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The usualway to computea low-rank approximantof a matrix H is to take its truncatedSVD. However the SVD is com-
putatinally expensive. This paperdescribesa much simpler generalizedSchurtype algorithm to computesimilar low-rank
approximants.For a given matrix H which hasd singularvalueslarger than ¢, we find all rank d approximantsH suchthat
H-H has2-normlessthane. The setof approximantsncludesthe truncatedSVD approximation.The advantagesf the Schur
algorithm arethatit hasa muchlower computationatomplexity (similar to a QR factorization),and directly producesestimates
of the columnspaceof the approximantsThis columnspacecan be updatedand downdatedn an on-line schemeamenableo
implementatioron a parallelarray of processors.

Keywords: matrix approximationrank revealingfactorizations hyperbolicrotations.

1. INTRODUCTION AND MOTIV ATION

We considerthe following problem. For a given matrix H andtolerancelevel ¢, describeall matricesH suchthat

(@ [[H-H[se,
(b) rankH)=d, @)

whered is equalto the numberof singularvaluesof H thatarelargerthane. (|| 0| denoteshe matrix 2-norm.) Sucha matrix
H is a low-rank approximatiorof H in 2-norm.

The aboveapproximatiorproblemis relevantin signalprocessingwheremanyanalysisalgorithmshavea stagein which a data
matrix is constructedhatis supposedo be of low rank (or rank deficient),but becausef noise,this propertyis lost. A simple,
generic,exampleis given by the overdeterminedystemof equations

Ax=b - [A b][_xl]:o (A bl :nxm, n>m).

For a solutionto exist, the matrix [A b] hasto be rank deficientby at least1. If it is, thenthe solutionis determinedby

the kernel. Although a one-dimensionakernelis obviously sufficient, in many applications A is itself supposedo be of low

rank, so that we want to go further and ascertainthat[A b] actually haslow rank. The solutionvectoris any of the vectors
in the multi-dimensioml kernelof [A b], of which for examplethe one with minimal norm || x|| is chosen.With noiseadded
to [A b], the problembecomesa total leastsquaregproblem(one-dimensionakernel) or a generalizatiorthereof: approximate
H =[A b]" by someH =[A b]" suchthatH is rank deficient(or low rank), andfind a descriptionof its columnspaceandthe
complemenbf the columnspace(the kernelof [A b]). Thisis oneof the basic,noise-reducingstepsin subspacédasedsystem
identificatian, harmonicretrieval,or high-resolubn direction-of-arrival problems[1].

The usualsolutionof this approximatiorproblemis to computean SVD of H, determinethe numberof singularvaluesthatare
significanty smallerthanthe others,or that are smallerthana thresholds determineddy the SNR, and setthosesingularvalues
to zero. The resultingmatrix is a low-rank approximantH, known as the truncatedSVD solution(TSVD). It is optimalin the
Frobenius-nom, in the sensethatit minimizes||H - H || underthe conditionthat H hasa certainrank. However thereare a
few remarksto be made:

1. Computinga TSVD is complex. We haveto computean SVD, evenif in the endwe only usethe kernelor columnspace
of the approximant. Although continuingefforts have renderedthe computationof an SVD to be only a factor of 2—3
more expensivethana QR, aspectf updatingand regularityof the computationsalsohaveto be takeninto account.
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2. It is not necessarilycorrect. The truncatedSVD solutionleadsto a residualerror (the estimatednoise matrix) that is
singular too. This is in generalnot a correctnoise model. E.g., if the noiseis i.i.d. and zero meanwhite, it hasa
covariancematrix ¢?l, and asymptotically the singularvaluesof the noise matrix are given by on¥2. Hence, a more
appropriateapproximationis obtainedby reducingthe principal singularvaluesby on V2. Becausethe singularvectorsdo
not changethis doesnot affect the LS applicationthat we havein mind, butit showsthatthe TSVD approximaniper se
is not necessarilythe right choice.

For a finite amountof dataso thatasymptoticpropertiesdo not hold, all we canreally sayis thatwe wantto find an approximant
A thathasaslow rank as possibleandis suchthat the residualerror (the norm of H - A, i.e., the noisematrix) is smallerthan
e=onY2, In view of this, the proposedapproximationproblem(1) makessense.The key pointin this problemformulationis
thatit doesnot askfor an approximantH of rank d that minimizes|| H — H||, but ratheronein which the approximationerror
is limited by a specifiedupperbound. Suchapproximantsan be computedwith significantlylesseffort: the generalizedschur
methoddescribedn this paperdoesnot requireknowledgeof the singularvalues,but for a given £ producesbasedor the signal
subspacendnull spaceusingonly O(1/2 m?n) operationsthe sameasa QR factorizationof H would require.

