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The usualway to computea low-rank approximantof a matrix H is to take its truncatedSVD. However, the SVD is com-
putationally expensive. This paperdescribesa much simpler generalizedSchur-type algorithm to computesimilar low-rank
approximants.For a given matrix H which hasd singularvalueslarger than ε, we find all rank d approximantsĤ such that
H − Ĥ has2-normlessthanε. The setof approximantsincludesthe truncatedSVD approximation.The advantagesof theSchur
algorithm arethat it hasa muchlower computationalcomplexity(similar to a QR factorization),anddirectly producesestimates
of thecolumnspaceof the approximants.This columnspacecanbe updatedanddowndatedin an on-linescheme,amenableto
implementationon a parallelarrayof processors.
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1. INTRODUCTION AND MOTIV ATION

We considerthe following problem. For a given matrix H andtolerancelevel ε, describeall matricesĤ suchthat

(a)
�

H − Ĥ
�

≤ ε ,
(b) rank(Ĥ) = d,

(1)

whered is equalto the numberof singularvaluesof H that are larger thanε. (
�

⋅
�

denotesthe matrix 2-norm.) Sucha matrix
Ĥ is a low-rankapproximationof H in 2-norm.

Theaboveapproximationproblemis relevantin signalprocessing,wheremanyanalysisalgorithmshavea stagein which a data
matrix is constructedthat is supposedto be of low rank(or rankdeficient),but becauseof noise,this propertyis lost. A simple,
generic,exampleis given by the overdeterminedsystemof equations

Ax = b ⇔ [A b]

�
x

−1 � = 0 ([A b] : n × m, n > m) .

For a solution to exist, the matrix [A b] has to be rank deficient by at least 1. If it is, then the solution is determinedby
the kernel. Although a one-dimensionalkernel is obviouslysufficient, in many applications,A is itself supposedto be of low
rank, so that we want to go further and ascertainthat [A b] actuallyhaslow rank. The solutionvector is any of the vectors
in the multi-dimensional kernelof [A b], of which for examplethe onewith minimal norm

�
x
�

is chosen.With noiseadded
to [A b], the problembecomesa total leastsquaresproblem(one-dimensionalkernel)or a generalizationthereof: approximate
H = [A b]H by someĤ = [Â b̂]H suchthat Ĥ is rank deficient(or low rank),andfind a descriptionof its columnspaceandthe
complementof the columnspace(thekernelof [Â b̂]). This is oneof thebasic,noise-reducing,stepsin subspacebasedsystem
identification, harmonicretrieval,or high-resolution direction-of-arrival problems[1 ].

The usualsolutionof this approximationproblemis to computean SVD of H, determinethe numberof singularvaluesthatare
significantly smallerthantheothers,or that aresmallerthana thresholdε determinedby theSNR, andsetthosesingularvalues
to zero. The resultingmatrix is a low-rank approximantĤ, known as the truncatedSVD solution(TSVD). It is optimal in the
Frobenius-norm, in the sensethat it minimizes

�
H − Ĥ

�
F underthe conditionthat Ĥ hasa certainrank. However, thereare a

few remarksto be made:

1. Computinga TSVD is complex. We haveto computean SVD, evenif in the endwe only usethe kernelor columnspace
of the approximant. Although continuingefforts haverenderedthe computationof an SVD to be only a factor of 2–3
moreexpensivethana QR, aspectsof updatingandregularityof the computationsalsohaveto be takeninto account.
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2.
�

It is not necessarilycorrect. The truncatedSVD solution leadsto a residualerror (the estimatednoisematrix) that is
singular, too. This is in generalnot a correct noisemodel. E.g., if the noise is i.i.d. and zero meanwhite, it has a
covariancematrix σ2I, and asymptotically, the singularvaluesof the noise matrix are given by σn1/2. Hence, a more
appropriateapproximationis obtainedby reducingthe principalsingularvaluesby σn 1/2. Becausethe singularvectorsdo
not change,this doesnot affect the LS applicationthat we havein mind, but it showsthat the TSVD approximantper se
is not necessarilythe right choice.

Fora finite amountof dataso thatasymptoticpropertiesdo not hold,all we canreally sayis thatwe want to find anapproximant
Ĥ thathasas low rank aspossibleandis suchthat the residualerror (the norm of H − Ĥ, i.e., the noisematrix) is smallerthan
ε = σn1/2. In view of this, the proposedapproximationproblem(1) makessense.The key point in this problemformulationis
that it doesnot ask for an approximantĤ of rank d that minimizes

�
H − Ĥ

�
, but ratherone in which the approximationerror

is limitedby a specifiedupperbound.Suchapproximantscanbe computedwith significantlylesseffort: the generalizedSchur
methoddescribedin this paperdoesnot requireknowledgeof thesingularvalues,but for a givenε producesbasesfor thesignal
subspaceandnull spaceusingonly O(1/2m2n) operations,the sameasa QR factorizationof H would require.

