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ABSTRACT

Many computationalschemesin linear algebracan be studiedfrom the point of view of (discrete)time-varyinglinear systems

theory. Forexample,theoperation‘multipli cationof avectorby anuppertriangularmatrix’ canberepresentedby acomputational

scheme(or model) that actson the entriesof the vector sequentially. The numberof intermediatequantities(‘states’) that are

neededin thecomputationsis a measureof thecomplexityof themodel. If thematrix is largebut its complexityis low, thennot

only multiplication,but alsootheroperationssuchas inversionandfactorization,canbe carriedout efficiently usingthe model

ratherthanthe original matrix. In the presentpaperwe discussa numberof techniquesin time-varyingsystemtheory that can

be usedto capturea given matrix into sucha computationalnetwork.

1. INTRODUCTION

1.1. Computational algebra and time-varying modeling

In the intersectionof linear algebraand systemtheory is the field of computationallinear algebra. Its purposeis to find

efficient algorithmsfor linear algebraproblems(matrix multiplication, inversion,approximation). A useful model for matrix

computations is providedby dynamicalsystemtheory. Sucha model is often quite natural: in any algorithmwhich computes

a matrix multiplication or inversion,the global operationis decomposedinto a sequenceof local operationsthat eachact on a

limited numberof matrix entries(ultimately two), assistedby intermediatequantitiesthat connectthe local operations.These

quantities canbe called the statesof the algorithm,andtranslateto the stateof the dynamicalsystemthat is the computational

modelof thematrix operation.Althoughmanymatrix operationscanbecapturedthis way by somelineardynamicalsystem,our

interestis in matricesthat possesssomekind of structurewhich allows for efficient (“fast”) algorithms:algorithmsthat exploit

this structure.Structurein a matrix is inheritedfrom the origin of the linear algebraproblem,andis for our purposestypically

dueto themodelingof some(physical)dynamicalsystem.Many signalprocessingapplications,inversescatteringproblemsand

leastsquaresestimationproblemsgive structuredmatricesthat can indeedbe modeledby a low complexitynetwork.

Besidessparsematrices(manyzeroentries),traditional structuredmatricesareToeplitzandHankelmatrices,which translateto

lineartime-invariant(LTI) systems.Associatedcomputationalalgorithmsarewell-known,e.g.,for ToeplitzsystemswehaveSchur

recursionsfor LU- and Choleskyfactorization[1], Levinsonrecursionsfor factorizationof the inverse[2], Gohberg/Semencul

recursionsfor computingthe inverse[3], and Schur-basedrecursionsfor QR factorization[4]. The resultingalgorithmshave

computingcomplexity of order
�

(n2) for matricesof size (n × n), as comparedto
�

(n3) for algorithmsthat do not take the

Toeplitz structureinto account.

In this paper, we pursuea complementarynotion of structurewhich we will call a statestructure. The statestructureapplies

to upper triangular matricesand is seeminglyunrelatedto the Toeplitz structurementionedabove. A first purposeof the

computational schemesconsideredin this paperis to performa desiredlinear transformationT on a vector(‘input sequence’)u,

u = [u0 u1 u2 ����� un]
0In F.T. Luk, editor, Proc. SPIE,“AdvancedSignalProcessingAlgorithms,Architectures,andImplementationsIII”, volume1770,pp. 164-177, SanDiego,

CA, July 1992
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Figure 1. Computationalnetworkcorrespondingto T.

with anoutputvectoror sequencey = uT astheresult. Thekey ideais thatwe canassociatewith thismatrix-vectormultiplication

a computational networkthattakesu andcomputesy, andthatmatriceswith a sparsestatestructurehavea computationalnetwork

of low complexityso thatusingthe networkto computey is moreefficient thancomputinguT directly. To introducethis notion,

consideran uppertriangularmatrix T alongwith its inverse,

T =

����� 1 1/2 1/6 1/24

1 1/3 1/12

1 1/4

1

�	���
 T−1 =

����� 1 −1/2

1 −1/3

1 −1/4

1

�	���
 .

The inverseof T is sparse,which is an indicationof a sparsestatestructure.The computationalnetworkcorrespondingto T is

depictedin figure 1, and it is readily verified that the networkdoesindeedcompute[y1 y2 y3 y4] = [u1 u2 u3 u4]T. The

computationsin thenetworkaresplit into sections,which we will call stages, wherethek-th stageconsumesuk andproducesyk.

The dependenceof yk on ui , (i < k) introducesintermediatequantitiesxk calledstates. At eachpoint k theprocessorin the stage

at that point takesits input datauk from the input sequenceu andcomputesa new outputdatayk which is part of the output

sequencey generatedby the system.To executethe computation,the processorwill usesomeremainderof its pasthistory, i.e.,

the statexk, which hasbeencomputedby the previousstagesand which was temporarilystoredin registersindicatedby the

symbolz. The complexityof the computationalnetwork is equal to the numberof statesat eachpoint. The total numberof

multiplicationsrequiredin the examplenetworkthataredifferentfrom 1 is 5, ascomparedto 6 in a directcomputationusingT.

Although we havegainedonly onemultiplicationhere,for a lessmoderateexample,saya (n × n) uppertriangularmatrix with

n = 10000andd � n statesat eachpoint, the numberof multiplicationsin the networkis only
�

(4dn), insteadof
�

(1/2n 2) for

a directcomputationusingT. Note that thenumberof statescanvary from onepoint to theother, dependingon the natureof T.

