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In a multipath communication scenario, it is often relevant to es-
timate the directions and relative delays of each multipath ray.
We derive a closed-form subspace-based algorithm for the joint
high-resolution estimation of both angles and delays from mea-
sured impulse response data, assuming knowledge of the modula-
tion pulse shape function. The algorithm uses a 2-D ESPRIT-like
shift-invariance technique to separate and estimate the phase shifts
due to delay and direction-of-incidence, with automatic pairing of
the two parameter sets.

1. INTRODUCTION

Source localization is one of the recurring problems in electrical en-
gineering. In mobile communications, source localization by the
base station is of interest for advanced handover schemes, emer-
gency localization, and potentially many user services for which a
GPS receiver is impractical. In a multipath scenario, this involves
the estimation of the directions and relative delays of each multi-
path ray. It is often assumed that the directions and delays of the
paths do not change quickly, as fading affects only their powers, so
that it makes sense to estimate these parameters. The parameters
are essential for space-time selective transmission in the downlink,
especially in FDD systems.

In this paper, we derive an algorithm for the joint high-resolution
estimation of multipath angles and delays, assuming linearly mod-
ulated sources with a known pulse shape function and no apprecia-
ble doppler shifts. Specifically, we work under the following con-
ditions:

1. The number of sources is small. For convenience, we con-
sider only one source here.

2. The multipath consists of discrete rays, each parameterized
by a delay, complex amplitude (fading), and angle.

3. A channel estimate is available.

4. Doppler shifts and residual carriers of sources are neglected.

5. The source signals are received by a uniform linear antenna
array consisting of at least two antennas spaced at half-
wavelength or closer. (Extensions are possible.)

6. The data received by the antennas is sampled at or above the
Nyquist rate.

The method is based on a transformation of the impulse response
data by a DFT and a deconvolution by the known pulse shape func-
tion, which transforms temporal shifts into phase shifts in the fre-
quency domain. This is of course a classical approach and has been
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Figure 1. Multiray propagation channel

considered e.g., in [1, 2] as well. New in this paper is the obser-
vation that by stacking the result into a Hankel matrix, the prob-
lem is reduced to one that can be solved using 2-D ESPRIT tech-
niques [3, 4], which was developed for joint azimuth-elevation es-
timation. Thus, the algorithm is closed-form and computationally
attractive, and angles and delays are jointly estimated and automat-
ically paired. The number of rays may be larger than the number
of antennas.

2. DATA MODEL

Assume we transmit a digital sequence {sk} over a channel, and
measure the response using M antennas. The noiseless received
data in general has the form x � t ��� ∑N

k � 1 skh � t − kT �	� where T is
the symbol rate, which will be normalized to T � 1 from now on.
A commonly used multiray propagation model, for specular mul-
tipath, writes the M × 1 channel impulse response as

h � t �
� r

∑
i � 1

a � αi � βig � t − τi �
where g � t � is a known pulse shape function by which {sk} is mod-
ulated. In this model, there are r distinct propagation paths, each
parameterized by � αi � τi � βi � , where αi is the direction-of-arrival
(DOA), τi is the path delay, and βi ∈ |C is the complex path attenua-
tion (fading). The vector-valued function a � α � is the array response
vector to a signal from direction α.

Suppose h � t � has finite duration and is zero outside an interval�
0 � L � , where L is the (integer) channel length. We assume that

the received data x � t � is sampled at a rate P times the symbol
rate. Using either training sequences (known {sk}) or perhaps
blind channel estimation techniques, it is possible to estimate h � k � ,
k � 0 � 1P � · · · � L − 1

P , at least up to a scalar.

Collect the samples of the known waveform g � t � into a row vector
g � � g � 0 � g � 1P � · · · g � L − 1

P ���� The data model can be written as

H : � �
h � 0 � · · · h � L − 1

P ��� �
a1 · · · ar � �� β1

. . .
βr

�����
g1...
gr

�� � : ABG
(1)
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Figure 2. Definition of parameters. � a � time domain, � b � frequency domain.

where ai � a � αi � , and gi � � g � t −τi �� k � 0 � 1 � P� ··· � L−1 � P is a row vector
containing the samples of g � t − τ � .
The delay estimation algorithm is based on the property that the
Fourier transform maps a delay to a phase shift. Thus let g̃ � gF
where F denotes the DFT matrix of size LP × LP, defined by

F : �
����� 1 1 · · · 1

1 φ · · · φLP−1

...
...

