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Abstract—Atrial fibrillation (AF) is a common cardiac arrhyth-
mia and its mechanisms are not yet fully understood. Analyzing
atrial epicardial electrograms (EGMs) is important to understand
the mechanisms underlying AF. However, when measuring the
atrial activity (AA), the electrogram is commonly distorted by
the far-field ventricular activity (VA). During sinus rhythm, the
AA and the VA are separated in time. However, the VA often
overlaps with the AA in both time and frequency domain during
AF, complicating proper analysis of the AA. Unlike traditional
methods, this work explores graph signal processing (GSP) tools
for AA extraction in EGMs. Since EGMs are time-varying and
non-stationary, we put forward the joint graph and short-time
Fourier transform to analyze the graph signal along both time
and vertices. It is found that the temporal frequency components
of the AA and the VA exhibit different levels of spatial variation
over the graph in the joint domain. Subsequently, we exploit these
findings to propose a novel algorithm for extracting the AA based
on graph smoothness. Experimental results on synthetic and real
data show that the smoothness analysis of the EGMs over the
atrial area enables us to better extract the AA.

Index Terms—Atrial fibrillation, atrial activity extraction,
graph-time signal processing, graph smoothness.

I. INTRODUCTION

Atrial fibrillation (AF) is a common heart disease character-
ized by rapid and irregular beating of the atria. Its prevalence
among the general population is about 1% - 2%, which is
predicted to double in the next 50 years [1]. The mechanisms
of AF are complicated and not clear yet. Compared to body
surface electrocardiograms (ECGs), epicardial electrograms
(EGMs) are measured on the heart surface and have a better
spatial resolution, which is helpful to investigate the mecha-
nisms underlying AF. Therefore, we focus on the EGMs in
this work. Atrial EGMs are usually corrupted by ventricular
far-field activity. Although ventricular activity (VA) and atrial
activity (AA) are separated in time during sinus rhythm,
they overlap during AF. This complicates the analysis of
AF and emphasizes why it is important to remove VA from
the raw measurements before using electrograms for studying
activation patterns during AF.

One commonly applied technique to extract AA is called
template matching and subtraction [2]–[4], which generates
a template of the VA and then subtracts it from the raw
measurements. Average beat subtraction (ABS) [2] is a simple
but effective implementation of this technique. However, it
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cannot adapt well to changes in the morphology of the
electrogram. Another technique, called adaptive ventricular
cancellation (AVC) [5], is proposed to solve this problem.
However, its performance is not stable as it depends on a
reference recording, usually obtained from another lead. For
surface ECG, signal separation algorithms such as principal
component analysis (PCA) [6] and independent component
analysis (ICA) [5], [7] are also explored for AA extraction.
However, the assumptions about the distribution and indepen-
dence of the ECG components may not hold for the EGM.

The EGMs considered in this work are measured at the
epicardial sites of the atria by a mapping array. These data
are spatially high dimensional and exhibit irregular properties
during AF. The natural tools to represent such data are graphs,
as graphs have proven their ability to capture the underlying
structure of high-dimensional and irregular data [8]. Therefore,
we construct an undirected graph to represent the EGMs in all
electrodes and then analyze the spatial variation of the AA and
the VA using tools from graph signal processing (GSP) [8],
[9].

The graph Fourier transform (GFT) is a predominant tool in
GSP, which permits to decompose a graph signal (in our case
the EGM measurements) into components that exhibit different
levels of spatial variation. However, it only considers a fixed
time sample and cannot exploit the correlation in time. Con-
sidering that EGMs are time-varying and non-stationary, we
use the short-time Fourier transform (STFT) in combination
with the GFT to exploit the spatial variation of the AA and
the VA in short time periods. In the joint space-time-frequency
domain it is found that the frequency components of the VA
are less variable over the atrial area than those of the AA.
This motivates us to separate the AA and the VA based on
their difference in smoothness over the graph. In this regard,
we develop an algorithm to extract the AA based on the graph
smoothness.