In theexampleabove,thenumberof statesenteringthenetworkat point 1 is zero,andthenumberof statesleavingthe network

at point 4 is alsozero. If we would changethe valueof oneof the entriesof the 2 × 2 submatrixin the upper-right cornerof T

to a differentvalue,thentwo stateswould havebeenrequiredto connectstage2 to stage3.

The computationsin the networkcanbe summarizedby the following recursion,for k = 1 to n:

y = uT ⇔ xk+1 = xkAk + ukBk

yk = xkCk + ukDk
or � xk+1 yk 
 = [xk uk] Tk , Tk = � Ak Ck

Bk Dk � (1)

in which xk is the statevectorat time k (takento havedk entries)Ak is a dk × dk+1 (possiblynon-square)matrix, Bk is a 1 × dk+1

vector, Ck is a dk × 1 vector, andDk is a scalar. More generalcomputationalnetworkswill havethenumberof inputsandoutputs

at eachstageto be differentfrom one,and possiblyalsovarying from stageto stage. In the example,we havea sequenceof

realizationmatrices

T1 = � ⋅ ⋅
1/2 1 � T2 = � 1/3 1

1/3 1 � T3 = � 1/2 1

1/2 1 � T4 = � ⋅ 1

⋅ 1 �
2



wherethe ‘ ⋅’ indicatesentriesthat actually havedimension0 becausethe correspondingstatesdo not exist. The recursionin

equation(1) showsthat it is a recursionfor increasingvaluesof k: theorderof computationsin the networkis strictly from left

to right, andwe cannotcomputeyk unlesswe know xk, i.e., unlesswe haveprocessedu1 ����� uk−1. On theotherhand,yk doesnot

dependon uk+1 ����� un. This is a direct consequenceof the fact that T hasbeenchosenuppertriangular, so that suchan ordering

of computationsis indeedpossible.

1.2. Time-varying systems

A link with systemtheory is obtainedwhen T is regardedas the transfermatrix of a non-stationary causallinear systemwith

inputu andoutputy = uT. Thek-th row of T thencorrespondsto the impulseresponseof thesystemwhenexcitedby an impulse

at time instanti, that is, theoutputy dueto an input vectoru with entriesu i = δk. The casewhereT hasa Toeplitzstructurethen

correspondswith a time-invariantsystemfor which the impulseresponsedueto an impulseat time i + 1 is just the sameasthe

responsedueto an impulseat time i, shiftedover oneposition. The computationalnetworkis calleda staterealizationof T, and

thenumberof statesat eachpoint of thecomputationalnetworkis calledthesystemorderof therealizationat thatpoint in time.

For time-invariantsystems,the staterealizationcanbe chosenconstantin time. Sincefor time-varyingsystemsthe numberof

statevariablesneednot beconstantin time, but canincreaseandshrink,it is seenthat in this respectthetime-varyingrealization

theoryis muchricher, andthat the accuracyof an approximatingcomputationalnetworkof T canbe variedin time at will.

1.3. Sparse computational models

If the numberof statevariablesis relatively small, thenthe computationof the outputsequenceis efficient in comparisonwith

a straightcomputationof y = uT. Oneexampleof a matrix with a small statespaceis the casewhereT is an uppertriangular

band-matrix:Tij = 0 for j − i > p. In this case,the statedimensionis equalto or smallerthanp. However, the statespacemodel

canbemuchmoregeneral,e.g., if a bandedmatrix hasan inverse,thenthis inverseis knownto havea sparsestatespace(of the

samecomplexity)too, aswe hadin theexampleabove.Moreover, this inversioncanbeeasilycarriedout by local computations

on the realizationof T:

y = uT ⇔ u = yT−1 =: yS�
xk+1 = xkAk + ukBk

yk = xkCk + ukDk
⇔

�
xk+1 = xk(Ak − CkD−1

k Bk) + ykD−1
k Bk

uk = −xkCkD−1
k + ykD−1

k

⇒ Sk = � Ak − CkD−1
k Bk −CkD−1

k

D−1
k Bk D−1

k �
Observethatthemodelfor S= T−1 is obtainedin a local way from themodelof T: Sk dependsonly on Tk. Thesumandproduct

of matriceswith sparsestatestructurehaveagaina sparsestatestructurewith numberof statesat eachpoint not larger thanthe

sum of the numberof statesof its componentsystems,andcomputationalnetworksof thesecompositions(but not necessarily

minimal ones)canbe easilyderivedfrom thoseof its components.

At this point, one might wonder for which class of matricesT there exists a sparsecomputationalnetwork (or statespace

realization)that realizesthesamemultiplicationoperator. For an uppertriangular(n× n) matrix T, definematricesH i (1 ≤ i ≤ n),

which aresubmatricesof T, as

Hi =

�������
Ti−1,i Ti−1,i+1 ����� Ti−1,n

Ti−2,i Ti−2,i+1
...

...
. . . T2,n

T1,i ����� T1,n−1 T1,n

� �����

(seefigure2). We call theHi (time-varying)Hankelmatrices,astheywill havea Hankelstructure(constantalonganti-diagonals)

if T hasa Toeplitz structure.1 In termsof the Hankelmatrices,the criterionby which matriceswith a sparsestatestructurecan

be detectedis given by the following Kroneckeror Ho-Kalman[5] type theorem(provenin section3).

1Warning: in the currentcontext(arbitraryuppertriangularmatrices)the H i do not havea Hankelstructureand the predicate‘Hankel matrix’ could lead

to misinterpretations.Our terminologyfinds its motivationin systemtheory, wherethe H i arerelatedto an abstractoperatorHT which is commonlycalledthe

Hankeloperator. For time-invariantsystems,HT reducesto anoperatorwith a matrix representationthat hasindeeda Hankelstructure.

