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ABSTRACT

Many computationakchemesn linear algebracan be studiedfrom the point of view of (discrete)time-varyinglinear systems
theory Forexample theoperatiorfmultipli cationof avectorby anuppertriangulamatrix’ canbe representetdy acomputational
scheme(or model) that acts on the entriesof the vector sequentially The numberof intermediatequantities(‘states’) that are

neededn the computationgs a measureof the complexityof the model. If the matrixis large butits complexityis low, thennot

only multiplication,but also otheroperationssuchas inversionand factorization,can be carriedout efficiently usingthe model

ratherthanthe original matrix. In the presentpaperwe discussa numberof techniquesn time-varyingsystemtheorythatcan

be usedto capturea given matrix into sucha computationahetwork.

1. INTRODUCTION
1.1. Computational algebra and time-varying modeling

In the intersectionof linear algebraand systemtheory is the field of computationallinear algebra Its purposeis to find
efficient algorithmsfor linear algebraproblems(matrix multiplication, inversion, approximation). A useful model for matrix
computatios is providedby dynamicalsystemtheory Sucha modelis often quite natural: in any algorithmwhich computes
a matrix multiplication or inversion,the global operationis decomposednto a sequenceof local operationghat eachacton a
limited numberof matrix entries(ultimately two), assistedby intermediatequantitiesthat connectthe local operations.These
guantites can be called the statesof the algorithm,andtranslateto the stateof the dynamicalsystemthat is the computational
modelof the matrix operation.Althoughmanymatrix operationsanbe capturedhis way by somelinear dynamicalsystem,our
interestis in matricesthat possessomekind of structurewhich allows for efficient (“fast”) algorithms:algorithmsthat exploit
this structure.Structurein a matrix is inheritedfrom the origin of the linear algebraproblem,andis for our purposegypically
dueto the modelingof some(physical)dynamicalsystem.Many signalprocessingapplicationsjnversescatteringproblemsand
leastsquaresestimationproblemsgive structuredmatricesthat canindeedbe modeledby a low complexity network.

Besidessparsematrices(many zero entries),traditioral structuredmatricesare Toeplitzand Hankel matrices,which translateto

lineartime-invarianiLTI) systems.Associateccomputationatlgorithmsarewell-known,e.qg.,for Toeplitzsystemave haveSchur

recursiongor LU- and Choleskyfactorization[1], Levinsonrecursionsfor factorizationof the inverse[2], Gohbeg/Semencul
recursionsfor computingthe inverse[3], and Schurbasedrecursionsfor QR factorization[4]. The resultingalgorithmshave
computingcomplexity of order @(n?) for matricesof size (n x n), as comparedto O(n®) for algorithmsthat do not take the

Toeplitz structureinto account.

In this paper we pursuea complementarynotion of structurewhich we will call a statestructure. The statestructureapplies
to uppertriangular matricesand is seeminglyunrelatedto the Toeplitz structurementionedabove. A first purposeof the
computatimal schemesconsideredn this paperis to performa desiredlinear transformationl on a vector (‘input sequence’\,
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Figure 1. Computationahetworkcorrespondingo T.

with anoutputvectoror sequence = uT astheresult. The keyideais thatwe canassociatavith this matrix-vectormultiplication
a computatioal networkthattakesu andcomputesy, andthatmatriceswith a sparsestatestructurehavea computationahetwork
of low complexitysothat usingthe networkto computey is moreefficient thancomputinguT directly. To introducethis notion,

consideran uppertriangularmatrix T alongwith its inverse,

1 12 U6 1/24 1 -1/2
. 1 U3 112 . 1 -13
1 14 1 -14
1 1

The inverseof T is sparsewhich is an indicationof a sparsestatestructure. The computationahetworkcorrespondindo T is
depictedin figure 1, andit is readily verified that the network doesindeedcompute[y: V> VY3 Va] =[ur Uz Uz Us]T. The
computatimsin the networkare split into sectionswhich we will call stageswherethe k-th stageconsumesi, andproducesy.
The dependencef vk on u;, (i < k) introducesintermediatequantitesxy calledstates At eachpointk the processoin the stage
at that point takesits input datauy from the input sequenceas and computesa new outputdatayy which is part of the output
sequenceg generatedy the system.To executethe computationthe processowill usesomeremainderof its pasthistory; i.e.,
the statexs, which has beencomputedby the previousstagesand which was temporarilystoredin registersindicatedby the
symbolz. The complexity of the computationahetworkis equalto the numberof statesat eachpoint. The total numberof
multiplicationsrequiredin the examplenetworkthatare differentfrom 1 is 5, ascomparedo 6 in a directcomputationusingT.
Although we havegainedonly one multiplicationhere,for a lessmoderateexample,say a (n x n) uppertriangularmatrix with
n = 10000andd < n statesat eachpoint, the numberof multiplicationsin the networkis only @ (4dn), insteadof @(1/2n ?) for
a directcomputatiorusingT. Note thatthe numberof statescanvary from one pointto the other dependingon the natureof T.
In the exampleabove,the numberof statesenteringthe networkat point 1 is zero,andthe numberof statedeavingthe network
at point 4 is also zero. If we would changethe value of one of the entriesof the 2 x 2 submatrixin the upperright cornerof T
to a differentvalue,thentwo stateswould have beenrequiredto connectstage? to stage3.

