collect the unknowns in the vectorψ = [c̄T ,pT , zT ]T

∈ RL×1 where L = 2M + l + 1 + Lz and the columns cor-
responding to the unknowns in the matrix

Ã = [ĀΠTSc̄, ν
−2ĀΠTSdX̄, ĀΠTSz] ∈ RK2M2×L,

(18)
and the measurements in the vector t̃ = t̄− ν−2ĀΠTSdq ∈
RK2M2×1.

The generalized linear model for joint localization and
synchronization is then given by

Ãψ = t̃ + w (19)

The unknown parameters inϕ can be estimated using LS, i.e.,

ψ̂ = (ÃT Ã)−1ÃT t̃. (20)

Hence, the unknown position x0 is obtained by solving (20)
and the unknown clock-skews and clock-offsets can be ob-
tained using (15) and (3) without any ambiguities.

Alternatively, a weighted least-squares (WLS) estimator
instead of (10) taking the estimation error in (8) or a WLS es-
timator instead of (20) pre-whitening the noise w is possible.
However, this is not further detailed in this paper.

6. CRAMÉR-RAO LOWER BOUND

We now derive the CRLB for jointly estimating the clock-
skews ω, the clock-offsets φ, and the coordinates of the sen-
sor node x0, i.e., ψ̄ = [ωT ,φT ,xT

0 ]T based on (7). For an

unbiased estimator ˆ̄ϕ it follows from the CRLB theorem that
E(ˆ̄ψ ˆ̄ψT ) ≥ F−1 where F is the Fisher information matrix.
If the error vector n is Gaussian distributed with a variance
σ2, then F can be computed as F = σ−2JTJ, where J is the
Jacobian matrix given by

J =
∂(Aθ − t)

∂ϕ̄
= [Jω Jφ Jx0 ] ∈ RKM×(2M+l)

(21)
with sub-blocks

Jω = −A(Sα − Sβ � 1KMφ
T )� (1KMω

T )�2,

Jφ = −ASβ � 1KMω
T ,

Jx0 = ν−1TSτ0D,

(22)

where Sα, Sβ, and Sτ0 are selection matrices to select the
columns of A corresponding to α, β, and τ 0, respectively.
The M × l derivative matrix D is defined as

[D]i,j =

[
∂d0

∂x0

]
i,j

=
[x0]j − [xi]j
‖x0 − xi‖2

(23)

7. NUMERICAL EXAMPLE

A network with one target sensor and 5 anchors is considered.
Both the target node and anchor nodes are deployed randomly
within a range of 100m. The clock-skews ω and clock-offsets
φ are uniformly distributed in the range [1 − 100ppm, 1 +
100ppm] and [−1s, 1s], respectively. We use an observation
interval of 100 s during which the clock parameters are as-
sumed to be fixed. We use ν = 300 m/s and record K = 10
time-stamps. The error vector is assumed to be Gaussian dis-
tributed with a variance σ2. The simulations are averaged
over 1000 independent Monte Carlo experiments.
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Fig. 2: RMSE of the estimated sensor coordinates.

In this paper, we analyze the performance of the proposed
estimators in terms of the root mean square error (RMSE) of
the estimated sensor position, clock-skews, and clock-offsets
for different values of σ2. We provide the results for a) two-
way communication protocol [4] b) ATPL protocol [5].
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Fig. 3: RMSE of the estimated clock-skews.
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Fig. 4: RMSE of the estimated clock-offsets.

Fig. 2 shows the RMSE of the estimated sensor position
computed using a) the two-step approach, i.e., LS estimator
(10) with the range estimates of (8) as the input, and b) the
proposed joint estimator. The root CRLB (RCRLB) is also
provided for both the considered protocols. The ATPL pro-
tocol performs better than the two-way communication pro-
tocol due to the additional passive listening links [5]. How-
ever, both the estimators for localization are inaccurate as the
dependencies with the nuisance parameters are not consid-
ered, and this can be resolved using a constrained WLS solu-
tions [7].

Fig. 3 and Fig. 4 show the RMSE of the estimated clock-
skews and clock-offsets. The ATPL protocol again performs
better than the two-way communication protocol. In addi-
tion, both the estimators for clock-skews and clock-offsets are
asymptotically efficient, and meet the CRLB.

The location of the target node can be obtained with a two-
step approach using the range estimates obtained from joint
synchronization and ranging. Alternatively, we can formulate
localization and synchronization under a unified framework
as a single linear problem. However, this results in a larger
system to solve and is computationally less attractive than the
two-step approach. The linear model of the joint synchroniza-
tion and localization can be used for joint tracking of the clock

parameters and the position which is an important application
in a WSN.

8. CONCLUSIONS

We have considered a fully-asynchronous network with one
sensor and a few anchors. In this paper, we have addressed
a problem in which we estimate all the unknown clock pa-
rameters as well as the position of the target node. Loca-
tion of the node can be estimated with a two-step approach
using the range estimates. To avoid this two-step approach,
we have proposed a generic linear data model for joint lo-
calization and clock synchronization. An estimator based on
LS to jointly estimate the position of the target sensor node,
along with all the unknown clock-skews and clock-offsets has
been presented. The proposed estimator for clock-skews and
clock-offsets is asymptotically efficient and meets the CRLB,
however, the position estimates do not asymptotically achieve
the CRLB.
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