Indeed,the Schurmethodcan be thoughtof as an RQ factorizationof a matrix [εI H], but usinga J-unitary matrix Θ rather
thana unitary matrix Q in the factorization.This factorizationprovidesan implicit decompositionof HH H − ε2I into a positive
semidefiniteanda negativesemidefinitematrix. The positivematrix correspondsto singularvaluesof H that are larger thanε,
andits rank is equalto their number, d. The negativetermhasrankm− d andcorrespondsto thesingularvaluesthataresmaller
thanε. After computationof the hyperbolicQR factorization,the columnspaceof the approximantsis known: a basisof it is a
specificsubsetof the columnsof the R matrix in the factorization. The computationof an approximantitself requiresalsothe
inversionof a submatrixof theJ-unitaryfactor. In addition,thereis a closed-formformulawhich describesthesetof all possible
2-normapproximantsof rankd, in termsof free parameterSL. Severalchoicesof SL leadto interestingresults.Theapproximant
obtainedfor SL = 0 is the easiestto compute.For onevalueof SL, the TSVD approximantis obtained,but computingthis value
is prohibitive. Otherchoiceslead to approximantsthat havecertain‘unbiased-ness’properties,or approximantsfor which the
residualerror is a full-rank matrix.

In the pastfew years,a numberof othermethodshavebeendevelopedto alleviatethe computationalburdenof the SVD, yet
retainingimportantinformationsuchasrank andprincipalsubspaces.Someof thesetechniquesaretheURV decomposition[2],
andtherankrevealingQR decomposition(RRQR)[3, 4, 5]. Recently, therehasbeenan increasedinterestin updatingtechniques
for the SVD and URV decomposition,which converge to the exactSVD or URV undercertainstationarityconditions[6 , 7].
It shouldbe notedthat all thesedecompositionsrequireO(αm2n) operations,for an m × n matrix, whereα is a multiplication
constantwhich is high (≈ 10) for an exact SVD and much lower for the URV, RRQR and updatingtechniques. The main
differencein the proposedSchur-type techniqueand the URV and RRQRmethodslies in the simplicity anduniformity of the
operations. The URV decompositionand rank revealingQR methodsare iterative and requireestimatesof the conditioning
of certainsubmatricesat every stepof the iteration. This estimationis a global operationwhich is not amenableto parallel
implementation,and the precisenumberof operationsis dependenton the entriesof the datamatrix. SVD andURV updating
algorithmsas in [7] areparallelbut iterativeschemeswhich converge to the SVD or URV. Their projecteduseis in (adaptive)
signalprocessingapplication. However, in theseapplications,knowledgeof the singularvaluesis only usedto determinethe
noiselevel, andonly theprincipalsingularvectors(spanningthesignalsubspace)areretained.If, in theseapplications,thenoise
level is alreadyapproximatelyknown, thenthe Schuralgorithmis a viable candidatewhich is parallelbut non-iterative.

It should be notedthat Schurmethodsan sich are well known. Originally, Schur [8] devisedthis algorithm to test whether
a polynomial is boundedwithin the complexunit disc. Schuralgorithmsoccur in certainconstrainedinterpolation problems,
rationalapproximationby positivereal functions,factorizationandinversionof positivedefiniteToeplitzmatrices[9 ], andhave
beengeneralizedin a numberof senses.A generalizationthatcomescloseto the descriptionhereis by Dewilde andDeprettere
[10], for Schur-parametrizationsof positivedefinitematrices,andby DiepoldandPauli [11], for indefinitematrix cases.In [10],
the Schurparametrizationwas usedfor Choleskyfactorizationsand for approximatingthe inverseof positivedefinitematrices
by bandedmatrices,in Frobeniusnorm. However, the presentapplicationto low rank matrix approximationhasbeenunknown
so far. It is a specialcaseof a time-varyingHankel-normmodel reductiontheory developedby Dewilde and Van der Veen
[12]. In the linear algebracommunity, the relatedJ-unitary transformationsare well known and widely used,but mainly for
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downdatingCholeskyfactorsof definitematrices(e.g., [13, 14]). Indefinitefactorizations,asin this paper, arerarelystudiedand
evenavoided,becausethe lossof positivity leadsto a breakdownof the Choleskyfactorization.Someexceptionsare[15, 16].

2. J-UNITARY MATRICES

Sometheoryof J-unitarymatricesis required,which we summarizeat this point. A signaturematrix ~J is a diagonalmatrix with
diagonalentriesequalto +1 or −1. A matrix ~Θ is J-unitary if it satisfies

( ~Θ)H~J1
~Θ = ~J2 , ~Θ~J2(

~Θ)H = ~J1 , (2)

for signaturematrices~J1, ~J2. Usually, the entriesof a signaturematrix are sortedinto a positiveanda negativeblock, andwe
partition Θ accordinglyas

Θ =

�
Θ11 Θ12

Θ21 Θ22 � , J =

�
I

−I � (3)

(for identity matricesof appropriatesizes).We will denotean unsortedsignaturematrix by a tilde. If the signaturematricesare
sorted,thenconservationof inertia givesJ1 = J2 ( = J, say). The J-unitarity of Θ implies a.o. that it is invertible: Θ −1 = JΘJ,
and

ΘH
11Θ11 = I + ΘH

21Θ21

Θ11ΘH
11 = I + Θ12ΘH

12

ΘH
22Θ22 = I + ΘH

12Θ12

Θ22ΘH
22 = I + Θ21ΘH

21 .