The computationsn the network can be summarizedy the following recursionfor k=1 to n:

" + uB, C
y=uT _ X1 XACHUB Mer W =[% ud Tk, Tk:[Ak k

B. Dy (1)

Yk XkCx + UkDx

in which xi is the statevectorat time k (takento havedy entries)Ax is a di x dk+1 (possiblynon-squarejnatrix, By is a 1 X dy+1
vector, Cy is a dy x 1 vector andDy is a scalar More generalcomputationahetworkswill havethe numberof inputsandoutputs
at eachstageto be differentfrom one, and possiblyalso varying from stageto stage. In the example,we have a sequencef
realizationmatrices

T, = g o T,= 3 1 T, = V2 1 T, = 01
v2 1 3 1 V2 1 01




wherethe ‘[ indicatesentriesthat actually have dimension0O becausethe correspondingstatesdo not exist. The recursionin

equation(1) showsthatit is a recursionfor increasingvaluesof k: the orderof computationsn the networkis strictly from left

to right, andwe cannotcomputey, unlesswe know x, i.e., unlesswe haveprocessedy - - - U—;. On the otherhand,yx doesnot
dependon uy; - - - Un. Thisis a directconsequencef the fact that T hasbeenchosenuppertriangular so that suchan ordering
of computationss indeedpossible.

1.2. Time-varying systems

A link with systemtheoryis obtainedwhen T is regardedas the transfermatrix of a non-statbnary causallinear systemwith
inputu andoutputy = uT. Thek-th row of T thencorrespondso theimpulseresponsef the systemwhenexcitedby animpulse
attime instanti, thatis, the outputy dueto aninputvectoru with entriesu; = &. The casewhereT hasa Toeplitz structurethen
correspondsvith a time-invariantsystemfor which the impulseresponselueto animpulseattimei + 1 is just the sameasthe
responsalueto animpulseat time i, shiftedover oneposition. The computationahetworkis calleda staterealizationof T, and
the numberof statesat eachpoint of the computationahetworkis calledthe systemorderof the realizationat thatpointin time.
For time-invariantsystemsthe staterealizationcan be chosenconstantin time. Sincefor time-varyingsystemsthe numberof
statevariablesneednot be constanin time, but canincreaseandshrink, it is seenthatin this respecthe time-varyingrealization
theoryis muchricher, andthatthe accuracyof an approximatingcomputationahetworkof T canbe variedin time at will.

1.3. Sparse computational models

If the numberof statevariablesis relatively small, thenthe computationof the outputsequencas efficient in comparisorwith
a straightcomputationof y = uT. One exampleof a matrix with a small statespaceis the casewhereT is an uppertriangular
band-matrix:T;; = 0 for j—i > p. In this case,the statedimensionis equalto or smallerthanp. However the statespacemodel
canbemuchmoregenerale.g.,if a bandedmatrix hasaninverse,thenthis inverseis knownto havea sparsestatespace(of the
samecomplexity)too, aswe hadin the exampleabove.Moreover this inversioncanbe easily carriedout by local computations
on therealizationof T:

y=uT = u=yTt=:yS
Xeel = XA+ uBy ~ X1 = XA — CDB) + YD Bx 0 s-= A-CD'Bc -CiD*
Yo = XCy+uDy u = %CDt +yDt DBy Dt

Observethatthe modelfor S= T~ is obtainedin alocal way from the modelof T: Sy dependnly on Ty. The sumandproduct
of matriceswith sparsestatestructurehaveagaina sparsestatestructurewith numberof statesat eachpoint not largerthanthe
sum of the numberof statesof its componenisystemsand computationahetworksof thesecompositiongbut not necessarily
minimal ones)can be easily derivedfrom thoseof its components.

At this point, one might wonderfor which class of matricesT there exists a sparsecomputationalnetwork (or state space
realization}thatrealizesthe samemultiplicationoperator For an uppertriangular(n x n) matrix T, definematricesH; (1 <i <n),
which are submatriceof T, as

Ti-1i Tivier - Ti-in

H, = Ti2i  Ti-2ji+1 :
. T2,n
Ty - Tyn1r o Tan

(seefigure 2). We call the H; (time-varying)Hankelmatrices,astheywill havea Hankelstructure(constantlonganti-diagonals)
if T hasa Toeplitz structure! In termsof the Hankelmatrices,the criterion by which matriceswith a sparsestatestructurecan
be detecteds given by the following Kroneckeror Ho-Kalman[5] type theorem(provenin section3).

