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In the blind separation of instantaneous mixtures of multiple
cochannel signals using an antenna array, two types of tech-
nigques have been used: based on propertiesof thearray man-
ifold, or based on properties of the signals. A well-studied
example of the first type is the ESPRIT algorithm, which
exploits the parametric structure of the array manifold. A
representative of the second typeis ACMA, which givesal-
gebraic expressions for the separation of sources based on
their constant modulus property, valid for phase-modul ated
sources. In this paper, we show that the two properties can
be combined into a single algorithm.

1. INTRODUCTION

Beamforming techniques try to separate superpositions of
source signalsfrom the outputs of asensor array. The objec-
tive of blind beamforming is to do this without training in-
formation, relying instead on various structural properties of
the problem. Direction finding can be considered asthe ear-
liest example of blind beamforming. The direction of each
incoming wavefront is estimated, at the same time produc-
ing a beamformer to recover the signal from that direction
while suppressing the others. Thisrequires at least that the
antennaarray is calibrated and that the propagation scenario
issimple, with a limited number of specular multipath rays
per source.

More recently, new types of blind beamformers have
been proposed that are not based on specific channel mod-
els, but instead exploit properties of the signals. A striking
example is the constant modulus agorithm (CMA), which
separates sources based on the fact that their baseband rep-
resentation has a constant amplitude, such asis the case for
FM or phase modulated signals. A prime advantage is that
these beamformers are insensitive to multipath and not de-
pendent on array calibration.

Mathematically, the problem can be described as fol-
lows. Let X beadatamatrix containing the measurementsat
the antenna array (see section 2 for details). Under standard
narrowband assumptions, we have the usual data model

X =ABS

where A is the array response matrix, B a diagonal scal-
ing and S contains samples of the source signals. The blind

source separation problem is, given X, to find the unknown
factors A, B and S. Techniques of the first type (direction
finding) assume that A satisfies a parametric model:

a =a(6)

where a(0) is a known function of the direction-of-arrival
6. Thismodel places constraints on the factor A, often suffi-
cient to determine A and Suniquely up to scalings and per-
mutations. A recent overview of parametric methods can be
found in [1].

Techniques of the second type, on the other hand, place
constraintson Sand thususe structural information about the
sources. In particular, constant modulus algorithms (CMAS)
assume that sources are phase modulated and say that every
entry of Sshould have a unit magnitude: |Sj| = 1. Follow-
ing the work of Treichler et a. [2], this has e.g., led to the
“Constant-Modulus Array” [3,4].

Most separation algorithms have used only properties of
Aor of S but not both (except perhapsfor initialization pur-
poses). Nonethel ess, a performanceincrease might be possi-
bleif information on both A and Siscombined. For example,
the work of Li et a. [5] shows this for direction estimation
in the case of signals with known waveforms(i.e., known S
and a parametrically specified A). Comparable benefits can
be expected if we do not have complete knowledge of Sbut
do know that sources have a constant modulus.

Traditional CMAs are iterative, need proper initiaiza
tion, and havenot beenvery reliableon short data sequences.
These problems are not present in the “ Analytic CMA” [6],
which is an agebraic technique that can act on small data
sets. Thus, it makes sense to extend the ACMA to also ex-
ploit the structure of the A-matrix. One case in which this
can be donevery nicely isfor uniformlinear arrays (ULAS),
because for such arraysthe direction finding problem admits
algebraic solutionsaswell, asseene.g., inthe ESPRIT algo-
rithm [7] and a specialization of MODE [8].

Inthis paper we show how ACMA can be combinedwith
ESPRIT to producean al gebrai c source separation a gorithm
that uses both the parametric structure of the ULA present
in A and the CM property present in S’ A companion paper
[9] derivesthe relevant Cramer-Rao bounds for direction of
arrival estimation.

A=[a - ad],



2. DATA MODEL

Consider d independent sources, transmitting signals s (t)
with constant modulus waveforms (s (t)| = 1) in awireless
scenario. The signalsare received by a uniform linear array
of M > d antennas spaced at A wavelengths. We stack the
antennaoutputsx;(t) into vectorsx(t) and collect N complex
samplesinto amatrix X : M xN. Under standard simplifying
assumptions (negligible multipath, sufficiently narrowband
sources with discrete angles of incidence a;), this leads to
the well-known data model

X =ABS= a1318 + -+ a3Bdsd - 1)

ADC™ 9 isthearray response matrix. B OC ¥ isadiago-
nal scaling matrix containing the complex gain parameters,
and therowss; of SOC N containthe samples of the source
signals.

Intheblind signal separation scenario, A, B and Sareun-
known and the objectiveis, given X, to find the factorization
X = ABS Alternatively, we try to find a beamforming ma-
trix W € M of full row rank d such that S=WX.

