INTRODUCTION TO INTERFERENCE MITIGATION TECHNIQUESIN RADIO
ASTRONOMY

Amir Leshem and Alle-Jan van der Veen

Information Technology and Systems
Delft University of Technology
2628 CD Délft, The Netherlands
Email: leshem,allgjan@cas.et.tudelft.nl

Radio-astronomical observationsareincreasingly corrupted by RF interference. Online detectionand
filtering algorithms are becoming essential. To facilitate the introduction of such techniquesinto ra-
dio astronomy, we formulate the astronomical problem in an array signal processing language, and
give an introduction to some elementary algorithmsfrom that field. We consider two topicsin detail:
interference detection by rank estimation of short-term covariance matrices, and spatial filtering by
subspace estimation and projection. Finally, we discuss modifications necessary in the deconvolution
step after spatial filtering, and propose a simple algebraic solution for self-calibration.

1 INTRODUCTION

Radio-astronomical observations are increasingly corrupted by RF interferers such as wireless commu-
nication and satellite navigation signals. Online detection and filtering algorithms are essential to reduce
the effect of interference to an acceptablelevel. Until now, the most widely implemented algorithmisa
single-channel total power change detector, followed by ablanking of the correlator output. Friedman [4]
has implemented an improved power detection, which is based on detection of changein the power. We-
ber [16] proposed the use of the quantized correlation at all lagsto test the presence of interference. How-
ever these are al single channel detectors which do not exploit the spatial properties of the interference.
The only detector which used interferometry for on-line blanking was proposed in Kasper et al. [5] for
low frequency interferometry, where a robust data censoring method based on the temporal behavior of
the cross spectrum was proposed. The main drawback was the need of large number of estimated spec-
tra (10°) in order to obtain reliable robust estimates, and the fact that only two channels have been used.
Recently Barnbaum and Bradely have proposed to use adaptivefiltersto exciseinterferer from the Green-
Bank radio telescope using an LM S type agorithm [1].

The aim of the STW NOEMI project is to investigate the merits of multichannel detection and filtering
algorithms at the Westerbork Synthesis Radio Telescope (WSRT). By combining correlation information
from several sensors, we can increase the detection performancesignificantly, and al so estimate the spatial
signature of interferers. For this, it isessential to work in narrow sub-bands and detect the rank and dom-
inant eigenvectors of each correlation matrix [9]. After detection, theinterferenceis reduced by rejecting
corrupted time-frequency slots (blanking) or projecting out certain direction vectors (spatial filtering).

Thefirst approach is suitable for time-slotted communication signals such asin the GSM band, whereas
the second will greatly enhance the performance of continuously-present interference. We describe two
rank estimators. ageneralizedlikelihood ratio test, and the minimum-descriptionlength (MDL). Inamore
challenging direction, adaptive excision of RFI from astronomical observations can be done by estimating
spatial signature vectors of the interferersfrom short-term correlation matrices, followed by spatial filter-
ing using projections. Such an approach is very promising, but the usual self-calibration process needs
to be maodified. For thisreason, we reformulate the radio astronomical deconvolution step as a parameter
estimation problem. This provides a better understanding of the CLEAN algorithm, extending the work
of Schwarz [12].

The structure of the paper is asfollows. After posing the astronomical measurement equationsin section
2, wereformulate the model in terms of array processing matrix languagein section 3. Wethen introduce
RF interference and describe its effect on the received data. In section 5 we discuss various detection
algorithms. We compare the single and multichannel detectors, for the case of a narrow-band interferer
with known spatial signature vector, and then present two multichannel detectors that do not assumethis
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Figurel: (a) Theemitted electrical field fromthe celestial sphereisreceived by arotating telescopearray;
(b) after geometrical delay compensation, the objectsin thelook direction appear to be at the zenith; (c)
geometrical delay compensation

knowledge. We then move to spatial filtering techniques. In section 6 we formulate the basic ideas and
describe a projections based approach, computational issues and other possible approaches. In section 7,
we discuss the effect of spatial filtering on imaging, first in connection to Fourier-based techniques, then
reformulated as a parameter estimation problem, for which we would like to find the exact maximum
likelihood solution. The CLEAN and self-calibration agorithms are posed in matrix form and used to
derive a closed-form solution to the calibration step. We finish by describing the effect of spatial filtering
on the imaging step.

2 ASTRONOMICAL MEASUREMENT EQUATIONS
In this section we describe a simplified mathematical model for the astronomical measurement and imag-
ing process. Our discussion follows [10]. We begin with the measurement equation, and reformulate it

into amatrix form. This allows usto obtain a uniform description of various astronomical imaging oper-
ations such as deconvolution and self-calibration.

2.1 Measurement equation

Thesignalsreceived fromthe celestial spheremay be considered as spatially incoherent wideband random
noise. It is possibly polarized and perhaps contains spectral absorption or emission lines. Rather than
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considering the emitted electric field £7(R) at alocation R on the celestial sphere, where f is a specific
frequency, astronomers try to recover the intensity (or brightness) in the direction of unit-length vectors
S,

I;(s) = (& (s))R|?.

Let E¢(r) bethereceived celestial electric field at alocation r on earth (see figure 1(a)). The measured
correlation of the electric fields between two sensors ¢ and j with locationsr; and r; is called avisibility
and is (approximately) given by [10]

Vi(ri xj) = (Bf(ri) Ep(r;)") = /If(S)e_ﬂ”fsT(”_”)/c dQ.

Note that it is only dependent on the oriented distancer; — r; between the two telescopes; this vector is
called abasdline

2.2 Point source model

For simplification, we may sometimes assume that the astronomical sky isacollection of d discrete point
sources (maybe unresolved). This gives

Ip(s) = Is(s)d(s —sk),
k

where s;, isthe coordinate of the &’th source, and thus

d

Vi(ri,rj) = Z If(sk)e_ﬂ”fsz{(ri—rj)/q (1)
k=1

2.3 (u,v) coordinate system

Up to this point we have worked in an arbitrary coordinate system. For earth rotation synthesis arrays, a
coordinate system is often introduced as follows. We assume an array with telescopes that have a small
field of view and that track areference sourcelocationinthe sky. The geometrical delay associated to this
location is compensated by introducing a slowly time-variant delay in the first stage of the receiver (see
figure 1(c)). Theresult is that the reference location now appears to be located at the zenith (see figure
1(b)). Other locationsin the field of view can be written as

s=sy+ o, so Lo,
(valid for small o) and anatural coordinate systemis
so = [0, 0, 1], o=[¢, m,0.