Indeed,the Schurmethodcan be thoughtof as an RQ factorizationof a matrix [el H], but usinga J-unitary matrix © rather
thana unitary matrix Q in the factorization. This factorizationprovidesan implicit decompositiorof HH " - £I into a positive
semidefiniteand a negativesemidefinitematrix. The positive matrix correspondso singularvaluesof H that are largerthan,
andits rankis equalto theirnumber d. The negativetermhasrank m-d andcorrespondso the singularvaluesthatare smaller
thane. After computationof the hyperbolicQR factorization,the columnspaceof the approximantds known: a basisof it is a
specificsubsetof the columnsof the R matrix in the factorization. The computationof an approximantitself requiresalsothe
inversionof a submatrixof the J-unitaryfactor. In addition,thereis a closed-formformulawhich describeghe setof all possible
2-normapproximant®f rankd, in termsof free parametelS_. Severalchoicesof S leadto interestingesults. The approximant
obtainedfor S = 0 is the easiesto compute.For onevalueof S, the TSVD approximanis obtained but computingthis value
is prohiltive. Otherchoicesleadto approximantghat have certain‘unbiased-nessproperties,or approximantsor which the
residualerror is a full-rank matrix.

In the pastfew years,a numberof other methodshave beendevelopedo alleviatethe computationaburdenof the SVD, yet
retainingimportantinformationsuchasrank andprincipal subspacesSomeof thesetechniquesarethe URV decompositior2],
andthe rankrevealingQR decompositiofRRQR)[3, 4, 5]. Recentlytherehasbeenanincreasednterestin updatingtechniques
for the SVD and URV decompositionwhich convepge to the exact SVD or URV undercertain stationarityconditions[6 , 7].
It shouldbe notedthat all thesedecompositionsequire O(am?n) operationsfor an m x n matrix, where a is a multiplication
constantwhich is high (= 10) for an exact SVD and much lower for the URV, RRQR and updatingtechniques. The main
differencein the proposedSchurtype techniqueand the URV and RRQR methodslies in the simplicity and uniformity of the
operations. The URV decompositiorand rank revealingQR methodsare iterative and require estimatesof the conditionirg
of certainsubmatricesat every step of the iteration. This estimationis a global operationwhich is not amenableto parallel
implementationand the precisenumberof operationss dependenbn the entriesof the datamatrix. SVD and URV updating
algorihmsasin [7] are parallelbut iterative schemesvhich convepge to the SVD or URV. Their projecteduseis in (adaptive)
signal processingapplication. However in theseapplications knowledgeof the singularvaluesis only usedto determinethe
noiselevel, andonly the principalsingularvectors(spanninghe signalsubspacegreretained.If, in theseapplicationsthe noise
levelis alreadyapproximatelyknown, thenthe Schuralgorithmis a viable candidatewhich is parallel but non-iteratie.

It shoutl be notedthat Schurmethodsan sich are well known. Originally, Schur[8] devisedthis algorithmto testwhether
a polynomial is boundedwithin the complexunit disc. Schuralgorithmsoccurin certain constrainednterpolaton problems,
rationalapproximatiorby positivereal functions,factorizationandinversionof positivedefinite Toeplitz matrices[9 ], and have
beengeneralizedn a numberof sensesA generalizatiorthat comescloseto the descriptionhereis by Dewilde and Deprettere
[10], for Schurparametrizationsf positivedefinitematrices,andby Diepold and Pauli[11], for indefinitematrix cases.In [10],
the Schurparametrizatiorwas usedfor Choleskyfactorizationsand for approximatingthe inverseof positive definite matrices
by bandedmatrices,in Frobeniusnorm. However the presentapplicationto low rank matrix approximatiorhasbeenunknown
sofar. It is a specialcaseof a time-varying Hankel-normmodel reductiontheory developedby Dewilde and Van der Veen
[12). In the linear algebracommunity the relatedJ-unitary transformationsare well known and widely used,but mainly for
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downdating Choleskyfactorsof definitematrices(e.g.,[13, 14]). Indefinitefactorizationsasin this paper arerarely studiedand
evenavoided,becausehe lossof positivity leadsto a breakdownof the Choleskyfactorization. Someexceptionsare [15, 16].

