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In the blind separation of instantaneous mixtures of multiple
cochannel signals using an antenna array, two types of tech-
niques have been used: based on properties of the array man-
ifold, or based on properties of the signals. A well-studied
example of the first type is the ESPRIT algorithm, which
exploits the parametric structure of the array manifold. A
representative of the second type is ACMA, which gives al-
gebraic expressions for the separation of sources based on
their constant modulus property, valid for phase-modulated
sources. In this paper, we show that the two properties can
be combined into a single algorithm.

1. INTRODUCTION

Beamforming techniques try to separate superpositions of
source signals from the outputs of a sensor array. The objec-
tive of blind beamforming is to do this without training in-
formation, relying instead on various structural properties of
the problem. Direction finding can be considered as the ear-
liest example of blind beamforming. The direction of each
incoming wavefront is estimated, at the same time produc-
ing a beamformer to recover the signal from that direction
while suppressing the others. This requires at least that the
antenna array is calibrated and that the propagation scenario
is simple, with a limited number of specular multipath rays
per source.

More recently, new types of blind beamformers have
been proposed that are not based on specific channel mod-
els, but instead exploit properties of the signals. A striking
example is the constant modulus algorithm (CMA), which
separates sources based on the fact that their baseband rep-
resentation has a constant amplitude, such as is the case for
FM or phase modulated signals. A prime advantage is that
these beamformers are insensitive to multipath and not de-
pendent on array calibration.

Mathematically, the problem can be described as fol-
lows. Let X be a data matrix containing the measurements at
the antenna array (see section 2 for details). Under standard
narrowband assumptions, we have the usual data model

X � ABS

where A is the array response matrix, B a diagonal scal-
ing and S contains samples of the source signals. The blind

source separation problem is, given X, to find the unknown
factors A, B and S. Techniques of the first type (direction
finding) assume that A satisfies a parametric model:

A � �
a1 · · · ad ��� ai

� a � θi �
where a � θ � is a known function of the direction-of-arrival
θ. This model places constraints on the factor A, often suffi-
cient to determine A and S uniquely up to scalings and per-
mutations. A recent overview of parametric methods can be
found in [1].

Techniques of the second type, on the other hand, place
constraints on S and thus use structural information about the
sources. In particular, constant modulus algorithms (CMAs)
assume that sources are phase modulated and say that every
entry of S should have a unit magnitude: |Si j | � 1. Follow-
ing the work of Treichler et al. [2], this has e.g., led to the
“Constant-Modulus Array” [3, 4].

Most separation algorithms have used only properties of
A or of S, but not both (except perhaps for initialization pur-
poses). Nonetheless, a performance increase might be possi-
ble if information on both A and S is combined. For example,
the work of Li et al. [5] shows this for direction estimation
in the case of signals with known waveforms (i.e., known S
and a parametrically specified A). Comparable benefits can
be expected if we do not have complete knowledge of S but
do know that sources have a constant modulus.

Traditional CMAs are iterative, need proper initializa-
tion, and have not been very reliable on short data sequences.
These problems are not present in the “Analytic CMA” [6],
which is an algebraic technique that can act on small data
sets. Thus, it makes sense to extend the ACMA to also ex-
ploit the structure of the A-matrix. One case in which this
can be done very nicely is for uniform linear arrays (ULAs),
because for such arrays the direction finding problem admits
algebraic solutions as well, as seen e.g., in the ESPRIT algo-
rithm [7] and a specialization of MODE [8].

In this paper we show how ACMA can be combined with
ESPRIT to produce an algebraic source separation algorithm
that uses both the parametric structure of the ULA present
in A and the CM property present in S. A companion paper
[9] derives the relevant Cramer-Rao bounds for direction of
arrival estimation.



2. DATA MODEL

Consider d independent sources, transmitting signals si � t �
with constant modulus waveforms � |si � t � | � 1) in a wireless
scenario. The signals are received by a uniform linear array
of M � d antennas spaced at ∆ wavelengths. We stack the
antenna outputs xi � t � into vectors x � t � and collect N complex
samples into a matrix X : M×N. Under standard simplifying
assumptions (negligible multipath, sufficiently narrowband
sources with discrete angles of incidence αi), this leads to
the well-known data model

X � ABS � a1β1s1 � · · · � adβdsd 	 (1)

A ∈ |C M×d is the array response matrix. B ∈ |C d×d is a diago-
nal scaling matrix containing the complex gain parameters,
and the rows si of S ∈ |C d×N contain the samples of the source
signals.

In the blind signal separation scenario, A, B and S are un-
known and the objective is, given X, to find the factorization
X � ABS. Alternatively, we try to find a beamforming ma-
trix W ∈ |C d×M of full row rank d such that S � WX.

Two types of properties are available to compute the fac-
torization (1) from X. Firstly, under the present assumptions,
we have a parametrized model for A:

A � �
a1 · · · ad �
� ai

� a � θi � (2)

where each θi is related to the angle of arrival αi and a � θ � is
the array manifold function, for a ULA given by

a � θ � �
����



1
θ
...