Similarly, for aplanar array, the receiver baselines can be parameterized as

C
ri —r; = Au, v, 0], /\:ﬁ.
Note that this coordinate system is frequency dependent.

The measurement equation in (u, v) coordinates thus becomes

Vi(u,v) = // I7(6,m) eI qidm, .

It hasthe form of aFourier transformation. Thefunction V(u, v) issampled at various coordinates (u, v)
by first of all taking all possible sensor pairss, j, and second by realizing that the sensor locationsr;, r; are
actually time-varying since the earth rotates. Given sufficient samplesin the (u,v) domain, the relation
can be inverted to abtain an image (the ‘map’), which isthe topic in section 7.
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Figure 2: The astronomical correlation process

3 ARRAY SIGNAL PROCESSING FORMULATION
3.1 Obtaining the measurements

We will now describe the situation from an array signal processing point of view. The signals received
by the telescopes are amplified and moved to baseband. The first stages also implement a time-varying
delay for every telescope, to compensate for the geometrical delay and thus to synchronize the center
of the field-of-view. Following traditional array signal processing practices, the signals at this point are
called z;(t) rather than E(r), and are stacked in vectors

z1(t)
x(t)=1 + |,
Tp(t)
where p isthe number of telescopes. They are then processed by a correlation stage.

The main output of the telescope hardware is a sequence of correlation matrices, R (), for a set of
frequencies { fi.} covering a 10 MHz band or so, and for a set of times {¢; } covering 12 hours. Each
correlation matrix R () is an average over 10 to 30 seconds of cross-correlations of the p telescope
signalsx(t), whichisx(t) sub-band filtered at frequency f:

N-—
Rf(tr) = E{xs(te)x;(tx)"} ~ = Z (ty, +nT)x;(ty +nT)",

where NT = 10 s(thesuperscript ' denotesacomplex conjugatetranspose). Thisisdrawn schematically
in figure 2 (ignoring the detection stage for the moment).2 The matrices R(t;,) are stored for off-line
spectral analysis and imaging.

Typically, each sub-band has a bandwidth in the order of 100 kHz or less. Due to the sub-band filtering,
the original sampling rate of x(t) is reduced accordingly, resulting in 7" in the order of 10 us and the
number of samples NV in the order of 10°.

The connection of the correlation matrices R ¢ (t,) to the visibilities V¢ (u, v) in section 2 is as follows.
Each entry r;;(t) of R (tx) isasample of thisvisibility function for a specific coordinate (u, v), corre-
sponding to the baseline vector r; — r; between telescopes< and j at time ¢,

ri(tg) — rj(te) = A[uix — wjk, vik — vjk, 0]

Vi (uik — wjk, vik, — vji) = rij(tx) -

Note that we can obtain only a discrete set of (u,v) points. Indeed, the number of instantaneous inde-
pendent baselines between p antennasis less than %p(p — 1). Also, using the earth rotation, the number

aMany telescope sites including WSRT follow actually a different scheme where the signals are first correlated at several
lags and subsequently Fourier transformed. This leads to similar results.
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Figure 3: Sampled (ug, vx) pointsin the (u,v) planefor an East-West line array using the earth rotation

of samples {t, } is given by the ratio of the observation time and the covariance averaging time (e.g., 12
h/30 sec = 1440 samples). Asseenin figure 3, the available sample coordinates { uy, v } giveanirregular
cover of the (u, v) plane.

3.2 Matrix formulation

For the discrete source model, we can now formulate our measurement equations in terms of matrices.
Indeed, consider equation (1), written dightly different as

d
Viwilte),rs(te)) = D7 eI ennm/e sy ) il e e mrolfe
n=1
d . .
& Vf (qu — Ujk, Vik — U]k) = Z e*J(uiken‘H)ikmn) If(en’ mn) e*](ujken‘F’Ujkmn) i
n=1

We have introduced an arbitrary and time-varying reference point ry (), typicaly at the center of the
array, so that only the phase difference with respect to that point will be of interest. The (u, v) coordinates
are taken with respect to that point.

In terms of correlation matrices, this equation can be written as

Ry = Ay sBfAy; 2
where
Ak,f = [ak,f(sl)a Tt ak,f(sd)]
e—i2nfsT (r1(ty)—ro(ty))/c e~ J(uipltvigm)
ag,r(s) = : = :
e—i2mfs(te)” (rp(ti)—ro(ts))/c e J(uprl+vprm)
and
Iy
Bf = ’ In,f = If(sn) = If(enamn)-
Id’f

The vector functionay, ¢(s) or a, ¢(¢, m) iscalledthearray response vector in array signal processing. It
describesthe response to asourcein thedirection s (or equivalently (£, m)). Asusual, the array response
is frequency dependent. In this case, the response is also time-varying due to the earth rotation. Note,
very importantly, that the function as shown here is completely known, since we know the locations of
the telescopes very well.



3.3 Matrix formulation extended with antenna patterns

More redlistically, the array response is less perfect. The telescopes are not omnidirectional: each tele-
scope has its own beamshape (antenna pattern). Let A;(s) be the (complex) amplitude response of the
array towards direction s, then the array response vector ay, ¢(s) has to be redefined as

Ay(s) o d2nfsT(x1-ro)/c

AP(S) e—J2nfs(ty)” (rp—ro)/c

A significant simplification is possible if the telescopes are identical, up to unknown but direction inde-
pendent gain factors. Then the A;(s) can be factored as A;(s) = ;A(s). The function A(s) is known
from calibration and the same for all telescopes, and can be incorporated in the source intensity ¢(s),
i.e., the B-factor. Thuswe can leaveit out of the discussion from now on. The gains~y; may be different
among the tel escopes, as they also contain many other angle-independent effects such as cable |osses and
amplifier gains. In practice, they may also be (slowly) time-varying due to atmospheric conditions, so we
will write; .. The model now becomes

Ry s = TyAyBAy (T
where

M,k
I, =

Yp.k

contains the unknown complex gains. In future equations we will drop the dependence on f.

3.4 Additivenoise

In reality, most of the received signal consists of additive system noise. When this noise is zero mean,
independent among the antennas (thus spatially white), and identically distributed, then asymptotically
in N

R; = A;BA; + 1. (3)

Thus, the noise averages out everywhere, except on the main diagonal. Usually the noise is assumed to
be Gaussian.

When we have also unknown complex gains for each antenna, then
R; = [ A BAT} + 1. (4)

Note that this assumes that the noise isintroduced after the gains.