2.J-UNITARY MATRICES

Sometheoryof J-unitary matricesis required,which we summarizeat this point. A signaturematrix J is a diagonalmatrix with
diagonalentriesequalto +1 or 1. A matrix © is J-unitaryif it satisfies

CRICENY 03O =1J1, 2)
for signaturematricesJ;, J,. Usually, the entriesof a signaturematrix are sortedinto a positiveand a negativeblock, and we

partition © accordinglyas
Ou O ] [ | ]
0= , J= 3

[ O21 O - ®)
(for identity matricesof appropriatesizes). We will denotean unsortedsignaturematrix by atilde. If the signaturematricesare

sorted,then conservatiorof inertiagivesJ; = J, ( = J, say). The J-unitarity of @ implies a.o. thatit is invertible: @1 = JOJ,
and

@Tleﬂ = |+ @91@21 952@22 = |+ @['2612
@11@?1 = |+ @12@?2 @22@5‘2 = |+ @21@5'1.
Hence,®1; and ©,, areinvertible,and
ol =1, |lomew| <1, ozl <1, |63 < 1. 4)

Supposéhat X and Y are matricesrelatedby a J-unitary matrix @ asX® = Y. ThenX andY satisfythe “enemgy equation”
XJ1XH = Y

Motivatedby this equation,we saythat J; associates signatureto the columnsof X, and likewise, that J, is the signatureof
the columnsof Y. BecauseX can be viewedas an input matrix, which is mappedby © to a resultingoutputmatrix Y, we will
sometimesall J; the “input signature”of ©, to distingushit from J;.

3. APPROXIMATION THEORY

Let H : mx n be a given matrix and € be a given tolerancelevel, and supposehat H hasd singularvalueslarger than £ and
noneequalto &. We will showthatthereexistsa J-unitary matrix @ (which underadditionalconditionscan be computedby a
generalizedSchuralgorithm)suchthat
+ - +/-  +/-
[dm H]O= [ X Omnl-. (5)

X is an mx m matrix. © is J-unitary with respecto (J1,J,), wherethe signaturematrix J; is specifiedbeforehandandis sorted:

R

J; associateso the columnsof €, in [el, H] a positive sighature,andto columnsof H a negativesignature. The signature
matrix J; is producedby the algorithmandis unsorted.The signatureassociatedo the i-th columnof [X 0] is equalto ( J);.
Let M be a permutationmatrix that sorts J, i.e., suchthat MHJ,M = J,. By preservatiorof inertia, J, = J; =: J, and putting
© =6 yields[em, H®=[(A 0) (B 0)], whereA containsthe columnsof X that havepositive signature and B containsthe
columnsof X that have negativesignature.[A 0] is an mx m matrix, [B 0] is mx n. At this point, we partition ® into 2 x 2

blocksasin (3), anddefineA = [B 0]@,3. We will showthatH is a rank-d 2-normapproximaniof H.

3



Theorem 1. LetH: mxn haved singularvalueslarger than e and noneequalto . Thenthere is a J-unitary matrix © such
that
m-d d d n-d
[l HI®© =[A B], A=m[ A 0], B=m|[B 0 ]. (6)

H =[B 0]©} is a rank d approximantsuchthat || H- A || < e
ProoF Considers2l - HHY. It is non-singuar by assumptionand hencethereis a J-Choleskyfactorizationsuchthat

&l —HH" = XJIxH,

whereX is an mx m factor, and hasfull rank m. Put X = [A B], partitionedaccordingto J', sothat XJ X" = AA" - BB". Since
[ H] hasfull range,theremustbe an n x m matrix, T say mappingit to X, i.e. [el H]T = X. SinceX is alsoof full rank, it
follows that TJTH = J. T canbe extendedo a squareinvertible J-unitary matrix © suchthat (6) holds.

LetH = UXVH beanSVD of H. Then(£1-22) hasthesamesignatureasAA™ -BB": d negativeentries,andm-d positiveentries.
Hence A hasm-d columnsandis of full rank,while B hasd columnsandis of full rank. By equation(6), [B 0] = £l©1,+HO,,,
sothatH - H = —£0,,033, and ©1,03} is contractive(equation(4)). Hence||H - H|| < e. "
Remarkthat[A B] asgeneratedn (6) is not unique: for any J-unitarymatrix ©@ 1, [A; Bi] =[A B]®; canalsobe producedasa
resultof the Schurmethod. A systematiovay to describeall possible2-normapproximant®f rankd is givenby a parametrized
chain fraction descriptionin the following theorem. The parametrizations in termsof an m x n matrix S;, which hasthe
following 2 x 2 block partitioning:
d n-d

m-d [(3_)11 (3_)12]

ST ®)a G

(7)

Theorem 2. ([17]) LetH : mxn bea givenmatrix, with d singularvalueslarger than e and noneequalto &. Define®,A’,B
asin equation(6). Supposehat a matrix H satisfies

@ [H-A|s<e,
(b) rankH)<d.