Hence,Θ11 andΘ22 are invertible,and�
Θ−1

11

�
≤ 1 ,

�
Θ−1

11Θ12
�

< 1 ,
�

Θ−1
22

�
≤ 1 ,

�
Θ12Θ−1

22

�
< 1 . (4)

Supposethat X andY arematrices,relatedby a J-unitary matrix ~Θ asX~Θ = Y. ThenX andY satisfythe “energy equation”

X~J1XH = Y~J2YH .

Motivatedby this equation,we say that ~J1 associatesa signatureto the columnsof X, and likewise, that ~J2 is the signatureof
the columnsof Y. BecauseX canbe viewedasan input matrix, which is mappedby ~Θ to a resultingoutputmatrix Y, we will
sometimescall ~J1 the “input signature”of ~Θ, to distinguish it from ~J2.

3. APPROXIMA TION THEORY

Let H : m × n be a given matrix and ε be a given tolerancelevel, and supposethat H hasd singularvalueslarger than ε and
noneequalto ε. We will showthat thereexistsa J-unitary matrix ~Θ (which underadditionalconditionscanbe computedby a
generalizedSchuralgorithm)suchthat �

+ −
εIm H � ~Θ =

�
+/− +/−
X 0m×n � . (5)

X is an m× m matrix. ~Θ is J-unitarywith respectto (J1, ~J2), wherethe signaturematrix J1 is specifiedbeforehandandis sorted:

J1 =

�
Im

−In � .

J1 associatesto the columnsof εIm in [εIm H] a positivesignature,and to columnsof H a negativesignature.The signature
matrix ~J2 is producedby the algorithmandis unsorted.The signatureassociatedto the i-th columnof [X 0] is equalto ( ~J2)ii .
Let Π be a permutationmatrix that sorts ~J2, i.e., suchthat ΠH~J2Π = J2. By preservationof inertia, J2 = J1 =: J, andputting
Θ = ~ΘΠ yields [εIm H]Θ = [(A 0) (B 0)], whereA containsthe columnsof X that havepositivesignature,andB containsthe
columnsof X that havenegativesignature.[A 0] is an m× m matrix, [B 0] is m× n. At this point, we partition Θ into 2 × 2
blocksas in (3), anddefineĤ = [B 0]Θ−1

22. We will showthat Ĥ is a rank-d 2-normapproximantof H.
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Theorem 1. Let H : m× n haved singularvalueslarger than ε andnoneequalto ε. Thenthere is a J-unitarymatrix Θ such
that

[εIm H]Θ = [A′ B′] , A′ =

�
m− d d

m A 0 � , B′ =

�
d n − d

m B 0 � . (6)

Ĥ = [B 0]Θ−1
22 is a rank d approximantsuchthat

�
H − Ĥ

�
≤ ε.

PROOF Considerε2I − HHH. It is non-singular by assumption,andhencethereis a J-Choleskyfactorizationsuchthat

ε2I − HHH = XJ′XH ,

whereX is an m× m factor, andhasfull rank m. Put X = [A B], partitionedaccordingto J′, so that XJ′XH = AAH − BBH. Since
[εI H] hasfull range,theremustbe an n × m matrix, T say, mappingit to X, i.e. [εI H]T = X. SinceX is alsoof full rank, it
follows that TJ′TH = J. T canbe extendedto a squareinvertible J-unitarymatrix Θ suchthat (6) holds.

Let H = UΣVH beanSVD of H. Then(ε2I−Σ2) hasthesamesignatureasAAH −BBH: d negativeentries,andm−d positiveentries.
Hence,A hasm−d columnsandis of full rank,while B hasd columnsandis of full rank. By equation(6), [B 0] = εIΘ 12+HΘ22,
so thatH − Ĥ = −εΘ12Θ−1

22, andΘ12Θ−1
22 is contractive(equation(4)). Hence

�
H − Ĥ

�
≤ ε.

Remarkthat [A B] asgeneratedin (6) is not unique: for anyJ-unitarymatrix Θ 1, [A1 B1] = [A B]Θ1 canalsobeproducedasa
resultof theSchurmethod.A systematicway to describeall possible2-normapproximantsof rankd is givenby a parametrized
chain fraction descriptionin the following theorem. The parametrizationis in terms of an m × n matrix SL, which has the
following 2 × 2 block partitioning:

SL =

� d n − d

m− d (SL)11 (SL)12

d (SL)21 (SL)22 � . (7)

Theorem 2. ([17]) Let H : m× n be a givenmatrix, with d singularvalueslarger thanε andnoneequalto ε. DefineΘ, A ′, B′

as in equation(6). Supposethat a matrix Ĥ satisfies

(a)
�

H − Ĥ
�

≤ ε ,
(b) rank(Ĥ) ≤ d.

Thenrank(Ĥ) = d, and Ĥ = H − S where
S= ε(Θ11SL − Θ12)(Θ22 − Θ21SL)−1 , (8)

for someSL with
�

SL
�

≤ 1 and (SL)12 = 0. Ĥ satisfies

Ĥ = (B′ − A′SL)(Θ22 − Θ21SL)−1 . (9)

The condition
�

SL
�

≤ 1 ensuresthat
�

S
�

≤ ε, whereastaking (SL)12 = 0 producesrank-d approximants.In particular, equation
(9) showsthat the columnspanof Ĥ is generatedby the columnsof (B − A(SL)11), which is of full rank d.