3
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Figure 2. Hankelmatricesare(mirrored) submatricesof T.

Theorem 1. The numberof statesthat are neededat stagek in a minimal computationalnetworkof an upper triangular

matrix T is equalto the rank of its k-th Hankelmatrix H k.

Let’s verify this statementfor our example.The Hankelmatricesare

H1 = [ ⋅ ⋅ ⋅ ⋅ ] , H2 = [1/2 1/6 1/24] , H3 = � 1/3 1/12

1/6 1/24 � , H4 =

��� 1/4

1/12

1/24

� �
 .

Since rank(H1) = 0, no statesx1 are needed. One stateis neededfor x2 and one for x4, becauserank(H2) = rank(H4) = 1.

Finally, also only one state is neededfor x3, becauserank(H3) = 1. In fact, this is (for this example)the only non-trivial

rank condition: if one of the entriesin H 3 would have beendifferent, then two stateswould have beenneeded. In general,

rank(Hi) ≤ min(i − 1, n − i − 1), and for a generaluppertriangularmatrix T without statestructure,a computationalmodelwill

indeedrequireat mostmin(i − 1, n − i − 1) statesfor xi .

2. OBJECTIVES OF COMPUTATIONAL MODELING

With the precedingsectionas backgroundmaterial,we are now in a positionto identify the objectivesof our computational

modeling.We will assumethroughoutthat we aredealingwith uppertriangularmatrices.However, applicationswhich involve

othertypeof matricesareviable if they providesometransformationto the classof uppertriangularmatricesareobtained.It is

for examplepossibleto put Choleskyfactorizationof positivematricesin the contextof uppermatrices(by meansof a Cayley

transformation). In addition,we assumethat theconceptof a sparsestatestructureis meaningfulfor theproblem,in otherwords

that a typical matrix in the applicationhasa sequenceof Hankelmatricesthat haslow rank (relativeto the sizeof the matrix),

or thatan approximationof thatmatrix by onewhoseHankelmatriceshavelow rankwould indeedyield a usefulapproximation

of the underlying(physical)problemthat is describedby the original matrix.

For sucha matrix T, the genericobjectiveis to determinea minimal computationalmodel � Tk � for it by which multiplications

of vectorsby T are effectively carriedout, but in a computationally efficientandnumericallystablemanner. This objectiveis

divided into four subproblems:(1) realizationof a given matrix T by a computationalmodel,(2) embeddingof this realization

in a largermodelthatconsistsentirelyof unitary(lossless)stages,(3) factorizationof thestagesof theembeddinginto a cascade

of elementary(degree-1)losslesssections.It could very well be that the originally given matrix hasa computationalmodelof

a very high order. Then intermediatein the abovesequenceof stepsis (4) approximationof a given realizationof T by oneof

lower complexity. Thesestepsaremotivatedbelow.

Realization

The first stepis, givenT, to determineany minimal computationalnetworkTk = � Ak, Bk, Ck, Dk � thatmodelsT. This problemis

knownas the realizationproblem. If the Hankelmatricesof T havelow rank, thenT is a computationallyefficient realization

4



of the operation‘multiplication by T’.

Lossless embedding

From T, all otherminimal realizationsof T can be derivedby statetransformations.Not all of thesehavethe samenumerical

stability. This is becausethe computationalnetworkhasintroduceda recursiveaspectto the multiplication: statesare usedto

extractinformationfrom the input vectoru, and a singlestatexk givesa contribution both to the currentoutputy k and to the

sequencexk+1, xk+2 etc. In particular, a perturbationin xk (or uk) alsocarriesover to this sequence.SupposethatT is boundedin

normby somenumber, say � T � ≤ 1,2 so thatwe canmeasureperturbationerrorsrelativeto 1. Thena realizationof T is saidto

be error insensitiveif � Tk � ≤ 1, too. In thatcase,an error in [xk uk] is not magnifiedby Tk, andtheresultingerror in [xk+1 yk]

is smallerthan the original perturbation.Hencethe questionis: is it possibleto obtaina realizationfor which � T k � ≤ 1 if T

is suchthat � T � ≤ 1? The answeris yes,andan algorithmto obtainsucha realizationis given by the solutionof the lossless

embeddingproblem. This problemis the following: for a givenmatrix T with � T � ≤ 1, determinea computationalmodel � ΣΣΣk �
suchthat (1) eachΣΣΣk is a unitarymatrix, and(2) T is a subsystemof the transfermatrix Σ that correspondsto � ΣΣΣk � . The latter

requirementmeansthat T is the transfermatrix from a subsetof the inputsof Σ to a subsetof its outputs:Σ canbe partitioned

conformablyas

Σ = � Σ11 Σ12

Σ21 Σ22 � , T = Σ11 .

The fact that T is a subsystemof Σ implies that a certainsubmatrixof ΣΣΣk is a realizationTk of T, andhencefrom the unitarity

of ΣΣΣk we havethat � Tk � ≤ 1. From the constructionof the solutionto the embeddingproblem,it will follow thatwe canensure

that this realizationis minimal, too.

