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Abstract We present a Krylov model-order reduction

approach to efficiently compute the spontaneous decay

(SD) rate of arbitrarily shaped 3D nanosized resonators.

We exploit the symmetry of Maxwell’s equations to effi-

ciently construct so-called reduced-order models that

approximate the SD rate of a quantum emitter embedded in

a resonating nanostructure. The models allow for frequency

sweeps, meaning that a single model provides SD rate

approximations over an entire spectral interval of interest.

Field approximations and dominant quasinormal modes

can be determined at low cost as well.

1 Introduction

The spontaneous decay (SD) rate of a quantum emitter

depends on its environment and can be modified by an

electromagnetic resonance. This so-called Purcell

effect [1] is a basic effect in quantum electrodynamics, and

it is well known that in the so-called weak-coupling

regime, the SD rate can be computed classically and does

not require a quantum mechanical treatment. Specifically,

for electric-dipole transitions that take place at r ¼ r0, the

SD rate c normalized with respect to the decay rate c0 in a

reference medium can be computed as [2]

c=c0 ¼ P=P0; ð1Þ

where

P ¼ x
2
yIm½p� � Eðr0Þ� ð2Þ

is the power radiated by an electric dipole of the form

Ĵext ¼ �ixpdðr� r0Þ with p the dipole moment and P0 is

the radiated power in the reference medium.

To determine the SD rate, the electric field at the loca-

tion of the quantum emitter is required over a spectral

interval of interest. For emitters located in the vicinity of

dispersive nanostructures, we therefore have to solve the

Maxwell equations

�r� Ĥ� ixD̂ ¼ �Ĵext ð3Þ

and

r� Ê� ixl0Ĥ ¼ 0; ð4Þ

where D̂ ¼ eÊþ ~P with e ¼ e0e1 and e1 is the instanta-

neous (high-frequency) relative permittivity. For dispersive

Drude or Lorentz materials, ~P satisfies the constitutive

relation

�x2 ~P� ixb2 ~Pþ b1 ~P ¼ b0Ê; ð5Þ

where the coefficients bi are determined by the type of

dispersive material that is considered. In particular, for a

Drude material, we have b0 ¼ e0x2
p, b1 ¼ 0, and b2 ¼ cp,

where xp is the volume plasma frequency and cp the col-

lision frequency, while for a Lorentz material we have

b0 ¼ e0ðes � e1Þx2
0, b1 ¼ x2

0, and b2 ¼ 2d, where es is the
static relative permittivity, x0 the resonant plasma fre-

quency, and d the damping constant.

Introducing now the auxiliary field variable Û ¼ ix~P,
Maxwell’s Eq. (3) and (4) and the constitutive relation (5)

can be combined and written in first-order form as
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Dþ S � ixMð ÞF ¼ Q0; ð6Þ

where D contains the curl operators, S and M are medium

matrices, and F and Q0 are the field and source vectors,

respectively. To determine the projection of the electric

field strength onto the dipole moment p at the location of

the quantum emitter, we need to solve the above first-order

Maxwell system and extract the electric field strength

components at the emitter location from the field vector F .

This can be realized in a very efficient manner for arbitrary

three-dimensional geometries using a Krylov subspace

model-order reduction method.

2 Krylov model-order reduction

To efficiently construct Krylov subspace SD rate approxi-

mants, we first discretize Eq. (6) in space on a standard

second-order finite-difference grid (Yee grid [3]) and apply

the optimal complex-scaling method proposed in [4] and

extended in [5] to simulate the extension to infinity. After

these two steps, we arrive at the large-scale semidiscrete

Maxwell system

Dþ S� ixMð Þfcs ¼ q0; ð7Þ

where D, S, M, fcs, and q0 are the discretized counterparts

of D, S, M, F , and Q0, respectively, and the subscript

‘‘cs’’ indicates that complex-scaling has been applied. The

order n of the discretized system is typically very large and

can easily run into the millions especially for three-di-

mensional problems.

The Maxwell system of Eq. (7) cannot be used directly

to determine the electromagnetic field, since causality is

lost due to the application of the complex-scaling method

(see [4–6]). However, if we introduce the so-called system

matrix as A ¼ M�1ðDþ SÞ, then stable time-domain or

conjugate-symmetric frequency-domain field approxima-

tions can be constructed via a stability-correction proce-

dure as described in [4]. In particular, for an electric-dipole

moment vector of the form p ¼ pðxÞn, where n is a unit

vector, the frequency-domain field can be computed via

fðxÞ ¼ ixpðxÞ rðA;xÞ þ rðA�;xÞ½ �M�1q; ð8Þ

where q is a finite-difference approximation of ndðr� r0Þ
and

rðz;xÞ ¼ gðzÞ
z� ix

ð9Þ

with gðzÞ the complex Heaviside unit step function given

by

gðzÞ ¼
1 for ReðzÞ[ 0;

0 for ReðzÞ\0:

�
ð10Þ

Direct evaluation of Eq. (8) is not feasible, however,

since the order of the system matrix A is simply too large.

