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Radio-astronomical observations are increasingly corrupted by RF interference. Online detection and
filtering algorithms are becoming essential. To facilitate the introduction of such techniques into ra-
dio astronomy, we formulate the astronomical problem in an array signal processing language, and
give an introduction to some elementary algorithms from that field. We consider two topics in detail:
interference detection by rank estimation of short-term covariance matrices, and spatial filtering by
subspace estimation and projection. Finally, we discuss modifications necessary in the deconvolution
step after spatial filtering, and propose a simple algebraic solution for self-calibration.

1 INTRODUCTION

Radio-astronomical observations are increasingly corrupted by RF interferers such as wireless commu-
nication and satellite navigation signals. Online detection and filtering algorithms are essential to reduce
the effect of interference to an acceptable level. Until now, the most widely implemented algorithm is a
single-channel total power change detector, followed by a blanking of the correlator output. Friedman [4]
has implemented an improved power detection, which is based on detection of change in the power. We-
ber [16] proposed the use of the quantized correlation at all lags to test the presence of interference. How-
ever these are all single channel detectors which do not exploit the spatial properties of the interference.
The only detector which used interferometry for on-line blanking was proposed in Kasper et al. [5] for
low frequency interferometry, where a robust data censoring method based on the temporal behavior of
the cross spectrum was proposed. The main drawback was the need of large number of estimated spec-
tra (

�����
) in order to obtain reliable robust estimates, and the fact that only two channels have been used.

Recently Barnbaum and Bradely have proposed to use adaptive filters to excise interferer from the Green-
Bank radio telescope using an LMS type algorithm [1].

The aim of the STW NOEMI project is to investigate the merits of multichannel detection and filtering
algorithms at the Westerbork Synthesis Radio Telescope (WSRT). By combining correlation information
from several sensors, we can increase the detection performance significantly, and also estimate the spatial
signature of interferers. For this, it is essential to work in narrow sub-bands and detect the rank and dom-
inant eigenvectors of each correlation matrix [9]. After detection, the interference is reduced by rejecting
corrupted time-frequency slots (blanking) or projecting out certain direction vectors (spatial filtering).

The first approach is suitable for time-slotted communication signals such as in the GSM band, whereas
the second will greatly enhance the performance of continuously-present interference. We describe two
rank estimators: a generalized likelihood ratio test, and the minimum-description length (MDL). In a more
challenging direction, adaptive excision of RFI from astronomical observations can be done by estimating
spatial signature vectors of the interferers from short-term correlation matrices, followed by spatial filter-
ing using projections. Such an approach is very promising, but the usual self-calibration process needs
to be modified. For this reason, we reformulate the radio astronomical deconvolution step as a parameter
estimation problem. This provides a better understanding of the CLEAN algorithm, extending the work
of Schwarz [12].

The structure of the paper is as follows. After posing the astronomical measurement equations in section
2, we reformulate the model in terms of array processing matrix language in section 3. We then introduce
RF interference and describe its effect on the received data. In section 5 we discuss various detection
algorithms. We compare the single and multichannel detectors, for the case of a narrow-band interferer
with known spatial signature vector, and then present two multichannel detectors that do not assume this
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Figure 1:  "!�# The emitted electrical field from the celestial sphere is received by a rotating telescope array; �$%# after geometrical delay compensation, the objects in the look direction appear to be at the zenith;  "&�#
geometrical delay compensation

knowledge. We then move to spatial filtering techniques. In section 6 we formulate the basic ideas and
describe a projections based approach, computational issues and other possible approaches. In section 7,
we discuss the effect of spatial filtering on imaging, first in connection to Fourier-based techniques, then
reformulated as a parameter estimation problem, for which we would like to find the exact maximum
likelihood solution. The CLEAN and self-calibration algorithms are posed in matrix form and used to
derive a closed-form solution to the calibration step. We finish by describing the effect of spatial filtering
on the imaging step.

2 ASTRONOMICAL MEASUREMENT EQUATIONS

In this section we describe a simplified mathematical model for the astronomical measurement and imag-
ing process. Our discussion follows [10]. We begin with the measurement equation, and reformulate it
into a matrix form. This allows us to obtain a uniform description of various astronomical imaging oper-
ations such as deconvolution and self-calibration.

2.1 Measurement equation

The signals received from the celestial sphere may be considered as spatially incoherent wideband random
noise. It is possibly polarized and perhaps contains spectral absorption or emission lines. Rather than
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considering the emitted electric field '�() "*+# at a location * on the celestial sphere, where , is a specific
frequency, astronomers try to recover the intensity (or brightness) in the direction of unit-length vectors- , . (� - #0/2143 '�(5 - #�376�3 *83 9;:
Let <=() ">�# be the received celestial electric field at a location > on earth (see figure 1  "!�# ). The measured
correlation of the electric fields between two sensors ? and @ with locations >�A and >CB is called a visibility
and is (approximately) given by [10]D () "> AFE > B #HGI/J1"<K() "> A #L<K(� "> B #NM�6O/ P . () - #NQ�R B 9NS (UT�VXWZYN[ R Y�\^]`_Nacbed :
Note that it is only dependent on the oriented distance >�Agfh>CB between the two telescopes; this vector is
called a baseline.

2.2 Point source model

For simplification, we may sometimes assume that the astronomical sky is a collection of
b

discrete point
sources (maybe unresolved). This gives. (� - #c/ji�k . (� - k #Nl� - f - k # E
where - k is the coordinate of the m ’th source, and thusD (� "> ANE > B #n/ oik%prq . () - k #�Q R B 9NS (XT Vs WZYN[ R Y�\^]`_Na : (1)

2.3  ut Ev # coordinate system

Up to this point we have worked in an arbitrary coordinate system. For earth rotation synthesis arrays, a
coordinate system is often introduced as follows. We assume an array with telescopes that have a small
field of view and that track a reference source location in the sky. The geometrical delay associated to this
location is compensated by introducing a slowly time-variant delay in the first stage of the receiver (see
figure 1  "&�# ). The result is that the reference location now appears to be located at the zenith (see figure
1  �$%# ). Other locations in the field of view can be written as- / -�w;xzy E -�w|{}y E
(valid for small y ) and a natural coordinate system is-�w /�~ � E � E �C� E y /�~ � E)�nE ��� :
Similarly, for a planar array, the receiver baselines can be parameterized as>�A�f�>%B�/��r~ t E)vXE ��� E ��/ &��� , :
Note that this coordinate system is frequency dependent.