In reality, the system noise is dightly different at each receiver. It is reasonable to assume that the noise
is spatially white: the noise covariance matrix is diagonal. We can assumethat it can be estimated using
various calibration techniques, a simple diagonal scaling will then bring us back to the modd (4). We
further assumed that the quantization is fine, since alarge dynamic range is needed to cope with strong
interferers.

4 RFINTERFERENCE

RF interference usually enters the antennas through the sidel obes of the main beam. It can be stronger or
weaker than the system noise. Animportant property isthat it has a certain directivity, so that it does not
average out in the correlation process.



Examples of harmful RFI present at WSRT are television broadcasts (Smilde station), geolocation satel-
lites(GPS, Glonass), taxi dispatch systems, airplane communicationand navigation signals, wirel esscom-
munication (GSM) and satellite communication signals (Iridium). Thus, interferers may be continuous
or intermittent, narrow-band or wideband, and strong or weak.

4.1 Delaysof narrow-band signals

Let usdigressfor amoment and recall awell-known but important property of narrow-band signal's, which
saysthat ashort time delay translates to a phase shift. In signal processing, narrow-band signals are usu-
ally represented by their low-pass equivalents[11]. A real-valued bandpass signal with center frequency
fe, such as received by an antenna, can be written as

2(t) = real{s(t) - eI2Fet}
where the baseband signal s(t) is the complex envelope of the received signal z(t). It is obtained from
z(t) by demodulation.
In array signal processing, we are interested in the effect of small delays on the narrow-band baseband
signal s(t). A delay 7 on z(t) resultsin
2 (1) := 2(t — 1) = real{s(t — 7)e IS . eIty
so that the complex envelope of the delayed signal is s, (t) = s(t — 7)e 727/, If the bandwidth W of

s(t) issufficiently small so that exp(j27W ) = 1, then standard Fourier analysisyieldss(t — 1) =~ s(t),
so that

sr(t) = s(t)e 2™ forWr < 1.

The well-known conclusion is that, for narrow-band signals, time delays shorter than the inverse band-
width amount to phase shifts of the baseband signal. Thisisfundamental in phased array signal process-

ing.
4.2 Narrow-band interference model

Supposethat we haveasingleinterferer impinging onto thetelescopearray. Theinterfering signal reaches
the array with different delays 7; for each telescopes. After demodulation to baseband, we have

zi(t) = a; s(t — ;) e I i=1,---.,p.

Here, a; representsthe telescope gain in the direction of the interferer, including any possible attenuation
of the channel. Unlike much of the array signal processing literature, the a; are likely to be different for
each telescope since the interferer is typicaly in the near field. This implies that it impinges on each
telescope at a different angle, whereas the response of the telescopes is not omni-directional.

The model can be simplified if the narrow-band assumption holds: in that case s(t — 7;) = s(t). Note
that we have already assumed before that the signals are sub-band filtered. Let W be the bandwidth of
the sub-band filters. In WSRT, the largest baselineis 3000 m, corresponding to amaximal delay of 10 us.
Hence the narrow-band assumption holdsif W <« 100 kHz [9]. Under this condition, we can stack the p
telescope outputs from a particular sub-band filter in avector x¢(¢) and write

ale—j27rfc7'1
xp(t) = : s(t) =: as(t).

apeij27rfc,rp

Asbefore, aisan array responsevector. Unlikebefore, itisnot asimple or known function of thedirection
of theinterferer, sincewe are in the near field and the sidel obes of the array are not calibrated. Thevector
isalso called the spatial signature of the interfering source.
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Similarly, with ¢ interferers,

q Sl(t)
Xf(t)zzaij(t):As ) AS:[ala"'aaq]'
i=t sq(t)

The subscript ‘s’ isused to distinguish A ; from the array response matrix of the astronomical sources.
The corresponding correlation matrix and its estimate are

1 M-1
M Xy (tk + mT)x?(tk + mT) .

m=0

Ry = BE{xp(te)xs(t)"} = (Ao)k(Re)k(AY)k, Ry =

How well the estimate fits to R depends on the stationarity of the scenario, and is open to discussion.
(R)x depends on the second-order properties of the interfering signals. The power of television signals
will be stationary over long periods (order tens of seconds or better). At the other extreme, communica-
tion signals such as GSM are time dotted: time is partitioned into frames of about 5 ms and frames are
partitioned into 8 slots. Each user can transmit only during its ot of 0.577 ms and then has to be silent
for 7 timesthis period before transmitting again in the next frame. Thus, thereisashort-term stationarity
(over 0.577 ms), and a cyclostationarity with periods of about 5 ms.

The stationarity of A s(t;) dependson the stationarity of thelocation of theinterferer, its distance, and the
orientation of the telescopes. With multipath fading, a mobile interferer only has to move about 30 cm
to create a different a-vector, giving a stationarity in the order of 10-100 msfor a GSM user. Even for a
fixed interferer such as atelevision station, the rotation of the telescopes will change the a-vector within
a fraction of a second, either because of multipath fading or because the interferer moves through the
highly variable sidelobe pattern. After the a-vector has changed, the interferer effectively looks like a
new interferer, thus increasing the value of q.

The conclusion isthat Ry, isauseful estimate only over short averaging periods over which the interfer-
enceis stationary, say MT in the order of msec. Thus, M < N.

4.3 Overall model: astronomical signalswith interference and noise

In summary, the model that we have derived is as follows:
R; = T ABAT, + (Ao)k(Rs)k(As)y + o°1, k=0,1,---

Here, A, : p x disthearray response matrix of the d discrete sourcesin the sky. Its columns are known
functions of the (unknown) locations of the sources. It is a (very) wide matrix: d > p, and assumed
stationary over 10s. B : d x d isadiagona matrix (positive real) containing the brightness of each
source, and assumed time-invariant over the complete observation. I'y, are diagonal matrices (positive
real) representing unknown and slowly varying antenna gains.

A, : pxgqisthearray response matrix of theq interferers. Itislikely to be unstructured. Wewill consider
caseswhereq < p, sothat A; istal. R : ¢ x g istheinterference correlation matrix. A; and R, are
usually stationary only over very short time spans.

o1 isthe noise covariance matrix, assuming whitei.i.d. noisefor simplicity. The noise power o2 isoften
rather well known.

|AxBA}]|, i.e., the observed power of the astronomical sources, is at least two orders of magnitudes
smaller than o2, and for the purpose of detection, it can be ignored. In contrast, ||(A)x(Rs)k(As);
can be of comparable magnitude.