Fortunately, it can be shown that the system matrix satisfies

the symmetry relation

hAx; yi ¼ hx;Ayi for all x; y 2 Cn; ð11Þ

where h�; �i is a bilinear form given by hx; yi ¼ yTWMx

with WM complex-symmetric and W a step size matrix

containing the step sizes of the computational grid (see

[7]). This property allows us to carry out a Lanczos-type

reduction algorithm [7, 8] to efficiently compute fre-

quency-domain field approximations and the corresponding

SD rate. Specifically, with the source vector M�1q as a

starting vector, we obtain after m � n steps of the Lanczos

algorithm the sequence of vectors v1, v2, ...,vm that form a

basis of the Krylov subspace

Km ¼ span
�
M�1q;AM�1q; . . .;Am�1M�1q

�
: ð12Þ

These m steps can be summarized as

AVm ¼ VmHm þ pmþ1e
T
m; ð13Þ

where Vm is a tall n-by-m matrix having the basis vectors vi
as its columns, Hm is an m-by-m tridiagonal matrix con-

taining the Lanczos recurrence coefficients, pmþ1 is a

residual vector, and em is the mth column of the m-by-m

identity matrix Im. We note that large-scale SD rate prob-

lems can be handled by our reduction method, since only

three basis vectors need to fit inside the memory of the

computational architecture due to the 3-term Lanczos

recurrence relation.

With the so-called Lanczos decomposition of Eq. (13) at

our disposal, the reduced-order model for the frequency-

domain electromagnetic field now follows as

fmðxÞ ¼ ixpðxÞkM�1qk
h
VmrðHm;xÞ þ V�

mrðH
�
m;xÞ

i
e1;

ð14Þ

where kM�1qk is the Euclidean norm of the (scaled) source

vector M�1q. With the help of this reduced-order model for

the fields, the reduced-order model for the radiated power

now follows as

PmðxÞ ¼ PaRe
n
eT1 ½rðHm;xÞ þ rðH�

m;xÞ�e1
o
; ð15Þ

with

Pa ¼
x2jpðxÞj2a

2
ð16Þ

and a ¼ qTM�1Wq. We observe that no basis vectors vi are

required to evaluate this reduced-order model. Moreover, a

single Krylov decomposition (13) gives SD rate approxi-

mations for all frequencies (or wavelengths) of interest,
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that is, the method allows for frequency sweeps even in

case of dispersive media. Reduced-order field approxima-

tions can also be computed using Eq. (14) and dominant

quasinormal modes can be extracted from the Lanczos

decomposition of Eq. (13) as well (see Sect. 3).

3 Simulations

In this section, we demonstrate the effectiveness of the

proposed reduced-order modeling technique by computing

the SD rate of a quantum emitter located in the vicinity of

dispersive nanorods. In our first example, the emitter is

positioned above a cylindrical golden nanorod, while in the

second example the emitter is sandwiched between two

rectangular golden nanorods which are positioned sym-

metrically above and below the quantum emitter. We

compute the SD rate of the quantum emitter in both sce-

narios and determine the excited dominant quasinormal

modes in each configuration as well.

3.1 Golden nanorod

As a first example, we consider a configuration similar to the

one presented in [9], which consists of an electric dipole

located in the vicinity of a golden nanorod (see Fig. 1). The

rod has a diameter of 30 nm and a length of 100 nm and the

dipole is located 10 nm above the upper surface of the rod.

The background medium is homogeneous and is character-

ized by a refractive index of n ¼ 1:5, while a Drude model

with a plasma frequency xp ¼ 1:26� 1016s�1 and a colli-

sion frequency cp ¼ 1:41� 1014s�1 is used as a constitutive

relation for the golden nanorod. We are interested in the SD

rate of the quantum emitter on a wavelength interval ranging

from 0.7 to 1.2lm. Discretizing the first-order Maxwell

system of Eq. (6) such that the electromagnetic field and the

geometry are well resolved for all wavelengths of interest,

we obtain a semidiscrete Maxwell system as given by

Eq. (7) with approximately 8.7 million unknowns. Given

this large order, it is clear that direct evaluation of Eq. (8) is

simply not feasible. We therefore construct the reduced-

order model for the radiated power as given by Eq. (15) via

the Lanczos reduction algorithm. For this particular exam-

ple, it turns out that a model of order m ¼ 4500 is sufficient

to accurately describe the SD rate of the quantum emitter

over the entire wavelength interval of interest. Since the

order of the original system is approximately 8.7 million, the

order of the reduced-order model is about 1930 times

smaller than the original system. Also note that the system

matrix A is sparse, and the Lanczos algorithm is therefore

very efficient, since the algorithm is based on a three-term

recurrence relation and the system matrix is only needed to

compute a single matrix-vector multiplication at every

iteration.

