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A fundamental problem in sensor array signal processing is to separate and retrieve all independent co-channel signals that arrive
at the antenna array. Such problems arise in smart antenna applications for mobile wireless communication, such as interference
reduction and in-cell frequency reuse. In a mobile environment, the presence of large delay multipath makes the array manifold
poorly defined, and spatial model methods are not applicable. However, in case the signals have a constant modulus property (as
in FDMA/FM systems like AMPS or TACS), iterative algorithms such as Godard and CMA have been used to retrieve the signals.
Because of a non-convex optimization criterion, these algorithms suffer from local minima and random convergence behavior, with
no satisfactory remedy known as yet. In this paper, we present an algorithm to compute the exact solution to the underlying constant
modulus (CM) factorization problem. With this new approach, it is possible to detect the number of CM signals present at the array,
and to retrieve all of them exactly, rejecting other, non-CM signals. Only a modest amount of samples are required. The algorithm
is robust in the presence of noise, and is tested on real data, collected from an experimental set-up.
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1. INTRODUCTION

A problem in sensor array signal processing with important applications is concerned with the case where there are several unknown
constant modulus (CM) signals impinging on the array, and the objective is to copy each of them without using knowledge of the
array response vector. Mathematically, we are given a data matrix X : m � n, with xi j the j-th sample of the i-th antenna, and we have
to find a factorization of X, if it exists, as

X � AS � a1s1
���������

adsd � (1)�
A �
	 a1

�����
ad ����� m � d � S ��	 s �1 ����� s �d � � ���� d � n � �

such that A � S are full rank d, and all sk ���� n are CM signals. The CM factorization problem can be reformulated as finding all weight
vectors w such that wX � s, for as many linearly independent CM signals s as possible. This formulation is more general: not all d
signals present in X need to be CM signals, but only δ � d, say.

The CM factorization problem gained much interest in the area of communications, where many modulation or coding schemes
produce signals that have the CM property, such as FM and phase-modulated signals. One envisioned application is in wireless
telephony, where users broadcast CM signals to a central site. The current AMPS and TACS systems fall within this category. The
capacity of these systems is limited by the number of frequency slots that are available. To increase the overall capacity, engineers
are considering to reuse frequencies within a single communication cell. Due to co-channel interference of signals that have the
same carrier frequency, the output of a receiving antenna will be some linear combination of the signals that have been broadcasted.
With multiple antennas, however, it becomes possible to take linear combinations of the antenna outputs to cancel all crosstalk (i.e.,
null-steering), and hence to retrieve each of the original signals. For this to be possible, it is necessary to have some more informa-
tion, either on the structure of the array response matrix, or on the signals. In the wireless application, the antenna array is known
in principle. However, there is often no direct line-of-sight, and the effect of multipath due to scattering off buildings causes a loss
of structure of the actual array response matrix, and, as a result, standard direction-of-arrival estimation algorithms such as MVDR,
MUSIC or ESPRIT are not applicable. The property that remains available is that the output signal of the beamformer, after suc-
cessful null-steering, has a constant amplitude. With some simplifying assumptions, the CM factorization problem is an appropriate
mathematical formulation of this ‘blind null-steering’ scenario: X is the received data matrix; its entries are n samples from m sensors;
A is the array response matrix, and the rows sk of S are the signals to be estimated.
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For a long time, the CM factorization problem was considered to be too non-linear to admit a closed-form analytical solution, and only
iterative, gradient-descent schemes have been developed, mostly based on pioneering work by Godard [1], Treichler and Agee [2],
and Treichler and Larimore [4, 3]. The algorithms are known as CMAs. In its basic form, the algorithm consist of an LMS-type
recursion, �

s � n � w � n � xn

w � n � 1 � � w � n ��� µ ��� � s � n � 2 � 1 � � s � nx �n  (2)

(xn is the n-th column of X.) If w � n � converges to a (non-zero) stationary value, then wX � s is a CM signal. There are many vari-
ants of this scheme [4,3,5–9]. Despite many efforts, all CMAs up to date suffer from problems which seriously limit their practical
and automated applicability, and which are basically a consequence of the non-convex optimization cost functions that all of them
use. The most important deficiencies are (1) the cost functions have local minima, not corresponding to interference removing so-
lutions and, depending on the initialization, algorithms do sometimes converge to these local minima [4,3,10–15]; (2) the speed of
convergence is highly dependent on the initialization, but no suitable default initial points are known; (3) the algorithms search for
a minimum and thus retrieve only one signal at a time; the other signals have to be found by starting from other initial points and
hoping (or encouraging [7, 16, 17]) that they converge to something else. Weak signals are hard to retrieve in this way; (4) the only
way to detect the number of CM signals is a posteriori, by counting the number of independent CM signals that have been obtained.