The approximantused before is obtainedfor SL = 0. Other choicesof SL might be considered,in particular choicesthat
minimize the error

�
S
�
. As the Frobenius-normapproximant,Ĥ = U1Σ1VH

1 , satisfiesthe conditionson Ĥ, it is a suitablerank-d
approximant,which actuallyminimizesthe approximationerror:

�
H − Ĥ

�
= σd+1 < ε. Hence,theremust be somevalueof SL

(contractive,block lower) which minimizesthe expressionfor S, althoughcomputingthis SL is as expensiveas computingthe
SVD itself. Anotherusefulchoicefor SL, suitableif d ≥ m/2, is SL = [Im 0]. For this choice,S is an isometry: theresidualerror
matrix hasfull rank andits norm is preciselyequalto ε.

Onetrivial casein which the optimal SL canbe computedis the casewhereall singularvaluesof H are larger thanε. Indeed,
supposethat H doesnot havesingularvalueslessthan ε. Then H hasrank d = m. The approximantĤ = B′Θ−1

22, obtainedfor
SL = 0, is suchthat

�
H − Ĥ

�
≤ ε, andĤ is alsoof rank d. In fact,

�
H − Ĥ

�
=

�
εΘ12Θ−1

22

�
, which is, in general,larger than0.

However, thereexistsan approximantof rank d with zeroerror: H itself. Hencethe ‘central approximant’,obtainedfor SL = 0,
is not the optimal (norm-minimizing)solution. As Ĥ = H is a valid approximant,thereexistsan SL (contractive,block-lower)
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such� that Ĥ = H − S hasS = 0. The expressionfor S leadsto SL = Θ−1
11Θ12 . Indeed,SL of this form is contractive(equation

(4)). Verifying that (SL)12 = 0 takesmoreeffort, and is omittedat this point.

In general,H alsohassingularvalueslessthanε, andwe cannottakeSL = Θ−1
11Θ12 (althoughit is still contractive)because(SL)12

is not zero. Obviously, thereis no approximantof zeroerror. A conjectureat this point is thatby makingsmall modificationsto
this SL, to haveit both contractiveandblock lower, we obtainapproximantswhich havesmallererrorsthanthoseobtainedby
just takingSL = 0. We proposeto take

SL = Θ−1
11Θ12

�
Id 0
0 0n−d � (10)

This choiceof SL is both contractiveand block lower. Numerical experimentson a subspaceestimationapplicationindicate
that this choiceleadsto estimateswhich havelessbiasthanthoseobtainedby takingSL = 0, andareactuallyquite closeto the
principalcolumnspaceof H (section6). For subspaceestimation,it is also interestingto notethat the columnspaceof Ĥ, i.e.,
thecolumnspaceof (B′ −A′SL), is not changedby setting(SL)12 = 0 and(SL)22 = 0, asin fact, thecolumnspaceis � (B−A(SL)11).

4. COMPUTATION OF Θ

We will now considerthe actualconstructionof a J-unitarymatrix Θ suchthat (6) holds. The generalapproachis similar to the
usualSchuralgorithmsfor unstructuredmatrices.In principle, the computationsconsistof elementary(Givens)rotationswhich
recursivelycreatezero entriesat selectedpositions,much as in Givensrotationstechniquesfor QR factorizations. The main
differenceswith QR factorization,andalsowith the usualdefiniteSchuralgorithms(for which ε 2I − HHH > 0) arethat,here,the
basicoperationsareJ-unitary elementaryrotationsof up to six differenttypes,andthat we haveto keeptrack of signaturesto
determinewhich type to use. It turnsout that the recursiveconstructionof Θ in this way is not alwayspossible,unlessextra
regularity conditions on the singularvaluesof certainsubmatricesof H are posed. This is a well-known complicationfrom
which all indefiniteSchurmethodssuffer andthat canbe treatedonly by global matrix operations(as in [11 ]).

Elementary rotations

An elementaryrotationmatrix is a2×2J-unitarymatrix ~θ whichis suchthat,for givenscalarsa,b, wehavethat[a b] ~θ = [x 0],
wherex is someresultingscalar. Here,we consider~θ to be J-unitarywith respectto unsortedsignaturematrices~j1 and~j2, where
~j1 is a givensignaturematrix, with diagonalentriesthatare±1, and ~j2 is a resultingsignaturematrix to be computedalongwith
~θ. The matrices~θ and~j2 arecomputedfrom a, b, ~j1 in the following way. From the J-unitarity of ~θ, we havethat

[a b] ~j1 [a b]H = x(~j2)11x∗ ⇒ (~j2)11 = sign � [a b] ~j1 [a b]H 	 .

We haveto assumeat this point that theexpressionin bracketsis not zero,so that (~j2)11 is either+1 or −1. The seconddiagonal
entryof ~j2 thenfollows from the inertia rule: since ~θ is invertible, the total numberof positiveentriesof ~j2 is equalto the total
numberof positiveentriesof ~j1, andsimilarly for the negativeentries.