The measurement equation in  ut Ev # coordinates thus becomesD (� ut Ev #�/ P;P . () �� E� #�Q R B WI�%�F�g�4��] b � b � :
It has the form of a Fourier transformation. The function

D () ut Ev # is sampled at various coordinates  ut Ev #
by first of all taking all possible sensor pairs ? E @ , and second by realizing that the sensor locations >�A , >%B are
actually time-varying since the earth rotates. Given sufficient samples in the  ut Ev # domain, the relation
can be inverted to obtain an image (the ‘map’), which is the topic in section 7.
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Figure 2: The astronomical correlation process

3 ARRAY SIGNAL PROCESSING FORMULATION

3.1 Obtaining the measurements

We will now describe the situation from an array signal processing point of view. The signals received
by the telescopes are amplified and moved to baseband. The first stages also implement a time-varying
delay for every telescope, to compensate for the geometrical delay and thus to synchronize the center
of the field-of-view. Following traditional array signal processing practices, the signals at this point are
called ¤5A u¥# rather than <K() ">�# , and are stacked in vectors

¦  u¥4#c/¨§©ª ¤ q  u¥#...¤e«) u¥#
¬Z® E

where ¯ is the number of telescopes. They are then processed by a correlation stage.

The main output of the telescope hardware is a sequence of correlation matrices, *°() u¥ k # , for a set of
frequencies ±�, k�² covering a 10 MHz band or so, and for a set of times ±�¥ k�² covering 12 hours. Each
correlation matrix *°() u¥ k # is an average over 10 to 30 seconds of cross-correlations of the ¯ telescope
signals ¦ () u¥# , which is ¦  u¥4# sub-band filtered at frequency , :

*°() u¥ k #O/¨³´± ¦ () u¥ k # ¦ (5 u¥ k #Nµ ² ¶ ·*°() u¥ k #U/ �¸º¹ R qi» p w ¦ (� u¥ k xh¼�½ # ¦ (5 u¥ k xh¼�½ #Nµ E
where

¸ ½¿¾ ���
s (the superscript µ denotes a complex conjugate transpose). This is drawn schematically

in figure 2 (ignoring the detection stage for the moment).a The matrices *À(5 u¥ k # are stored for off-line
spectral analysis and imaging.

Typically, each sub-band has a bandwidth in the order of 100 kHz or less. Due to the sub-band filtering,
the original sampling rate of ¦  u¥# is reduced accordingly, resulting in ½ in the order of

���ÂÁ
s and the

number of samples
¸

in the order of
�����

.

The connection of the correlation matrices *À(5 u¥ k # to the visibilities
D () ut Ev # in section 2 is as follows.

Each entry Ã�AÄB  u¥ k # of *°(� u¥ k # is a sample of this visibility function for a specific coordinate  ut Ev # , corre-
sponding to the baseline vector >�Agf�>CB between telescopes ? and @ at time ¥ k :>�AN u¥ k #Åf�>%B  u¥ k #c/��r~ t A k fOt B k EUv A k f v B k E ���D (5 ut A k f�t B k Ev A k f v B k #UÆ¿Ã AÄB  u¥ k #X:
Note that we can obtain only a discrete set of  ut Ev # points. Indeed, the number of instantaneous inde-
pendent baselines between ¯ antennas is less than

q9 ¯Ç I¯�f � # . Also, using the earth rotation, the number

aMany telescope sites including WSRT follow actually a different scheme where the signals are first correlated at several
lags and subsequently Fourier transformed. This leads to similar results.
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Figure 3: Sampled  ut k Ev k # points in the  ut Ev # plane for an East-West line array using the earth rotation

of samples ±�¥ k�² is given by the ratio of the observation time and the covariance averaging time (e.g., 12
h/30 sec = 1440 samples). As seen in figure 3, the available sample coordinates ±�t k Ev k ² give an irregular
cover of the  ut Ev # plane.

3.2 Matrix formulation

For the discrete source model, we can now formulate our measurement equations in terms of matrices.
Indeed, consider equation (1), written slightly different asD (� ">�A4 u¥ k # E >%B� u¥ k ##È/ oi» prq Q R B 9NS (5TFVÉXWZYN[ R Y � ]`_Na . (� - » #�Q B 9NS (5TFVÉ5WÊY�\ R Y � ]`_NaË D (5 ut A k f�t B k Ev A k f v B k #È/ oi» prq Q R B WZ� [ s � É �g� [ s � É ] . (� �� » E� » #�Q R B WI� \ s � É �g� \ s � É ] :
We have introduced an arbitrary and time-varying reference point > w  u¥ k # , typically at the center of the
array, so that only the phase difference with respect to that point will be of interest. The  ut Ev # coordinates
are taken with respect to that point.