Now taking the homogeneous background medium as a

reference medium to compute P0 [see Eq. (1)], we obtain

the normalized decay rate curve shown in Fig. 2 (dashed

curve). Also shown is the normalized SD rate as computed

Fig. 1 A quantum emitter located above a cylindrical golden

nanorod. The diameter of the rod is 30 nm and its length is

100 nm. The emitter is located 10 nm above the upper surface of the

rod. The background medium has an index of refraction of n ¼ 1:5
and a Drude model is used as a constitutive relation for gold
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Fig. 2 Normalized spontaneous decay rate of the quantum emitter

shown in Fig. 1. Dashed line reduced-order model of order m ¼ 4500.

Solid line normalized SD rate computed via the method proposed in

[9]
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in [9] (solid line). Clearly, both SD curves essentially

overlap on the wavelength interval of interest.

In addition to reduced-order models for the SD rate, we

can also determine the dominant quasinormal modes from

the Lanczos decomposition of Eq. (13) at essentially no

additional costs. Specifically, if we let ðhj; yjÞ be an

eigenpair of matrix Hm then postmultiplication of the

Lanczos decomposition by the eigenvector yj leads to

Azj ¼ hjzj þ pmþ1e
T
myj; ð17Þ

where zj ¼ Vmyj. Equation (17) shows that ðhj; zjÞ is an

approximate eigenpair of the system matrix A provided

jeTmyjj kpmþ1k is small. This latter condition can be checked

by direct computation (note that eTmyj is the last (mth)

component of the eigenvector yj) and quasinormal modes

that dominate the SD rate response can easily be identified

in this way. As an illustration, Fig. 3 shows all eigenvalues

of the reduced Lanczos matrix H4500 in the complex k-
plane. The reduced-order model of Eq. (15) takes the

contribution of all these eigenvalues into account, but only

one eigenvalue (encircled in Fig. 3) essentially contributes

to the SD rate response. The mode that corresponds to this

eigenvalue has converged, and in Fig. 4 we show the

magnitude of the x-component of the electric field strength

of this dominant quasinormal mode for the quantum

emitter configuration of Fig. 1, while Fig. 5 shows the y-

component of the electric field strength. Finally, we remark

that in exact arithmetic, only those modes that are excited

by the emitter can be captured by the Lanczos algorithm,

since the (scaled) source vector M�1q is used as a starting

vector. These are the modes of interest, of course, since

possible other quasinormal modes are simply not excited.

3.2 Golden nanogap antenna

As a second example, we consider a quantum emitter

located at the center of a gap between two rectangular

golden nanorods (see Fig. 6). The side lengths of each rod

are given by 28� 28� 100 nm and the gap is 22 nm wide.

We use the same Drude model as in the previous example

as a constitutive relation for gold. The rods and emitter are

embedded in a homogeneous background medium with a

refractive index of n ¼ 1:5.

Discretizing the first-order Maxwell system in space

such that the electromagnetic field is well resolved for

Fig. 3 Eigenvalues of the reduced-order Lanczos matrix H4500

(crosses) and the wavelength interval of interest (solid line). Only

one quasinormal mode essentially contributes to the spontaneous

decay rate (mode corresponding to the encircled eigenvalue)

Fig. 4 Magnitude of the x-component of the electric field strength of

the dominant quasinormal mode as excited by the quantum emitter of

Fig. 1

Fig. 5 Magnitude of the y-component of the electric field strength of

the dominant quasinormal mode as excited by the quantum emitter of

Fig. 1
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wavelengths running from 0.5 to 1.4lm, a semidiscrete

Maxwell system with approximately 7.2 million unknowns

is obtained. Using the Lanczos algorithm, we construct

reduced-order models of increasing order until conver-

gence is reached. For this example, a reduced-order model

of order m ¼ 8500 is sufficient to accurately describe the

SD rate on the wavelength interval of interest (see Fig. 7).

Again, the SD rate is computed by taking all eigenvalues of

the reduced Lanczos matrix H8500 into account. However,

only a small number of eigenvalues actually contribute to

the SD rate in this configuration. To make this explicit, we

first show all eigenvalues of H8500 in Fig. 8 (crosses) along

with the wavelength interval of interest (solid line). The

normalized SD rate based on the total reduced-order model

(solid line) and the SD rate which takes only the four

quasinormal modes that correspond to the eigenvalues 1 –

4 into account (dashed line) are shown in Fig. 9. We

observe that a small number of quasinormal modes is

already sufficient to properly capture the SD rate response

of the quantum emitter over the wavelength interval of

interest. Finally, in Figs. 10, 11, and 12, 13 we show the

magnitude of the x- and y-components of the electric field

strength of the quasinormal modes corresponding to the

eigenvalues labeled 1 and 4 in Fig. 8. These modes con-

tribute to the SD rate of the golden nanogap antenna and, as

mentioned above, are determined from the Lanczos

decomposition of Eq. (13).