1warning: in the currentcontext(arbitrary uppertriangularmatrices)the H; do not havea Hankelstructureand the predicate’Hankel matrix' could lead
to misinterpretationsOur terminologyfinds its motivationin systemtheory wherethe H; arerelatedto an abstracoperatorH + which is commonlycalledthe
Hankeloperator For time-invariantsystemsH+ reducego anoperatorwith a matrix representatiothat hasindeeda Hankelstructure.
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Figure 2. Hankelmatricesare (mirrored) submatricesf T.

Theorem 1.  The numberof statesthat are neededat stagek in a minimal computationaihetwork of an upper triangular
matrix T is equalto the rank of its k-th Hankelmatrix H .

Let’s verify this statemenfor our example.The Hankelmatricesare

1/4
Hi=[000], Ho=[12 U6 124], He=| 3 Y221 .o | vi2
16 1/24 Uoa

SincerankHi) = 0, no statesx; are needed. One stateis neededfor x, and one for x4, becauserankH,) = rankH,) = 1.
Finally, also only one stateis neededfor x3, becauserankHs) = 1. In fact, this is (for this example)the only non-trivial
rank condition if one of the entriesin H3 would have beendifferent, then two stateswould have beenneeded. In general,
rankH;) < min(i —1,n—i — 1), andfor a generaluppertriangularmatrix T without statestructure,a computationamodel will
indeedrequireat mostmin(i — 1, n—i — 1) statesfor x;.

2. OBJECTIVES OF COMPUTATIONAL MODELING

With the precedingsectionas backgroundmaterial, we are now in a positionto identify the objectivesof our computational
modeling. We will assumehroughouthatwe are dealingwith uppertriangularmatrices. However applicationswhich involve

othertype of matricesare viable if they providesometransformatiorto the classof uppertriangularmatricesare obtained.lIt is

for examplepossibleto put Choleskyfactorizationof positive matricesin the contextof uppermatrices(by meansof a Cayley
transformatio). In addition,we assumehatthe conceptof a sparsestatestructureis meaningfufor the problem,in otherwords

thata typical matrix in the applicationhasa sequenceof Hankel matricesthat haslow rank (relative to the size of the matrix),

or thatan approximatiorof that matrix by onewhoseHankelmatriceshavelow rankwould indeedyield a usefulapproximation
of the underlying(physical)problemthatis describedby the original matrix.

For sucha matrix T, the genericobjectiveis to determinea minimal computationamodel {T «} for it by which multiplications
of vectorsby T are effectively carried out, but in a computatimally efficientand numerically stablemanner This objectiveis
dividedinto four subproblemsy1) realizationof a given matrix T by a computationamodel, (2) embeddingof this realization
in a largermodelthat consistentirely of unitary (losslessktages(3) factorizationof the stagesf the embeddingnto a cascade
of elementary(degree-1)osslesssections.It could very well be that the originally given matrix hasa computationamodel of
avery high order Thenintermediaten the abovesequencef stepsis (4) approximationof a givenrealizationof T by one of
lower complexity Thesestepsare motivatedbelow

Realization

Thefirst stepis, given T, to determineany minimal computationahetworkT y = {Ay, Bk, Ck, Dk} thatmodelsT. This problemis
known as the realizationproblem If the Hankel matricesof T havelow rank, thenT is a computationallyefficient realization
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of the operation'multiplication by T.

L ossless embedding

From T, all otherminimal realizationsof T can be derivedby statetransformationsNot all of thesehavethe samenumerical
stability. This is becausehe computationahetwork hasintroduceda recursiveaspectto the multiplication: statesare usedto
extractinformationfrom the input vector u, and a single statexy givesa contributon both to the currentoutputyy andto the
sequence.1, X2 etc. In particular a perturbatiorin X, (or ug) alsocarriesoverto this sequence Supposehat T is boundedn
norm by somenumber say|| T|| < 1, sothatwe canmeasureperturbatiorerrorsrelativeto 1. Thena realizationof T is saidto
be errorinsensitiveif || Tk || < 1, too. In thatcase,anerrorin [x u] is not magnifiedby Ty, andtheresultingerrorin [Xi1 k]
is smallerthanthe original perturbation.Hencethe questionis: is it possibleto obtaina realizationfor which || T || < 1if T
is suchthat|| T|| < 1? The answeris yes, and an algorithmto obtainsucha realizationis given by the solutionof the lossless
embeddingroblem This problemis the following: for a givenmatrix T with || T|| < 1, determinea computationamodel { X}
suchthat(1) eachZy is a unitary matrix, and (2) T is a subsystenof the transfermatrix = that correspondso { 2}. The latter
requiremenimeansthat T is the transfermatrix from a subsetof the inputsof X to a subsetof its outputs: > can be partitioned
conformablyas

s = [ 211 212

221 222

Thefactthat T is a subsystenof ~ impliesthata certainsubmatrixof Zy is a realizationTy of T, and hencefrom the unitarity
of Zx we havethat||Ty|| < 1. Fromthe constructiorof the solutionto the embeddingoroblem;it will follow thatwe canensure
that this realizationis minimal, too.