An analytic approach

The CM factorization X � AS is not a standard linear algebra factorization, and it is not clear at first that solutions exist and are
unique. Not much is known about this factorization. For large enough n, most matrices do not admit such a factorization: in general,
solutions exist only if the matrix X was constructed from such a product in the first place. On the other hand, if n is too small, then
the factorization is not well-determined: solutions S are possible which bear no relation to signals that generated X. Even if n is large
enough, the solution, if it exists, can be unique only up to equivalence transformations T : d � d such that X � AS � � AT ! 1 � � TS �
and TS is a CM matrix. Trivial examples of T , independent of A � S, are permutation matrices (reordering the signals) and unitary
diagonal matrices (defining the initial phase of each signal). These trivial transformations cannot be avoided and are admissible. If
X has a CM factorization and n is large enough (n " d

�
d � 1 � is shown to be sufficient), then the factorization is usually unique,

up to the above equivalences [18]. There are examples of matrices X for which the factorization is not unique, but this can occur
only if there are specific phase relations between the signals. These relations are hard to analyze, but we may assume that they are
generically not satisfied, especially if the signals are statistically independent or travel along independent paths.

We will assume, from now on, that n " d2 is large enough so that there is a unique factorization, up to trivial transformations. The
contributions of the paper are summarized as follows.

– It is possible to determine the number of CM signals present among other types of signals in X: δ equals the dimension of the
kernel of a certain matrix constructed from X.

– W and S such that WX � S is a CM matrix can be computed exactly, from a certain eigenvalue decomposition.

– With X distorted by additive noise, a generalization of the algorithm is robust in finding S, even when n is quite small. This is
demonstrated with experimental data.

The algorithm is derived by setting up the equations for w to have wX �$#&% (section 2). These equations are quadratic in w, but
can be linearized when written in terms of the Kronecker product w ' w, a vector with d2 entries (w is the complex conjugate of
w). If n " d2, then the number of solution vectors to this linear system of equations indicates how many CM signals are present in
X. In general, solutions to the linear system do not have the structure w ' w: the system is underdetermined and there is an (affine)
subspace of solutions. The core of the CM problem is to find those solutions that have a Kronecker structure. It is shown how a unitary
transformation reduces this problem to a generalization of an eigenvalue problem: the simultaneous diagonalization of a number of
matrices. Without noise, this problem has an essentially unique solution which can be found using standard linear algebra tools. With
noise added to X, there is in general no exact diagonal solution, and we have to find an approximate simultaneous diagonalization.
This is a challenging, non-standard linear algebra problem, for which we propose an algorithm that shows quadratic convergence
(section 3). In section 4, the algorithm is tested on measured data sets.
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2. EXACT SOLUTION TO THE CM PROBLEM

2.1. The Gerchberg-Saxton algorithm

Denote by ($) � X � the subspace spanned by the rows of X (the co-range of X) and by #&% the set of CM matrices. Assuming that
there is a unique solution, the CM factorization problem is precisely equivalent to the following problem:

Problem P1. Find all linearly independent signals s that satisfy�
A � s �*#&%+��
B � s � ($) � X �  

From this formulation, it is straightforward to devise an algorithm based on alternating projections: start with a (random) choice of
s in the row span of X, and alternatingly project it onto #&% and back onto the row span of X. The set #&% is not a linear subspace,
so that the the projection onto #&% is non-linear:

P,�- � y � � . �
y � k� � y � k �0/ n

k 1 1
�

i.e., every entry of the vector is radially projected onto the complex unit circle. It is customary to estimate weight vectors w rather
than signals, in which case the alternating projection algorithm is expressed as the iteration

w � i � 1 � �32 P,0- � w � i � X �54 X 6  (3)

(Note that s � i � � w � i � X, and
�
X 6 X � P 798 � X � � � � represents a projection onto the row span of X.)

It turns out that this is a well-established algorithm in the field of optics for solving the phase-retrieval problem, where it is known as
the Gerchberg-Saxton algorithm (GSA) [19]. The connection of the phase-retrieval problem with the CM problem was made only
recently [18]. Essentially the same algorithm was derived from the CMA by Agee [6], and called the LSCMA. Simulation studies
[6,18] comparing these methods to CMA and OCMA indicate a better performance, in the sense of a smaller residual distance of the
resulting s � ($) � X � to #&% . The other convergence properties are similar to the classical CMA schemes: converge is satisfactorily
provided the initial choice for w is close to a true solution vector, it is possible that an initial guess converges extremely slowly, and
not all stationary points correspond to CM signals. We will use this algorithm as a benchmark.

2.2. Kronecker product formulation

To derive an analytic solution to the CM factorization problem, we elaborate on problem P1: we are looking for all vectors s that
are in the row span ($) � X � of X and also have the CM property. In a series of steps, this problem is translated into an equivalent but
more tractable form.