Two typesof propertiesare availableto computethefac-
torization (1) from X. Firstly, under the present assumptions,
we have a parametrized model for A:

A=la---ad], a=ab) @)
where each 6; isrelated to the angle of arrival a; and a(6) is
the array manifold function, for aULA given by

0= ejZTﬂSin(a) . (3)

We can also try to find the factorization X = ABS based on
the constant-modulus property of S i.e.,

ISkl = 1. (4)

3. SEPARATION ALGORITHM

For simplicity of exposition, we derive the algorithm from
thenoiseless case, but it will be clear how it can be extended.
Given X, introduce its singular value decomposition (SVD)

X =03V

where U has d orthonormal columns, V has d orthonormal
rows, and ¥ isad xd diagonal matrix containing the nonzero
singular valuesof X. Any other rank-d factorization of X can
be written as

X=UsTt.TV

where T isad xd invertible matrix. This expression hasto
be matched with the model X = ABS, which leadsto
U = ABT
{ ™V = S
(We can choose where to put the diagonal factors B and £.)
Thus, the problem of source separation isexpressedinterms
of finding the matrix T. This matrix has the interpretation
of a beamformer on the whitened measurement dataV =
(£ 1Y X. Onceweknow T, thebeamformer W ontheorig-
inal data such that WX = Sisgivenby W = TS 10",

The parametric property of Ain (2)—«3) istrandlated into
an algebraic property by the ESPRIT algorithm [7]. Itssolu-
tion can briefly bedescribed asfollows. Theshift-invariance
of a(8) inequation (3) leadsto the observationthat if wetake
two submatrices Ey and Ey of US, consisting of rows 1 to
M -1 and rows 2 to M of US, respectively, then E,T™! =
ExT 1O, where © = diag[6;], so that

E/E =T lOT (5)

where T denotesthe Moore-Penrose pseudo-inverse. Thisis
an eigenvalue problem, and can directly be solved for T and
©. (The columns of T™! are the eigenvectors.)

The constant-modulus property of Sis used as in the
ACMA [6], asfollows. Let t” be arow of T. The corre-
sponding beamformer output is the row s = t5. Our aim
is to choose the beamformer such that sis a constant mod-
ulus signdl, i.e., with entries | = 1 for k = 1,---,N. For
sufficiently large N, the uniqueness result for the CM fac-
torization problem [6] claims that in that case s is amost
surely one of the source signals, up to unimodular scaling.
Substitution leads to the condition

t“ vt =1,  k=1,---,N,
where vy isthe k-th column of V. Thisisan overdetermined
system of quadratic equations, whose solution is more elab-
orate to derive. The ACMA techniquein [6] transforms the
conditionsinto d datamatrices Y, ---, Yy of sized xd, satis-
fying

Y, = TIAT
Y, = THEAT All A; diagonal

: (6)
Yy = TEAGT

Thisisasimultaneous diagonalization problem (by congru-
ence), and very much related to eigenvalue problems. It can
be solved for T and the A;.

Thenew observationin thispaper isthat (5) and (6) spec-
ify the same matrix T, and that it is possible to combine the
two eigenvalue problems. To this end, introduce QR factor-
izationsof Tt and T,

T1 = ZR - T =R1A
T = QR Y



where Q and Z are unitary matrices, and Rand R are square
and upper triangular. The combined diagonalization prob-
lem now becomes a generalized Schur decomposition prob-
lem of the form: find Q, Z (unitary) such that the following
matrices become jointly upper triangular:

QDle = R Q, Z unitary

: All R and Rg upper triang.
QYeZ = Ry
ZYEJE))Z = Re

If we also introduce the QR factorization QuR" := E,T™1 =
ExT~1O© (where Q, isunitary and R” is upper triangular with
sizeM-1xd) it is possible to put the problem into a nicer
more symmetric form: find Q;, Q», Z to makethefollowing
matrices upper triangular:

QviZ = R Q1, Qz, Z unitary
: All R;, Ry, Ry upper triang.
QYeZ = Ry
Q%EXZ = K
QEZ = R

(8)
(We have set Q1 := Q. Ry and Ry are possibly nonsquare
with sizeM—-1xd.) Each of the two subproblemslookslike
aGeneralized Schur decomposition, andthey arerelated asa
Generalized SVD. With additive noise, these factorizations
hold only approximately, and we can only expect to find Qg
Q2 and Z to make the data matrices approximately upper tri-
angular.