Cascade factorization

Assumingthat we have obtainedsuch a realization ΣΣΣk, it is possibleto breakdown the operation‘multipli cationby ΣΣΣk’ on

vectors[xk uk] into a minimal numberof elementaryoperations,eachin turn actingon two entriesof this vector. BecauseΣΣΣk

is unitary, we canuseelementaryunitary operations(actingon scalars)of the form

[a1 b1] � c s

−s∗ c∗ � = [a2 b2] , cc∗ + ss∗ = 1 ,

i.e., elementaryrotations. The useof suchelementaryoperationswill ensurethat ΣΣΣk is internally numericallystable,too. In

order to make the numberof elementaryrotationsminimal, the realization ΣΣΣ is transformedto an equivalentrealization ΣΣΣ � ,
which realizesthe samesystemΣ, is still unitaryandwhich still containsa realizationT � for T. A factorizationof eachΣΣΣ �k into

elementaryrotationsis knownasa cascaderealizationof Σ. A possibleminimal computationalmodelfor T that correspondsto

sucha cascaderealizationis drawnin figure 3. In this figure, eachcircle indicatesan elementaryrotation. The preciseform of

the realizationdependson whetherthe statedimensionis constant,shrinksor grows. The realizationcan be divided vertically

into elementarysections, whereeachsectiondescribeshow a singlestateentry is mappedto an entry of the ‘next state’vector

xk+1. It hasa numberof interestingproperties;oneis that it is pipelineable, which is interestingif the operation‘multipli cation

by T’ is to be carriedout on a collectionof vectorsu on a parallel implementationof the computationalnetwork. The property

is a consequenceof the fact that the signalflow in the networkis strictly uni-directional:from top-left to bottom-right, so that

computationson a new vectoru (a new uk anda new xk) cancommencein the top-left part of the network,while computations

on the previousu arestill beingcarriedout in the bottom-rightpart.

Approximation

In the previousitems,we haveassumedthat the matrix T hasindeeda computationalmodelof an order that is low enoughto

favor a computationalnetworkover an ordinarymatrix multiplication. However, if the rank of the Hankel matricesof T (the

2 � T � is the operatornorm(matrix 2-norm)of T: � T � = sup� u � 2≤1
� uT� 2.

5
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Figure 3. Cascaderealizationsof a contractivesystemT, stagek. (a) Constantstatedimension,(b) shrinking statedimension,(c) growing

statedimension.Outputsmarkedby ‘∗’ areignored.

systemorder) is not low, then it makesoften senseto approximateT by a new upper triangularmatrix Ta that hasa lower

complexity. While it is fairly known in linear algebrahow to obtaina (low-rank) approximantto a matrix in a certainnorm

(e.g.,by useof the singularvaluedecomposition(SVD)), suchapproximationsarenot necessarilyappropriatefor our purposes,

becausethe approximantshouldbe uppertriangularagain,and havea lower systemorder. Becausethe systemorder at each

point is given by the rank of the Hankelmatrix at that point, a possibleapproximationschemeis to approximateeachHankel

operatorby one that is of lower rank (this could be doneusing the SVD). However, becausethe Hankel matriceshavemany

entriesin common,it is not clearat oncethatsuchan approximationschemeis feasible:replacingoneHankelmatrix by oneof

lower rank in a certainnorm might makeit impossiblefor the next Hankelmatrix to find an optimalapproximant.The severity

of this dilemma is mitigatedby a properchoiceof the error criterium. In fact, it is remarkablethat this dilemmahasa nice

solution, and that this solutioncan be obtainedin a non-iterativemanner. The error criterion for which a solution is obtained

is called the Hankel norm and denotedby � ⋅ � H: it is the supremumover the operatornorm (the matrix 2-norm) of each

individual Hankelapproximation,anda generalizationof Hankelnorm for time-invariantsystems.In termsof theHankelnorm,

the following theoremholdstrue andgeneralizesthe model reductiontechniquesbasedon the Adamyan-Arov-Kreinpaper[6 ]

6



to time-varyingsystems:

Theorem 2. ([7]) Let T be a strictly upper triangular matrix and let Γ = diag(γi ) be a diagonalHermitian matrix which

parametrizesthe acceptableapproximation tolerance(γ i > 0). Let Hk be the Hankelmatrix of Γ−1T at stagek, andsupposethat,

for eachk, noneof the singularvaluesof Hk are equalto 1. Thenthere existsa strictly upper triangular matrix Ta with system

order at stagek equalto the numberof singularvaluesof H k that are larger than1, suchthat� Γ−1(T − Ta) � H ≤ 1 .

In fact, thereis an algorithmthat determinesa model for Ta directly from a modelof T. Γ can be usedto influencethe local

approximation error. For a uniform approximation,Γ = γ I, andhence � T− Ta � H ≤ γ : the approximantis γ-closeto T in Hankel

norm,which implies in particularthat theapproximationerror in eachrow or columnof T is lessthanγ. If oneof the γ i is made

larger than γ, then the error at the i-th row of T can becomelarger also, which might result in an approximantTa to take on

lessstates.HenceΓ canbe chosento yield an approximantthat is accurateat certainpointsbut lesstight at others,andwhose

complexityis minimal.

In theremainderof the paper, we will discussan outlineof the algorithmsthat areinvolvedin the first threeof the aboveitems.

A full treatmentof item 1 waspublishedin [8], item 2 in [9], and item 3 waspart of the treatmentin [10]. Theoryon Hankel

norm approximations is available[7, 11] but is omittedherefor lack of space.

3. REALIZATION OF A TIME-VARYING SYSTEM

The purposeof this sectionis to give a proof of therealizationtheoremfor time-varyingsystems(specializedto finite matrices):

theorem1 of section1.3. A moregeneralanddetaileddiscussioncanbefoundin [8]. Recallthatwe aregivenanuppertriangular

matrix T, andview it asa time-varyingsystemtransferoperator. The objectiveis to determinea time-varyingstaterealization

for it. The approachis asin Ho-Kalman’s theoryfor the time-invariantcase[5]. Denotea certaintime instantas‘current time’,

apply all possibleinputs in the ‘past’ with respectto this instant,and measurethe correspondingoutputsin ‘the future’, from

the currenttime instanton. For eachtime instant,we selectin this way an upper-right part of T: theseare its Hankelmatrices

asdefinedin the introduction. Theorem1 claimedthat the rank of Hk is equalto the orderof a minimal realizationat point k.