Let X � UΣV : U �:�� m � m � Σ � ��; m � n � V �<�� n � n be a singular value decomposition of X: U and V are unitary matrices, and Σ is a
real diagonal matrix with non-negative entries. Suppose that rank

�
X � � d. We can write

X � ÛΣ̂V̂ ; Û ���� m � d � Σ̂ � ��; d � d � V̂ �<�� d � n

where Û, Σ̂, V̂ are submatrices of U, Σ, V , respectively, corresponding to the non-zero singular values of X. In particular, ($) � X � �($) � V̂ � , and the rows of V̂ form an orthonormal basis of the row span of X. Using V̂ , we can rewrite condition
�
B � in problem P1 as�

B � : s � ( ) � X � = s � wV̂ � V̂ : d � n  
Here, the weight vector w is not precisely the same as before: it is now acting on the orthogonal basis vectors of ($) � X � , rather than
directly on X. This reduces the number of parameters to estimate from m to d, and ensures that linearly independent w result in
linearly independent s. To rewrite condition

�
A � : s �*#&% , put V̂ �>	 v1

�0���
vn � , where vi ���� d is the i-th column in V̂ . Then�

A � : s �
	 � s � 1 ���0� � s � n �?�>#&% = 	@� � s � 1 � 2 �0��� � � s � n � 2 � �A	 1 ����� 1 �= BCD CE wv1v �1w � � 1
...

wvnv �nw � � 1
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Define Pk � vkv �k �F�� d � d , for k � 1 � ����� � n. Then the CM problem is equivalent to finding all linearly independent vectors w, such
that

wPkw �G� 1 � k � 1 � ����� � n  (4)

The n conditions on w are quadratic equations in the entries of w, and are hard to solve directly. The approach is to expand these
equations in the entries of w, which gives rise to Kronecker products w ' w. At this point, we introduce the notation, for Y ���� d � d ,

y ���� d2
,

vec
�
Y � : � HIIIIIIJ Y11

Y12...
Y21...
Ydd

KMLLLLLLN � vec ! 1 � y � : � HIIIJ � y � 1 �
y � 2 ���0� �

y � d�
y � d � 1

�
y � d � 2

���0� �
y � 2d

...
. . .

...�
y � d2 ! d � 1

����� �
y � d2

K LLLN  
With these definitions, the quadratic expression wPkw � is ‘linearized’ as

wPkw � � pky � where y � vec
�
w � w � � w ' w �O�� d2 � 1 � pk � vec

�
Pk
� T  (5)

Collect the condition vectors pk in one matrix P of size n � d2:

P � HJ
p1...
pn

KN  
With the above definitions, the CM problem is now transformed into the following problem: �
Problem P2. The CM problem is equivalent to finding all linearly independent vectors y satisfying

Py � HJ
1
...
1

KN (6)

y � w ' w (7)

For each solution w, the corresponding CM signal is given by s � wV̂ .

To prove that this problem is equivalent to solving equation (4), and hence problem P1, it remains to show that a set of solutions� y � δ
1 is linearly independent if and only if the corresponding set � wk � δ

1 is linearly independent. This is straightforward.

The system of equations is overdetermined for large enough n, but still might have multiple solutions: any vector in the kernel of P
can be added to any solution y. In general, the solution to (6) can be written as an affine set of solutions. However, it is convenient
at this point to do a linear transformation such that the solution set becomes linear. Let Q be any n � n unitary matrix such that

Q

HJ
1
...
1

KN � HIIJ n1 P 2
0
...
0

K LLN  (8)

Simple choices for Q suffice; e.g., Q could be a Householder transformation [21]. Apply Q to P:

QP � :

.
p̂1

P̂ / � p̂1 : 1 � d2

P̂ :
�
n � 1 � � d2

With these definitions, we have

Py � HJ
1
...
1

KN = Q �
i � p̂1y � n1 P 2�
ii � P̂y � 0R

Similar equations have been derived by Jamali et al. [20]. They revert to an iterative method for solving this problem; we show here that there is an explicit
solution.
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One can show that p̂1y � n1 P 2 = tr
�
Y � � n, where Y � vec ! 1y and tr

� � � is the trace operator. The proof of this is technical and uses
the fact that P was generated from the isometry V̂ . When y � w ' w, then tr

�
Y � � tr

�
w � w � � ww � �TS w S 2 so that p̂1y � n1 P 2 =S w S 2 � n. The CM problem is thus shown to be equivalent to the following problem.

Problem P3. Let X be a given matrix. Construct P̂ ���� � n ! 1 �U� d2
from X. Find all linearly independent solutions y that satisfyBD E � i � P̂y � 0�

ii � y � w ' w�
iii � S w S 2 � n

For each solution w, s � wV̂ is a CM signal contained in X.

2.3. Detection of the number of CM signals

If the number of CM signals that are present in X is defined to be δ � d, then there are δ linearly independent solutions w to the
CM factorization problem, corresponding to δ linearly independent vectors y � w ' w in the kernel of P̂. Hence, it is necessary that
dimkerP̂ V δ. Since P̂ :

�
n � 1 � � d2, we also have dimkerP̂ V d2 � � n � 1 � . To be able to detect δ from dimker P̂, we have to require

that, at least, n V d2 � 1.