Given Yy, ---,Yq,Ex, Ey, it is possible to set up a Jacobi
rotation scheme to compute Q1, Q2 and Z iteratively, us-
ing 2% 2 elementary rotations. Examples of such algorithms
can befound in [6, 10, 11] and references therein. The gen-
era ideaisto freeze Z and select Q; and Q, (independently)
to make the first d, respectively last two matrices as much
upper triangular as possible, then freeze Q;, Q2 and find Z
to make the resulting matrices as much upper triangular as
possible. A good initia point for the iteration is obtained
from the Schur decomposition of E} Ey, so that convergence
should be fast.

Finally, there are several waysto retrieve T from the de-
composition. It can e.g., be shown that Q; and Z together
parametrize T via(7), which can be found by solving asim-
ple matrix equation. Perhaps better is to form a combined
eigenvector estimate based on the solution of both subprob-
lems, asfollows. DefineH = T1, with columns h;. Wewill
estimate H. Firstly, note from (5) that

(6iEx~Ey)hj =0 )

where 6; is the i-th eigenvalue of EI Ey, which will be esti-
mated by thei-th entry of diag(Ry) *diag(R,). With dightly

more effort, we can derive a similar property for the Y. If
N1, -++,\q in(6) would be known, then it is clear that we can
compute linear combinationsof Vi, ---, Yy to arrive at rank-1
matricestjt". (Recal that tisthei-th row of T.) With only
Ry, ---,Rq known from (8), we can take the diagonal entries
of these matrices, compute an inverse matrix A = [a(j],
-1
(Ri)u (R1)dd
A= aij] = : : ;
(Ra)u (Rd)ad

and use these to construct linear combinations Y, - -, Y,
~ d )
Yi:Z\(Iinj, i=1---,d.
J:

Asexplainedin[6], each matrix Y; isrank-1and ascalar mul-
tipleof tjt™ (in the noisefree case). Since TH = 1, it follows
that

Yhi=0,  forj#i. (10)

Combining (9) with (10), we obtain the equations

Y Y1
~ hl=07”'7 ~ hd=0
Yd Ya-1

from which each of the h; can be computed. With H = [hi]
inhand, weset T=HlandW = T>1U"

Remarks

Several issues remain to be resolved. Most importantly, the
relative scalings of the data matricesin (8) has not been op-
timized. Obviously, by scaling Ex and Ey, we can place
more or less emphasis on the ESPRIT part or the ACMA
part of the problem. The correct scaling should follow from
an analysis of the signal-to-noise ratio on the data matri-
ces Yi,---,Y4,Ex, By, which is a significant effort not un-
dertaken here. In the ssimulations, we have heuristically
scaled they; to have unit Frobeniusnorm, and Ey, Ey to have
Frobenius norm 1 (fACMA-ESPRIT(1)") and 2 (‘ ACMA-
ESPRIT(2)).

4. SIMULATION RESULTS

Some performanceresultsare showninfigure 3. Inthissim-
ulation, we took N = 20 samples, a ULA(%) consisting of
M = 4 antennas, and d = 3 constant-modul us sources with
directions [-a,0,a], for varying o. The signal to noise ra-
tio (SNR) was set at 10 dB. The figure shows the signal to
interferenceratio (SIR) after beamforming, which measures
how well the estimated W is aleft inverse of A.
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Fig. 1. (a) Signal-to-interferenceratio after beamforming; (b) accuracy of DOA estimate and of (c) phase estimate of first signal.

The*ESPRIT+c” agorithmis the standard LS-ESPRIT
agorithm, but acting on an extended data matrix [X MX],
which uses the centro-symmetry of the array. (I is a per-
mutation matrix which reversesthe ordering of rows.) Simi-
larly, “ACMA+c” isthe ACMA algorithm[6], acting on this
extended data matrix.! “ACMA-ESPRIT” is the new com-
bined algorithm, al so acting onthe extended datamatrix. We
try two scalingsof Ey, Ey: to haveaFrobeniusnormof 1 and
2. It isseen from the SIR plot that the matrix W computed
by ACMA-ESPRIT isalmost alwaysmore accuratethan that
of ACMA, although the differenceis significant only when
ESPRIT is more accurate than ACMA+c, which occurs for
wide source separations. Theimpact on DOA estimates and
signal phase estimates (or SINR) is negligible. In the DOA
plot, we show the Cramer-Rao bounds “CRB(A)” for the
model with structure only in A, and “CRB(A+S)” for the
model with structure in both A and S[9], whichisthe lower
dotted curve.

5. CONCLUSIONS

We have obtained an algorithm that separates sources based
on both directional and constant modulus properties. Theal-
gorithm isa small extension of the ACMA, but raises inter-
esting and unsolved issues, such as how to weight the matri-
cesin ajoint diagonalization. It was found that the benefits
of the combined approach are only small, because ACMA is
by itself already almost always more accurate than ESPRIT.
As seen by the CRBs, thereis still room for improvement at
the small source separations.
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