PROOF of theorem1. Thecomplexitycriterioncanbederivedstraightforwardly, andthederivationwill give rise to a realization

algorithm aswell. Supposethat � Ak, Bk, Ck, Dk � is a realizationfor T as in equation(1). Thena typical Hankelmatrix hasthe

following structure:

H2 =

�������
B1C2 B1A2C3 B1A2A3C4 �����
B0A1C2 B0A1A2C3

B−1A0A1C2
. . .

...

� �����
 =

������ B1

B0A1

B−1A0A1

...

�	����
 ⋅ [C2 A2C3 A2A3C4 ����� ]
= � 2

�
2

(2)

From the decompositionHk = � k
�

k it is directly inferred that if Ak is of size (dk × dk+1), thenrank(Hk) is at most equalto dk.

We haveto showthat thereexistsa realization � Ak, Bk, Ck, Dk � for which dk = rank(Hk): if it does,thenclearly this must be a

minimal realization.To find sucha minimal realization,takeany minimal factorizationHk = � k
�

k into full rank factors � k and�
k. We mustshowthat therearematrices � Ak, Bk, Ck, Dk � suchthat

� k =

���� Bk−1

Bk−2Ak−1

...

� ��
 �
k = [Ck AkCk+1 AkAk+1Ck+2 ����� ] .

7



In: T (an uppertriangularmatrix)

Out: � Tk � (a minimal realization)�
n+1 = [ ⋅ ] , � n+1 = [ ⋅ ]

for k = n..1����������������
Hk =: UkΣkV∗

k

dk = rank(Σk)� k = (UkΣk)(:, 1 : dk)�
k = V∗

k(1 : dk, :)

Ak =
�

k [ 0
�

k+1 ]∗

Ck =
�

k(:, 1)

Bk = � k+1(1, :)

Dk = T(k,k)

end

Algorithm 1. The realizationalgorithm.

To this end, we usethe fact that Hk satisfiesa shift-invarianceproperty: for example,with H←
2 denotingH2 without its first

column,we have

H←
2 =

������ B1

B0A1

B−1A0A1

...

� ����
 ⋅ A2 ⋅ [C3 A3C4 A3A4C5 ����� ] .

In general,H←
k = � kAk

�
k+1, and in much the sameway, H �k = � k−1Ak−1

�
k, where H �k is Hk without its first row. The shift-

invariancepropertiescarry overto � k and
�

k, e.g.,
�

k = Ak
�

k+1, andwe obtainthatAk =
�

k
� ∗

k+1(
�

k+1
� ∗

k+1)
−1, where‘∗’ denotes

complexconjugatetransposition. The inverseexistsbecause
�

k+1 is of full rank. Ck follows as the first columnof the chosen�
k, while Bk is the first row of � k+1. It remainsto verify that � k and

�
k are indeedgeneratedby this realization. This is

straightforwardby a recursiveuseof the shift-invarianceproperties. �
The constructionin the aboveproof leadsto a realizationalgorithm(algorithm1). In this algorithm,A(:, 1 : p) denotesthe first

p columnsof A, andA(1 : p, :) the first p rows. The key part of the algorithmis to obtaina basis
�

k for the rowspaceof each

Hankelmatrix Hk of T. The singularvaluedecomposition(SVD)[12] is a robusttool for doing this. It is a decompositionof H k

into factorsUk, Σk, Vk, whereUk andVk are unitary matriceswhosecolumnscontainthe left and right singularvectorsof H k,

andΣk is a diagonalmatrix with positiveentries(the singularvaluesof H k) on the diagonal.The integerdk is setequalto the

numberof nonzerosingularvaluesof Hk, andV∗
k(1 : dk, :) containsthe correspondingsingularvectors.The rows of V∗(1 : dk, :)

spanthe row spaceof Hk. Note that it is natural that d1 = 0 and dn+1 = 0, so that the realizationstartsand endswith zero

numberof states.The restof the realizationalgorithmis straightforwardin view of the shift-invarianceproperty. It is in fact

very reminiscentof the PrincipalComponentidentificationmethodin systemtheory[13].

The aboveis only an algorithmicoutline. BecauseHk+1 hasa large overlapwith Hk, an efficient SVD updatingalgorithmcan

be devisedthat takesthis structureinto account.Note that, basedon the singularvaluesof H k, a reducedordermodel can be

obtainedby taking a smallerbasisfor
�

k, a techniquethat is known in the time-invariantcontextasbalancedmodel reduction.

Althoughwidely usedfor time-invariantsystems,this is in fact a “heuristic” modelreductiontheory, asthemodelingerrornorm

is not known. A preciseapproximationtheoryresultsif the toleranceon the error is given in termsof the Hankelnorm[7 ].
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4. ORTHOGONAL EMBEDDING OF CONTRACTIVE TIME-VARYING SYSTEMS

This sectiondiscussesa constructivesolution of the problemof the realizationof a given (strictly) contractivetime-varying

systemas the partial transferoperatorof a losslesssystem.This problemis alsoknown as the Darlingtonproblemin classical

network theory [14], while in control theory, a variantof it is known as the BoundedReal Lemma [15]. The constructionis

donein a statespacecontextandgivesrise to a time-varyingRicatti-typeequation.We arenecessarilybrief here;detailscanbe

foundin [9].