Proposition 1. Let δ � d be the number of CM signals in X, and let n V d2 � 1. Then dimker P̂ V δ. Generically, dimker P̂ � δ.

The dimension of the kernel will be larger than δ only if there are specific relations between the signals, valid for all points in time. It
is not a trivial task to analyze these relations; however, in practical cases, signals are unrelated and signal paths are different, making
it unlikely that the rank of the matrix P̂ is any lower than necessary.

2.4. Computation of W

We will assume from now on that dimker P̂ � δ is equal to the number of CM signals in X. Let y1 � �0��� � yδ be δ non-zero and linearly
independent solutions to P̂y � 0: � yk � δ

1 is a basis for the kernel of P̂. It can be computed from an RQ factorization of P̂, or, with
more numerical accuracy, using an SVD. In the latter case, � yk � δ

1 are the right singular vectors corresponding to the δ singular values
of P̂ that are zero. Denote by Yk � vec ! 1 � yk

� , k � 1 � ���0� � δ, the corresponding d � d matrices constructed from these vectors. We will
use the property that y has a Kronecker structure, y � w ' w, if and only if Y � w � w is symmetric and of rank 1.

Because linear combinations of vectors in the kernel are also vectors in the kernel, we have in general that each each yk does not
have a Kronecker structure. But the existence of such vectors in the kernel implies that there are scalar parameters α1 � �0��� � αδ such
that

α1y1
�<���0�W� αδyδ � w ' w �

or equivalently, such that
α1Y1

�<�����W� αδYδ � w � w
is symmetric and of rank 1. Since there are δ independent solutions, there must be δ independent parameter vectors 	 α1 � ����� � αδ � . The
main step in the CMA algorithm is to find these parameter vectors.

It is hard to enforce a Kronecker product structure directly on the yk’s, but in terms of the Yk’s, this problem can be viewed as a kind
of generalized eigenvalue problem. Indeed, if d � δ � 2, then there are two matrices Y1 and Y2, each of size 2 � 2, and we have to
find λ � α2 X α1 such that Y1

� λY2 has its rank reduced by one (to become one). For larger δ, there are more than two matrices, and
the rank should be reduced to one by taking linear combinations of all of them. This can be viewed as an extension of the generalized
eigenvalue problem.

From the opposite perspective, suppose that the solutions of the CM problem are w1 � ����� � wδ. We already said that w1 ' w1 � ����� � wδ '
wδ is a set of linearly independent vectors; together they must span the kernel of P̂. Moving to matrices, each of the matricesY1 � ����� � Yδ
is a different (independent) linear combination of w �1w1 � ����� � w �δwδ, i.e.,

Y1 � λ11w �1w1
� λ12w �2w2

�<�����W� λ1δw �δwδ � W � Λ1W
Y2 � λ21w �1w1

� λ22w �2w2
�<���0�W� λ2δw �δwδ � W � Λ2W

...
Yδ � λδ1w �1w1

� λδ2w �2w2
�<�����Y� λδδw �δwδ � W � ΛδW

(9)

5



where

W � HIJ
w1
...

wδ

K LN � Λk � HIJ
λk1 0

. . .
0 λkδ

K LN �
k � 1 � ����� δ �  

Hence, by the existence of a solution to the CM problem, there must be a matrix W whose inverse simultaneously diagonalizes
Y1 � ����� � Yδ. The rows of W , scaled to have norm n1 P 2, are the weight vectors that solve the CM problem.

Generically, Y1 and Y2 are d � d matrices of rank δ, and not less than δ. In this case, a generalized eigenvalue decomposition of just
Y1 and Y2 will already determine W : there exist matrices M � N (invertible) such that

M � Y1N � Λ1

M � Y2N � Λ2

where Λ1 � Λ2 are diagonal matrices, size d � d, each with δ non-zero entries. Reducing these matrices to δ � δ diagonal matrices
with non-zero entries on the diagonal, and trimming M and N likewise to full rank δ � d matrices, we obtain the decomposition

M̂ � Y1N̂ � Λ̂1

M̂ � Y2N̂ � Λ̂2  
For the full rank case, M̂ and N̂ are unique up to equal permutations of their columns and (possibly different) right diagonal invertible
factors. This uniqueness implies that, after a suitable diagonal scaling, we can arrange it such that M̂ � N̂ � W 6 , or W � N̂ 6 , with
each row of W having norm n1 P 2. For the case where Y1 and Y2 are not of rank δ, it is possible that they do not fully determine W ,
so that the other Yk also have to be taken into account. It is obvious that it is possible to obtain W also in this case, but we omit the
details of this more general procedure at this point. Numerically, it is better to take all Yk into account in all cases. Such an algorithm
is described in the next section.