In terms of correlation matrices, this equation can be written as* k�Ì (�/¨Í k�Ì (�ÎÏ( Í µk�Ì ( (2)

where Í k�Ì (Ð/�~ Ñ k�Ì (� - q # E�Ò�Ò�ÒÓE Ñ k�Ì (� - o # �
Ñ k�Ì (� - #;/¨§©ª Q R B 9NS (5T V WZY � WIÔ s ] R Y � WIÔ s ]�]`_Na

...Q R B 9NS (5T4WIÔ s ] V WÊY ¡ WIÔ s ] R Y � WIÔ s ]�]`_Na
¬Z® /È§©ª Q R B WI� � s �F�g� � s ��]...Q R B WZ� ¡ s �F�g� ¡ s �H]

¬Z®
and

ÎÏ(Õ/¨§©ª
. qÌ (

. . .
.
o Ì (

¬Z® E . » Ì (Ð/ . (5 - » #c/ . (� �� » E� » #X:
The vector function Ñ k�Ì (� - # or Ñ k�Ì (e �� E� # is called the array response vector in array signal processing. It
describes the response to a source in the direction - (or equivalently  �� E� # ). As usual, the array response
is frequency dependent. In this case, the response is also time-varying due to the earth rotation. Note,
very importantly, that the function as shown here is completely known, since we know the locations of
the telescopes very well.
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3.3 Matrix formulation extended with antenna patterns

More realistically, the array response is less perfect. The telescopes are not omnidirectional: each tele-
scope has its own beamshape (antenna pattern). Let Ö�A - # be the (complex) amplitude response of the
array towards direction - , then the array response vector Ñ k�Ì (� - # has to be redefined as

§©ª Ö q  - # . . . Ö «  - #
¬Z® §©ª Q R B 9NS (XT V WZY � R Y � ]`_Na

...Q R B 9NS (XTWZÔ s ] V WZY ¡ R Y � ]`_Na
¬Z® :

A significant simplification is possible if the telescopes are identical, up to unknown but direction inde-
pendent gain factors. Then the Ö�A - # can be factored as ÖKA - #Ð/Ø×�ArÙÖÂ - # . The function ÙÖÚ - # is known
from calibration and the same for all telescopes, and can be incorporated in the source intensity

. (� - # ,
i.e., the Î -factor. Thus we can leave it out of the discussion from now on. The gains ×�A may be different
among the telescopes, as they also contain many other angle-independent effects such as cable losses and
amplifier gains. In practice, they may also be (slowly) time-varying due to atmospheric conditions, so we
will write × A Ì k . The model now becomes* k�Ì (�/ÜÛ k Í k�Ì (�ÎÏ(�Í µk�Ì ( Û µk
where

Û k /¨§©ª × qÌ k . . . × « Ì k
¬Z®

contains the unknown complex gains. In future equations we will drop the dependence on , .

3.4 Additive noise

In reality, most of the received signal consists of additive system noise. When this noise is zero mean,
independent among the antennas (thus spatially white), and identically distributed, then asymptotically
in
¸ * k /}Í k ÎÏÍ µk xzÝ 9�Þ : (3)

Thus, the noise averages out everywhere, except on the main diagonal. Usually the noise is assumed to
be Gaussian.

When we have also unknown complex gains for each antenna, then* k /¿Û k Í k ÎÂÍ°µk Û�µk xßÝ 9 Þ : (4)

Note that this assumes that the noise is introduced after the gains.

In reality, the system noise is slightly different at each receiver. It is reasonable to assume that the noise
is spatially white: the noise covariance matrix is diagonal. We can assume that it can be estimated using
various calibration techniques; a simple diagonal scaling will then bring us back to the model (4). We
further assumed that the quantization is fine, since a large dynamic range is needed to cope with strong
interferers.

4 RF INTERFERENCE

RF interference usually enters the antennas through the sidelobes of the main beam. It can be stronger or
weaker than the system noise. An important property is that it has a certain directivity, so that it does not
average out in the correlation process.
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Examples of harmful RFI present at WSRT are television broadcasts (Smilde station), geolocation satel-
lites (GPS, Glonass), taxi dispatch systems, airplane communication and navigation signals, wireless com-
munication (GSM) and satellite communication signals (Iridium). Thus, interferers may be continuous
or intermittent, narrow-band or wideband, and strong or weak.

4.1 Delays of narrow-band signals

Let us digress for a moment and recall a well-known but important property of narrow-band signals, which
says that a short time delay translates to a phase shift. In signal processing, narrow-band signals are usu-
ally represented by their low-pass equivalents [11]. A real-valued bandpass signal with center frequency, a , such as received by an antenna, can be written asà  u¥4#c/ real ±�áe u¥# Ò Q B 9NS (Fâ�Ô ²
where the baseband signal á� u¥4# is the complex envelope of the received signal à  u¥4# . It is obtained fromà  u¥# by demodulation.

In array signal processing, we are interested in the effect of small delays on the narrow-band baseband
signal á� u¥4# . A delay ã on à  u¥# results inà�ä  u¥4#0GI/ à  u¥rf�ã5#;/ real ±�áe u¥rf�ã5#NQ�R B 9NS ( â ä Ò Q B 9NS ( â Ô ² E
so that the complex envelope of the delayed signal is á ä  u¥#´/åáe u¥Åfzã5#NQ R B 9NS (�â ä . If the bandwidth æ ofá� u¥4# is sufficiently small so that ç%è�ér ê@ ��� æëã5# ¾ �

, then standard Fourier analysis yields áe u¥�fÀã5# ¾ á� u¥4# ,
so that á ä  u¥# ¾ á� u¥4#NQ R B 9NS ( â ä for æëãíì � :
The well-known conclusion is that, for narrow-band signals, time delays shorter than the inverse band-
width amount to phase shifts of the baseband signal. This is fundamental in phased array signal process-
ing.

4.2 Narrow-band interference model

Suppose that we have a single interferer impinging onto the telescope array. The interfering signal reaches
the array with different delays ã%A for each telescopes. After demodulation to baseband, we have¤ A  u¥#U/¿! A á� u¥Åf�ã A #�Q�R B 9NS ( â ä [ E ?U/ � E�Ò�Ò�ÒrE ¯î:
Here, !�A represents the telescope gain in the direction of the interferer, including any possible attenuation
of the channel. Unlike much of the array signal processing literature, the !�A are likely to be different for
each telescope since the interferer is typically in the near field. This implies that it impinges on each
telescope at a different angle, whereas the response of the telescopes is not omni-directional.