The problem settingis the following. Let be given the transferoperatorT of a contractivecausallinear time-varyingsystem

with n1 inputs and n0 outputsand finite dimensionalstatespace,and let Tk = � Ak, Bk, Ck, Dk � be a given time-varyingstate

spacerealizationof T (asobtainedin the previoussection).Thendeterminea unitaryandcausalmulti-port Σ (correspondingto

a losslesssystem)suchthat T = Σ11, alongwith a staterealizationΣΣΣ, where

Σ = � Σ11 Σ12

Σ21 Σ22 � , ΣΣΣk = � AΣ,k CΣ,k

BΣ,k DΣ,k � .

Without lossof generalitywe canin additionrequire ΣΣΣ to be a unitaryrealization:(ΣΣΣkΣΣΣ∗
k = I, ΣΣΣ∗

kΣΣΣk = I). SinceT∗T+ Σ∗
21Σ21 = I,

this will be possibleonly if T is contractive: I − TT∗ ≥ 0. While it is clear that contractivityis a necessarycondition,we will

requirestrict contractivityof T in thesequel,which is sufficient to constructa solutionto theembeddingproblem.(Theextension

to theboundarycaseis possiblebut its derivationis non-trivial.)

Theorem 3. Let T be an upper triangular matrix, with state realization T k = � Ak, Bk, Ck, Dk � . If T is strictly contractive

and T is controllable: � ∗
k � k > 0 for all k, then the embeddingproblem has a solution Σ with a losslessrealization ΣΣΣk =� AΣ,k, BΣ,k, CΣ,k, DΣ,k � , suchthat Σ11 = T. This realizationhas the following properties(where T hasn1 inputs,n0 outputs,and

dk incomingstatesat instantk):

• AΣ is stateequivalentto A by an invertible statetransformationR, i.e., AΣ,k = RkAkR−1
k+1,

• Thenumberof inputsaddedto T in Σ is equalto n0,

• Thenumberof addedoutputsis time-varyingand givenby dk − dk+1 + n1 ≥ 0.

PROOF (partly). The easypart of the proof is by construction,but the harderexistenceproofsareomitted. We usethe property

that a systemis unitary if its realizationis unitary, andthat T = Σ 11 if T is a submatrixof ΣΣΣ, up to a statetransformation.

Step1. of the constructionis to find, for eachtime instantk, a statetransformationRk andmatricesB2,k andD21,k suchthat the

columnsof ΣΣΣ1,k,

ΣΣΣ1,k =

��� Rk

I

I

�	�
 ��� Ak Ck

Bk Dk

B2,k D21,k

�	�
 � R−1
k+1

I �
are isometric,i.e., (ΣΣΣ1,k)∗ΣΣΣ1,k = I. Upon writing out the equations,we obtain,by puttingM k = R∗

kRk, the setof equations��� �� M = A∗MA + B∗B + B∗
2B2

0 = A∗MC + B∗D + B∗
2D21

1 = C∗MC + D∗D + D∗
21D21

(3)

which by substitution leadto

Mk+1 = A∗
kMkAk + B∗

kBk + � A∗
kMkCk + B∗

kDk 
 (I − D∗
kDk − C∗

kMkCk)−1 � D∗
kBk + C∗

kMkAk 
 .

This equationcanbe regardedasa time-recursiveRicatti-type equationwith time-varyingparameters.It canbe shown(see[9])

that (I − D∗
kDk − C∗

kMkCk) is strictly positive(henceinvertible) if T is strictly contractiveandthatM k+1 is strictly positivedefinite
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In: � Tk � (a controllablerealizationof T, � T � < 1)

Out: � ΣΣΣk � (a unitary realizationof embeddingΣ)

R1 = [ ⋅ ]

for k = 1..n����������������������

Te,k = � Rk

I � ��� Ak Ck

Bk Dk

0 I

� �

T �e,k := ΘkTe,k Θk J-unitary, andsuchthat T �e,k(2, 2) = T �e,k(1, 2) = T �e,k(2, 1) = 0

T �e,k =:

��� Rk+1 0

0 0

B2,k D21,k

� �

ΣΣΣ1,k =

��� Rk

I

I

� �
 ��� Ak Ck

Bk Dk

B2,k D21,k

� �
 � R−1
k+1

I �
ΣΣΣk = � ΣΣΣ1,k ΣΣΣ⊥

1,k 

end

Algorithm 2. Theembeddingalgorithm.

(henceRk+1 existsandis invertible) if T is controllable.B2,k andD21,k aredeterminedfrom (3) in turn as

D21,k = (I − D∗
kDk − C∗

kMkCk)1/2

B2,k = −(I − D∗
kDk − C∗

kMkCk)−1/2 � D∗
kBk + C∗

kMkAk 

Step2. Find a complementarymatrix ΣΣΣ2,k suchthat ΣΣΣk = � ΣΣΣ1,k ΣΣΣ2,k 
 is a squareunitary matrix. This is alwayspossibleand

reducesto a standardexercisein linear algebra.It canbe shownthat thesystemcorrespondingto ΣΣΣk is indeedan embeddingof

T. �
Theembeddingalgorithmcanbe implementedusingtheproofof theembeddingtheorem.However, asis well known,theRicatti

recursionson Mi canbe replacedby moreefficient algorithmsthat recursivelycomputethe squareroot of M i , i.e., Ri , insteadof

Mi itself. Thesearethe so-calledsquare-rootalgorithms.The existenceof suchalgorithmshasbeenknownfor a long time; see

e.g.,Morf [16] for a list of pre-1975references.The square-rootalgorithmis given in algoritm 2. The algorithmactson data

knownat thek-th step: the statematricesAk, Bk, Ck, Dk, andthe statetransformationRk obtainedat the previousstep.This data

is collectedin a matrix Te,k. The key of the algorithmis the constructionof a J-unitary matrix Θ: Θ ∗JΘ = J, where