ThenrankH) = d, and H = H - Swher
S=gOnuS -~ 012)(022-025) ", (8)

for someS_ with || S_ || < 1 and (S.)12 = 0. H satisfies
A=(B -AS)(©xn-0,x9)". ()

The condition|| S_ || < 1 ensureghat|| S|| < & whereagtaking (S.)12 = 0 producesrank-d approximants.In particular equation
(9) showsthat the column spanof H is generatedy the columnsof (B - A(S.)11), which is of full rankd.

The approximantused before is obtainedfor S. = 0. Other choicesof § might be considered,in particular choicesthat
minimize the error || S||. As the Frobenius-normapproximant,H = U;; V!, satisfiesthe conditionson H, it is a suitablerankd
approximantwhich actually minimizesthe approximatiorerror: ||H - F|| = g4.1 < & Hence,theremustbe somevalue of §
(contractive block lower) which minimizesthe expressiorfor S, althoughcomputingthis S is as expensiveas computingthe
SVD itself. Anotherusefulchoicefor S, suitableif d = mR,is S. = [l 0]. Forthis choice,Sis anisometry:theresidualerror
matrix hasfull rank andits norm is preciselyequalto &.

Onetrivial casein which the optimal S_. can be computedis the casewhereall singularvaluesof H arelargerthane. Indeed,
supposethat H doesnot have singularvalueslessthane. ThenH hasrankd = m. The approximantd = B @5}, obtainedfor
S =0, is suchthat||H - F|| < ¢ andH is alsoof rankd. In fact, ||[H-H|| = || £€01205} ||, which is, in general largerthanO.
However thereexistsan approximantof rank d with zeroerror: H itself. Hencethe ‘central approximant’,obtainedfor S, =0,
is not the optimal (norm-minimizing)solution. As A = H is a valid approximantthereexistsan S_ (contractive block-lower)
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suchthatH = H- ShasS= 0. The expressiorfor Sleadsto S, = 07}0;,. Indeed,S_ of this form is contractive(equation
(4)). Verifying that (S_)12 = 0 takesmore effort, andis omittedat this point.

In generalH alsohassingularvalueslessthang, andwe cannottakeS. = ©730;, (althoughit is still contractive)becausdS, ):»
is not zero. Obviously thereis no approximanif zeroerror. A conjectureat this pointis thatby makingsmall modificationsto
this §, to haveit both contractiveand block lower, we obtain approximantsvhich have smallererrorsthanthoseobtainedby
justtakingS. = 0. We proposeto take

_ ly O
S :eﬁ@u[ g 0 o ] (10)

This choice of S_ is both contractiveand block lower. Numerical experimentson a subspaceestimationapplicationindicate
thatthis choiceleadsto estimatesvhich havelessbiasthanthoseobtainedby taking S, = 0, and are actually quite closeto the
principal columnspaceof H (section6). For subspacesstimationiit is alsointerestingto note that the columnspaceof H, i.e.,
thecolumnspaceof (B ~A'S), is notchangedy setting(S;)12 = 0 and(S )22 = 0, asin fact, the columnspaceis R(B-A(S )11).

4. COMPUTATION OF ©

We will now considerthe actualconstructionof a J-unitary matrix © suchthat (6) holds. The generalapproachs similar to the
usualSchuralgorithmsfor unstructuredmatrices.In principle, the computationsonsistof elementary(Givens)rotationswhich
recursivelycreatezero entriesat selectedpositions,much asin Givensrotationstechniquesor QR factorizations. The main
differencesvith QR factorization,andalsowith the usualdefinite Schuralgorithms(for which £21 - HHY > 0) arethat, here,the
basicoperationsare J-unitary elementaryrotationsof up to six differenttypes,andthat we haveto keeptrack of signaturego
determinewhich type to use. It turnsout that the recursiveconstructionof @ in this way is not always possible,unlessextra
regularity conditiors on the singularvaluesof certainsubmatricesof H are posed. This is a well-known complicationfrom
which all indefinite Schurmethodssuffer and that can be treatedonly by global matrix operationgasin [11]).

Elementary rotations

An elementaryotationmatrixis a 2x2 J-unitarymatrix dwhichis suchthat,for givenscalarsa, b, we havethatfa b] = [x 0],

wherex is someresultingscalar Here, we considerd to be J-unitarywith respecto unsortedsignaturematricesj; andj,, where
j1 is a given signaturematrix, with diagonalentriesthatare+1, and j; is a resultingsignaturematrix to be computedalongwith

8. The matricesd andj, are computedfrom a, b, j; in the following way. From the J-unitarity of 8, we havethat

[ BIRfa b =x@ud 0 @u=sion(la bijila bY).