Comparing the SD experiment for the nanorod with the

experiment for the nanogap antenna, we observe that the

two experiments differ not only in model complexity, but

also in the wavelength range of interest. Specifically, in the

nanorod experiment, only a single resonance essentially

contributes to the SD rate on the wavelength interval of

interest, while for the antenna, three resonance modes

contribute on a wavelength interval that is larger than in the

first example (smaller wavelengths are considered in the

second example compared with the first). Convergence

therefore slows down, since the wavelength interval and

the number of modes that need to be captured is larger.

Fig. 9 SD rate of the quantum emitter in the configuration of Fig. 6.

Solid line total reduced-order model of Fig. 7. Dashed line SD rate

computed using only the quasinormal modes corresponding to

eigenvalues 1–4 (see Fig. 8)

Fig. 6 A quantum emitter located at the center of a gap between two

golden rectangular nanorods. The side lengths of the rods are given by

28� 28� 100 nm, and the gap is 22 nm wide. A Drude model is

used as a constitutive relation for gold, and the background medium is

homogeneous with an index of refraction of n ¼ 1:5

Fig. 7 Reduced-order model of order m ¼ 8500 for the normalized

spontaneous decay rate of the quantum emitter shown in Fig. 6

Fig. 8 Eigenvalues of the reduced-order Lanczos matrix H8500

(crosses) and the wavelength interval of interest (solid line)
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Moreover, smaller wavelengths put harder constraints on

the PML, which usually leads to a poorer conditioning of

the system matrix.

The construction of the reduced-order model in Matlab

takes about 1 h for the first example and 1.75 h for the

second example on an Intel i5-3470 CPU 3.2 GHz under

64-bit Windows 7. As soon as the model is constructed, its

evaluation on the complete wavelength interval of interest

takes less than one second for one thousand uniformly

sampled wavelength values. This ‘‘wavelength sweeping’’

feature is the main advantage of our reduced-order model

approach.

Fig. 10 Magnitude of the x-component of the electric field strength of

the quasinormal mode corresponding to eigenvalue 1 of Fig. 8

Fig. 11 Magnitude of the y-component of the electric field strength of

the quasinormal mode corresponding to eigenvalue 1 of Fig. 8

Fig. 12 Magnitude of the x-component of the electric field strength of

the quasinormal mode corresponding to eigenvalue 4 of Fig. 8

Fig. 13 Magnitude of the y-component of the electric field strength of

the quasinormal mode corresponding to eigenvalue 4 of Fig. 8

158 Page 6 of 7 J. Zimmerling et al.

123



4 Conclusions

We have presented a novel model-order reduction method

to efficiently compute the spontaneous decay rate of arbi-

trarily shaped 3D nanosized resonators. By exploiting the

symmetry of Maxwell equations in conjunction with a

general second-order dispersion relation, so-called

reduced-order models for the spontaneous decay rate can

be constructed very efficiently via a Lanczos-type reduc-

tion algorithm. The use of this algorithm allows us to

construct a single low-order model that is accurate on an

entire spectral interval of interest, and frequency sweeps

can be performed at negligible cost given the low order of

the reduced-order models.

Large reduction factors can be achieved for general 3D

resonators, since electromagnetic field responses in res-

onating structures are mainly dominated by a small number

of quasinormal modes. Moreover, discretizing 3D res-

onating nanostructures in space generally leads to heavily

oversampled semidiscrete Maxwell systems, since detailed

subwavelength geometric features of the resonating struc-

ture need to be captured.

The small number of modes contributing to the elec-

tromagnetic response suggests the possibility of solving

this problem using rational Krylov subspaces. Rational

Krylov subspaces generally show superior convergence for

systems with only a few contributing eigenvalues. There-

fore, future work will include the design of a rational

Krylov subspace algorithm to compute the electromagnetic

response of 3D resonators.

We point out that the developed approach can easily be

extended to multipole dispersive media in order to simulate

more complex dispersive materials. For instance, a single

resonator can be simulated with a dispersion relation given

by the sum of a Drude and a Lorentz model. Furthermore,

by storing the computed electric field strength values

within the golden nanorod or by collecting the computed

EM field at the boundary of the computational domain, we

can determine the heat absorption or emission to the far

field by invoking Poynting’s theorem.
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