] y T:Z]_l.

Cascade factorization

Assumingthat we have obtainedsuch a realization %y, it is possibleto break down the operation‘multiplicationby X’ on
vectors[xx Ug] into a minimal numberof elementaryoperationsgachin turn acting on two entriesof this vector BecauseXy
is unitary, we canuseelementaryunitary operationgactingon scalars)of the form

Cc S

[al bl] [ _& CD] :[3.2 bz], Cd]+SSD: 1,

i.e., elementaryrotations. The use of suchelementaryoperationswill ensurethat Zi is internally numericallystable,too. In
orderto make the numberof elementaryrotationsminimal, the realization X is transformedto an equivalentrealizationX’,
which realizesthe samesystemz, is still unitary andwhich still containsa realizationT ‘ for T. A factorizationof eachZ; into
elementaryrotationsis knownasa cascaderealizationof 2. A possibleminimal computationamodelfor T that correspondso
sucha cascadeealizationis drawnin figure 3. In this figure, eachcircle indicatesan elementaryrotation. The preciseform of
the realizationdependon whetherthe statedimensionis constant,shrinksor grows. The realizationcan be divided vertically
into elementarysections whereeachsectiondescribeshow a single stateentryis mappedto an entry of the ‘next state’vector
X1 It hasa numberof interestingproperties;oneis thatit is pipelineable which is interestingif the operation'multipli cation
by T is to be carriedout on a collectionof vectorsu on a parallelimplementatiorof the computationahetwork. The property
is a consequencef the fact thatthe signalflow in the networkis strictly uni-directional:from top-left to bottom-right so that
computatims on a newvectoru (a new ux anda new x,) cancommencan the top-left part of the network, while computations
on the previousu are still beingcarriedout in the bottom-rightpart.

Approximation

In the previousitems, we haveassumedhat the matrix T hasindeeda computationamodelof an orderthatis low enoughto
favor a computationahetwork over an ordinary matrix multiplication. However if the rank of the Hankel matricesof T (the

2|| T|| is the operatomorm (matrix 2-norm)of T: || T|| = SUPjy)1 [UT]l2-
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Figure3. Cascadeealizationsof a contractivesystemT, stagek. (a) Constantstatedimension,(b) shrinking statedimension,(c) growing
statedimension.Outputsmarkedby ‘00 areignored.

systemorder) is not low, then it makesoften senseto approximateT by a new uppertriangularmatrix T, that hasa lower
complexity While it is fairly knownin linear algebrahow to obtaina (low-rank) approximantto a matrix in a certainnorm
(e.g.,by useof the singularvalue decompositior(SVD)), suchapproximationsare not necessarilyappropriatefor our purposes,
becausehe approximantshouldbe uppertriangularagain,and have a lower systemorder Becausethe systemorder at each
pointis given by the rank of the Hankelmatrix at that point, a possibleapproximationschemeis to approximateeachHankel
operatorby onethatis of lower rank (this could be doneusingthe SVD). However becausehe Hankel matriceshave many
entriesin common,it is not clearat oncethat suchan approximationschemes feasible: replacingone Hankelmatrix by one of
lower rankin a certainnorm might makeit impossiblefor the next Hankelmatrix to find an optimal approximant.The severity
of this dilemmais mitigatedby a properchoice of the error criterium. In fact, it is remarkablethat this dilemmahasa nice
solutin, andthat this solutioncan be obtainedin a non-iterativemanner The error criterion for which a solutionis obtained
is called the Hankel norm and denotedby || O||n: it is the supremumover the operatornorm (the matrix 2-norm) of each
individual Hankelapproximationanda generalizatiorof Hankelnorm for time-invariantsystems.In termsof the Hankelnorm,
the following theoremholdstrue and generalizegshe model reductiontechniquesasedon the Adamyan-Arov-Kreinpaper[6]
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to time-varyingsystems:

Theorem 2. ([7]) Let T be a strictly upper triangular matrix and let ' = diag(y) be a diagonal Hermitian matrix which
parametrizeghe acceptableapproximation tolerance(y; > 0). Let Hy be the Hankelmatrix of 1T at stagek, and supposehat,
for eachk, noneof the singularvaluesof Hy are equalto 1. Thenthere existsa strictly uppertriangular matrix T, with system
order at stagek equalto the numberof singularvaluesof Hy that are larger than 1, suchthat

ITHT-Ta)|n < 1.

In fact, thereis an algorithmthat determinesa modelfor T, directly from a modelof T. I' can be usedto influencethe local
approximatbn error. For a uniform approximation]” = yl, andhence||T—Ta||n < y : the approximants y-closeto T in Hankel
norm,which impliesin particularthatthe approximatiorerrorin eachrow or columnof T is lessthany. If oneof the y; is made
larger than y, thenthe error at the i-th row of T can becomelarger also, which might resultin an approximantT ; to take on
lessstates.Hencel” canbe chosento yield an approximanthatis accurateat certainpointsbut lesstight at others,andwhose
complexityis minimal.