θM−1

�����
� � θ � e j2π∆ sin � α � 	 (3)

We can also try to find the factorization X � ABS based on
the constant-modulus property of S, i.e.,

|Sik| � 1 	 (4)

3. SEPARATION ALGORITHM

For simplicity of exposition, we derive the algorithm from
the noiseless case, but it will be clear how it can be extended.
Given X, introduce its singular value decomposition (SVD)

X � ÛΣ̂V̂

where Û has d orthonormal columns, V̂ has d orthonormal
rows, and Σ̂ is a d ×d diagonal matrix containing the nonzero
singular values of X. Any other rank-d factorization of X can
be written as

X � ÛΣ̂T−1 · TV̂

where T is a d × d invertible matrix. This expression has to
be matched with the model X � ABS, which leads to�

ÛΣ̂ � ABT
TV̂ � S

(We can choose where to put the diagonal factors B and Σ̂.)
Thus, the problem of source separation is expressed in terms
of finding the matrix T . This matrix has the interpretation
of a beamformer on the whitened measurement data V̂ �� Σ̂−1Û∗ � X. Once we know T , the beamformerW on the orig-
inal data such that WX � S is given by W � T Σ̂−1Û∗.

The parametric property of A in (2)–(3) is translated into
an algebraic property by the ESPRIT algorithm [7]. Its solu-
tion can briefly be described as follows. The shift-invariance
of a � θ � in equation (3) leads to the observation that if we take
two submatrices Ex and Ey of ÛΣ̂, consisting of rows 1 to
M − 1 and rows 2 to M of ÛΣ̂, respectively, then EyT−1 �
ExT−1Θ, where Θ � diag

�
θi � , so that

E†
x Ey

� T−1ΘT (5)

where † denotes the Moore-Penrose pseudo-inverse. This is
an eigenvalue problem, and can directly be solved for T and
Θ. (The columns of T−1 are the eigenvectors.)

The constant-modulus property of S is used as in the
ACMA [6], as follows. Let t∗ be a row of T . The corre-
sponding beamformer output is the row s � t∗V̂ . Our aim
is to choose the beamformer such that s is a constant mod-
ulus signal, i.e., with entries |sk| � 1 for k � 1 � · · · � N. For
sufficiently large N, the uniqueness result for the CM fac-
torization problem [6] claims that in that case s is almost
surely one of the source signals, up to unimodular scaling.
Substitution leads to the condition

t∗ � vkv∗
k � t � 1 � k � 1 � · · · � N �

where vk is the k-th column of V̂ . This is an overdetermined
system of quadratic equations, whose solution is more elab-
orate to derive. The ACMA technique in [6] transforms the
conditions into d data matrices Y1 � · · · � Yd of size d × d, satis-
fying

Y1
� T∗Λ1T

Y2
� T∗Λ2T All Λi diagonal
...

Yd
� T∗ΛdT

(6)

This is a simultaneous diagonalization problem (by congru-
ence), and very much related to eigenvalue problems. It can
be solved for T and the Λi.

The new observation in this paper is that (5) and (6) spec-
ify the same matrix T , and that it is possible to combine the
two eigenvalue problems. To this end, introduce QR factor-
izations of T−1 and T∗,

T−1 � : ZR ⇔ T � R−1Z∗

T∗ � : QR � (7)



where Q and Z are unitary matrices, and R and R � are square
and upper triangular. The combined diagonalization prob-
lem now becomes a generalized Schur decomposition prob-
lem of the form: find Q, Z (unitary) such that the following
matrices become jointly upper triangular:��� �� Q∗Y1Z � R1 Q, Z unitary

... All Ri and Rθ upper triang.
Q∗YdZ � Rd

Z∗ � E†
x Ey � Z � Rθ

If we also introduce the QR factorization Q2R � � : � EyT−1 �
ExT−1Θ (where Q2 is unitary and R � � is upper triangular with
size M − 1 × d) it is possible to put the problem into a nicer
more symmetric form: find Q1, Q2, Z to make the following
matrices upper triangular:��� �� Q∗

1Y1Z � R1 Q1, Q2, Z unitary
... All Ri, Rx, Ry upper triang.

Q∗
1YdZ � Rd�

Q∗
2ExZ � Rx

Q∗
2EyZ � Ry

(8)
(We have set Q1 : � Q. Rx and Ry are possibly nonsquare
with size M −1×d.) Each of the two subproblems looks like
a Generalized Schur decomposition, and they are related as a
Generalized SVD. With additive noise, these factorizations
hold only approximately, and we can only expect to find Q1,
Q2 and Z to make the data matrices approximately upper tri-
angular.

Given Y1 � · · · � Yd � Ex � Ey, it is possible to set up a Jacobi
rotation scheme to compute Q1, Q2 and Z iteratively, us-
ing 2×2 elementary rotations. Examples of such algorithms
can be found in [6, 10, 11] and references therein. The gen-
eral idea is to freeze Z and select Q1 and Q2 (independently)
to make the first d, respectively last two matrices as much
upper triangular as possible, then freeze Q1, Q2 and find Z
to make the resulting matrices as much upper triangular as
possible. A good initial point for the iteration is obtained
from the Schur decomposition of E†

x Ey, so that convergence
should be fast.