We haveto assumaeat this point thatthe expressiorin bracketsis notzero,sothat(j2)11 is either+1 or —1. The seconddiagonal
entry of |, thenfollows from the inertiarule: since @ is invertible, the total numberof positiveentriesof j, is equalto the total
numberof positiveentriesof j1, andsimilarly for the negativeentries.

It is straightforwardto prove that the matrices & in the following list are elementaryJ-unitary rotationswith respectto the
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specifiedsignaturematrices(taking s“s + ¢ = 1 throughait):

-~ 1 1 ~ 1 ~ [ 1 =s]1
1 Ji= -1 J2= 1] 6= _J | c
. 1 T -~ _1 | ~ _SD | 1
2 = = = =
I 1] I2 1] 0 1 -s|c
~ -1 1 ~ 1 ] - [-s" 171
3 J1= 1] J2= 1] 0= 1 -s|c )
~ [-1 ] ~ [-1 ] ~ [ 1 =s]1
4 = 1] 127 N R R
- 1 ~ 1 ~ [P -s
3 ji= 1] : j2= 1] : 0= g ¢ ]
. [ _1 -~ [ _1 ~ [ CD =S
6. j1= _1], J2 = _1], 9= & C]

Thesesix casesarealsosufiicientto considey aseverypossiblesignaturepair (1, j2) is covered.With j; andj, known,we select
the appropriatelype of rotationmatrix, andthe rotationparameters andc follow subsequentl§rom the equationfa b] =[x 0]

as
casel, 4: s=bla, c=(1-s%12

casez, 3: s=alb, c=(1-s%)L2
caseb, 6: s=b(a“a+b)12, c=(1-s9L2.

Indefinite Schur algorithm

Using the elementaryrotations,we will compute® suchthat[s H]® =[A" B] in two steps:© = OI, where® is a J-unitary
matrix with respectto an unsortedsignaturematrix, and 1 is a permutatiormatrix which sortsthe signaturematrix of ©. Fora
givenelementaryrotation g, let Oy be the embeddingof this rotationinto an (m+ n) x (m+ n) J-unitary matrix: Q is equal
to the identity matrix, savefor four entries,which aretogetherequalto 6.

Ok (i, 1) O (i, m+K) -3

G(i,k)(m+ k, i) O(i,k)(m+ k,m+ k) '
O consistsof a seriesof suchembeddedotations,suchthat

+ - +/-  +/-
[dm H]O= [ X Omn]-

As O is appliedat the right handside of [el H], the rotationsact on columns. The entriesof H are zeroed,one columnat a

time, startingwith the m-th entry of the first column, continuirg with the m - 1-th entry, etc., till we reachthe first entry, after
which we zerothe mth entry of the secondcolumn:

O = é(m,l)é(m-Ll) e ~é(1,1) |:é(mZ) o 'é(1,2) .- Eé(mﬂ e ~é(1,n) '

Whereé(i,k) is suchthatit producesa zeroat entry (i, m+ k), viz.

+ + + - - - + + - + - -
I3 ~ £ ~
O(my1) Om-11)
£ - £ X -
£ 0
+ + - + - - -+ - + +
£ b ~ b 0 0O
O(l,n)
0 - - 0 0O
0 0 0O



Input: H:mxn, 20 [A B]:=[en H]

Output: X,6,J; s.t. Foo [ Im &= Im
[él HIG=[X 0] o -l | T I

fork=1ton,
for i =mdownto1,
[a b] =[AG,i) B(, k)]
~ [ 3G, 0
1= [ 0  Jm+km+k) ]
Computed, j, from a,b,j; s.t.[a b]g=[0 0] (eq. (11))
Embedg into é(i,k)
[A Bl:=[A Bl&y
[C= @@(i,k)
3G, = (D
Jm+k,m+K) =(2)22
end
end

[X 0]:=[A B
jz = j

Algorithm 1. Schurrecursionto computethe factorization[sl H]© = [X 0] from H.

(Exceptfor the first matrix, the signaturesof the columnsin the abovematricesare examplesasthey are datadependent.)This
schemeensureghat[el H]® = [X 0], whereX is a resultinguppertriangularinvertible matrix; it containsthe columnsof A
andB in somepermutedorder

To computethis ordering,and to computethe rotations g, we haveto keeptrack of the signatureof eachcolumn. Suppose
that, at the (i, k)-th step,we haveto computeé(i,k) suchthat [Ay Bl]é(i,k) = [A2 By], whereBy(i, k) = 0. Associatedto every
columnof [A; Bi] is a signature(+1 or -1). Initially, [A; Bi] = [d H] andJ = [} 9], sothateverycolumnof A; hasa
positive signature,and every columnof B; hasa negativesignature.At the (i, k)-th step,we act on the i-th column of A; and
on the k-th columnof By. In particulay we zerob = By(i, k) againsta = Aq(i, i), usingan elementaryrotation 8 The signature
j1 to useis equalto the signatureof the correspondingolumnsof A; andB;. At this point, the elementaryrotation 8 existsif