In the remainderof the paper we will discussan outline of the algorithmsthatareinvolvedin thefirst threeof the aboveitems.
A full treatmentof item 1 was publishedin [8], item 2 in [9], anditem 3 was part of the treatmentin [10]. Theoryon Hankel
norm approximatios is available[7, 11] butis omittedherefor lack of space.

3. REALIZATION OF A TIME-VARYING SYSTEM

The purposeof this sectionis to give a proof of the realizationtheoremfor time-varyingsystemgspecializedo finite matrices):
theoreml of sectionl.3. A moregeneralanddetaileddiscussiorcanbe foundin [8]. Recallthatwe aregivenanuppertriangular
matrix T, and view it asa time-varyingsystemtransferoperator The objectiveis to determinea time-varyingstaterealization
for it. The approachis asin Ho-Kalmans theoryfor the time-invariantcase[5]. Denotea certaintime instantas‘currenttime’,
apply all possibleinputsin the ‘past’ with respectto this instant,and measurethe correspondingutputsin ‘the future’, from
the currenttime instanton. For eachtime instant,we selectin this way an upperright part of T: theseareits Hankel matrices
asdefinedin the introducton. Theoreml claimedthatthe rank of Hy is equalto the orderof a minimal realizationat point k.

ProOOF of theoreml. The complexitycriterioncanbe derivedstraightforwardlyandthe derivationwill give rise to a realization
algorihm aswell. Supposethat {Ay, Bk, Ck, Dk} is a realizationfor T asin equation(1). Thena typical Hankel matrix hasthe
following structure:

B1C B1A2C3 B1AACs - -- B,
BoA1Co BoA1ACs BoA
Ho = : = Co AsCs AACy ---
’ B-1A0A1C; . BLuAA, | HC2 ACs AACs -] )
= (.0,

From the decompositiorHy = CkOx it is directly inferredthatif Ay is of size (dk % dk+1), thenrank(Hy) is at mostequalto dy.
We haveto showthat thereexistsa realization{Ay, B, Cy, Dk} for which dyx = rank(Hy): if it does,thenclearly this mustbe a
minimal realization. To find sucha minimal realization,take any minimal factorizationHy = CcOx into full rank factorsCy and
Ok. We mustshowthatthereare matrices{ A, By, Ck, Dk} suchthat

By-1
Ck= | Br2Ac1 Ok=[Ck ACk1 AA:1Ci2 -] .



In: T (an uppertriangularmatrix)
Out: {T«} (a minimal realization)
Onm1=[0,Ca =11
fork=n.1
[ He = U
dc = rankXy)
Ck = (UG, 1 dy)
Oc = V{(1:dy,>)
Ac = Okl0 Owil”
Ck = O,
B« = Cwi(l)
Dk = T(kKk
end

Algorithm 1. The realizationalgorithm.

To this end, we usethe fact that Hy satisfiesa shift-invarianceproperty: for example,with H; denotingH, without its first
column,we have

By

BoAL

H2 =1 B

A OC; AsCs AGALCs -- ] .

In general,Hy = CAOke1, andin much the sameway, H} = Ci-1A1Ok, whereH! is Hy without its first row. The shift-
invariancepropertiescarry overto Cx and Oy, e.9., 0 = AOk+1, andwe obtainthat Ay = OO (Ok101,) ™, whereP denotes
complexconjugatetranspositio. The inverseexistsbecausady.; is of full rank. Cy follows as the first column of the chosen
O, while By is the first row of Cys. It remainsto verify that Cx and Oy are indeedgeneratedoy this realization. This is
straighforward by a recursiveuseof the shift-invarianceproperties. |

The constructionin the aboveproof leadsto a realizationalgorithm (algorithm1). In this algorithm,A(:, 1 : p) denoteghe first

p columnsof A, andA(1 : p,:) thefirst p rows. The key part of the algorithmis to obtaina basisO for the rowspaceof each
Hankelmatrix Hx of T. The singularvaluedecompositior(SVD)[12] is a robusttool for doing this. It is a decompositiorof H
into factorsUy, X, Vi, whereUy and Vi are unitary matriceswhosecolumnscontainthe left and right singularvectorsof Hy,

and Xy is a diagonalmatrix with positive entries(the singularvaluesof H) on the diagonal. The integerdy is setequalto the
numberof nonzerosingularvaluesof Hy, and V{(1 : dx, :) containsthe correspondingingularvectors. The rows of VH(1: dy, )

spanthe row spaceof Hy. Note thatit is naturalthatd; = 0 and dn+; = 0O, so that the realizationstartsand endswith zero
numberof states. The restof the realizationalgorithmis straightforwardn view of the shift-invarianceproperty It is in fact

very reminiscentof the Principal Componenidentificationmethodin systemtheory[L3].