II. PROBLEM STATEMENT

The data used in this study are obtained from [10] and are
measured during open-heart surgery at Bachmann’s bundle
using a high-resolution mapping array, as shown in Fig. 1,
during both sinus rhythm (SR) and induced AF. All procedures
performed in the data collection were in accordance with
the ethical standards as declared in [10]. There are 8×24
electrodes in the array with an inter-electrode distance of 2
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Fig. 1. The mapping array and the placement on Bachmann’s bundle (BB) in
a human heart [10]. RAA: right atrial appendage; LAA: left atrial appendage;
VCS: vena cava superior; RSPV: right superior pulmo-nary vein.

mm. The electrodes included in the red box in Fig. 1 are used
for recording the EGMs. One of the remaining electrodes is
used to measure the ECG. Fig. 2 shows an example of the
EGM during SR and during AF. We use red triangles to mark
the peaks of the ventricular components, whose positions are
determined using the ECG. From Fig. 2, we can see that the
AA and the VA do not overlap during SR whereas they often
overlap during AF. We here aim to extract the AA from the
mixture, which is in particular challenging during AF due to
the fact that the AA and the VA overlap in frequency as well
as in time domain.

We treat each electrode as a vertex of a graph and connect
it to its eight nearest neighbors to form an undirected network.
Such a graph is reasonable as the signal at one electrode has
strong similarities with the signals at surrounding electrodes.
Denote the graph as G = (V, E ,W), where V = {v1, · · · , vm}
is the vertex set, E is the edge set, and W is the adjacency
matrix collecting the edge weights W(i, j) = Wi,j . We set
Wi,j = 1 if there is a connection between vertices vi and vj
and Wi,j = 0 if there is no connection. The graph signal is
defined as a mapping from the vertex set to the set of real
numbers. We denote the EGM in the ith electrode at time t
as xi,t. Then, xt = [x1,t, x2,t, . . . , xm,t]

> ∈ Rm with t ∈
{0, 1, . . . , T − 1} is the graph signal at time t.

We consider the EGM to be a linear mixture of the AA and
the VA [5]. The EGM model can be expressed in the graph
domain as

xt = at + vt (1)

where at, vt, and xt represent the AA, the VA and the mixture
on the graph, respectively.

To solve the AA extraction problem, we need to estimate
the AA at given the measurements xt. However, dealing with
the graph signal per time sample neglects the time-domain
correlation in the signal. Therefore, in this work, the AA is
extracted in short-time periods by combining the joint short-
time Fourier transform and the graph Fourier transform and
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Fig. 2. An example of the EGM during SR and AF. The red triangles mark
the time instants of the VA peaks.

by exploiting the graph signal smoothness in the joint space-
time-frequency domain.

III. GRAPH SMOOTHNESS-BASED ATRIAL ACTIVITY
EXTRACTION

In this section, we first introduce the basic GFT and then
extend the transform from a fixed time sample to a short-time
period by combining the STFT and GFT. Next, we compare
the variation of the AA and the VA over the graph and
introduce the AA extraction algorithm.

A. Graph Fourier Transform

Let L = D − W denote the graph Laplacian of an
undirected graph, where D is the diagonal degree matrix
with Di,i =

∑m
j=1Wi,j . The Laplacian matrix L is real

and symmetric and accepts the eigenvalue decomposition
L = UΛUH . Here, Λ is a diagonal matrix containing
the eigenvalues λk (k ∈ {0, 1, . . . ,m − 1}) with increasing
orders, U = [u0,u1, . . . ,um−1] is the set of orthonormal
eigenvectors, and (·)H is the Hermitian operator. We consider
a graph signal xt ∈ Rm and a graph Laplacian operator L.
Then,

x̃t = UHxt and xt = Ux̃t (2)

define the GFT pair [9].
The GFT is a generalization of the traditional Fourier

transform which decomposes the graph signal into components
with different variation over the graph. The kth coefficient
in x̃(t) = [x̃0,t, x̃1,t, · · · , x̃m−1,t]> for low k indicates how
much the slowly varying components contribute to the graph
signal, whereas a larger k corresponds to the more rapidly
varying components. Therefore, k is the graph frequency
index. When k = 0, the GFT efficient x̃0,t indicates the
contribution of the constant component to the signal. The
smoothness of a signal over the graph can be measured using
the graph Laplacian quadratic form [9]

S(xt) = x>t Lxt. (3)
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The value of S(xt) is small if the signal has low variation
over the graph, and it is large if the signal varies rapidly over
the graph.