The model can be simplified if the narrow-band assumption holds: in that case á� u¥0fïã A #Ð/ðá� u¥4# . Note
that we have already assumed before that the signals are sub-band filtered. Let æ be the bandwidth of
the sub-band filters. In WSRT, the largest baseline is 3000 m, corresponding to a maximal delay of

����Á
s.

Hence the narrow-band assumption holds if æñì �����
kHz [9]. Under this condition, we can stack the ¯

telescope outputs from a particular sub-band filter in a vector ¦ () u¥4# and write

¦ (� u¥#;/¨§©ª ! q Q R B 9NS (�â ä �...!�« Q R B 9NS ( â ä ¡
¬Z® áe u¥#�/ÚGÕÑ5áe u¥#X:

As before, Ñ is an array response vector. Unlike before, it is not a simple or known function of the direction
of the interferer, since we are in the near field and the sidelobes of the array are not calibrated. The vector
is also called the spatial signature of the interfering source.
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Similarly, with ò interferers,

¦ (� u¥4#c/ óiB prq Ñ B á B  u¥#c/�ÍÀô�§©ª á
q  u¥#
...á ó  u¥4#

¬Z® E Í°ô0/J~ Ñ q E�Ò�Ò�ÒÓE Ñ ó � :
The subscript ‘ á ’ is used to distinguish Í ô from the array response matrix of the astronomical sources.

The corresponding correlation matrix and its estimate are

* k /¨³´± ¦ (� u¥ k # ¦ () u¥ k #Nµ ² /õ �Í ô # k  "* ô # k  �Í°µô # k E ·* k / �öñ÷ R qi� p w ¦ () u¥ k x � ½ # ¦ µ(  u¥ k x � ½ #X:
How well the estimate fits to * k depends on the stationarity of the scenario, and is open to discussion. "* ô # k depends on the second-order properties of the interfering signals. The power of television signals
will be stationary over long periods (order tens of seconds or better). At the other extreme, communica-
tion signals such as GSM are time slotted: time is partitioned into frames of about 5 ms and frames are
partitioned into 8 slots. Each user can transmit only during its slot of 0.577 ms and then has to be silent
for 7 times this period before transmitting again in the next frame. Thus, there is a short-term stationarity
(over 0.577 ms), and a cyclostationarity with periods of about 5 ms.

The stationarity of Í ô  u¥ k # depends on the stationarity of the location of the interferer, its distance, and the
orientation of the telescopes. With multipath fading, a mobile interferer only has to move about 30 cm
to create a different Ñ -vector, giving a stationarity in the order of 10–100 ms for a GSM user. Even for a
fixed interferer such as a television station, the rotation of the telescopes will change the Ñ -vector within
a fraction of a second, either because of multipath fading or because the interferer moves through the
highly variable sidelobe pattern. After the Ñ -vector has changed, the interferer effectively looks like a
new interferer, thus increasing the value of ò .
The conclusion is that

·* k is a useful estimate only over short averaging periods over which the interfer-
ence is stationary, say

ö ½ in the order of msec. Thus,
ö ì ¸

.

4.3 Overall model: astronomical signals with interference and noise

In summary, the model that we have derived is as follows:* k /ÈÛ k Í k ÎÂÍ µk Û k x  �Í°ôC# k  "*°ôC# k  �Í°ô^# µk xøÝ 9%ÞÇE mí/ � E � E�Ò�Ò�Ò :
Here, Í k GU¯Àù b is the array response matrix of the

b
discrete sources in the sky. Its columns are known

functions of the (unknown) locations of the sources. It is a (very) wide matrix:
bûú ¯ , and assumed

stationary over 10 s. Î¨G b ù b is a diagonal matrix (positive real) containing the brightness of each
source, and assumed time-invariant over the complete observation. Û k are diagonal matrices (positive
real) representing unknown and slowly varying antenna gains.Í ô GÓ¯üù�ò is the array response matrix of the ò interferers. It is likely to be unstructured. We will consider
cases where òÀýz¯ , so that Í ô is tall. * ô GÏòþùÿò is the interference correlation matrix. Í ô and * ô are
usually stationary only over very short time spans.Ý 9 Þ is the noise covariance matrix, assuming white i.i.d. noise for simplicity. The noise power Ý 9 is often
rather well known.� Í k ÎÏÍ µk � , i.e., the observed power of the astronomical sources, is at least two orders of magnitudes
smaller than Ý 9 , and for the purpose of detection, it can be ignored. In contrast,

�  �Í ô # k  "* ô # k  �Í ô # µk �
can be of comparable magnitude.
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5 INTERFERENCE DETECTION

Ideally, the output of the correlation process are clean estimates of Í k ÎÏÍ µk , once every 10 s or so. In
principle, we estimate it by·* q w ô  u¥ k #c/ �¸º¹ R qi» p w ¦ (5 u¥ k xh¼�½ # ¦ µ(  u¥ k xh¼�½ # E ¸ ½ / ���

s : (5)

As we have seen, these estimates are corrupted by interference and additive system noise, and unknown
antenna gains. The objective of interference detection and rejection schemes is to improve the signal to
interference and noise ratio (SINR) at the output of the integrators, i.e., at the 10 s level. Interference that
is stationary at these time scales or longer can often be treated off-line. In this paper we consider online
interference detection and excision schemes, assuming stationarity at msec time scales or less.

Many interference detection schemes exist. They differ by the amount of knowledge that we can assume
on the interfering signals. E.g., if we know the signal wave form, then the optimal detector has the form
of a matched filter. Extensions are possible if the waveform is known up to a few parameters such as
amplitude, phase or frequency. However, usually the signal is modulated by a message and hence effec-
tively unknown. There are two classes of detection techniques: more or less deterministic methods that
exploit known properties of the signals such as modulation type or certain periodicities, and those based
on statistical models with unknown parameters, leading to Generalized Likelihood Ratio Tests (GLRT),
a particular example of which is power detection.