The aboveis only an algorithmicoutline. BecauseHy.1 hasa large overlapwith Hy, an efficient SVD updatingalgorithmcan
be devisedthat takesthis structureinto account. Note that, basedon the singularvaluesof Hy, a reducedorder modelcan be
obtainedby taking a smallerbasisfor O, a techniquethatis knownin the time-invariantcontextas balancedmodelreduction.
Although widely usedfor time-invariantsystemsthisis in fact a “heuristic” modelreductiontheory asthe modelingerrornorm
is notknown. A preciseapproximationtheoryresultsif the toleranceon the erroris givenin termsof the Hankelnorm[7].
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4. ORTHOGONAL EMBEDDING OF CONTRACTIVE TIME-VARYING SYSTEMS

This sectiondiscusses constructivesolution of the problemof the realizationof a given (strictly) contractivetime-varying

systemas the partial transferoperatorof a losslesssystem. This problemis also known asthe Darlingtonproblemin classical
networktheory[14], while in control theory a variantof it is known asthe BoundedReal Lemma([15]. The constructionis

donein a statespacecontextandgivesrise to a time-varyingRicatti-typeequation.We are necessarilybrief here;detailscan be
foundin [9].

The problem settingis the following. Let be given the transferoperatorT of a contractivecausallinear time-varyingsystem
with n; inputsand ny outputsand finite dimensionalstatespace,and let Ty = {A, Bk, C«, Dk} be a given time-varyingstate
spacerealizationof T (asobtainedin the previoussection). Thendeterminea unitary and causalmulti-port = (correspondindo

a losslesssystem)suchthat T = 2,1, alongwith a staterealizationX, where

Ask Csi

2 2
5 11 12 5
Bz,k Dz,k

221 2

Without lossof generalitywe canin additionrequire X to be a unitaryrealization: (X = |, ZZ = 1). SinceT'T+25,55, =1,
this will be possibleonly if T is contractive:l - TT” > 0. While it is clearthat contractivityis a necessarycondition, we will
requirestrict contractivityof T in the sequelwhich is sufficientto constructa solutionto the embeddingproblem. (The extension
to the boundarycaseis possiblebut its derivationis non-trivial.)

Theorem 3. Let T be an upper triangular matrix, with state realizaton T x = {Ax, Bk, Ck, D«}. If T is strictly contractive
and T is contollable: CCx > 0 for all k, thenthe embeddingproblemhas a solution = with a losslessrealization X =
{As k Bs k: Cs .k, D5k}, suchthat 233 = T. This realizationhas the following properties(where T hasn; inputs,ng outputs,and
dk incomingstatesat instantk):

« A; is stateequivalento A by an invertible statetransformationR, i.e., As x = RAR L,

» Thenumberof inputsaddedto T in X is equalto ny,

» Thenumberof addedoutputsis time-varyingand givenby dy — dg+1 + hy = 0.

ProOOF (partly). The easypart of the proof is by constructionput the harderexistenceproofsare omitted. We usethe property
thata systemis unitaryif its realizationis unitary, andthatT = 2, if T is a submatrixof Z, up to a statetransformation.

Stepl. of the constructionis to find, for eachtime instantk, a statetransformatiorRy and matricesB;x and D21 suchthatthe
columnsof X y,
R Ac G Ra
PR | B« D« +
| Bok D2k

areisometric,i.e., (Z1x) "1k = . Uponwriting out the equationsyve obtain,by puttingM « = R'R;, the setof equations

M = AMA + BB + BB
0 = AMC + B'D + BiDy 3)
1 = CiMC + DD + Dngzj_

which by substitutio lead to
Mz = AMA+BB  + [AMC +BDy (I - DiDx = CMkCi) ™ [DiB + CiMKAY]

This equationcan be regardedas a time-recursiveRicatti-type equationwith time-varyingparameterslt canbe shown(see[9])
that (I - DDk — CiM«Cy) is strictly positive (henceinvertible)if T is strictly contractiveandthatM .1 is strictly positivedefinite
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In: {T«} (a controllablerealizationof T, ||T|| < 1)
Out: {%} (a unitary realizationof embedding>)
Ri=[0
for k=1..n
[ . . R Ac C
ek = | Bx Dk
L 0 |
ek = OTex O J-unitary andsuchthat Tg (2,2) = T. (1,2) = Tg(2,1)=0
[ IQk+1 0
Tex = 0 0
| B2k Daik
[ R A
25k = | By
I | Bok
[ T = [Z T
end

Algorithm 2. The embeddingalgorithm.

(henceR; existsandis invertible)if T is controllable.B,k and D53k are determinedrom (3) in turn as

(I - DDk = CiMCi) V2
—(I - DDk - CiMCi) ™2 [ D} Bk + CiMAY]

Do1k
Bk

Step2. Find a complementarymatrix 2,y suchthat £ = [y 2,4 is a squareunitary matrix. This is always possibleand
reducedo a standardexercisein linear algebra. It canbe shownthat the systemcorrespondingo Xy is indeedan embeddingpf
T. .