5 INTERFERENCE DETECTION

Ideally, the output of the correlation process are clean estimates of A BA ], once every 10 sor so. In
principle, we estimate it by

N-—
R0 (¢, Z (tx + nT)x;(ty + nT), NT =10s (5)

Aswe have seen, these estimates are corrupted by interference and additive system noise, and unknown
antenna gains. The objective of interference detection and rejection schemes isto improve the signal to
interference and noiseratio (SINR) at the output of the integrators, i.e., at the 10 slevel. Interferencethat
is stationary at these time scales or longer can often be treated off-line. In this paper we consider online
interference detection and excision schemes, assuming stationarity at msec time scales or less.

Many interference detection schemes exist. They differ by the amount of knowledge that we can assume
on theinterfering signals. E.g., if we know the signal wave form, then the optimal detector has the form
of a matched filter. Extensions are possible if the waveform is known up to a few parameters such as
amplitude, phase or frequency. However, usually the signal is modulated by a message and hence effec-
tively unknown. There are two classes of detection techniques: more or less deterministic methods that
exploit known properties of the signals such as modulation type or certain periodicities, and those based
on statistical models with unknown parameters, leading to Generalized Likelihood Ratio Tests (GLRT),
aparticular example of which is power detection.

In principle, we can say that man-made interference is expected to be statistically different from the as-
tronomical sources. Although thisis a very attractive feature, it is not easy to use these properties for
detection or excision, since thelong averaging periods and the central limit theorem tend to jointly Gaus-
sianize the interferers. However for strong narrow-band interferers these methods are expected to give
improved suppression at an additional computational power [7].

Another distinction between interferersand astronomical signalsistheir spatial signature vectors. Astro-
nomical signals enter through the main lobe of the telescopes and have avery structured (parametrically
known) array response, whichisused for imaging. Theinterferersusually enter through the sidel obesand
arein the near field, leading to unstructured a-vectors. Also, their location relative to the array is not cor-
related with the motion of the earth. It might even remain fixed relative to the array during the complete
observation period (e.g., TV transmitters). Sincethe array tracks afixed region in the sky, the directional
vector of the interference istypically time varying.

From all possibilities, we consider here two schemes:

— Multichannel interference detection and excision. The interference is detected at short time scales
(ms), and contaminated samples are removed from the averaging processin (5). Thiswill work well
if the interferenceis concentrated in frequency and time, ase.g., in the GSM system.

— Soatial filtering. This more ambitious scheme is also suitable for continuously present interference
suchas TV stations. After detection, we estimate the spatial signature of theinterferer and project out
that dimension or otherwise subtract the signal coming from that direction.

For the purpose of power detection schemes, it is sufficient to look at (short-term) correlation matrices
based on measurement datain a window of length MT":

M-1
N 1
R, = Mmz_oxf(tk —I—mT)x?(tk—i—mT), MT =~ 10 ms.
If an interferer is detected in this analysis window, it is discarded, qtherwise the data is accepted and
the correlation matrix is used in the formation of a clean estimate of R1%(¢;,). Seefigure 2. Obviously,
many variationsare possibl e, such as sliding window techniques, or discarding neighbors of contaminated
samples as well (perhaps both in time and frequency).

In this section we propose sub-band detection methods and analyze their performance. Spatial filteringis
discussed in section 6.



5.1 Singlechannel spectral detector

Detection theory is based on hypothesistesting. Wetest H: thereisno interference, versus H;: thereis
at least one interferer in thisband. Theimplementation of thistest depends on the model that we posefor
theinterferer. We will first discuss some particularly simple cases which will allow analysis.

Thus let us consider the single-channel case first. We assume that there is at most a single interferer,
where the interfering signal isi.i.d. Gaussian noise with unknown power o2. The background noise is
white Gaussian with known power o2.

Without interferer, the observed data samples z,,, are complex normal distributed, with zero mean and
variance o2, With aninterferer, thisdistributionis still complex normal, but with variance o2 + 0. Thus,
we test the hypothesis

Ho: zm ~ CN(0, 0?)
Hi: zm ~ CN(0, 02 +0?), m=0,---,M—1.

We assume that we have available M samples {z, }.

This is a rather standard problem in detection theory (cf. [6] for an introduction). A Neyman-Pearson
detector selects H; if the likelihood ratio,

p(x;H1)

L) = p(x;Ho)’

exceeds a threshold. It is known that this leads to an optimal probability of detection, given a certain
probability of false alarm (detecting an interferer when there is none). In our case, the NP detector will
compare the total received power to athreshold «y, deciding #; if the test statistic

] M-1
m=0

Under the above assumptions we can obtain closed form expressions for the probability of false alarm

and the probability of detection. For this, recall that the sum of squares of M redl i.i.d. zero-mean unit-

variance Gaussian random variables has a x? distribution with M degrees of freedom. Since we have

complex samples, T'(x) is the sum of 2 real variables. Under H,, these have avariance 1, hence the

probability of false alarm is given by

Ppa = P{T(z)>v; Ho} = Qg (27)

where ng () is the tail probability of a x? random variable with 2 degrees of freedom. It has a
closed-form expression (cf. [6]):

M-1 k
Q.2 (2y) = 7 7—'

Xam
k=0

[y

Itsinverse is known in terms of the inverse Gamma-function, and allows to select -y to obtain a desired
level of false alarm. Similarly, the probability of detection of an interference at this threshold «y is given

by
Pp = P{T(x)>n; Hl}

2y
- P 2
{02 022‘ Tm|” > 1+02/02’H1} (6)
2y
= QXQM(1+INR)
whereINR = Z—z is the interference-to-noise ratio.

10



PD vs. INR

: ‘ 7
— — onech., M=10,30,64 /
14 ch.,, M = 10,30,64 / /!
| [
0.81 g
| [
|
06y Y
/
[a)
a’ | // //
0.4} // i
p
/7
0.2r Yava
O L L L L
-40 -30 =20 -10 0 10

INR [dB1
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5.2 Multichannel detector with known spatial signature

A significant performance improvement is possible with a multichannel detector. To illustrate this, we
assume again the simple case with at most a single narrow-band Gaussian interferer, with known spatial
signaturevector a in white Gaussian noise. Without interference, the datavectorsx,,, are complex normal
distributed with zero mean and covariance matrix o?I. With a single interferer, the covariance matrix
becomes o2aal’ + o%1. Thus,

Hi: Xy ~CN(0,02aal + 521), m=0,---,M—1.