[a b]ji[a b]" is notequalto zero(if it is, thenthe recursiveschemebreaksdown—seehe next subsection) After computation
of the elementaryrotationand applyingthis rotationto the correspondingwo columns,we obtain[A, By], and]> is the new

signatureof thesecolumns. Having performedm x n suchsteps,we have[A; B,] = [X 0], andits signatureis equalto J;.
The algorithmto compute® is summarizedas algorithm1. The resultof the algorithmis [X 0] = [ H] O, whereX is upper
triangubr and © is J-unitary with respectto J; = J andJ,. Thefinal step(not listedin the algorithm)is to sortthe entriesof J,
i.e., to find a permutation suchthat

J, =nNH3N
is a sortedsignaturematrix. ThenJ, = J, and® = OI1 is J-unitarywith respecto J. In addition,putting[A" B] = [X 0] gives
the requiredresult,[d H]©® =[A B]. The nonzerocolumnsof A arethe columnsof X with a positive signature the nonzero
columnsof B' correspondo the columnsof X with a negativesignature.

Breakdown

In the previoussubsectionye hadto assumehatthe datamatrix H was suchthatat no pointin the algorithm[a b] ji[a b]" is
equalto zero. If the expressioris zero,thenthereis no J-unitary rotation 8 suchthat[a b] =[O 0]. Note thatthe conditionin
theoreml that noneof the singularvaluesof H are equalto 1 doesnot precludethis case,but merely assureghat there exists
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a © which will zeroH. One simple exampleis obtainedby takingH = [1 1]. It is straightforwardto showthat thereis no

J-unitary © suchthat
1 11~ _[DO Olo
[ 1 1]9"[0 DO]
as the J-normsof the last row will not be equal. Hence® cannotbe obtainedby the recursivealgorithm. However a more
general® doesexist, suchthat

+ + - + - +
1 1 &5 = 1 1 1 0
101" V2 |-11]0
viz.
1 -1 2 1 1
~ 1 —~ -
6= | -1 -1 V2 |, Ji = 1 , J, = -1
V2 0 2 -2 -1 1

The differenceis that, in this factorizationthe resultingmatrix X is no longeruppertriangular Hence,it is not clearhow & can
be computedrecursivelyin a similar schemeaswe hadbefore. Necessaryand sufficient conditionson the singularvaluesof H
anda collectionof submatriceof H so thatthe Schuralgorithm doesnot breakdown are given by the following theorem.

Theorem 3. ([17]) LetH : mxn bea givenmatrix. Denoteby Hj;\q the submatrix,consistingof the i-th row to the m-throw
andthe first k columnsof H. Thenthe Schuralgorithm (alg. 1) doesnot breakdownif and only if noneof the singular values
of Hji is equalto ¢, for all i andk.

Similar conditionson the matricesto preventbreakdownhave beenobtainedin other Schur methodsas well. It should be
notedthatthe conditionsfor preventingbreakdownare quite elaborate as only one condition(noneof the singularvaluesof H
are equalto ¢) sufficesfor the existenceof ®©. The treatmentof the more generalcaseis possible,seee.qg.,[1]], but requires
global matrix operationswhich are not attractivefrom the parallel implementationpoint of view. It is possibleto consider
hyperbolec Householdetransformationsasin [15, 16], which lifts someof the regularityconditionswhile retainingmuchof the
computatioal structure.

Signal flow diagrams

A signalflow diagramof the algorithmis depictedin figure 1. In this figure, the columnsof H are enteredat the left handside
(with negativesignatures)the columnsof &, are enteredat the top (with positive signatures)and the squareblocks denote
processorshat performthe elementaryrotations[a b]8=[x1 X»]. The signaturesat the inputsof the processorsre j;, andat
the outputsare jo. A processoiin the i-th column of the array skipsthe first i — 1 datapairs (which just containszeros),then
computeshe appropriated andj, from the input datapair and the input signature and subsequentlapplies 8 to the remaining
m - i datapairs. The outputof the processorarrayis [X 0], where X emepgesat the bottom of the array and the zerosare
producedat the right handside. The correspondingutputsignaturematrix J, is given by the signsthat are producedat the
bottan andright side of the array If © is alsorequired,thenonehasto put[l , 0] and[0 I,] alsointo the array andto apply
the alreadycomputedelementaryoperationgo thesecolumnsaswell.