The embeddinglgorithmcanbe implementedisingthe proof of the embeddingheorem.However asis well known, the Ricatti
recursionon M; canbe replacedoy more efficient algorithmsthat recursivelycomputethe squareroot of M, i.e., R, insteadof
M; itself. Thesearethe so-calledsquare-rooalgorithms. The existenceof suchalgorithmshasbeenknownfor a long time; see
e.g., Morf [16] for a list of pre-1975references.The square-rootlgorithmis givenin algoritm 2. The algorithmactson data
knownat the k-th step: the statematricesAg, Bk, Ck, Dk, andthe statetransformatiorRy obtainedat the previousstep. This data
is collectedin a matrix T . The key of the algorithmis the constructionof a J-unitary matrix ©: ©“JO = J, where

suchthat certainentriesof T4, = OT¢ are zero. We omit the fairly standarctheory on this. It turnsout that, becausedy is
J-unitartty, we havethat T | JTex = TE’kJTe,k; writing theseequationsout and comparingwith (3) it is seenthatthe remaining
non-zeroentriesof T, are preciselythe unknownsRy:1, Bz and D21 k. It is alsoa standardechniqueto factor © evenfurther
down into elementary(J)-unitary operationsthat eachact on only two scalarentriesof T.. With B, and D,; known, it is
conjecturedhatit is not really necessaryo apply the statetransformatiorby R andto determinethe orthogoral complemenbf
%,, if in the endonly a cascaddactorizationof T is required,muchasin [17].
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5. CASCADE FACTORIZATION OF LOSSLESS MULTI-PORTS

In the previoussection,it wasdiscussedow a strictly contractivetransferoperatorT canbe embeddednto a losslessscattering
operatorz. We will now derive minimal structuralfactorizations,and correspondingascadenetworks,for arbitrary lossless
multi-ports Z with squareunitary realizations{ Zc}. The networksynthesiss a two-stagealgorithm:

1. Using unitary statetransformationspring Z into a form that allows a minimal factorization(i.e., a minimal numberof
factors). We chooseto make the A-matrix of X uppertriangular This leadsto a QRiteration on the {Ax} andis the
equivalentof the Schurdecompositiorof A thatwould be requiredfor time-invariantsystems.

2. Using Givensrotationsextendedby | to the correctsize, factor X into a productof suchelementarysections.From this
factorization the cascadenetworkfollows directly.

While the factorizationstrategyis more or less clearcut, given a state spacematrix that allows a minimal factorization,the
optimal (or desired)cascadestructureis not. We will presenta solutionbasedon X itself. However many other solutionsexist,
for examplebasedon a factorizationof a J-unitarytransferoperatorelatedto %, yielding networkswith equalstructurebut with
differert signalflow directions;this type of networkis favoredin the time-invariantsettingfor selectivefilter synthesiandwas
first derivedby Deprettereand Dewilde[18] (seealso[19]). To avoid eigenvaluecomputationsgascaddactorizationsbasedon
a statetransformatiorto Hessenbey form are alsopossible[20, 21]. In the time-varyingsetting,eigenvaluecomputationsrein
a naturalway replacedby recursionsconsistingof QR factorizations so this motivationseemsno longerto be anissue.

5.1. Time-varying Schur decomposition

Let A be the A-matrix of X attime k. The first stepin the factorizationalgorithmis to find squareunitary statetransformations
Qk suchthat
QUAQu1 = R 4)

hasRy uppertriangular If Ay is not square,say of size di X dk+1, thenR¢ will be of the samesize and also be rectangular In

that case,'upper triangular is understoods usualin QR-factorization,i.e., the lower-left d x d corner(d = min[dy, dk+1]) of Rk

consistsof zeros(figure 4). In the time-invariantcase,expression(4) would read Q“AQ = R, andthe solutionis then precisely
the Schurdecomposibn of A. In thatcontext,the maindiagonalof A consistsof its eigenvalueswhich arethe (inversesof the)

polesof the system. In the presentcontext, relation (4) is effectively the (unshifted)QR-iterationalgorithmthatis sometimes
usedto computeeigenvaluesf all A, arethe same[12]:

QAT = RS
GA = R
QA = RQf

Eachstepin the computatioramountsto a multiplicationby the previouslycomputedQy, followed by a QR-factorizationof the
result,yielding Qy+1 andR¢. Sincewe arein the contextof finite uppertriangularmatriceswhosestaterealizationstartswith 0
statesat instantk = 1, we cantakeasinitial transformatiorQ; = [ [J.