Nevertheless, the GFT just considers a fixed time instant
and does not take the correlation across time of the graph
signal into account. Therefore, it is less useful to analyze
time-varying, correlated, and non-stationary signals such as the
EGMs. In the following, the joint STFT and GFT is introduced
for analyzing the time-varying graph signals in short-time
periods.

B. Joint Graph and Short-time Fourier Transform

A classic method to analyze the spectrum of a non-
stationary signal across time is the STFT, which transforms
the data to the temporal frequency domain in short-time
windows approximately satisfying stationarity. To analyze the
non-stationary signals along both time and graph, we first
apply the STFT to transform the signal at one vertex to the
temporal frequency domain. Then, we are able to analyze the
graph signal per temporal frequency per frame, as the STFT
results in approximately decorrelated frequency components
for each vertex.

The graph signals of all time instants are collected together
in the matrix

X = [x0,x1, . . . ,xT−1] ∈ Rm×T . (4)

The ith row of X is the time-domain signal at the ith electrode.
We apply the STFT to the ith row of X to obtain the
STFT coefficients for the ith electrode. The STFT coeffi-
cient in the temporal frequency bin f at the time-frame l
is denoted as x̂i,l,f . Then, per time-frame l and frequency
bin f , we stack the STFT coefficients of all vertices as
x̂l,f = [x̂0,l,f , x̂1,l,f , . . . , x̂m−1,l,f ]

> ∈ Cm. Applying then
the GFT to x̂l,f as

x̃l,f = UH x̂l,f (5)

results in the joint STFT and GFT representation of the graph
signal at temporal frequency bin f and time-frame l as x̃l,f =
[x̃0,l,f , x̃1,l,f , . . . , x̃m−1,l,f ]

> ∈ Cm. The coefficients x̃k,l,f
for low values of k indicate now how much the slow varying
components in the vertex domain contribute to the temporal
frequency bin f at the lth time-frame.

To observe the contribution of different graph frequencies,
we calculate the normalized signal energy per time-frame
averaged over all temporal frequencies in the joint STFT and
GFT domain as

Ek,l = 10log10

 1

FN

FN−1∑
f=0

|x̃k,l,f |2

|x̃k,l,f |2max

 , (6)

where |x̃k,l,f | represents the amplitude of the graph signal in
the joint STFT and GFT domain, |x̃k,l,f |max is the maximum
amplitude at time-frame l, and FN is the total number of
temporal frequency bins.

Fig. 3 shows the normalized signal energy during SR along
to the different graph frequencies and time, averaged over

Fig. 3. Normalized energy along graph frequencies and time averaged over
all temporal frequencies during SR. The red circles mark the time instants of
the AA peaks and the red triangles mark the time instants of the VA peaks.

all temporal frequencies. We see that the AA presents more
energy in the high graph frequencies whereas the energy of
the VA concentrates itself in the low graph frequencies. Such a
behavior is consistently observed over different patients. This
finding suggests that the AA is more variable over the atria
than the VA. Therefore, we can separate the AA and the VA
in the joint domain based on their difference in the graph
smoothness.

C. Atrial Activity Extraction

To extract the AA based on the graph smoothness, we first
define, similar to X in (4), the data matrices of the AA and
the VA as A and V, respectively. By applying the joint STFT
and GFT to the sample matrices, we can express the signal
model in the joint STFT and GFT domain as

x̃l,f = ãl,f + ṽl,f (7)

where x̃l,f , ãl,f , and ṽl,f are the mixture, the AA, and the
VA in the joint domain, respectively.