In principle, we can say that man-made interference is expected to be statistically different from the as-
tronomical sources. Although this is a very attractive feature, it is not easy to use these properties for
detection or excision, since the long averaging periods and the central limit theorem tend to jointly Gaus-
sianize the interferers. However for strong narrow-band interferers these methods are expected to give
improved suppression at an additional computational power [7].

Another distinction between interferers and astronomical signals is their spatial signature vectors. Astro-
nomical signals enter through the main lobe of the telescopes and have a very structured (parametrically
known) array response, which is used for imaging. The interferers usually enter through the sidelobes and
are in the near field, leading to unstructured Ñ -vectors. Also, their location relative to the array is not cor-
related with the motion of the earth. It might even remain fixed relative to the array during the complete
observation period (e.g., TV transmitters). Since the array tracks a fixed region in the sky, the directional
vector of the interference is typically time varying.

From all possibilities, we consider here two schemes:

– Multichannel interference detection and excision. The interference is detected at short time scales
(ms), and contaminated samples are removed from the averaging process in (5). This will work well
if the interference is concentrated in frequency and time, as e.g., in the GSM system.

– Spatial filtering. This more ambitious scheme is also suitable for continuously present interference
such as TV stations. After detection, we estimate the spatial signature of the interferer and project out
that dimension or otherwise subtract the signal coming from that direction.

For the purpose of power detection schemes, it is sufficient to look at (short-term) correlation matrices
based on measurement data in a window of length

ö ½ :·* k / �ö ÷ R qi� p w ¦ (� u¥ k x � ½ # ¦ µ(  u¥ k x � ½ # E ö ½¿¾ ���
ms :

If an interferer is detected in this analysis window, it is discarded, otherwise the data is accepted and
the correlation matrix is used in the formation of a clean estimate of

·* q w ô  u¥ k # . See figure 2. Obviously,
many variations are possible, such as sliding window techniques, or discarding neighbors of contaminated
samples as well (perhaps both in time and frequency).

In this section we propose sub-band detection methods and analyze their performance. Spatial filtering is
discussed in section 6.
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5.1 Single channel spectral detector

Detection theory is based on hypothesis testing. We test � w : there is no interference, versus � q : there is
at least one interferer in this band. The implementation of this test depends on the model that we pose for
the interferer. We will first discuss some particularly simple cases which will allow analysis.

Thus let us consider the single-channel case first. We assume that there is at most a single interferer,
where the interfering signal is i.i.d. Gaussian noise with unknown power Ý 9ô . The background noise is
white Gaussian with known power Ý 9 .
Without interferer, the observed data samples ¤ � are complex normal distributed, with zero mean and
variance Ý 9 . With an interferer, this distribution is still complex normal, but with variance Ý 9ô xÀÝ 9 . Thus,
we test the hypothesis � w G ¤ � ¶����  � E Ý 9 #� q G ¤ � ¶����  � E Ý 9ô xhÝ 9 # E � / � E�Ò�Ò�ÒÓE ö f � :
We assume that we have available

ö
samples ±�¤ � ² .

This is a rather standard problem in detection theory (cf. [6] for an introduction). A Neyman-Pearson
detector selects � q if the likelihood ratio, �  ¦ #c/ ¯Å ¦�� � q #¯Å ¦�� � w # E
exceeds a threshold. It is known that this leads to an optimal probability of detection, given a certain
probability of false alarm (detecting an interferer when there is none). In our case, the NP detector will
compare the total received power to a threshold × , deciding � q if the test statistic½  ¦ #HGI/ �Ý 9 ÷ R

qi� p w 3 ¤ � 3 9 	 ×Â:
Under the above assumptions we can obtain closed form expressions for the probability of false alarm
and the probability of detection. For this, recall that the sum of squares of

ö
real i.i.d. zero-mean unit-

variance Gaussian random variables has a 
 9 distribution with
ö

degrees of freedom. Since we have
complex samples, ½  ¦ # is the sum of

� ö
real variables. Under � w , these have a variance

q9 , hence the
probability of false alarm is given by���� GI/ � ± ½  u¤ # 	 × � � w ² / ��������  � × #
where ��������  �×¢# is the tail probability of a 
 9 random variable with

� ö
degrees of freedom. It has a

closed-form expression (cf. [6]): � � ����  � ×¢#O/ÜQ R�� ÷ R qik�p w × km�� :
Its inverse is known in terms of the inverse Gamma-function, and allows to select × to obtain a desired
level of false alarm. Similarly, the probability of detection of an interference at this threshold × is given
by �� GI/ � ± ½  ¦ # 	 × � � q ²/ ��� �Ý 9 xßÝ 9ô ÷i� prq 3 ¤ � 3 9�	 � ×� xzÝ 9ô � Ý 9 � � q�!/ � � ����  9 �q ��"$#�% # (6)

where &('�)û/+* �,* � is the interference-to-noise ratio.
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5.2 Multichannel detector with known spatial signature

A significant performance improvement is possible with a multichannel detector. To illustrate this, we
assume again the simple case with at most a single narrow-band Gaussian interferer, with known spatial
signature vector Ñ in white Gaussian noise. Without interference, the data vectors ¦ � are complex normal
distributed with zero mean and covariance matrix Ý 9 Þ . With a single interferer, the covariance matrix
becomes Ý 9ô Ñ)Ñ65 xzÝ 9 Þ . Thus,� w G ¦ � ¶7���  � E Ý 9 Þ #� q G ¦ � ¶7���  � E Ý 9ô Ñ)Ñ 5 xzÝ 9 Þ # E � / � E�Ò�Ò�ÒÓE ö f � :
The Neyman-Pearson detector considers the estimated data covariance matrix·* / �ö ÷ R qi� p w ¦ � ¦ µ�
and is given by ½  98+# GI/ �Ý 9 � ö Ñ µ ·*�ÑÑ µ Ñ : �;: � ×Ú:
This test is recognized as a matched spatial filter detector; essentially we compare the received energy in
the direction Ñ of the interferer to Ý 9 . Taking the same threshold as in the single channel case will provide
the same false alarm probability as before:� ��� / � ± ½  98+# 	 × � � w ² /<��� ����  � × #X:
However, the probability of detection is now given by� � / � ± ½  98 # 	 × � � q ² /<�=������  � ×� x ¯>&('�) #X:
Figure 4 presents the probabilities of detection as a function of interference to noise ratio for a single and
for ¯2/ � 1 channels. We have selected a threshold such that