J =

��� I

I

−I

�	�
 ,

suchthat certainentriesof T �e,k = ΘTe,k are zero. We omit the fairly standardtheoryon this. It turnsout that, becauseΘk is

J-unitarity, we havethat T �e,kJTe,k = T∗
e,kJTe,k; writing theseequationsout andcomparingwith (3) it is seenthat the remaining

non-zeroentriesof T �e,k arepreciselythe unknownsRk+1, B2,k andD21,k. It is alsoa standardtechniqueto factor Θ evenfurther

down into elementary(J)-unitary operationsthat eachact on only two scalarentriesof T e. With B2 and D21 known, it is

conjecturedthat it is not really necessaryto apply the statetransformationby R andto determinethe orthogonal complementof

ΣΣΣ1, if in the endonly a cascadefactorizationof T is required,muchas in [17].
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5. CASCADE FACTORIZATION OF LOSSLESS MULTI-PORTS

In theprevioussection,it wasdiscussedhow a strictly contractivetransferoperatorT canbe embeddedinto a losslessscattering

operatorΣ. We will now derive minimal structuralfactorizations,and correspondingcascadenetworks,for arbitrary lossless

multi-ports Σ with squareunitary realizations� ΣΣΣk � . The networksynthesisis a two-stagealgorithm:

1. Using unitary statetransformations,bring ΣΣΣ into a form that allows a minimal factorization(i.e., a minimal numberof

factors). We chooseto make the A-matrix of ΣΣΣ upper triangular. This leadsto a QR-iteration on the � Ak � and is the

equivalentof the Schurdecompositionof A that would be requiredfor time-invariantsystems.

2. Using Givensrotationsextendedby I to the correctsize, factor ΣΣΣ into a productof suchelementarysections.From this

factorization,the cascadenetworkfollows directly.

While the factorizationstrategyis more or less clear-cut, given a statespacematrix that allows a minimal factorization,the

optimal(or desired)cascadestructureis not. We will presenta solutionbasedon ΣΣΣ itself. However, manyothersolutionsexist,

for examplebasedon a factorizationof a J-unitarytransferoperatorrelatedto Σ, yieldingnetworkswith equalstructurebut with

different signalflow directions;this typeof networkis favoredin the time-invariantsettingfor selectivefilter synthesisandwas

first derivedby DeprettereandDewilde [18] (seealso[19]). To avoid eigenvaluecomputations,cascadefactorizationsbasedon

a statetransformationto Hessenberg form arealsopossible[20, 21]. In the time-varyingsetting,eigenvaluecomputationsare in

a naturalway replacedby recursionsconsistingof QR factorizations,so this motivationseemsno longerto be an issue.

5.1. Time-varying Schur decomposition

Let Ak be the A-matrix of ΣΣΣ at time k. The first stepin the factorizationalgorithmis to find squareunitarystatetransformations

Qk suchthat

Q∗
k Ak Qk+1 = Rk (4)

hasRk uppertriangular. If Ak is not square,say of size dk × dk+1, thenRk will be of the samesizeandalsobe rectangular. In

that case,‘upper triangular’ is understoodasusualin QR-factorization,i.e., the lower-left d × d corner(d = min[dk, dk+1]) of Rk

consistsof zeros(figure 4). In the time-invariantcase,expression(4) would readQ∗AQ = R, and the solutionis thenprecisely

theSchur-decomposition of A. In thatcontext,themaindiagonalof A consistsof its eigenvalues,which arethe(inversesof the)

polesof the system. In the presentcontext,relation(4) is effectively the (unshifted)QR-iterationalgorithmthat is sometimes

usedto computeeigenvaluesif all Ak are the same[12]:

Q∗
1 A1 =: R1Q∗

2

Q∗
2 A2 =: R2Q∗

3

Q∗
3 A3 =: R3Q∗

4�����
Eachstepin the computationamountsto a multiplicationby thepreviouslycomputedQ k, followed by a QR-factorizationof the

result,yielding Qk+1 andRk. Sincewe are in the contextof finite uppertriangularmatriceswhosestaterealizationstartswith 0

statesat instantk = 1, we can takeas initial transformationQ1 = [ ⋅ ].

5.2. Elementary Givens Rotations

We saythat Σ̂ is an elementaryorthogonalrotationif Σ̂ is a 2 × 2 unitarymatrix,

Σ̂ = � c∗ s

−s∗ c � , (5)

11



0 00

(a) (b) (c)

Figure 4. Schurforms of ΣΣΣk. (a) Constantstatedimension,(b) shrinkingstatedimension,(c) growing statedimension.

with cc∗ + ss∗ = 1. An importantpropertyof elementaryrotationsis that they can be usedto zero a selectedentry of a given

operator:for given a andb, thereexistsan elementaryorthogonalrotation Σ̂ suchthat

Σ̂∗ � a

b � = � a �
0 � ,

i.e., suchthat s∗a + c∗b = 0 anda � = (a∗a + b∗b)1/2. In this case,Σ̂ is calleda Givensrotation,andwe write Σ̂ = givens[a; b] in

algorithms. Givensrotationswill be usedin thenext sectionto factora givenstaterealizationinto pairsof elementaryrotations,

or elementarysections. The basic operation,the computationof one such pair, is merely the applicationof two elementary

Givensrotations:let T be a 3 × 3 matrix

T =

��� a c1 c2

b1 d11 d12

b2 d21 d22

� �

suchthat it satisfiesthe orthogonality conditions � a∗ b∗

1 b∗
2 
 T = [I 0 0], thenthereexist elementaryrotationsΣΣΣ1, ΣΣΣ2 such

that ΣΣΣ∗
2ΣΣΣ∗

1T = T � , with

ΣΣΣ1 =

��� c∗
1 s1

−s∗
1 c1

I

� �
 , ΣΣΣ2 =

��� c∗
2 s2

I

−s∗
2 c2

� �
 , T � =

��� I 0 0

0 d �11 d �12

0 d �21 d �22

� �
 .