It is straightforwardto prove that the matrices ~θ in the following list are elementaryJ-unitary rotationswith respectto the

5



specifiedsignaturematrices(takings∗s+ c∗c = 1 throughout):

1. ~j1 =

�
1

−1 � , ~j2 =

�
1

−1 � , ~θ =

�
1 −s

−s∗ 1 � 1
c

2. ~j1 =

�
1

−1 � , ~j2 =

�
−1

1 � , ~θ =

�
−s∗ 1
1 −s � 1

c

3. ~j1 =

�
−1

1 � , ~j2 =

�
1

−1 � , ~θ =

�
−s∗ 1
1 −s � 1

c

4. ~j1 =

�
−1

1 � , ~j2 =

�
−1

1 � , ~θ =

�
1 −s

−s∗ 1 � 1
c

5. ~j1 =

�
1

1 � , ~j2 =

�
1

1 � , ~θ =

�
c∗ −s
s∗ c �

6. ~j1 =

�
−1

−1 � , ~j2 =

�
−1

−1 � , ~θ =

�
c∗ −s
s∗ c �

(11)

Thesesix casesarealsosufficient to consider, aseverypossiblesignaturepair (~j1,~j2) is covered.With ~j1 and~j2 known,we select
theappropriatetypeof rotationmatrix, andtherotationparameterss andc follow subsequentlyfrom theequation[a b] ~θ = [x 0]
as

case1, 4: s = b/a, c = (1 − s∗s)1/2

case2, 3: s = a/b, c = (1 − s∗s)1/2

case5, 6: s = b(a∗a + b∗b)−1/2 , c = (1 − s∗s)1/2 .

Indefinite Schur algorithm

Using the elementaryrotations,we will computeΘ suchthat [εI H]Θ = [A′ B′] in two steps:Θ = ~ΘΠ, where ~Θ is a J-unitary
matrix with respectto an unsortedsignaturematrix, andΠ is a permutationmatrix which sortsthe signaturematrix of ~Θ. For a
givenelementaryrotation ~θ, let ~Θ(i,k) be the embeddingof this rotationinto an (m+ n) × (m+ n) J-unitarymatrix: ~Θ(i,k) is equal
to the identity matrix, savefor four entries,which aretogetherequalto ~θ:� ~Θ(i,k)(i, i) ~Θ(i,k)(i, m+ k)

~Θ(i,k)(m+ k,i) ~Θ(i,k)(m+ k,m+ k) � = ~θ .

~Θ consistsof a seriesof suchembeddedrotations,suchthat�
+ −

εIm H � ~Θ =

�
+/− +/−
X 0m×n � .

As ~Θ is appliedat the right handsideof [εI H], the rotationsact on columns. The entriesof H are zeroed,onecolumnat a
time, startingwith the m-th entry of the first column,continuing with the m− 1-th entry, etc., till we reachthe first entry, after
which we zero the m-th entry of the secondcolumn:

~Θ = ~Θ(m,1)
~Θ(m−1,1) 
�
�
 ~Θ(1,1) ⋅ ~Θ(m,2) 
�
�
 ~Θ(1,2) ⋅ 
�
�
 ⋅ ~Θ(m,n) 
�
�
 ~Θ(1,n) ,

where ~Θ(i,k) is suchthat it producesa zeroat entry (i, m+ k), viz.� + + + − − −
ε × × ×

ε × × ×
ε × × ×

��
~Θ(m,1)

→

� + + − + − −
ε × × × ×

ε × × × ×
× 0 × ×

��
~Θ(m−1,1)

→

� + + − + − −
ε × × × × ×

× × 0 × ×
× 0 × ×

��
→ 
�
�
 ~Θ(1,n)

→

� − + − + + −
× × × 0 0 0

× × 0 0 0
× 0 0 0

��
.
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Input: H : m× n, ε ≥ 0
Output: X, ~Θ, ~J2 s.t.

[εI H] ~Θ = [X 0]

[A B] := [εIm H]

~J :=

�
Im

−In � , ~Θ :=

�
Im

In �
for k = 1 to n,

for i = m downto1 ,
[a b] := [A(i, i) B(i, k)]

~j1 :=

� ~J(i, i) 0
0 ~J(m+ k,m+ k) �

Compute~θ,~j2 from a,b,~j1 s.t. [a b] ~θ = [∗ 0] (eq. (11))
Embed~θ into ~Θ(i,k)

[A B] := [A B] ~Θ(i,k)
~Θ := ~Θ ~Θ(i,k)
~J(i, i) := (~j2)1,1
~J(m+ k,m+ k) := (~j2)2,2

end
end

[X 0] := [A B]
~J2 := ~J

Algorithm 1. Schurrecursionto computethe factorization[εI H] ~Θ = [X 0] from H.

(Exceptfor the first matrix, the signaturesof the columnsin theabovematricesareexamples,astheyaredatadependent.)This
schemeensuresthat [εI H] ~Θ = [X 0], whereX is a resultinguppertriangularinvertible matrix; it containsthe columnsof A
andB in somepermutedorder.