To quantify the spatial variation of the temporal frequency
components over the graph, we consider the normalized graph
Laplacian quadratic form of x̂l,f as

Sn(x̂l,f ) =
x̂H
l,fLx̂l,f

x̂H
l,f x̂l,f

=
x̃H
l,fΛx̃l,f

x̃H
l,f x̃l,f

. (8)

The normalization by the signal energy in (8) is done to ac-
count for the smoothness difference of the temporal frequency
components obtained by the STFT.

To estimate the AA, we first estimate the VA by solv-
ing

minimize
ṽest
l,f

||x̃l,f − ṽest
l,f ||22

subject to
(ṽest

l,f )
HΛv̂est

l,f

(ṽest
l,f )

H ṽest
l,f

6 c,

(9)

where c is the normalized variation threshold for limiting the
spatial variation of the reconstructed signal in the range of
[0, c].

The optimization problem in (9) minimizes the distortion
between the mixture x̃l,f and the estimated VA ṽest

l,f in the joint
STFT and GFT domain, while constraining the smoothness
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of the estimated VA. To solve this problem, we rearrange it
as

minimize
ṽest
l,f

||x̃l,f − ṽest
l,f ||22

subject to (ṽest
l,f )

H(Λ− cI)v̂est
l,f 6 0.

(10)

By defining the Lagrangian [11]

L(ṽest
l,f , λ, c) =||x̃l,f − ṽest

l,f ||22 + λ(ṽest
l,f )

H(Λ− cI)ṽest
l,f (11)

and solving

∂L(ṽest
l,f , λ, c)

∂ṽest
l,f

= 0, (12)

we find the closed-form solution

ṽest
l,f = [(1− λc)I + λΛ]−1x̃l,f . (13)

After estimating the VA, we subtract ṽest
l,f from x̃l,f to obtain

the estimated AA ãest
l,f in the joint STFT and GFT domain

per time-frame, which are then used to recover the STFT
coefficients âest

l,f . After obtaining the STFT coefficients of the
AA in all time frames for all electrodes, the inverse STFT with
overlap-adding is used to achieve the AA in the time domain
for all electrodes.

IV. EXPERIMENTS AND RESULTS

We evaluate the performance of the proposed graph
smoothness-based AA extraction (GAE) algorithm on syn-
thetic and real data and compare it with the three classic
algorithms including average beat subtraction (ABS) [2],
adaptive ventricular cancellation (AVC) [5], and independent
component analysis (ICA) [5].

A. Generation of Synthetic Data

The generation of the AA during AF is complicated since
the AA and the VA typically overlap. Previous methods in
[12]–[15] for simulating pure atrial electrogram work well
during SR but face difficulties during AF. In this simulation,
we assume that there is a atrial wave from one direction during
SR whereas there are multiple atrial waves from different
directions during AF. With the atrial wave being generated
during SR, we can simulate its delayed versions to generate
the waves from other directions. These waves are then added
together to generate the pure atrial electrogram during AF.

We first synthesize the EGM during SR using the model
from [14]. The ventricular segments in different heart beats in
the real recording during SR are extracted out to reconstruct
the pure VA. By interpolating the extracted parts with the
two segments before and after them [15], we can obtain the
pure atrial electrogram during SR. The ventricular electrogram
obtained during SR is also used as the ventricular electrogram
during AF. The pure atrial and ventricular electrograms are
added to obtain the EGMs during AF. Fig. 4 shows an
example of the synthetic mixture and the synthetic pure atrial
electrogram at different electrodes. Atrial waves from three
directions are considered in this example.
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Fig. 4. An example of the synthetic mixture and the pure atrial activity at
different electrodes. The blue and red curves represent the mixture and the
pure atrial electrogram, respectively.