� ��� /?2�4 , which means that without
interference, we will throw away 5% of the data. We can clearly see that the probability of detection
is greatly improved by moving to the multichannel case. The improvement is equal to the array gain,����@BADC  I¯ #U/ ��� :E2 dB.
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Figure 5: (a) Interferer with slot length
� /+^ ö samples, power Ý 9ô per on-sample, and duty cycle _ .

(b) Corresponding probability density of interference power in a single analysis window.

5.3 Single TDMA interferer with known spatial signature

Let us now consider a TDMA signal: an interferer which is periodically active in a fraction _ of the time
(see figure 5). Here,

� ý`_ ý �
is known as the duty cycle of the periodic signal. Assume that the

interferer is present in the selected frequency band and that the duration of the slot in which the interferer
is active is equal to ^ ö samples ¦ � , where we take ^ 	 �

. Let as before Ý 9ô denote the power of a single
sample of the interferer when it is present.

Since the interfering slots need not be synchronized to the analysis window, a single interfering slot will
give rise to two analysis windows in which the interferer is partially present, and possibly one or more
analysis windows in which the interferer is present in all the samples. Since the interferer is time-slotted
with duty cycle _ , there will also be windows that contain no interference.

The corresponding probability density ¯Ç . # of having a certain average interference power

.
per sample

in an arbitrary analysis window of length
ö

can be computed in closed form, as

¯Å . #U/
abbbbbbc bbbbbbd  � f ^ x �^ _Å#�le . # E . / ��. �.egf �^ _ E � ý . ý . �.ehf^ f �^ _îl� . f . �iegf # E . / . �.egf :

It is plotted in figure 5, where the vertical arrows indicate the unit impulse function. For example, for an
interferer of strength Ý 9ô per sample when it is on, the maximal average interference power per sample is
obviously Ý 9ô , when all samples are contaminated. The probability of this is  9^Ðf � # � ^j_ . Power densities
less than Ý 9ô occur with a uniform distribution for analysis windows that are only partly corrupted, at the
edges of the interference slot.

We can define

– the average interference power per sample before detection:.lk (�(j/ P . ¯Ç . # b . /m_ Ý 9ô E
– the average interference power per sample after detection and blanking:.on k ô / P .  � f ��  . ##�¯Å . # b . E
– the fraction of number of samples kept after detection and blanking:¼ n k ô / P  � f �p�  . ##�¯Å . # b . :

12
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Figure 6: (a) Effective residual INR after blanking versus effective INR at the input; (b) fraction of re-
maining samples after blanking

Figure 6 shows the dependence of the residual INR as a function of
ö

(the number of samples in an
analysis block), for an interferer of length

� / / 1 sub-band samples, a duty cycle _z/ � �Lq , and a false
alarm rate of 2�4 . Obviously, very weak interference is not detected, and in that case we throw away2�4 of the data due to the false alarm rate. High interference powers are easily detected, and almost all
contaminated analysis windows will be detected and blanked. Only the tails of an interfering slot might
be missed, so that there is still some interference remaining after detection. The worst case occurs for
interference that is not strong enough to be detected all the time, but not weak enough to be harmless.

Several other interesting facts can be seen in these figures. The most important is the large performance
gain in the multichannel approach, as compared to a single channel. As seen in figure 4, the effect of
using an array is to shift the graphs of probability of detection to the left by the array gain, e.g., for the
14-channel detector the graph is shifted by

��� :E2 dB. Hence, we require 11.5 dB less interference power
in order to detect it. However, the effective gain is given by the vertical distance between the graphs: this
shows the amount of interference suppression for a given interference power. In figure 6 the suppression
can be approximately

���
dB larger than that of the single antenna case.

A second interesting phenomenon is the fact that the interference suppression is almost the same for a
large range of analysis windows

ö
. Thus, we would take this window rather small, so that the the residual

number of samples is larger. This effect is mainly due to the fact that the case of partial blocks with weaker
power is less frequent as the analysis block becomes shorter.

5.4 Eigenvalue analysis

So far, we have looked at the detection problem from a rather idealistic viewpoint: at most 1 interferer,
and a known spatial signature. The reason was that for this case, we could derive optimal detectors with
closed-form expressions for the performance.

Our goal is the detection of the presence of an interferer from observed correlation data. As a start, let us
first consider the (asymptotic) equation * /�ÍÀô *Àô^Í µô
where Í ô has size ¯Õù ò and * ô has size òHù ò . For a low number of interferers ò , this brings us to familiar
grounds in array signal processing, as it admits analysis by subspace-based techniques. We give a brief
introduction here.

If ò ý¿¯ , then the rank of * is ò . Thus, we can estimate the number of narrow-band interferers from a
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rank analysis. This is also seen from an eigenvalue analysis: let* /srutvr µ
be an eigenvalue decomposition of * , where the ¯ ù ¯ matrix r is unitary ( rwr µ / Þ , r µ r / Þ )
and contains the eigenvectors, and the ¯8ùí¯ diagonal matrix t contains the corresponding eigenvalues
( ��Apx � ). Since the rank is ò , there are only ò nonzero eigenvalues. We can collect these in a òÅù´ò diagonal
matrix tîô , and the corresponding eigenvectors in a ¯ ù ò matrix r ô , so that* /sr ô t ô r µô : (7)

The remaining ¯=f�ò eigenvectors from r can be collected in a matrix r » , and they are orthogonal to r ô
since r /J~ r ôyr » � is unitary. The subspace spanned by the columns of r ô is called the signal subspace,
the orthogonal complement spanned by the columns of r » is known as the noise subspace (although this
is in fact a misnomer, since the noise is not confined to this space).