To computethis ordering,and to computethe rotations ~θ, we have to keep track of the signatureof eachcolumn. Suppose
that, at the (i, k)-th step,we haveto compute ~Θ(i,k) suchthat [A1 B1] ~Θ(i,k) = [A2 B2], whereB2(i, k) = 0. Associatedto every
columnof [A1 B1] is a signature(+1 or −1). Initially, [A1 B1] = [εI H] and J =

�
I 0
0 −I � , so that every column of A1 hasa

positive signature,andeverycolumnof B1 hasa negativesignature.At the (i, k)-th step,we act on the i-th columnof A1 and
on the k-th columnof B1. In particular, we zerob = B1(i, k) againsta = A1(i, i), usingan elementaryrotation ~θ. The signature
~j1 to useis equalto the signatureof the correspondingcolumnsof A1 andB1. At this point, the elementaryrotationθ existsif
[a b] ~j1[a b]H is not equalto zero(if it is, thentherecursiveschemebreaksdown—seethenextsubsection).After computation
of the elementaryrotationandapplyingthis rotationto the correspondingtwo columns,we obtain [A 2 B2], and~j2 is the new
signatureof thesecolumns.Having performedm× n suchsteps,we have[A2 B2] = [X 0], andits signatureis equalto ~J2.

The algorithmto compute ~Θ is summarizedasalgorithm1. The resultof the algorithmis [X 0] = [εI H] ~Θ, whereX is upper
triangular and ~Θ is J-unitarywith respectto ~J1 = J and ~J2. The final step(not listed in the algorithm)is to sort theentriesof ~J2,
i.e., to find a permutationΠ suchthat

J2 = ΠH ~J2Π

is a sortedsignaturematrix. ThenJ2 = J, andΘ = ~ΘΠ is J-unitarywith respectto J. In addition,putting[A ′ B′] = [X 0]Π gives
the requiredresult,[εI H]Θ = [A′ B′]. The nonzerocolumnsof A′ are the columnsof X with a positivesignature,the nonzero
columnsof B′ correspondto the columnsof X with a negativesignature.

Breakdown

In theprevioussubsection,we hadto assumethat the datamatrix H wassuchthatat no point in the algorithm[a b] ~j1[a b]H is
equalto zero. If the expressionis zero,thenthereis no J-unitary rotation ~θ suchthat [a b] ~θ = [∗ 0]. Note that the conditionin
theorem1 that noneof the singularvaluesof H are equalto 1 doesnot precludethis case,but merelyassuresthat thereexists
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a ~Θ
�

which will zero H. One simpleexampleis obtainedby taking H = [1 1]T. It is straightforwardto show that thereis no
J-unitary ~Θ suchthat �

1 1
1 1 � ~Θ =

�
∗ ∗ 0
0 ∗ 0 �

as the J-normsof the last row will not be equal. HenceΘ cannotbe obtainedby the recursivealgorithm. However, a more
general~Θ doesexist, suchthat � + + −

1 1
1 1 � ~Θ =

1�
2

� + − +

1 1 0
−1 1 0 �

viz.

~Θ =
1�
2

�
1 −1

�
2

−1 −1
�

2
0 2 −

�
2

��
, ~J1 =

�
1

1
−1

��
, ~J2 =

�
1

−1
1

��
.

The differenceis that, in this factorizationthe resultingmatrix X is no longeruppertriangular. Hence,it is not clearhow ~Θ can
be computedrecursivelyin a similar schemeaswe hadbefore. Necessaryandsufficient conditionson the singularvaluesof H
anda collectionof submatricesof H so that the Schuralgorithmdoesnot breakdown aregiven by the following theorem.

Theorem 3. ([17]) Let H : m× n be a givenmatrix. Denoteby H[i,k] the submatrix,consistingof the i-th row to the m-th row
andthe first k columnsof H. Thenthe Schuralgorithm (alg. 1) doesnot breakdownif and only if noneof the singular values
of H[i,k] is equalto ε, for all i and k.

Similar conditionson the matricesto preventbreakdownhave beenobtainedin other Schur methodsas well. It shouldbe
notedthat the conditionsfor preventingbreakdownarequite elaborate,asonly onecondition(noneof the singularvaluesof H
areequal to ε) suffices for the existenceof Θ. The treatmentof the more generalcaseis possible,seee.g., [11], but requires
global matrix operationswhich are not attractivefrom the parallel implementationpoint of view. It is possibleto consider
hyperbolic Householdertransformations,asin [15, 16], which lifts someof theregularityconditionswhile retainingmuchof the
computational structure.

Signal flow diagrams

A signalflow diagramof the algorithmis depictedin figure 1. In this figure, the columnsof H areenteredat the left handside
(with negativesignatures),the columnsof εI m are enteredat the top (with positivesignatures),and the squareblocks denote
processorsthat performthe elementaryrotations[a b] ~θ = [x1 x2]. The signaturesat the inputsof the processorsare ~j1, andat
the outputsare ~j2. A processorin the i-th columnof the arrayskips the first i − 1 datapairs (which just containszeros),then
computesthe appropriate~θ and~j2 from the input datapair andthe input signature,andsubsequentlyapplies ~θ to the remaining
m − i datapairs. The outputof the processorarray is [X 0], whereX emergesat the bottomof the array, and the zerosare
producedat the right handside. The correspondingoutputsignaturematrix ~J2 is given by the signsthat are producedat the
bottom andright sideof the array. If Θ is alsorequired,thenonehasto put [I m 0] and[0 In] also into the array, andto apply
the alreadycomputedelementaryoperationsto thesecolumnsaswell.