Hence, we have shown that problem P3 can be solved analytically, via (9) and using eigenvalue decompositions. With W known,
and properly scaled, the solution of the CM problem is S � WV̂ .

3. THE CM PROBLEM WITH ADDITIVE NOISE

3.1. Equivalent optimization problem

With noise added to the data, X � AS
�

N, an exact decomposition of X as X � AS is no longer possible. To recover the CM signals,
the problem can be posed as finding δ independent signals s that are minimizers of

min � dist
�
s �Z#&% � � s � ˆ( ) � X � � � dist

�
s �Z#&% � : � n

∑
k 1 1

� � � s � k � 2 � 1 � 2  (10)

Here, ˆ( ) � X � is the estimated row span of S, which we will take to be the principal row span of X, as determined using an SVD.
Thus let X � UΣV as before, and let d be the number of singular values of X that are significantly larger than zero. The rows of V
corresponding to these singular values form an orthogonal basis of the principal row span of X, and are collected in the matrix V̂ .
The matrix P and P̂ are constructed from V̂ as in section 2. We can express the cost function in equation (10) in terms of P̂ and w.
Omitting the details, suffice it to say that the minimization problem is separable into the constrained minimization problem for w,

ε2 : � min S P̂
�
w ' w � S 2 s.t. S w S 2 � n �

which will provide the direction of w, and the computation of a scalar c to minimize dist
�
cwV̂ �Z#&% � . The corrective scaling can be

expressed in term of ε, but it is close to 1 and of no importance in practice, as it will only scale the amplitude of the corresponding
signal s. Hence, with noise, we have to solve the following equivalent of problem P3:

Problem P4. Find all independent minimizers y of �
i � min

y
S P̂y S 2 � (11)

such that
�
ii � y � w ' w,

�
iii � S w S 2 � n. Then the solution to the CM problem with noise is s � wV̂ .
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Minimizing (11) with the given conditions on y undoubtedly requires some iterative method, but the route set out by the solution of
the noiseless case will provide excellent initial points for such a method. Thus, we compute a set of orthogonal vectors yk that solve
(11), construct the corresponding matrices Yk, and subsequently impose the required structure on these matrices: linear combinations
of the Yk should result in matrices that are close to rank-1 symmetric matrices of the form w � w. This modified problem is numerically
feasible to solve, and for moderate noise levels, or large enough n, experiments show that the solution is quite close to the optimal
solution of problem P4. We will now describe each of the steps in more detail.

For n " d2, the number of CM signals δ can be estimated from the singular values of P̂: it is equal to the number of singular values
that are significantly smaller than the others. The corresponding right singular vectors form a basis � yk � δ

1 for the numerical kernel
of P̂. As before, the vectors y1 � ����� � yδ are reordered into matrices Y1 � �0��� � Yδ in �� d � d . The next step is to decouple these matrices into
rank-1 matrices: find independent parameter vectors 	 α1

����� αδ � such that

α1Y1
�<�����W� αδYδ [ Y � w � w � (12)

i.e., a rank 1 symmetric matrix. With noise, there is no exact solution to this problem; we can only try to minimize the distance of this
linear combination to the set of rank-1 symmetric matrices. Again, it is not clear how to solve such a problem exactly, but we will
give a good approximate solution to it. In the noise-free case, the solution was given by a simultaneous diagonalization of Y1 � ����� � Yδ.
We will extend this approach to the noisy case.

3.2. Simultaneous diagonalization as a super-generalized Schur decomposition problem

Assume, for the moment, that there is no noise added to X. As we have seen, there exists a full rank matrix W ���� δ � d such that

Y1 � W � Λ1W
Y2 � W � Λ2W

...
Yδ � W � ΛδW  

�
Λ1 � �0��� � Λδ ���� δ � δ � diagonal � (13)

With noise, we can try to find M � W 6 to simultaneously make M � Y1M � �0��� � M � YδM as much diagonal as possible. Because M is not
unitary, the fact that it has to have full rank is hard to quantify, and it makes sense to rewrite this δ-generalized eigenvalue problem
as a δ-generalized Schur decomposition. We first explain the procedure for the noise-free case. Bring in a QR factorization of W �
and an RQ decomposition of W : W � � Q � R ) � W � R )\) Z � � where Q, Z are unitary d � d matrices, and R ) � �� d � δ, R )\) � �� δ � d are
upper triangular. If δ ] d, then we can make sure that only the leading δ � δ blocks of R ) and R )\) are non-zero. Substitution into (13)
leads to

QY1Z � R1

QY2Z � R2...
QYδZ � Rδ

�
R1 � ����� � Rδ �<�� d � d � upper triangular � (14)

with
R1 � R ) Λ1R )\) � R2 � R ) Λ2R )\) � ����� � Rδ � R ) ΛδR )\)  (15)

Only the top-left δ � δ block of each Rk is non-zero. Hence, there exists Q � Z such that QYkZ is upper triangular, for k � 1 � �0��� � δ, which
is some kind of generalized Schur decomposition. With this decomposition, it is seen that a parameter vector 	 α1

����� αδ � satisfies
(12) if and only if it satisfies

α1R1
�<�����Y� αδRδ is rank 1. (16)

With the model of R1 � ����� � Rδ in (15), we obtain

R ) � α1Λ1
�^�0���W� αδΛδ

� R )\) is rank 1.