In the presence of white noise, * /¨Í ô * ô Í µô xzÝ 9 Þ « :
In this case, * is full rank: its rank is always ¯ . However, we can still detect the number of interferers by
looking at the eigenvalues of * . Indeed, the eigenvalue decomposition is derived as (expressed in terms
of the previous decomposition (7))* / Í ô * ô Í µô xzÝ 9 Þ «/ r ôhtÂôzr µô xzÝ 9 ~ r ô r » � ~ r ô r » � µ/ ~ r ô r » �|{ t ô xzÝ 9 Þ ó �� Ý 9 Þ « R ó~} { r µôr µ» } (8)

hence * has ¯þfnò eigenvalues equal to Ý 9 , and ò that are larger than Ý 9 . Thus, we can detect ò by com-
paring the eigenvalues of * to a threshold defined by Ý 9 .
But the eigenvalue decomposition shows more. Indeed, the columns of r ô span the same subspace as the
columns of Í ô . This is clear in the noise-free case (7), but the decomposition (8) shows that the eigen-
vectors contained in r ô and r » respectively are the same as in the noise-free case. Thus,� é��D�Ó 9r ô #c/ � é6�D�¢ �Í ô # E r µ» Íð/ � : (9)

Although we cannot directly identify each individual column of Í , we can at least determine its subspace
from the observed covariance matrix. This can be used to filter out the interference — such spatial filtering
algorithms are discussed in section 6. Note that it is crucial that the noise is spatially white. For colored
noise, an extension (whitening) is possible but we have to know the coloring.

To see how this matches with the previous section, let us we specialize to the case of a single interferer,
with spatial signature Ñ . It follows that the dominant eigenvector � q /s^ÅÑ (for some scaling ^ ), so thatÑ µ *�ÑÑ µ Ñ / � µ q *�� q� µ q � q /j� q :
Thus, the test statistic of the previous section reduces to testing the dominant eigenvalue of * . With an
interferer, � q / Ý 9ô xßÝ 9 , without interference it is � q / Ý 9 . In the current case (asymptotic,

ö ���
),

the threshold can be very sharp: just above Ý 9 . With finite
ö

, however, the dominant eigenvector of the
estimated covariance matrix

·* will only be approximately equal to Ñ , the dominant eigenvector will only
be approximately equal to Ý 9ô xßÝ 9 , and the threshold has to be relaxed.

5.5 Multichannel detector with unknown spatial signature

In case we only have an estimate
·* based on a finite amount of samples

ö
, and the spatial signature

vectors of the interference are unknown, there are no optimal results. The eigenvalue analysis suggested
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that we should compare the eigenvalues to a threshold defined by Ý 9 . We will discuss two detectors, one
for the case where Ý 9 is known, and another one for which it is unknown.

If the noise power Ý 9 is known, we can apply the likelihood ratio test (LRT), which leads to a method due
to Box [2] for testing the null hypothesis that Ý R 9 ·* / Þ (no interference). The test statistic is given byf ö ¯ @BADC «�A prq �)AÝ 9 ¶ 
Å9W « � q ]�W « R 9 ] (10)

where ��A is the ? -th eigenvalue of
·* . This basically tests if all eigenvalues are equal to Ý 9 .

If also the noise power is unknown, we propose to use the Minimum Description Length (MDL) detector
[15]. In this case, rather than setting a threshold based on the asymptotic distribution of the LRT, we try to
find the correct model order which minimizes the description length of the data. The MDL rank estimator
is given by �m�/s�L� C���� �k������  �m)# (11)

where �����  �m)#O/  I¯íf m)# ö @BADC q« R k�� « A p�k � q ��A�(� « A p�k � q �)A�#�� �¡ K s x �� m  � ¯�f m x � # @BADC ö
and an interference is detected if

�m��/ �
. This basically tests if the geometric mean of the eigenvalues

is equal to the arithmetic mean, which is only true if all eigenvalues are equal to each other. This rank
detector is simple to implement since it is independent of the varying SINR in the system.

Simulations of these detectors in a scenario with GSM interference have appeared in [8]. We are currently
testing them on measured data, with good results.

6 SPATIAL FILTERING

Let us now assume that we have obtained a covariance matrix * , which contains the rather weak covari-
ance matrix of the astronomical sources (visibilities) * � , plus white noise. Suppose also that there is an
interferer with power Ý 9ô : * /È* � x Ý 9ô Ñ5Ñ5µ xøÝ 9 Þ :
In the previous section, we considered schemes to detect the interferer from the eigenvalues of * . After
detection, we proposed to discard * if it is found to be contaminated, but what if the interferer is present
all the time? In that case, it is more suitable to try to suppress its contribution Ý 9ô Ñ)Ñ µ . This leads to spatial
filtering techniques.

6.1 Projecting out the interferer

A possibility is to null all energy with spatial signature Ñ . To this end, we can introduce the projection
matrices �=� /¿ÑÓ "Ñ5µeÑX# R q Ñ5µ E ���� / Þ f�ÑÓ "ÑXµ�Ñg# R q ÑXµ�:
It is easily seen that

� �� Ñ�/ � , so that * / � �� * � �� / � �� * � � �� xøÝ 9 � �� : (12)

Thus, the interference is removed. At the same time, the visibility matrix is modified by the projections,
and the noise is not white anymore, since one dimension is missing. The imaging stage has to be aware
of this, which is the topic of section 7. We do need to store the effective spatial filter on the 10s data.
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Since all information is now confined to a  I¯Âf � # -dimensional space, we might as well define a smaller-
size  I¯Çf � # ù= I¯Çf � # covariance matrix. To this end, recall from equation (8) the eigenvalue decomposition
of * , and in particular the matrix containing an orthonormal basis of the “noise subspace” r » , which is
the orthogonal complement of Ñ , with ¯íf � columns. According to (9), Ñ { r » , so that

� �� /3r » r µ» .
As an alternative to (12), we can define * /sr µ» *¡r » /mr µ» * � r » x Ý 9CÞ « R q E r » { Ñ : (13)

Although smaller, this matrix contains the same information as

� �� * � ��
. Besides the dimension reduc-

tion, an advantage of this scheme is that the noise stays white.