Thesignalflow diagramcanbe convertedto a (possiblymorefamiliar) processorarrayform, depictedin figure2. In this figure,
the triangularprocessorarrayhasdimensionsm× m, and is initializedby εI m. The columnsof H areenteredoneby oneat the
right handsideof thearray, andaremadezerostepby step.The appropriateelementaryrotation ~θ is computedby theprocessors
on the diagonalof the triangularpart, andis communicatedsystolicallyto the processorsabovethe diagonal.After n steps,the
triangular arraycontainsthe resultingmatrix X. If Θ11 and Θ12 arealsoneeded,thenthe triangularpart may be extendedby a
squarepart in which the rotationsare accumulated.The squarepart is also initializedby I m, andat the right handside, zeros
areentered.Note that actuallythe unsorted~Θ11 and ~Θ12 arecomputed.

5. UPDATING AND DOWNDATING

In signalprocessingapplications,the columnsof the matrix H areusuallynot availableall at the sametime, but becomeknown
oneby oneastime progresses.It is in suchcasesoften desirableto processthe availabledatato obtainthe approximant,andto
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Figure1. Signalflow diagramof theSchuralgorithm. Processorscompute~θ from incomingdatapairs[a b] and~j1, which is storedinternally
andappliedto subsequent datapairs.
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Figure 2. Triangularprocessorarrayfor computingX, ~Θ11 and ~Θ12. Processorsstorex1, andcommunicate~θ upwards.
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Figure 3. Updatinganddowndatingthe Schuralgorithm.

updatethis approximantasnewinformationcomesin. A partialsolutionis to updateonly thefactorizationstep.Doing soyields
the columnspace� (B) of the approximant,as the columnsof X with negativesignature,which in manyapplicationsprovides
sufficient information. Downdating(discardingold columns)is alsopossible,andis shownto be equivalentto updatingwith a
positive signature.Hence,adaptiveapproximations,with sliding windowson the datamatrix, arestraightforwardto implement.
Updatinganddowndatingof the approximantitself is muchharderbecausethe sizeof Θ is growing,andwe omit a discussion
of this.

Updating

The genericupdatingproblem that we will considerat this point is, given a matrix H and a vector h, to find the required
factorizationof the enlargedmatrix H1 = [H h] from that of H. The factorizationobtainedby the Schuralgorithmis straight-
forward to update,as in this algorithm the columnsof H are processedone by one, startingwith the first column. Hence,if
[εI H] ~Θ = [X 0] thenthe computationof ~Θ1 suchthat [εI H1] ~Θ1 = [X1 0] canbe split into two steps:

[εI H1] ~Θ1 = [X 0 h] ~Θ′ = [X1 0] , ~Θ1 =

� ~Θ
1 � ~Θ′ .

Hence,a new columnh can alwaysbe introducedafter the precedingsetof columnshavebeenprocessed.Eachnew column
givesm extraconditionson the singularvaluesin order to preventa breakdownof the Schuralgorithm. In the algorithm(alg.
1), introducinga new columnh meansthat the loop over i hasto be performedfor k = n + 1, and in the signal flow diagram
(figure1), an extrarow containingm processorshasto be addedat thebottomof thearray. Similarly, in the triangularprocessor
array(figure 2), the new columnh is usedas input of the processorarrayat the right handside.

Downdating

Let H be a given matrix, which decomposesinto two blocks: H = [H1 H2]. The downdatingproblemis to find a factorization
for [εI H2], usingthe factorizationfor [εI H] that hasalreadybeencomputed.So supposethat [εI H] ~Θ = [X 0] and it is
requiredto computea factorization[εI H2] ~Θ2 = [X2 0] using the first factorization. We will use the following uniqueness
fact, which is similar to the uniquenessof the QR factorization(viz. [18]).
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Lemma 4. ([17]) Let A1 andA2 betwo matrices,with associatedsignaturematrices~J1 and ~J2, respectively, andsupposethat
A1

~J1AH
1 = A2

~J2AH
2 . If ~Θ1, ~Θ2 are J-unitary matrices(with respectto theseinput signatures)suchthat

A1
~Θ1 = [X1 0] , X1 upper, diag(X1) > 0

A2
~Θ2 = [X2 0] , X2 upper, diag(X2) > 0

thenX1 = X2.

Corollary 5. Let H = [H1 H2], and let ~Θ be J-unitary with input signature ~J, suchthat�
+ − +

εI H H1 � ~Θ = [X 0 0] , ~J =

�
I

−I
I

��
. (12)

where X is a square upper triangular matrix with diag(X) > 0. Thenthere existsa J-unitary matrix ~Θ2 suchthat�
+ −
εI H2 � ~Θ2 = [X 0] . (13)

The implicationof this lemmais that thedowndatingproblemcanbeconvertedinto anupdatingproblem. In particular, in order
to computethefactorization(13), we cancomputethefactorization(12),which is obtainedby updatinga factorizationfor [εI H]
with thosecolumnsof H that areto be removed(i.e., H1), now giving thesecolumnsa positivesignature.