Finally, there are several ways to retrieve T from the de-
composition. It can e.g., be shown that Q1 and Z together
parametrize T via (7), which can be found by solving a sim-
ple matrix equation. Perhaps better is to form a combined
eigenvector estimate based on the solution of both subprob-
lems, as follows. Define H � T−1, with columns hi. We will
estimate H. Firstly, note from (5) that

� θiEx − Ey � hi
� 0 (9)

where θi is the i-th eigenvalue of E†
x Ey, which will be esti-

mated by the i-th entry of diag � Rx � −1diag � Ry � . With slightly

more effort, we can derive a similar property for the Yi. If
Λ1 � · · · � Λd in (6) would be known, then it is clear that we can
compute linear combinations of Y1 � · · · � Yd to arrive at rank-1
matrices tit∗

i . (Recall that t∗
i is the i-th row of T .) With only

R1 � · · · � Rd known from (8), we can take the diagonal entries
of these matrices, compute an inverse matrix A � �

αi j � ,
A � �

αi j � �
��

 � R1 � 11 · · · � R1 � dd

...
...� Rd � 11 · · · � Rd � dd

� �
�

−1

�
and use these to construct linear combinations Ỹ1 � · · · � Ỹd ,

Ỹi
� d

∑
j � 1

αi jYj � i � 1 � · · · � d 	
As explained in [6], each matrix Ỹi is rank-1 and a scalar mul-
tiple of tit∗

i (in the noise free case). Since TH � I, it follows
that

Ỹjhi
� 0 � for j �� i 	 (10)

Combining (9) with (10), we obtain the equations����



Ỹ2
...

Ỹd

θ1Ex − Ey

� ���
� h1

� 0 � · · · �
����



Ỹ1
...

Ỹd−1
θdEx − Ey

� ���
� hd

� 0

from which each of the hi can be computed. With H � �
hi �

in hand, we set T � H−1 and W � T Σ̂−1Û∗.

Remarks

Several issues remain to be resolved. Most importantly, the
relative scalings of the data matrices in (8) has not been op-
timized. Obviously, by scaling Ex and Ey, we can place
more or less emphasis on the ESPRIT part or the ACMA
part of the problem. The correct scaling should follow from
an analysis of the signal-to-noise ratio on the data matri-
ces Y1 � · · · � Yd � Ex � Ey, which is a significant effort not un-
dertaken here. In the simulations, we have heuristically
scaled the Yi to have unit Frobenius norm, and Ex, Ey to have
Frobenius norm 1 (‘ACMA-ESPRIT(1)’) and 2 (‘ACMA-
ESPRIT(2)’).

4. SIMULATION RESULTS

Some performance results are shown in figure 3. In this sim-
ulation, we took N � 20 samples, a ULA( λ

2 � consisting of
M � 4 antennas, and d � 3 constant-modulus sources with
directions

�
−α � 0 � α� , for varying α. The signal to noise ra-

tio (SNR) was set at 10 dB. The figure shows the signal to
interference ratio (SIR) after beamforming, which measures
how well the estimated W is a left inverse of A.
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Fig. 1. � a � Signal-to-interference ratio after beamforming; � b � accuracy of DOA estimate and of � c � phase estimate of first signal.

The “ESPRIT+c” algorithm is the standard LS-ESPRIT
algorithm, but acting on an extended data matrix

�
X ΠX̄ � ,

which uses the centro-symmetry of the array. (Π is a per-
mutation matrix which reverses the ordering of rows.) Simi-
larly, “ACMA+c” is the ACMA algorithm [6], acting on this
extended data matrix.1 “ACMA-ESPRIT” is the new com-
bined algorithm, also acting on the extended data matrix. We
try two scalings of Ex, Ey: to have a Frobenius norm of 1 and
2. It is seen from the SIR plot that the matrix W computed
by ACMA-ESPRIT is almost always more accurate than that
of ACMA, although the difference is significant only when
ESPRIT is more accurate than ACMA+c, which occurs for
wide source separations. The impact on DOA estimates and
signal phase estimates (or SINR) is negligible. In the DOA
plot, we show the Cramer-Rao bounds “CRB(A)” for the
model with structure only in A, and “CRB(A+S)” for the
model with structure in both A and S [9], which is the lower
dotted curve.

5. CONCLUSIONS

We have obtained an algorithm that separates sources based
on both directional and constant modulus properties. The al-
gorithm is a small extension of the ACMA, but raises inter-
esting and unsolved issues, such as how to weight the matri-
ces in a joint diagonalization. It was found that the benefits
of the combined approach are only small, because ACMA is
by itself already almost always more accurate than ESPRIT.
As seen by the CRBs, there is still room for improvement at
the small source separations.
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