Since all the Λk are diagonal, the αk are straightforward to compute: only one entry of the diagonal matrix α1Λ1
�O�����W� αδΛδ can be

non-zero. Setting this entry equal to one, all possible parameter vectors 	 α1
����� αδ � follow by constructing a matrix whose columns

consist of the diagonal entries of the Λk ,

Λ � HIJ �
Λ1
�
11

����� �
Λ1
�
δδ

...
...�

Λδ
�
11

����� �
Λδ
�
δδ

KMLN  
7



The rows of Λ ! 1 are the independent vectors 	 α1
����� αδ � .

It is not necessary to compute the factorization (15): the parameters can be computed directly from the Rk in (14). A necessary
condition for condition (16) to hold is that the resulting matrix has a main diagonal with at most one non-zero entry. In view of the
existence of factorization (15) and the uniqueness of the CM factorization, this is sufficient, too.

Proposition 2. For given Y1 � �0��� � Yδ, assume the decomposition (14). All independent parameter vectors 	 α1
�0��� αδ � such that

α1Y1
�<�����Y� αδYδ has rank 1 are given by the rows of A:

A � R ! 1 � R � HIJ �
R1
�
11

����� �
R1
�
δδ

...
...�

Rδ
�
11

����� �
Rδ
�
δδ

K LN  
Factoring each of the δ rank-1 matrices that is obtained in this way gives δ independent vectors w, which form the rows of the matrixW
that we were looking for in equation (13). Hence, in the noise-free case, the computation of a super-generalized Schur decomposition,
i.e., two unitary matrices Q � Z that satisfy (14), gives the solution to the simultaneous diagonalization problem. Although it seems
at first sight that we have doubled the number of parameters to estimate (two matrices Q � Z, rather than one matrix W ), this is not
true: the fact that the matrices are unitary makes that the total number of parameters to estimate is precisely the same. However, the
constraint that Q, Z be unitary is a desirable condition, whereas the fact that W must have full rank is difficult to handle.

We now return to the case where the data matrix X is distorted by noise. In this case, there is no Q, Z which simultaneously makes
all matrices Yk upper triangular. However, we can try to find Q, Z to make these matrices as much upper triangular as possible,
by minimizing the Frobenius norm of the residual lower triangular entries. One approach for doing this is described in the next
subsection. It is an extension to more than two matrices of the usual QZ iteration for computing the generalized Schur decomposition
of two matrices. With Q � Z and hence R1 � ����� � Rδ obtained this way, we can compute all independent parameter vectors 	 α1

����� αδ �
as in proposition 2. The resulting matrices Y have approximately the form Y � w � w, and each w can be estimated as the singular
vector corresponding to the largest singular value of each Y . It remains to scale w to ensure that S w S_� n1 P 2.

The above scheme provides an approximate solution to problem P4. The algorithm is summarized in figure 1. It is not clear in what
sense the solution approximates the optimal solution; however, it finds the exact solution if there is no noise, and yields perfect results
for moderate noise levels or large enough n. For high noise levels, closely spaced signals, or small n, the vectors w that are obtained
by the above procedure can be used as initial starting points in a Gerchberg-Saxton iteration, which effectively finds the minimum
of P4. Since these starting points are accurate, a few iterations usually suffice, and independent signals are obtained for each w. An
example of the application of the algorithm to real data is given in section 4.

3.3. Super-generalized Schur decomposition

In this subsection, we describe a possible approach to the super-generalized Schur decomposition problem: for given matricesY1 � ����� � Yδ,
find Q � Z (unitary) such that

QY1Z � R1 � �0��� � QYδZ � Rδ �
where R1 � ���0� � Rδ are as much upper triangular as possible. As said in section 3.2, this problem is the core of the CM factorization
problem: all the preceding steps just served to massage the problem into this form, and once the Schur decomposition is obtained,
the solution of the CM problem follows directly from it.

For two matrices, upper triangular R1 � R2 exist and are given by a standard generalized Schur decomposition. The extension to more
than two matrices makes it a non-standard linear algebra problem and, as an extension to an eigenvalue problem, not easy to solve for
general matrices Yk. We rely on the fact that there is a good solution in the no-noise case (all matrices Rk upper triangular), and that
the matrices Yk do not abruptly change as the noise level is gradually increased. Our approach is to modify the standard QZ iteration
method used for computing the Schur decomposition so that it works for more than two matrices. There is more than one way to do
this. We will present a variant that has shown quadratic convergence in the no-noise case and treats all matrices Y1 � ����� Yδ equally.