In adaptivesignalprocessingapplications,H is a datamatrixwhosecolumnsbecomeavailableoneat a time, andit is desirableto
computea factorizationof only the lastp columnshN−p+1, 
�
�
 , hN of H thathavebeencollectedat time pointN. The factorization
is computedfrom a similar factorizationat the previoustime point N − 1, by updatingwith the new columnh N anddowndating
with the column hN−p which is to be discardedat this point. Figure 3 showsthe signal flow diagramthat correspondsto this
sliding window factorizationscheme.

6. APPLICA TIONS

Appr oximate TLS

As a first applicationof the Schurapproximationscheme,we recall the approximate(low rank) total leastsquaresproblemthat
we describedin the introduction. The problemis, given A, b, ε whereA : n × m, (n > m), find Â, b̂ suchthat%& ' �

[A b] − [Â b̂]
�

≤ ε,
rank[Â b̂] is minimal,
Âx = b̂, with

�
x
�

minimal.

A solutionx of theseequationswill besuchthat
�

Ax−b
�

≤ ε
�

x
�

+ 1. Thesolutionis obtainedby computinga minimum-rank
approximantfor H = [A b]H, as in theorem1 or 2. Taking SL = 0 gives

[Â b̂] = Θ−H
22 ( BH

0 ) .

Since[Â b̂] is of rank d, its kernelis non-empty. In fact,

[Â b̂] ( x
−1) = 0 ⇔ BH ( x

−1) = 0 ,

so thatonly B, not Θ, hasto becomputed.Writing BH = [B1 b2], theminimal-normsolutionx to Âx = b̂ is obtainedasx = B*1b2.
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Table 1. EstimatedDOAs for the ESPRITalgorithm.

DOA (a) φ1,2 = 10°, 70° (b) φ1,2 = 20°, 30° (c) φ1,2 = 20°, 23°

SVD Schur1 Schur2 SVD Schur1 Schur2 SVD Schur1 Schur2
mean 9.9948 9.9947 10.0138 19.9447 19.9417 21.0607 19.6720 19.4254 9.1648

70.0160 70.0160 69.9601 30.0209 30.0228 28.7274 23.3412 23.5344 21.5303
std 0.0122 0.0122 0.0124 0.2230 0.2320 1.5937 2.6122 4.0261 209.8293

0.1243 0.1242 0.1283 0.2384 0.2528 2.3564 2.3578 4.4285 2.2607
α 0.0249 0.0182 0.0212 0.0257 0.0326 0.1317 0.1508 0.1412 0.5696

Dir ection finding

In orderto assessthe applicability of the Schur-basedsubspaceestimationmethod,we considerthe directionfinding problem.
Supposethat we havean array of m equispacedomnidirectionalsensors,which receivesd sinusoidalsignalsfrom directions
φk, k = 1, 
�
�
 , d. A total numberof n samplesis taken,which gives an m × n datamatrix X modeledas X = + S+ N. Here,+ = [a(φ1), 
�
�
 , a(φd)] : m×d is thearrayresponsematrix, andS : d×n containsthen samplesof thed sourcesignals.N contains
samplesof white additivei.i.d. noisesourceswith varianceσ2I, independentof the signals.Given X and the function a(φ), the
φk areto be estimated.

TheESPRITalgorithmfor estimatingtheDOAs [19] works in two steps.The first stepis to estimatethesignalsubspace,which
is usuallytakento bethed principalleft singularvectorsof X. This leadsto theclassicalSVD-ESPRITdirectionfindingscheme.
Wewill comparethis with theSchur-basedsubspaceestimates,andinvestigatethechoices� (B−A(SL)11) with SL = Θ−1

11Θ12

�
I 0
0 0 �

(“Schur-1”), and � (B) (“Schur-2”). As is well-known, oncethe signal subspacesare estimated,the DOAs are obtainedvia a
certaineigenvaluedecompositionbasedon thesesubspaces.

In the computersimulationexperiments,a linear arrayconsistingof m = 4 sensorsis used. Two sourcesare impinging on the
array. The signal to noiseratio is chosento be 20dB in all cases.One hundredtest runsusingn = 30 samplesare executed.
Table1 lists the statisticalresults,for threedifferentsetsof anglesof incidence,andaveragedover the testruns. In the last row
of the table,α is the meananglebetweenthe exactand the estimatedsubspace[18]. As is seenfrom the table, the difference
betweenthe threesubspaceestimatesis negligible if the signalsare spatially well separated.If the signalsare coming from
closerdirections,thevarianceof theSchurestimatewith SL = 0 startsto increase,but thechoiceSL = Θ−1

11Θ12

�
I 0
0 0 � still performs

the sameas the SVD-basedestimate.Finally, part (c) of the simulationsshowsthat if the signalsareso closethat the variance
cloudsareoverlappingevenfor theSVD-basedestimates,thenthechoiceSL = 0 breaksdown,but thevarianceof Schurmethod
1 is still within reasonablebounds.
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