The Neyman-Pearson detector considers the estimated data covariance matrix

] M-l
R = i Z XX,
m=0

andisgiven by

1 a"Ra Hi
TX) = -2 35
(X) o2/M a"a o "

Thistest isrecognized as amatched spatial filter detector; essentially we compare the received energy in
thedirection a of theinterferer to 2. Taking the same threshold asin the single channel casewill provide
the same false alarm probability as before:

Ppy = P{T(X) > Ho} = Q2 (27).
However, the probability of detectionis now given by

(277)_

Pp=P{T(X)>vy; Hi} = Q 1+ pINR

X5m
Figure 4 presents the probabilities of detection asafunction of interferenceto noiseratio for asingleand
for p = 14 channels. We have selected a threshold such that Pr4 = 5%, which means that without
interference, we will throw away 5% of the data. We can clearly see that the probability of detection
is greatly improved by moving to the multichannel case. The improvement is equal to the array gain,
10log(p) = 11.5 dB.
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5.3 Single TDMA interferer with known spatial signature

Let usnow consider aTDMA signal: an interferer whichis periodically activein afraction g of thetime
(seefigure 5). Here, 0 < B < 1 isknown as the duty cycle of the periodic signal. Assume that the
interferer is present in the sel ected frequency band and that the duration of the slot in which the interferer
isactiveisequal to oM samplesx,,, wherewetakea > 1. Let asbefore o? denotethe power of asingle
sample of the interferer when it is present.

Since the interfering slots need not be synchronized to the analysis window, a singleinterfering slot will
give rise to two analysis windows in which the interferer is partially present, and possibly one or more
analysiswindows in which the interferer is present in al the samples. Sincetheinterferer istime-slotted
with duty cycle 3, there will also be windows that contain no interference.

The corresponding probability density p(I) of having a certain average interference power I per sample
in an arbitrary analysis window of length M can be computed in closed form, as

( a+1

1-— oI I=
- g, 0
1 2
p(I):< -8, 0<I <Ipas
Iz
a—1
Tﬁ(s(I_Imax)a I:Imaw-

\

Itisplotted in figure 5, where the vertical arrowsindicate the unit impulse function. For example, for an
interferer of strength o2 per sample when it is on, the maximal average interference power per sampleis
obviously o2, when all samplesare contaminated. The probability of thisis (a—1)/a 3. Power densities
less than o2 occur with a uniform distribution for analysis windows that are only partly corrupted, at the
edges of the interference dot.

We can define

— the average interference power per sample before detection:

Lys = /Ip(I)dI = Bo?,

— the average interference power per sample after detection and blanking:
Ies = / I(1—-Pp(I)p(I)dI,

— the fraction of number of samples kept after detection and blanking:
Pires = / (1= Pp(I)) p(I)dI .
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Figure 6: (a) Effective residual INR after blanking versus effective INR at the input; (b) fraction of re-
maining samples after blanking

Figure 6 shows the dependence of the residual INR as a function of M (the number of samples in an
anaysis block), for an interferer of length L = 64 sub-band samples, aduty cycle 3 = 1/8, and afalse
alarm rate of 5%. Obviously, very weak interference is not detected, and in that case we throw away
5% of the data due to the false alarm rate. High interference powers are easily detected, and almost all
contaminated analysis windows will be detected and blanked. Only the tails of an interfering slot might
be missed, so that there is still some interference remaining after detection. The worst case occurs for
interference that is not strong enough to be detected al the time, but not weak enough to be harmless.

Several other interesting facts can be seen in these figures. The most important is the large performance
gain in the multichannel approach, as compared to a single channel. As seen in figure 4, the effect of
using an array is to shift the graphs of probability of detection to the |eft by the array gain, e.g., for the
14-channel detector the graph is shifted by 11.5 dB. Hence, we require 11.5 dB less interference power
in order to detect it. However, the effective gainis given by the vertical distance between the graphs: this
shows the amount of interference suppression for agiven interference power. In figure 6 the suppression
can be approximately 21 dB larger than that of the single antenna case.

A second interesting phenomenon is the fact that the interference suppression is almost the same for a
largerange of analysiswindows M . Thus, wewould takethiswindow rather small, so that thethe residual
number of samplesislarger. Thiseffectismainly dueto thefact that the case of partial blockswith weaker
power isless frequent as the analysis block becomes shorter.

5.4 Eigenvalueanalysis

So far, we have looked at the detection problem from arather idealistic viewpoint: at most 1 interferer,
and aknown spatial signature. The reason was that for this case, we could derive optimal detectorswith
closed-form expressions for the performance.

Our goal isthe detection of the presence of an interferer from observed correlation data. Asadtart, let us
first consider the (asymptotic) equation

R = A;RA;
where A ; hassizep x g and R ; hassizeg x g. For alow number of interferersg, thisbringsusto familiar

grounds in array signal processing, as it admits analysis by subspace-based techniques. We give a brief
introduction here.

If ¢ < p, thentherank of R isgq. Thus, we can estimate the number of narrow-band interferers from a
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rank analysis. Thisisalso seen from an eigenvalue analysis: let
R = UAU"

be an eigenvalue decomposition of R, where the p x p matrix U is unitary (UU" = I, U"U = 1)
and contains the eigenvectors, and the p x p diagonal matrix A contains the corresponding eigenvalues
(\; > 0). Sincetherank isq, thereareonly ¢ nonzero eigenvalues. We can collect theseinag x ¢ diagonal
matrix A, and the corresponding eigenvectorsinap x g matrix Uy, so that

R = U,A,UY. (7

Theremaining p — q eigenvectorsfrom U can be collected in amatrix U,,, and they are orthogonal to U
sinceU = [U; U, ]isunitary. Thesubspace spanned by the columnsof U iscalled thesignal subspace,
the orthogonal complement spanned by the columns of U,, is known as the noise subspace (although this
isin fact amisnomer, since the noise is not confined to this space).

In the presence of white noise,
R = A;R,A! +0%1,.

Inthiscase, R isfull rank: itsrank isalways p. However, we can still detect the number of interferersby
looking at the eigenvalues of R.. Indeed, the eigenvalue decomposition is derived as (expressed in terms
of the previous decomposition (7))

R = ARA"+0%,
= U, AU+ 02U, U,J[Us, U," @®
_ U, U A, +0°T;| 0 ][U?

C 0 | o’ U,

hence R hasp — ¢ eigenvalues equal to o2, and ¢ that are larger than 2. Thus, we can detect ¢ by com-
paring the eigenvalues of R to athreshold defined by o2.