The QZ iteration for computing the Schur decomposition of two matrices [21] starts with setting Q � 0 � � I, Z � 0 � � I. At the k-th
iteration step, a unitary matrix Q � k � is computed such that Q � k � � Y1Z � k ! 1 � � is upper triangular, and a unitary matrix Z � k � is computed
to make

�
Q � k � Y2

� Z � k � is upper triangular. As an extension to more than two matrices, we propose the following two step iteration.
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Suppose X � AS
�

N ���� m � n. An estimate of S �*#&% is obtained as follows:
1. Compute SVD(X): X � : UΣV
2. Estimate the number of signals d as the number of large entries in Σ
3. V̂ � first d rows of V
4. Construct P̂ :

�
n � 1 � � d2 from V̂ :

V̂ � : 	 v1
�0���

vn �
P �T	 vec

�
v1v �1 � ����� vec

�
vnv �n � � T.

p̂1

P̂ / � QP � with Q as in (8)

5. Compute SVD(P̂): P̂ � : UpΣpV �p
6. Estimate the number of CM signals δ � d as the number of small entries in Σp

7. 	 y1
�����

yδ � : � last δ columns of Vp

8. Y1 � vec ! 1 � y1
� � ����� � Yδ � vec ! 1 � yδ

�
9. Find Q � Z to make R1 : � QY1Z � ���0� � Rδ : � QYδZ approximately upper (section 3.3)
10. From R1 � ����� � Rδ, compute all vectors 	 αk1

����� αkδ �`� k � 1 � ���0� � δ
s.t. Ŷk : � αk1Y1

�<���0�Z� αkδYδ is approximately rank 1 (proposition 2)
11. For each Ŷk:

Compute w such that Ŷk [ : w �k wk

scale wk such that S wk SG� n1 P 2; (scale by c)
sk : � wkV̂
(perform a few Gerchberg-Saxton iterations, as in equation (3))

The vectors s1 � ����� � sδ are the rows of S.

Figure 1. CM factorization algorithm.

Denote by S � S LF the Frobenius norm of the strictly lower triangular part of a matrix.

Find Q � k � (unitary) to minimize S Q � k � � Y1Z � k ! 1 � � S 2LF
�<�����Y� S Q � k � � YδZ � k ! 1 � � S 2

LF �
find Z � k � (unitary) to minimize S � Q � k � Y1

� Z � k � S 2
LF
�<���0�W� S � Q � k � Yδ

� Z � k � � S 2
LF  (17)

Each of these steps is a least squares problem with an exact solution. To describe this solution, suppose that, at the k-th stage, we have
matrices R1 : � Q � k ! 1 � Y1Z � k ! 1 � � ����� � Rδ : � Q � k ! 1 � YδZ � k ! 1 � , and we have to find a unitary matrix Q that minimizes the below-diagonal
norm of QR1 � ���0� � QRδ. Q is obtained as the product of d � 1 more elementary unitary matrices

Q �ba Id ! 2 0
0 qd ! 1 c ����� a 1 0

0 q2 c q1  
The first factor, q1, will simultaneously minimize the below-diagonal norms of only the first column of each of the matrices R1 �  � � � Rδ.
Similarly, qk is used to minimize the below-diagonal norm of the k-th columns of each of the matrices. Denote by

�
R1
�
1 the first

column of R1, and similarly for the other Rk’s, then

q1 	 � R1
�
1
����� �

Rδ
�
1 � � a$d ����� d

E c
where 	 d ����� d � is the first row of the result, and E contains the remaining rows. The objective is to find q1 such that S E S F is minimized.
The solution is not unique, but a possible q1 follows directly from an SVD:	 � R1

�
1
����� �

Rδ
�
1 � � : UΣV � e q1 � U �  

Indeed, for this choice of q1, we have S E S 2F � σ2
2
�<����� σ2

δ, which is as small as we can hope for. After q1 has been computed and
applied to R1 � ���0� Rδ, we have obtained new matrices R )1 � ����� � R )δ. The next factor, q2, is used to minimize the below-diagonal norm
of the second columns of these matrices. As q2 is unitary and the first rows of R )1 � ���0� � R )δ stay unchanged, this will not change the
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Figure 3. Same experiment as in figure 2, but now with SNR(B) lowered to 7.6 dB.

below-diagonal norm of the first columns. In fact, q2 can be found in precisely the same way as q1 by looking at the reduced problem
where we act on R )1 � ����� � R )δ with their first rows and columns removed. The matrices q3 � ����� � qd ! 1 follow in turn.

The resulting QZ iteration (17) is observed to converge fast, usually quadratically in 3–5 iterations. Because the inner loop consist
of SVDs, the scheme is only practical if d is small, which is certainly the case for the currently envisioned applications (d � 6, say).