...
1 φLP−1 · · · φ � LP−1 � 2

� ���� � φ � e− j 2π
LP �

If τ is an integer multiple of 1
P , or if g � t � is bandlimited∗ and we

sample at or above the Nyquist rate, then it is straightforward to
see that the Fourier transform g̃τ of the sampled version of g � t − τ �
is given by g̃τ � � 1 φτP � φτP � 2 · · · � φτP � LP−1 � diag � g̃ � . The same
holds approximately true if τ is not an integer multiple of 1

P , de-
pending on the bandwidth of g � t � and the number of samples LP.
Thus we can write the Fourier-transformed data model H̃ : � HF as
H̃ � ABFdiag � g̃ � , where

FLP : � ��� 1 φ1 φ2
1 · · · φLP−1

1
...

...
...

1 φr φ2
r · · · φLP−1

r

� �� � φi : � e− j 2π
L τi

(we usually omit the size index of F). The next step is to do a
deconvolution of g � t � by dividing H̃ by diag � g̃ � . Obviously, this
can be done only on intervals where g̃ is nonzero. To be specific,
assume that g � t � is bandlimited with bandwidth Wmax (that is, its
Fourier transform is nonzero only for frequencies | f | ≤ 1

2Wmax), and
that P � Wmax. Then g̃ has at most LWmax nonzero entries, and we
can limit our attention to this interval. For a raised-cosine pulse
shape with roll-off factor (excess bandwidth) ρ, we have Wmax �
1 � ρ, see figure 2. Usually, however, we would select a somewhat
smaller number, W say, since the entries at the border can be rela-
tively small as well, and their inversion can blow up the noise. In-
deed, in the case of a raised-cosine pulse, we advise to set W � 1
and select only the L center frequency samples.

Let Jg̃ : LP × LW be the corresponding selection matrix for g̃. (It
should be such that the selected frequencies appear in increasing

∗This is not in full agreement with the FIR assumption. The truncation
widens the pulse bandwidth, introducing a small bias due to aliasing.

order.) If there are no other (intermittent) zeros, we can factor g̃Jg̃

out of H̃Jg̃ and obtain

H̄ : � H FJg̃ {diag � g̃Jg̃ � }−1 � � M × LW ���
which (up to a possible phase shift in B) satisfies the model

H̄ � ABF � (2)

If r ≤ M, then it is possible to estimate the φi’s and hence the τi’s
from the shift-invariance structure of F, independent of the struc-
ture of A, which is essentially the ESPRIT algorithm. To estimate
the DOAs as well, we need to know the array manifold structure.
For simplicity, we will assume a uniform linear array (ULA) con-
sisting of omnidirectional elements with interelement spacing of
∆ wavelengths, but other configurations are possible. The correct
pairing of the τi’s to the αi’s requires the use of ideas from 2-D
DOA estimation (viz. [3, 4]).

In general, the number of antennas is not large enough to satisfy
M � r. We can avoid this problem by constructing a Hankel matrix
out of H̄.

3. JOINT DELAY AND ANGLE ESTIMATION

3.1. Algorithm outline

Our objective is to estimate { � αi � τi � } from the shift-invariance
properties present in the data model H̄ � ABF. Let us assume that
our antenna array is a uniform linear array consisting of M omni-
directional antennas spaced at a distance of ∆ wavelengths. For
integers 2 ≤ m1 ≤ LW , 1 ≤ m2 ≤ M − 1, define

Θ � diag
�
θ1 · · · θr ��� Aθ �

����� 1 · · · 1
θ1 · · · θr
...

...
θM−m2

1 · · ·θM−m2
r

� ���� � θi : � e j2π∆sinαi �

Φ � diag
�
φ1 · · · φr ��� Aφ �

����� 1 · · · 1
φ1 · · · φr
...