5.2. Elementary Givens Rotations

We saythat¥ is an elementaryorthogonalrotationif 3 is a 2 x 2 unitary matrix,

. 0
Z=[_CSD ] ®
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@) (b) (©

Figure 4. Schurforms of Z. (a) Constanttatedimension(b) shrinking statedimension,(c) growing statedimension.

with ccP + s¢’ = 1. An importantpropertyof elementaryrotationsis that they can be usedto zero a selectedentry of a given
operator:for givena andb, thereexistsan elementaryorthogonalrotation & suchthat

-

i.e., suchthats’a+ cth = 0 anda’ = (a“a+ b™)V2. In this case,s is calleda Givensrotation,and we write 5 = givenga; b] in
algorithms. Givensrotationswill be usedin the next sectionto factor a given staterealizationinto pairsof elementaryrotations,
or elementarysections. The basic operation,the computationof one such pair, is merely the applicationof two elementary

Givensrotations:let T be a 3 x 3 matrix
a ‘ C1 Co

T=1 Dby |dy dp2
b2 ‘ tpy 22
suchthatit satisfiesthe orthogonally conditions [aD b bﬂ T=[l 0 0], thenthereexistelementaryrotationsX;, ¥, such
that 2,50 = T/, with

CE! G = 1o o
=] -5 @ , Z,= l , T'=]0/d}; df
I 5 o 0|ds dj

5.3. Factorization

Let be given a losslessstaterealization X of a losslesstwo-port . For eachtime instantk, we will constructa cascade
factorizationof Xy by repeateduse of the abovegenericfactorizationstep. Assumethat a preprocessingtatetransformation
basedon the Schurdecompositiorhasbeencarriedout, i.e., thateachZy hasits Ax uppertriangular For the sakeof exposition,
we specializeto the casewhere A, is a squared x d matrix and ~ hasa constanthumberof two inputs and outputs,but the

methodis easilygeneralized.Thus

'a O 00 ¢ Co

o0 o O
C OO O

5. = Ac G| _ ©)
Bx Dk .0 O

bi @ § 0Odn di2
| b @ @ Odn do2

Fori=1,-..,d,j=1,2,let iij be an elementaryGivens)rotationmatrix, anddenoteby ¥; the extensiorof iij to anelementary
rotatian of the samesizeas Z, with Zj = | exceptfor the four entries(i, i), (i, d+j), (d+], i), (d+j, d+j), which togetherform
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In: pI% (in Schurform;Ax : di X di+1, N1 iNputs, Ny outputs)
Out:  {Zj}, {Z{} (elementaryrotations:factorsof X)

—if dyx > dis1 (‘shrink’), permuterows of Zy to havefirst dy — dy+1 Statesappear
as extrainputs;ny := Ny + dx — dis1
—if dx < die1 (‘grow’), ng :=ng + dis1 — d (Surplusstatesappearas outputs)

fori=1.d
forj=1.m
[ 5 = givendZi(i,i); (ck+, i)
I = ZijDZk
end
Y’ =Ds, (alsofactor ‘residue’)
fori=1.ng
forj=1.m
l i"! = givendZ’(i,i); Z'(j, )]
o= Zi]!DZ’
end

Algorithm 3. The factorizationalgorithm.

the given iij . ThenZX, admitsa (minimal) factorization

3y = [Z0120) O0221202] - - - [Zd1Z42] . 7)

into extendecelementaryrotations,wherethe ‘residue’ ' is a staterealizationmatrix of the sameform as Xy, butwith A=1,
B = C =0, andD unitary. The factorizationis basedon the cancellation,in turn, of the entriesof By of Zy in equation(6). To
start, apply the genericfactorizationof section5.2 to the equally-namedentriesa, by, by etc. in equation(6), yielding Givens
rotatins 211 and 21 ,, which are extendedby | to 211 and £1,. The resultingstatespacematrix [Z7,Z7,] Z has(1,1)-entry
a’ = |, andof necessityzeroson the remainderof the first columnandrow. The factorizationcan now be continuedin the same
way, in the orderindicatedby the labeling of the entriesof By in equation(6) by focusingon the second-till-astcolumnsand
rows of this intermediateoperator The resultis the factorizationof Xy in (7). Algorithm 3 summarizeghe procedurefor the
generalkcaseof non-squaréy-matrices.In the casethatthe statedimensionshrinks,i.e., dx > dk+1, thenif thefirst dy—dk; states
are treatedas inputs ratherthan states,but the actual factorizationalgorithm remainsthe same. If the statedimensiongrows
(dk < dk+1), thenthe statesthat are addedcan be treatedas extra outputsin the factorizationalgorithm.

With the above factorization, it is seenthat the actual operationsthat are carried out are pairs of rotations. The network
correspondig to this factorizationschemeis as depictedin figure 3 of section2, where eachcircle indicatesan elementary
sectionas in equation(5). This picture is obtainedby consideringthe sequenceof operationsthat are appliedto a vector
[Xik X2k «-* X4k s Uk Z] whenit is multipliedby Z in factoredform. Eachstatevariableinteractswith eachinput quantity
[uc z], after which it hasbecomea ‘next state’ variable. The residueX’ appearsas the single rotation at the right. In the
picture,we put zc = 0 to obtainT astransferux — y«. The secondanoutputof X is discarded.
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