But the eigenval ue decomposition shows more. Indeed, the columns of U, span the same subspace asthe
columns of A;. Thisisclear in the noise-free case (7), but the decomposition (8) shows that the eigen-
vectors contained in U, and U, respectively are the same as in the noise-free case. Thus,

span(U;) = span(Aj), U,A=0. 9)

Although we cannot directly identify each individual column of A, we can at |east determineits subspace
from the observed covariance matrix. Thiscan beused tofilter out theinterference— such spatial filtering
algorithms are discussed in section 6. Note that it is crucial that the noise is spatially white. For colored
noise, an extension (whitening) is possible but we have to know the coloring.

To see how this matches with the previous section, let us we specialize to the case of asingle interferer,

with spatial signature a. It follows that the dominant eigenvector u; = aa (for some scaling «), so that

a"Ra ujRu

afa ui'uy

=A1.

Thus, the test statistic of the previous section reduces to testing the dominant eigenvalue of R.. With an
interferer, \; = o2 + o2, without interferenceit is A = o2. In the current case (asymptotic, M — o),
the threshold can be very sharp: just above o2. With finite M, however, the dominant eigenvector of the
estimated covariance matrix R will only be approximately equal to a, the dominant eigenvector will only
be approximately equal to o2 + o2, and the threshold has to be relaxed.

5.5 Multichannel detector with unknown spatial signature

In case we only have an estimate R based on a finite amount of samples M, and the spatial signature
vectors of the interference are unknown, there are no optimal results. The eigenvalue analysis suggested
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that we should compare the eigenval ues to athreshold defined by o?. We will discuss two detectors, one
for the case where o2 is known, and another one for which it is unknown.

If the noise power o2 isknown, we can apply theli kelihood ratio test (LRT), which leadsto amethod due
to Box [2] for testing the null hypothesisthat c—?R = I (no interference). The test statistic is given by

p
A.
~Mplog][[ 25~ Xpine-n) (10)
=1

where ); isthei-th eigenvalue of R. Thisbasically testsif all eigenvalues are equal to 2.

If also the noise power is unknown, we propose to use the Minimum Description Length (MDL) detector
[15]. Inthiscase, rather than setting athreshol d based on the asymptotic distribution of the LRT, wetry to
find the correct model order which minimizesthe description length of the data. The MDL rank estimator
isgiven by

k =arg min MDL(k) (12)

where
p%k Ef:lﬂ—l Ai
P %
(Hi:k+1 i) ?
and an interference is detected if & # 0. This basically tests if the geometric mean of the eigenvalues

is equal to the arithmetic mean, which is only true if all eigenvalues are equal to each other. This rank
detector is simpleto implement since it isindependent of the varying SINR in the system.

Simulations of these detectorsin a scenario with GSM interference have appearedin [8]. Weare currently
testing them on measured data, with good results.

MDL(k) = (p— k)M log

1
+ §k(2p —k+1)logM

6 SPATIAL FILTERING

L et us now assume that we have obtained a covariance matrix R, which containsthe rather weak covari-
ance matrix of the astronomical sources (visibilities) R,,, plus white noise. Suppose aso that thereisan
interferer with power o2

R =R, + ofaaH + o°I.

In the previous section, we considered schemes to detect the interferer from the eigenvalues of R.. After
detection, we proposed to discard R. if it isfound to be contaminated, but what if the interferer is present
al thetime? In that case, it ismore suitableto try to suppressits contribution o2aa". Thisleadsto spatial
filtering techniques.

6.1 Projecting out theinterferer

A possihility isto null all energy with spatial signature a. To this end, we can introduce the projection
matrices

P, =a(a"a)"'a", PL =I-a(a"a) 'a".
Itiseasily seenthat Pla = 0, so that
R =P RP} = PIR,PL + o?P}. (12)

Thus, the interference is removed. At the sametime, the visibility matrix is modified by the projections,
and the noise is not white anymore, since one dimension is missing. The imaging stage has to be aware
of this, which is the topic of section 7. We do need to store the effective spatial filter on the 10s data.
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Sinceall information is now confined to a (p — 1)-dimensional space, we might aswell define a smaller-
size(p—1) x (p—1) covariance matrix. Tothisend, recall from equation (8) the eigenval uedecomposition
of R, and in particular the matrix containing an orthonormal basis of the “noise subspace” U,,, whichis
the orthogonal complement of a, with p — 1 columns. Accordingto (9), a L U, sothat P} = U, UL,
Asan dternative to (12), we can define

R=U,RU, = UR,U, + ¢’,_;, U, la. (13)

Although smaller, this matrix contains the same information as P RP. Besides the dimension reduc-
tion, an advantage of this scheme s that the noise stays white.

These expressions can immediately be generalized to the more general case of ¢ < p interferers and
unknown a-vectors. Indeed, in this case, the projection onto the complement of the A ;-matrix of the
interferenceis given by

Px, =I1- A (A/A) A =U,U;

and we can fom R = U, RU,, as above. Note that we do not have to know A;: the relevant noise
subspace is estimated from the eigenval ue decomposition of R.. This hinges upon the fact that the noise
covariance iswhite (in general: known), and the visibility matrix R,, isinsignificant at these time scales
(otherwise, it might disturb the eigenval ue decomposition).

6.2 Keepingtrack of projections

To enable the imaging step, it is essential to store the linear operation represented by the projections. At
the sametime, it might be necessary to adapt the projection several times per second, since the a-vectors
of interferers are time-varying. Hence, in the construction of the 10 s correlation average, we also have
to construct the effective linear operation.

Thus consider the short-term averages, denoting for generality the linear operation by Ly:
R; := L;R, L} = L;R,L} + o°L,L}, k=0,1,--- ,N—1.

By simply averaging these, the long-term average will be

1 N-—1 1 N—-1
R10s — ~ R, = ~ ZLkRkLZI-
k=0 k=0

TheL, appear hereat both sidesof Ry,. To move them to one side, we make use of the general expression
vec(ABC) = (C" ® A)vec(B)

where ® denotes a Kronecker product, and vec(-) the column-wise stacking of a matrix into a vector,

ai1B a12B
AQB:= | a21B axB
aj
A=Ja; ap ---] = vec(A):=| a2

In this case, we obtain

vec(R10%) ~ 2 [(Lg ® Ly)vec(Ry)]

1
|7 XL ® L] vec(Ry) + 0 [ XL ® Ly vec(I,)
= Cvec(Ry) + 0?Cvec(I,)
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where
1 N-—1
C = N};)Lk@:Lk

For the imaging step, we have to know how R %5 depends on R.,,. Thus, we have to construct and store
C along with R!%9¢, Unfortunately, it is arather large matrix: p? x p? if L, doesn’'t contain dimension
reductions. Another problem for imaging might be that the noise contribution on R1%5 isno longer white,
but determined by C. Two possible remedies are

— Assumethat the a-vectors were sufficiently variable over thetimeinterval. Inthat case, C islikely to
be of full rank and thus invertible, and we can construct

Cvec(R'%) = vec(R,) + o?vec(L,).