B. Performance Metrics

To quantify the performance of different algorithms, we
define the normalized mean square error (NMSE) and the
cross-correlation coefficient (CC) between the pure and the
extracted AA. Let apure and aest denote the pure and the
estimated AA. The NMSE measures the normalized difference
between the pure and the estimated AA, which is defined as

NMSE(apure,aest) =
||apure − aest||22
||apure||22

. (14)

The NMSE is low if the extracted AA is close to the pure AA.
The CC measures the similarity between the pure and the

estimated AA. It is defined as

CC(apure,aest) =
(apure − µapure)

H(aest − µaest)

Nσapureσaest

, (15)

where N is the length of the signal, µapure (µaest ) and σapure (σaest )
represent the mean and standard deviation of apure (aest),
respectively. The value of CC is close to one if the pure and
the estimated AA are highly correlated and zero if they are
completely uncorrelated.

C. Results on Sythetic Data

We consider respectively three, four and five directions of
atrial waves for generating the EGMs during AF. In each case,
the EGMs are generated for 188 electrodes with a duration of
20 s each, sampled at 1 kHz. The parameters of GAE algorithm
are chosen based on the grid search which minimizing the
NMSE. They are set to c = 0.14 and λ = 2. To extract the
time-frames, we apply a Hanning window with a duration of
0.1 s, taken with 50% overlap. The window length is set by
the duration of the atrial and ventricular activities, which both
last around 0.1 s.

Table I shows the performance during AF, including the
mean and the standard deviation (in the blanket) of all elec-
trodes. We find that the proposed method achieves the best
results. ABS performs slightly worse than GAE. AVC takes
the ECG as reference and its performance is not stable. It
performs better than ABS when there are four sources but
worse in the other two cases. ICA does not perform well as the
assumptions made in this algorithm might not be applicable to
the (synthetic) EGM data. GAE utilizes the recognized spatial
propagation properties of the AA and the VA in the graph-time
domain, which results helpful to separate the two activities.
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Fig. 5. Mixture (blue) at electrode 1 and extracted AA (red) by the different
algorithms during AF.

TABLE I
COMPARISON OF DIFFERENT ALGORITHMS IN DIFFERENT SCENARIOS

DURING AF

Scenarios Metrics ABS AVC ICA GAE

Three NMSE 0.12 (0.05) 0.18 (0.08) 0.30 (0.15) 0.10 (0.05)
sources CC 0.95 (0.03) 0.92 (0.04) 0.83 (0.07) 0.96 (0.03)
Four NMSE 0.10 (0.04) 0.08 (0.05) 0.22 (0.10) 0.07 (0.04)
sources CC 0.95 (0.02) 0.96 (0.03) 0.82 (0.06) 0.97 (0.02)
Five NMSE 0.08 (0.03) 0.11 (0.06) 0.22 (0.10) 0.05 (0.03)
sources CC 0.96 (0.02) 0.95 (0.03) 0.84 (0.05) 0.98 (0.01)

Average NMSE 0.10 (0.04) 0.12 (0.06) 0.25 (0.12) 0.08 (0.04)
CC 0.95 (0.02) 0.94 (0.03) 0.83 (0.06) 0.97 (0.02)

D. Results on Real Data

We also conducted experiments on real data [10]. Fig. 5
and Fig. 6 show the mixture at different electrodes and the
corresponding extracted AA using the different algorithms.
We observe some fluctuations in the extracted signal by ABS.
Furthermore, we observe that ICA cannot preserve the AA
very well. In the extracted AA by AVC, there are more
fluctuation and more ventricular components left than that
by GAE. Compared with the other algorithms, the proposed
algorithm can extract a smoother AA with less ventricular
component left, which further validate the findings in Table
I.

V. CONCLUSION

This work analyzed the spatial variation of the AA and the
VA in EGM measurements from a new perspective by using
graph-time signal processing tools. Based on the joint graph
and short-time Fourier transform, we found that the frequency
components of the AA is more variable over the atria than
those of the VA. This finding is used to extract the AA
from the mixture in the joint space-time-frequency domain.
Numerical experiments on synthetic and the real data showed
that the graph-smoothness based AA extraction algorithm
outperforms other state-of-the-art alternatives. Future work
will be on the analysis of other graph-based regularization
methods to improve the performance of the atrial activity
extraction algorithm.
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Fig. 6. Mixture (blue) at electrode 18 and extracted AA (red) by the different
algorithms during AF.
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