The signalflow diagramcanbe convertedo a (possiblymorefamiliar) processoarrayform, depictedin figure 2. In this figure,
the triangularprocessomrray hasdimensionamx m, andis initializedby & . The columnsof H are enteredone by one at the
right handsideof the array andare madezerostepby step. The appropriateelementaryrotation gis computedoy the processors
on the diagonalof the triangularpart, andis communicatedystolicallyto the processor@bovethe diagonal. After n steps,the
triangulr array containsthe resultingmatrix X. If ©@;; and ©,, are alsoneededthenthe triangularpart may be extendedby a
squarepartin which the rotationsare accumulated.The squarepart is alsoinitializedby | ,, and at the right handside, zeros
areentered.Note that actuallythe unsorted®;; and ©;, are computed.

5. UPDATING AND DOWNDATING

In signalprocessingpplicationsthe columnsof the matrix H are usuallynot availableall at the sametime, but becomeknown
oneby oneastime progresseslt is in suchcasesoften desirableto procesghe availabledatato obtainthe approximantandto

8
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Figure 1. Signalflow diagramof the Schuralgorithm. Processorsompute & from incomingdatapairs[a b] and]i, which is storedinternally
andappliedto subsequet datapairs.
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Figure 2. Triangularprocessoarrayfor computingX, ©11 and ;.. Processorstorex;, andcommunicated upwards.
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Figure 3. Updatinganddowndatingthe Schuralgorithm.

updatethis approximantsnew informationcomesin. A partial solutionis to updateonly thefactorizationstep. Doing soyields
the column spaceR (B) of the approximantasthe columnsof X with negativesignature which in many applicationsprovides
sufficient information. Downdating(discardingold columns)is also possible,andis shownto be equivalentto updatingwith a
positive signhature.Hence,adaptiveapproximationswith sliding windowson the datamatrix, are straightforwardo implement.
Updatingand downdatingof the approximanttself is much harderbecausehe size of © is growing, andwe omit a discussion
of this.

Updating

The genericupdatingproblem that we will considerat this point is, given a matrix H and a vector h, to find the required
factorizationof the enlagedmatrix Hy = [H h] from thatof H. The factorizationobtainedby the Schuralgorithmis straight-
forward to update,asin this algorithmthe columnsof H are processedne by one, startingwith the first column. Hence, if
[ H]®=[X 0] thenthe computationof ©; suchthat[s H;i]&; =[X; 0] canbe splitinto two steps:

[d Hi6;=[X 0 h@ =[X 0], élz[é 1]@'.

Hence,a new columnh can alwaysbe introducedafter the precedingset of columnshave beenprocessed Eachnew column
givesm extraconditionson the singularvaluesin orderto preventa breakdownof the Schuralgorithm. In the algorithm(alg.
1), introducinga new column h meansthat the loop overi hasto be performedfor k = n+ 1, andin the signalflow diagram
(figurel1), an extrarow containingm processor$iasto be addedat the bottomof the array Similarly, in the triangularprocessor
array (figure 2), the new columnh is usedasinput of the processomrray at the right handside.

Downdating

Let H be a given matrix, which decomposeto two blocks: H = [H; H]. The downdatingproblemis to find a factorization
for [l H,], usingthe factorizationfor [¢l H] that hasalreadybeencomputed. So supposethat[el H]© = [X 0] andit is

requiredto computea factorization[el H,]6, = [X, 0] usingthe first factorization. We will use the following uniqueness
fact, which is similar to the uniqguenes®f the QR factorization(viz. [18]).

10



Lemma4. ([17]) LetA; andA; betwo matrices,with associatedsignatue matricesJ; and J, respectivelyand supposehat
A JIAY = A TLAY I ©., ©, are J-unitary matrices(with respecto theseinput signatues)suchthat

AG; = [X 0], X1 upper, diag(X;) >0
AO, [X2 0], X upper, diagXz) >0

then X1 = Xo.

Corollary 5. LetH =[H; Hy], andlet @ be J-unitary with input signatue J, suchthat

+ - o+ [
[d H H]6=[X 0 0], J= - (12)
|
whe X is a squae uppertriangular matrix with diag(X) > 0. Thenthere existsa J-unitary matrix ©, suchthat
+ —
[d H2]G,=[X 0]. (13)

Theimplication of thislemmais thatthe downdatingproblemcanbe convertedinto an updatingproblem. In particulay in order
to computethe factorization(13), we cancomputethe factorization(12), which is obtainedby updatinga factorizationfor [el H]
with thosecolumnsof H thatareto be removed(i.e., H1), now giving thesecolumnsa positive signature.