4. EXPERIMENTAL EVALUATION

To assess the performance of the algorithm, we have applied it to a number of test matrices, based both on computer generated data
and on real data collected from an experimental set-up. The results are quite convincing. For example, the algorithm could separate
four CM signals using 4 sensors and only 17 data samples, sometimes even if each signal has a signal to background noise ratio of
5 dB. In this paper, we will report on only one such example, using measurement data collected from a rooftop antenna set-up at
ArgoSystems, Inc (Sunnyvale, CA). In this experiment, there are m � 6 receiver antenna’s, arranged in a certain nondescript pattern,
and d � 4 FM transmitters, marked A–D, broadcasting music, speech, and modulated tones. The angles of the transmitters with
respect to the array broadside were � 1  5 p � 0 p � 7  1 p � 42  6 p , for A � B � C � D, respectively, and their signal-to-background noise levels
were 19.1 dB, 17.6 dB, 17.9 dB, 16.7 dB. In a second experiment, the power of B was lowered to 7.6 dB.

In figure 2
�
a � and

�
b � , the singular values of X and P̂ are shown. For n � 100 and n � 50, it is clear that there are 4 signals, and

that in this example all of them have constant modulus. Figure 2(c) shows the Gerchberg iterations that result when we take d �
4 and δ � 4, for n � 25 samples. The solid lines is the modulus error that result when the iterations are started from the δ � 4
analytically computed weight vectors, the dashed lines is the error when we start with a number of randomly selected weight vectors.
The Gerchberg iteration improve the analytically computed weight vectors only marginally: they are already close to optimal. For
n � 50, straight lines occurred (not shown).

In a second experiment, the power of signal B was lowered to 7.6 dB. As the spacing of the B-antenna to the A-antenna is still only
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1  5 p , this is a challenging test of the algorithm. The results are depicted in 3. The detection of the other three signals from the singular
values of P̂ remained the same, but the fourth singular value (apparently corresponding to B) is raised and now somewhere in the
middle of the gap between the large and small singular values. The detection that there are four independent signals from the singular
values of X is also more difficult now, even if n � 100.

The main conclusion to draw from these and a large number of other experiments is that in all observed cases the algorithm obtains the
optimum of the minimization problem if the number of samples n is sufficiently large. For four signals, n � 50–100 is typically large
enough, even under severe conditions. For smaller n, the estimates move away from their optimal values, but usually, the algorithm
still finds all CM signals if their number has been estimated correctly, and the optima can be obtained by adding a few iterations of
the Gerchberg-Saxton algorithm as postprocessing. The effect of a smaller n is mostly felt in a closing of the gap between the larger
and smaller singular values of P̂, which limits the detection of δ. This is mitigated to some extent by the property that the algorithm
is quite robust when d or δ are overestimated.

5. CONCLUDING REMARKS

In this paper, we have described an analytic method for solving the constant modulus factorization problem. The method condenses
all conditions on the weight vectors w into a single matrix P̂, and finds all independent vectors in the kernel of this matrix that have a
Kronecker product structure. This problem, in turn, is shown to be a super-generalized eigenvalue problem, which may be formulated
in terms of a super-generalized Schur decomposition: for given matrices Y1 � ����� � Yδ, find Q � Z (unitary) such that

QY1Z � R1...
QYδZ � Rδ

where R1 � ����� � Rδ are as much upper triangular as possible. We have proposed a modified QZ iteration which treats all Yk equally,
converges to upper triangular matrices Rk in the absence of noise, and usually has quadratic convergence. Other interesting iterations
might be devised as well.

The analytic algorithm is definitely more complex than the usual iterative approaches for blind beamforming and blind deconvolu-
tion of constant modulus signals. However, it gives fundamental solutions to a number of problems that have plagued iterative CM
algorithms ever since their inception in the early 1980s. The most important advantages of the analytic approach are

1. It is less blind: the number of CM signals can be detected beforehand, from the close-to-zero singular values of P̂. Not all
signals have to be CM signals.

2. It is deterministic: it does not rely on lucky initial choices of w. All CM signals are found. It does not lock on other signals
(local minima). The only parameters that have to be set are the total number of signals, and the number of CM signals.

These two properties make the algorithm more reliable, so that it can operate with a lower number of samples and at a lower SNR.
The number of samples is an important issue in applications where multipath causes fast fading, such as in wireless communications
in cities. A lower SNR requirement translates into lower transmitting powers of the mobiles, i.e., longer battery life.

The underlying reason that the analytic method can perform better seems to be the fact that it translates all conditions on the signals
into conditions on the weight vectors w. These are used in setting up a generalized eigenvalue problem, and as more samples are
taken into account, the problem becomes better conditioned. The dimensionality of this problem stays constant as more samples
are taken into account. In contrast, the iterative methods try to estimate the full signal s, which sits in a high-dimensional space of
increasing dimensionality, and the translation of the requirement that s should be a constant modulus signal into conditions on w is
done only weakly. As a result, the convergence performance of these algorithms does not improve much if the number of samples
is increased, other than that the averaged final error becomes smaller.
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