...
φm1−1

1 · · ·φm1−1
r

� ���� � φi � e− j 2π
L τi �



Also define the following equal-sized submatrices of H̄:

H̄ � i � j � � ��� H̄i � j · · · H̄i � LW−m1 � j
...

...
H̄M−m2 � i � j · · ·H̄M−m2 � i � LW−m1 � j

� �� � 1 ≤ i ≤ m2 �
1 ≤ j ≤ m1 �

Using (2), it is straightforward to show that H̄ � i � j � has a factoriza-
tion H̄ � i � j � � AθBΘi−1Φ j−1F. If we now construct a Hankel-like
matrix � as

� � ��� H̄ � 1 � 1 � · · · H̄ � m2 � 1 �
...

...
H̄ � 1 �m1 � · · ·H̄ � m2 �m1 �

� �� � m1 � M−m2 � 1 � ×m2 � LW −m1 � 1 �	�
then � has a factorization

���"! B # : �
����� Aθ

AθΦ
...

AθΦm1−1

� ����
B
�
F ΘF · · · Θm2−1F �

The parameters m1 and m2 should be used to ensure that this is a
rank-deficient matrix, if possible (this puts a limit on the number
of rays that can be estimated). Usually the number of antennas is
limited and we would select m2 � 1, but m2 � 1 is needed to ensure
that # is full rank in case two sources have the same delay.
The idea is to estimate the column span of � , which is equal to the
column span of ! provided # is full rank. Note that !$�$� Aφ % Aθ � ,
where % denotes a column-wise Kronecker product. The estimation
of Φ and Θ from the column span of � is based on exploiting the
various shift-invariant structures present in Aφ % Aθ. Define selec-
tion matrices

Jxφ : � � Im1−1 01 � ⊗ IM−m2 � 1 � Jxθ : � Im1 ⊗
�
IM−m2 01 ���

Jyφ : � � 01 Im1−1 � ⊗ IM−m2 � 1 � Jyθ : � Im1 ⊗
�
01 IM−m2 ���

and let Xφ � Jxφ � , Yφ � Jyφ � , Xθ � Jxθ � , Yθ � Jyθ � . These data
matrices have the structure&

Xφ � A ' B #
Yφ � A ' ΦB # &

Xθ � A ' ' B #
Yθ � A ' ' ΘB # (3)

where A '(� Jxφ ! , A ' '(� Jxθ ! . If dimensions are such that these are
low-rank factorizations, then we can apply the 2-D ESPRIT algo-
rithm [3, 4] to estimate Φ and Θ. In particular, since

Yφ − λXφ � A ' �Φ − λIr � B #
Yθ − λXθ � A ' ' �Θ − λIr � B #

the φi are given by the rank reducing numbers of the pencil � Yφ � Xφ � ,
whereas the θi are the rank reducing numbers of � Yθ � Xθ � . These are
the same as the nonzero eigenvalues of X†

φYφ and X†
θYθ. († denotes

the Moore-Penrose pseudo-inverse.)

The correct pairing of the φi with the θi follows from the fact that
X†

φYφ and X†
θYθ have the same eigenvectors, which is caused by

the common factor # . In particular, there is an invertible matrix V
which diagonalizes both X†

φYφ and X†
θYθ. Various algorithms have

been derived to compute such joint diagonalizations. Omitting fur-
ther details, we propose to use the diagonalization method in [3],
although the algorithm in [4] can be used as well. As in ESPRIT,
the actual algorithm has an intermediate step in which � is reduced
to its r-dimensional principal column span, and this step will form
the main computational bottleneck.

3.2. Data extension

Since the eigenvalues � φi � θi � are on the unit circle, we can double
the dimension of � by forward-backward averaging. In particu-
lar, let J denote the exchange matrix which reverses the ordering
of rows, and define� e � � � J � � c � ��� � m1 � M − m2 � 1 � × 2m2 � LW − m1 � 1 �)���
where � c � indicates taking the complex conjugate. Since J !*� c � �! Φ− � m1−1 � Θ− � M−m2 � , it follows that � e has a factorization� e �+! Be # e �"! �B #"� Φ−m1 � 1Θ−M � m2 B � c � # � c � ���
The computation of Φ and Θ from � e proceeds as before. It is at
this point possible to do a simple transformation to map � e to a
real matrix, which will keep all subsequent matrix operations real
as well. This has numerical and computational advantages and is
detailed in [4].