In adaptivesignalprocessingpplicationsH is a datamatrix whosecolumnsbecomeavailableoneat a time, andit is desirableto
computea factorizationof only thelastp columnshn-p.1, - - -, hy Of H thathavebeencollectedat time pointN. The factorization
is computedfrom a similar factorizationat the previoustime point N — 1, by updatingwith the new columnh y anddowndating
with the column hy-, which is to be discardedat this point. Figure 3 showsthe signal flow diagramthat correspondso this
sliding window factorizationscheme.

6. APPLICATIONS

Approximate TLS

As afirst applicationof the Schurapproximationschemewe recall the approximatelow rank) total leastsquaresproblemthat
we describedn the introductbn. The problemis, givenA, b, e whereA : nxm, (n>m), find A, b suchthat

IA b= [A Bl|| <&,
ranA b] is minimal,
Ax = b, with || x|| minimal.

A solutionx of theseequationswill besuchthat|| Ax=b|| < € 1/|| x|| + 1. The solutionis obtainedby computinga minimum-rank
approximantor H=[A b]", asin theoreml or 2. Taking§_ = 0 gives

A A H
A B=0 % |.
Since[A 0] is of rank d, its kernelis non-empty In fact,
A B[%]=0 - B"[%]=0,

sothatonly B, not®, hasto be computed.Writing BH = [B; by], the minimal-normsolutionx to Ax = b is obtainedasx = B}bz.
11



Table 1. EstimatedDOAs for the ESPRITalgorithm.

DOA (@ @2=10,70 | (b) @ =20, 30 (© @2=20,23

SVD Schurl Schur2 SVD Schurl Schur2 SVD Schurl Schur2
mean|| 9.9948 9.9947 10.0138| 19.9447 19.9417 21.0607| 19.6720 19.4254 9.1648
70.0160 70.0160 69.9601| 30.0209 30.0228 28.7274| 23.3412 23.5344 21.5303
std 0.0122 0.0122 0.0124| 0.2230 0.2320 1.5937| 2.6122 4.0261 209.8293
0.1243 0.1242 0.1283| 0.2384 0.2528 2.3564| 2.3578 4.4285 2.2607
0.0249 0.0182 0.0212| 0.0257 0.0326 0.1317| 0.1508 0.1412 0.5696

Ql

Dir ection finding

In orderto assesghe applicability of the Schurbasedsubspaceestimationmethod,we considerthe directionfinding problem.
Supposethat we have an array of m equispacedmnidirectionalsensorswhich receivesd sinusoidalsignalsfrom directions
o, k=1,--.,d. A total numberof n samplesis taken, which givesan m x n datamatrix X modeledas X = AS+ N. Here,
A=[alg),--,a(@)] : mxdisthearrayresponsematrix,andS: dxn containsthe n samplesof the d sourcesignals.N contains
samplesof white additivei.i.d. noisesourceswith varianced?l, independenbf the signals. Given X andthe functiona(g), the
@ areto be estimated.

The ESPRITalgorithmfor estimatingthe DOAs [19] worksin two steps.Thefirst stepis to estimatethe signalsubspacewhich
is usuallytakento bethed principalleft singularvectorsof X. This leadsto the classicalSVD-ESPRITdirectionfinding scheme.
We will comparethis with the Schurbasedsubspacestimatesandinvestigatethe choicesR (B—A(S.)11) with § = @1%@12[(') 8]

(“Schurl”), and R(B) (“Schur2”). As is well-known, oncethe signal subspacesre estimated the DOAs are obtainedvia a
certaineigenvaluedecompositiorbasedon thesesubspaces.

In the computersimulationexperimentsa linear array consistingof m = 4 sensords used. Two sourcesare impinging on the
array The signalto noiseratio is chosento be 20dB in all cases.One hundredtestrunsusingn = 30 samplesare executed.
Table1 lists the statisticalresults,for threedifferentsetsof anglesof incidence andaveragedverthe testruns. In the lastrow
of the table, @ is the meananglebetweenthe exactandthe estimatedsubspacg18. As is seenfrom the table,the difference
betweenthe three subspaceestimatesis negligible if the signalsare spatially well separated.If the signalsare coming from
closerdirections the varianceof the Schurestimatewith S. = 0 startsto increasebutthe choice§ = @1%@12[(') g] still performs
the sameasthe SVD-basedestimate.Finally, part (c) of the simulationsshowsthatif the signalsare so closethat the variance
cloudsare overlappingevenfor the SVD-basecdestimatesthenthe choiceS. = 0 breaksdown, but the varianceof Schurmethod
1 is still within reasonabléounds.
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