That is, we recover our interference-free model R, + o2I. However, the inversion of C might be a
formidable, and numerically dubious, task.

—If wetake Ly = (U,)} asin (13), then the noise contribution on each Ry, is white. We can average
the Ry, if they have the same dimension, i.e., p — ¢ where the number of interferers g is constant over
theinterval. In that case,

N—-1
1
‘72ﬁ Z(Un)Z(Un)k = ‘72110—11
n=0

so that the noise contribution on R1% iswhite. Note that no inversion is necessary, but C now has
size (p — q)? x p?, thus compressing the data. Simple but suboptimal extensions are possible in case
g is not constant.

Since C isafactor p? larger than R0, it might in fact be more efficient to store the short-term averages
R, along with the corresponding spatial filters L. Thisisthe caseif Ly, isto be updated at time scales
of 10 s/p? = 50 msor less.

6.3 Other gpatial filtering possibilities

Without going into too much detail, we mention afew other possibilitiesfor spatial filtering and interfer-
ence cancellation. Supposethereisasingleinterferer,

Ry = R, +0Zaa" + o°I.
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— Qubtraction. With an estimate of a and an estimate of its power, we can try to subtract it from the
covariance data:
R; = Ry, — 62aa". (14)

Without other knowledge, the best estimate of a is the dominant eigenvector, uy, of Ry, and likewise
the best estimate of o2 is A\; — 0. Since both of these are derived from Ry, it turns out to be not too
different from the projection scheme. Indeed, if we look at

(I — ouju])Ri(I — amul) = Ry —ujui M (2a — o?)
we can make it equal to (14) by selecting « such that A1 (2a — o) = 2. The projection scheme had
a=1.

— Spatial whitening. In this scheme, we try to make the interference plus noise white again. This com-
ponent is equal to c2aa™ + 021, so we pre- and postmultiply with square-root factors of it:

Ry = (288" +6°T) PRy (6388 +6°T) 12 = ()7 VPR, () VA4 T

S

— Subtraction of a reference signal. If we have a reference antennathat receives a‘clean’ copy of the

interfering signal, then we might try to subtract thisreference signal from thetelescopesignals. There
are many adaptive schemes for doing so, e.g., LMS. The general schemeisasillustrated in figure 7.
In this figure, the a-vector of the interferer is found by cross-correlating with the reference antenna.
We aso estimate its power. After correcting for the noise power on the reference antenna, we can
reconstruct and subtract as(t).
Thisschemeisrather similar to the original projection approach where we reducethe dimensionto the
noise subspace, viz. equation (13). The main difference is that, now, we reduce the dimension from
p+ 1 antennas back to p antennas, so thereisno loss of dimensions from the astronomy point of view.
It appears that this only has advantagesif the reference antenna has a better INR than the telescopes.
Also, we need as many reference antennas as there are interferers.

7 IMAGING AFTER SPATIAL FILTERING

In the previous section, we discussed spatial filtering technigues. It was shown that an attractive scheme
for removing the interference is by projecting it out. However, by doing so we replace the observed vis-
ibilities V' (u;, v;) in the matrix R.,, by some (known) linear combination. In this section, we discuss the
implications of thisfor the imaging.

7.1 Classical inverseFourier imaging

The relation between sky brightness I(¢, m) and visibilities V (u,v) (Wwhere u, v are taken at frequency
f)is
V(u,v) = // I(0,m) e 3@Fvm) qp dm,
Wehavemeasured V' on adiscreteset of baselines{(u;, v;) }. Thedirty image (viadirect Fourierinversion
with weights w;) is defined by
Ip(¢,m) = Z w; V(ui, v;) el (uittvim)
i

It is equal to the 2D convolution of the true image with the dirty beam;
Ip(t,m) = 35; wi V(us,v;) el tHom)
= D w [ [f I(¢',m!) e=i(ust+vim’) gyt dm’] el (uit+vim)
= JJ I m) [ wy i Orumen)] g o
= [[ I(¢',m") Bo(f —',m —m') d¢' dm'
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or
Ip = I*Bo, Bo(f’ m) = Z w; ej(uif-l-’t)im)

By is the dirty beam, centered at the origin. The weights {w;} are designed to obtain an acceptable
beamshape, with low side lobes, in spite of the irregular sampling.

Specidizing to apoint source model, I(4,m) = ", I 6(£ — £y, m — my), where I, isthe intensity of
the source at location (£, my), gives

V(u"u) — Z Ik: e*j(uek’i‘vmk)

Ip(t,m) = > I Bo(€ — tg,m — my)
P

Thus, every point source excites the dirty beam centered at itslocation (£, my).

From the dirty image Ip and the dirty beam By, the desired image I is obtained via a deconvolution
process. A popular method for doing thisisthe CLEAN algorithm. The agorithm assumes that B, has
itspeak at the origin, and consists of aloop in which acandidatelocation (¢, my ) isselected asthelargest
peak in I, and subsequently asmall multipleof By (£ — £y, m —my,) issubtracted from I,. Theobjective
isto minimizethe residual, until it converges to the noise level.

7.2 InverseFourier imaging after projections

If we take projections or any other linear combination C = [¢;;] of the visibilities {V'(u;,v;)} during
measurements, as in section 6, we have instead available

vec(R) = Cvec(Ry,) & Z (ui,v;) Z cij V(uj,v))

Suppose we compute the dirty image in the same way as before, but now from Z,

ID(E, m) = Zz Z(ui’vi) e]'(uiZerm)
= 33 cij Viug,vy) ellttoim)
Then
Ip(e,m) = 35,555 cij V(uj,v;) fittom)

= 225 Cij [ff I, m') e=d(ust+vim’) gy dm’] i (uit+vim)

= ff I ZI [Z Z cij € —j(u; € +v;m’) e](ulﬁ+vlm)i| dr' dm/'

= ff I ela g’m’gl’ )del dm
where

B(@,m,él,m') = ZZ Cij e_j(uje,‘F’Ujm’) ej('u,qj—kvzm)

iog

Thus, thedirty imageisagain obtained viaaconvolution, but thedirty beamisnow space-varying. B(¢,m, ¢, m')
isabeam centered at (¢',m') and measured at (£, m).
With a point source model

Z Iy B(¢,m, b, my) = Y I Br(t,m)
P
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where
Bp(l,m) = ZZ cij eI (uilktvime) oj(uiltvim)
(2

Again, every point source excitesabeam centered at itslocation (¢, my, ), but the beams may all be differ-
ent: they are space varying. Nonetheless, they are completely known if we know thelinear combinations
that we took during observations.