5.3. Factorization

Let be given a losslessstate realization ΣΣΣ of a losslesstwo-port Σ. For each time instant k, we will constructa cascade

factorizationof ΣΣΣk by repeateduseof the abovegenericfactorizationstep. Assumethat a preprocessingstatetransformation

basedon the Schurdecompositionhasbeencarriedout, i.e., thateachΣΣΣk hasits Ak uppertriangular. For the sakeof exposition,

we specializeto the casewhereAk is a squared × d matrix and Σ hasa constantnumberof two inputsand outputs,but the

methodis easilygeneralized.Thus

ΣΣΣk = � Ak Ck

Bk Dk � =

����������
a ⋅ ⋅ ⋅ c1 c2

• ⋅ ⋅ ⋅ ⋅
• ⋅ ⋅ ⋅

• ⋅ ⋅
b1 ⋅3 ⋅5 ⋅ d11 d12

b2 ⋅4 ⋅6 ⋅ d21 d22

� ��������
 (6)

For i = 1, ����� , d, j = 1, 2, let Σ̂ij beanelementary(Givens)rotationmatrix, anddenoteby ΣΣΣ ij theextensionof Σ̂ij to anelementary

rotation of the samesizeas ΣΣΣ, with ΣΣΣ ij = I exceptfor the four entries(i, i), (i, d+ j), (d+ j, i), (d+ j, d+ j), which togetherform
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In: ΣΣΣk (in Schurform;Ak : dk × dk+1, n1 inputs,n0 outputs)

Out: � ΣΣΣ ij � , � ΣΣΣ �ij � (elementaryrotations:factorsof ΣΣΣk)

– if dk > dk+1 (‘shrink’), permuterows of ΣΣΣk to havefirst dk − dk+1 statesappear

asextrainputs;n1 := n1 + dk − dk+1

– if dk < dk+1 (‘grow’), n0 := n0 + dk+1 − dk (surplusstatesappearasoutputs)

for i = 1..dk

for j = 1..n1� Σ̂ij = givens[ΣΣΣk(i, i); ΣΣΣk(dk + j, i)]
ΣΣΣk := ΣΣΣ∗

ij ΣΣΣk

end

ΣΣΣ � = DΣk (alsofactor ‘residue’)

for i = 1..n0

for j = 1..n1� Σ̂ �ij = givens[ΣΣΣ � (i, i); ΣΣΣ � (j, i)]
ΣΣΣ � := ΣΣΣ � ∗ij ΣΣΣ �

end

Algorithm 3. The factorizationalgorithm.

the given Σ̂ij . Then ΣΣΣk admitsa (minimal) factorization

ΣΣΣk = [ΣΣΣ1,1ΣΣΣ1,2] ⋅ [ΣΣΣ2,1ΣΣΣ2,2] ����� [ΣΣΣd,1ΣΣΣd,2] ⋅ ΣΣΣ � . (7)

into extendedelementaryrotations,wherethe ‘residue’ ΣΣΣ � is a staterealizationmatrix of the sameform as ΣΣΣk, but with A = I,

B = C = 0, andD unitary. The factorizationis basedon the cancellation,in turn, of the entriesof Bk of ΣΣΣk in equation(6). To

start,apply the genericfactorizationof section5.2 to the equally-namedentriesa, b1, b2 etc. in equation(6), yielding Givens

rotations Σ̂1,1 and Σ̂1,2, which are extendedby I to ΣΣΣ1,1 and ΣΣΣ1,2. The resultingstatespacematrix [ΣΣΣ∗
1,2ΣΣΣ∗

1,1] ΣΣΣk has(1, 1)-entry

a � = I, andof necessityzeroson theremainderof thefirst columnandrow. The factorizationcannow be continuedin the same

way, in the order indicatedby the labelingof the entriesof Bk in equation(6) by focusingon the second-till-lastcolumnsand

rows of this intermediateoperator. The result is the factorizationof ΣΣΣk in (7). Algorithm 3 summarizesthe procedurefor the

generalcaseof non-squareAk-matrices.In thecasethatthestatedimensionshrinks,i.e., dk > dk+1, thenif thefirst dk −dk+1 states

are treatedas inputs rather than states,but the actual factorizationalgorithmremainsthe same. If the statedimensiongrows

(dk < dk+1), thenthe statesthat areaddedcanbe treatedasextraoutputsin the factorizationalgorithm.

With the above factorization, it is seenthat the actual operationsthat are carried out are pairs of rotations. The network

corresponding to this factorizationschemeis as depictedin figure 3 of section2, where eachcircle indicatesan elementary

sectionas in equation(5). This picture is obtainedby consideringthe sequenceof operationsthat are applied to a vector

[x1,k x2,k ����� xdk,k ; uk zk] when it is multiplied by ΣΣΣk in factoredform. Eachstatevariableinteractswith eachinput quantity

[uk zk], after which it hasbecomea ‘next state’ variable. The residueΣΣΣ � appearsas the single rotationat the right. In the

picture,we put zk = 0 to obtainT as transferuk → yk. The secondaryoutputof Σ is discarded.
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