3.3. Identifiability

To identify Φ and Θ from � e and (3), necessary conditions are that
the submatrices Axφ and Axθ of ! are “tall”, while # e is “wide”, i.e.,� a � r ≤ � m1 − 1 �,� M − m2 � 1 �� b � r ≤ m1 � M − m2 �� c � r ≤ 2m2 � LW − m � 1 ���
Subject to these conditions, we can try to maximize the number of
rays that can be identified for given M and LW , by optimizing over
m1 and m2. This is analytically feasible only if we assume contin-
uous parameters, which after some calculations then produces

if LW ≥ M � 1
2 - 2 : ./ 0 rmax � � LW � 1 � M � 2 − - 2 � 2

m1,opt � � LW � 1 �,� 2 − - 2 �
m2,opt � M � - 2 − 1 �

if LW ≤ M − 1
2 - 2 : ./ 0 rmax � LW � M � 1 �,� 2 − - 2 � 2

m1,opt � 1 � LW � 2 − - 2 �
m2,opt � � M � 1 �1� - 2 − 1 �

(4)
Additional conditions should hold true if multiple rays can have
equal delays or directions. In particular, we can show that the fol-
lowing is necessary and (almost) sufficient for identifiability of r
rays with at most d equal delays: (4) holds, and

m2 ≥ 1
2 d � M ≥ 3

2 d

Similarly, r rays with at most d equal angles are identifiable if and
(almost) only if (4) holds, and

m1 ≥ d � 1 � LW ≥ 3
2 d

3.4. Cramer-Rao bound

The Cramer-Rao bound (CRB) provides a lower bound on the vari-
ance of any unbiased estimator. The bound for DOA estimation
(without delay spread) was derived in [5], and is readily adapted
to the present situation. Assuming the path fadings to be determin-
istic but unknown, we obtain for the model in (1) that

CRB � α � τ �
� σ2
h

2 2 real 3�4 ∗D∗P⊥
U D 46587 −1

(5)

where σ2
h is the variance of the noise on the entries of h � t � (assumed

to be i.i.d. white Gaussian noise), 4+� I2 ⊗ B, U � A � α � % GT � τ � ,
P⊥

U � U � U∗U � −1U∗ , and D � �A ' � α � % GT � τ �1� A � α � % G ' � τ � T � (prime
denotes differentiation, where each column is differentiated with
respect to the corresponding parameter and all matrices are evalu-
ated at the true parameter values).
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Figure 3. Standard deviation of estimates: � a � b � varying noise power, � c � d � varying angle and delay separation, with σx � −15 dB.

4. SIMULATION RESULTS

To illustrate the performance of the algorithm, we report some
computer simulation results. Here, we assume one user and an
array of M � 2 sensors. We also assume the communication proto-
col uses N � 40 training bits, from which the channel is estimated
using least squares. The pulse shape function is a raised cosine
with 0.35 excess bandwidth, truncated to a length of Lg � 6 sym-
bols. We set W � 1. Figure 3 shows the experimental variance of
the DOA and delay estimates as a function of standard deviation
σx of the (i.i.d. white Gaussian) noise on the received data, for a
scenario with r � 2 paths with angles

�
−10 � 20�:9 , delays

�
0 � 1 � 1 � T ,

fading amplitudes
�
1 � 0 � 8 � , a randomly selected but constant fading

phase, stacking parameters m1 � 3 � m2 � 1, and P � 2 times over-
sampling. It is seen that the difference in performance compared
to the CRB is approximately 4 dB. The bias of the estimates was at
least an order of magnitude smaller than their standard deviation.

The achievable resolution is demonstrated by varying the DOA and
delay of the second ray, keeping the DOA and delay of the first ray
fixed at � −10 9 , 0T � . The same parameters as before were used,
with noise power −15 dB. As expected, the performance in compar-
ison to the CRB suffers when both τ’s and α’s are closely spaced,
since with two antennas we cannot separate two rays with identical
delays using ESPRIT.
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