In principle, the CLEAN algorithm is easily extended to work with space-varying beams, but at a large
computational cost sincethe beam at each supposed sourcelocation hasto be computed. However, CLEAN
is strongly based on the assumption that a beam has a large peak at its center, since thisis how we find
candidate point source locations. In the new situation, the beam shape dependson C, and itisnot a priori
clear what it will ook like.

7.3 Maximum likelihood imaging

Let us consider the imaging step from a more fundamental viewpoint. In principle, the construction of
the image using the observed correl ation matrices and assuming the parametric model can be viewed asa
parameter estimation problem. One of the most important inference methods is the maximum likelihood
method. Given a parametric model for the received data, choose the parameters which maximizes the
probability of obtaining the observed data. Thisis different than the most probable image approach [3]
whereno parametric model isimposed on theimage, |eading to maximum entropy imageformation. Max-
imum likelihood estimators (MLES) are known to be consistent and efficient (i.e., they provide unbiased
estimators with minimum variance), under very general conditions, and thus are the natura choice for
many parameter estimation problems.

In deriving the maximum likelihood estimator of the image parameters, we should take into account the
Gaussianity of the astronomical signals. Contrary to the claim in [14], the corresponding MLE is not
eguivalent to parametric optimization of the CLEAN cost function. Using the discrete point source model
we obtain:

R, = [':A(0) BAL(0)T) + o°T (15)

where the d astronomical sources are Gaussian with covariance matrix B = diag[I1 ,-- - , I] and sky
coordinates = {s;}¢_,, andthenoiseisGaussianwith covarianceo?I. Let R, bethesamplecovariance
matrix during the k-th epoch, based on N, collected samples. The likelihood of the observations at the
k-th epoch given map parameters 8, B, o2, T';, is then given by

N
1 emyRY)
7P| Ry|

Using all observation epochs we abtain that the log-likelihood function is given by (after omitting con-
stants)

K K
LR,... ,RkB,0,{T4},0%) = =) Nplog[Ri| — Y Nytr(R;'Ry) (16)

k=1 k=1
where K isthe number of epochs. The MLE isfound by maximizing (16) over B, 8, {T'x }¥, o2. Thisis
rather complicated, and efficient waysto implement it will be discussed elsewhere. A simplified model

where perfect calibration isassumed hasbeen analyzed in [13], where ageneralized least squares solution
has been proposed.

7.4 CLEAN and saf-calibration

Sincethe direct optimization of (16) appearsto beintractable, it isnatural to resort to | east-squares model
fitting. Inthe case of the CLEAN algorithmwejust try to fit in the least squares sense a parametric model
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to equations (15), but assuming perfect calibration, i.e.,, I'y = I. The LS cost function is given by:

K
[0 ={8},B] =min > || Ry — Ax(0) BA}(9) — o”T |} (17)
= k=1

(B is constrained to be diagonal with positive entries.) It is interesting to observe that if one ignores
the Gaussianity of the astronomical signals, instead introducing nuisance parameters for each of the as-
tronomical signal samples, one ends up with a likelihood function equivalent to the above CLEAN cost
function. In avariety of simpler cases in array signal processing, this is known to have a degraded per-
formance compared to (16).

With unknown array gains, equation (17) generalizesto

K
(6= {8}, B, {T4}] = o i }Z IR, — TxAx(6) BAL(O) T} — 1% (18)
[Ead] k k=1

The solution can be obtained by the “self-cal” algorithm: an alternating least squares algorithm which
solvesiteratively for the parameters B, {s, } by aCLEAN step (with fixed gains), and the gain parameters
{T'} by acalibration step (with fixed source parameters B, ).

It has not been noted before in the literature that the latter step admits adirect algebraic solution. Indeed,
to minimize (18) with fixed { A, } and B, we we can minimize separately for each k therelated expression

| Ry — TrAxBAT, — 0’1 |)%

Let g(*) be the vector of diagonal elements of I'j,. We can define for each k a (p x p) matrix X*) with
entries

(0 _ Ry — 0’y
" (AxBA})i;

(k) such that

1

and fit g(¥) with entries g
X = g g (19)
In the usual self-calibration algorithm, this equation is solved iteratively using phase closure relations.

Instead, we can resort to the algebraic structure of the problem and obtain a closed form solution. In
matrix form, (19) is

H
X k) = g(k) (k) (20)

This asks for the best hermitian rank-one approximation to the matrix X %), which is known to be given
by

g™ = /vy

where )\; isthe largest eigenvalue of X(*) and v; isits corresponding eigenvector. Thisalso shows that
for each sky model the calibration step has (w.p. 1) a unique solution that minimizes (18).

A satisfactory consequence is the convergence of the self-calibration iteration. This follows from the
iterative least squaresinterpretation of the complete self-calibration procedure, together with the fact that
the minimization of (18) along any coordinate always reduces its value.
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7.5 Effect of gpatial filtering

Now that we have a matrix formulation for the self-calibration algorithm it will be easy to see the effect
of spatid filtering on the imaging process. The measurement equation now becomes

Rk = AkBAE + (*As)lc(R's)lc(‘As);cI + 0'21 (21)

Theinterferenceis removed by linear operations Ly, for example projections, acting on the left and right
of Ry. Thismaodifiesthe least squares optimization problem to

K
(6= 1{s},B,{T4}] = min > | Ly (Re—TAL0)BAY(O) T} -’ T) L |} (2)
eaBa{Pk} k=1
The cost function is similar to (18) and thus its minimization does not pose stronger computational de-
mands. The main difference is that the initialization of the multidimensional search will become more
complicated because the Fourier relation between the measured data and the sky brightness now leads to
a deconvolution problem with space-varying beams (section 7.2).

8 Conclusions

We considered variousaspects of multichannel interference suppressionfor radio-astronomy. It wasshown
that sub-band processing will be necessary in order to exploit narrow-band techniques. We have ana-
lyzed a simple case demonstrating the great improvements that are possible by multichannel detection
and blanking of intermittent interference. We have also discussed spatia filtering techniques and their
effect on theimage formation process. The main conclusion isthat spatial filtering isvery interesting but
requires to be taken into account in the imaging step.

During the writing of this paper, we have applied the multichannel detection and blanking algorithm to
measured GSM signals, resulting in great improvements of the spectral estimates. Thiswill be reported
elsewhere.
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