These expressions can immediately be generalized to the more general case of òëýº¯ interferers and
unknown Ñ -vectors. Indeed, in this case, the projection onto the complement of the Í ô -matrix of the
interference is given by � �¢ , / Þ f Í ô  �Í°µô Í ô # R q ÍÀµô /sr » r µ»
and we can form

 *õ/£r µ» *¡r » as above. Note that we do not have to know Í ô : the relevant noise
subspace is estimated from the eigenvalue decomposition of * . This hinges upon the fact that the noise
covariance is white (in general: known), and the visibility matrix * � is insignificant at these time scales
(otherwise, it might disturb the eigenvalue decomposition).

6.2 Keeping track of projections

To enable the imaging step, it is essential to store the linear operation represented by the projections. At
the same time, it might be necessary to adapt the projection several times per second, since the Ñ -vectors
of interferers are time-varying. Hence, in the construction of the 10 s correlation average, we also have
to construct the effective linear operation.

Thus consider the short-term averages, denoting for generality the linear operation by ¤ k : * k GI/3¤ k * k ¤ µk /¥¤ k * � ¤ µk xøÝ 9l¤ k ¤ µk E mí/ � E � E�Ò�Ò�ÒÅE ¸ f � :
By simply averaging these, the long-term average will be * q w ô / �¸ ¹ R qik�p w  * k / �¸ ¹ R qik�p w ¤ k * k ¤ µk :
The ¤ k appear here at both sides of * k . To move them to one side, we make use of the general expression¦ ç¨§� �ÍÀÎ~©Ï#c/� ª©�«¬ßÍ+# ¦ ç¨§e "ÎÏ#
where ¬ denotes a Kronecker product, and ¦ ç¨§� Ò # the column-wise stacking of a matrix into a vector,

Í®¬ßÎ GI/¨§©ª ! qqh¯ ! q 9 ¯ Ò�Ò�Ò! 9 qh¯ ! 99 ¯ Ò�Ò�Ò
...

. . .

¬Z®
Í /J~ Ñ q Ñ 9 Ò�Ò�Ò � ° ¦ ç¨§� �Í+#HGI/Ü§©ª Ñ qÑ 9...

¬Z®
In this case, we obtain¦ ç¨§�  * q w ô #È/ q

¹ � ±  ³²¤ k ¬´¤ k # ¦ ç¨§� "* k #ªµ/ ± q¹ � ²¤ k ¬´¤ k µ ¦ ç¨§� "* � # x Ý 9 ± q¹ � ²¤ k ¬´¤ k µ ¦ ç¨§� Þ « #/ © ¦ ç¨§� "* � # x Ý 9 © ¦ ç¨§� Þ « #
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Figure 7: Estimation of Ñ using a reference antenna

where © GI/ �¸º¹ R qik�p w ²¤ k ¬Á¤ k
For the imaging step, we have to know how

 * q w ô depends on * � . Thus, we have to construct and store© along with
 * q w ô . Unfortunately, it is a rather large matrix: ¯ 9 ù�¯ 9 if ¤ k doesn’t contain dimension

reductions. Another problem for imaging might be that the noise contribution on
 * q w ô is no longer white,

but determined by © . Two possible remedies are

– Assume that the Ñ -vectors were sufficiently variable over the time interval. In that case, © is likely to
be of full rank and thus invertible, and we can construct©þR q ¦ ç¨§�  * q w ô #U/ ¦ ç¨§e "* � # xøÝ 9 ¦ ç¨§� Þ « #X:
That is, we recover our interference-free model * � x Ý 9 Þ . However, the inversion of © might be a
formidable, and numerically dubious, task.

– If we take ¤ k /  9r » # µk as in (13), then the noise contribution on each
 * k is white. We can average

the
 * k if they have the same dimension, i.e., ¯îfÿò where the number of interferers ò is constant over

the interval. In that case, Ý 9 �¸º¹ R qi» p w  9r » #Nµk  9r » # k / Ý 9�Þ « R ó
so that the noise contribution on

 * q w ô is white. Note that no inversion is necessary, but © now has
size  I¯þfnò # 9 ùÚ¯ 9 , thus compressing the data. Simple but suboptimal extensions are possible in caseò is not constant.

Since © is a factor ¯ 9 larger than
 * q w ô , it might in fact be more efficient to store the short-term averages* k , along with the corresponding spatial filters ¤ k . This is the case if ¤ k is to be updated at time scales

of
��� á � ¯ 9 /32 � ms or less.

6.3 Other spatial filtering possibilities

Without going into too much detail, we mention a few other possibilities for spatial filtering and interfer-
ence cancellation. Suppose there is a single interferer,* k /}* � xzÝ 9ô Ñ)Ñ5µ xzÝ 9 Þ :
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– Subtraction. With an estimate of Ñ and an estimate of its power, we can try to subtract it from the
covariance data:  * k /¿* k f �Ý 9ô ·Ñ ·Ñ5µK: (14)

Without other knowledge, the best estimate of Ñ is the dominant eigenvector, � q , of * k , and likewise
the best estimate of Ý 9ô is � q f Ý 9 . Since both of these are derived from * k , it turns out to be not too
different from the projection scheme. Indeed, if we look at Þ fy^� q �Åµq #L* k  Þ fy^p� q �Åµq #�/¨* k fÂ� q �rµq � q  � ^ÿfy^r9�#
we can make it equal to (14) by selecting ^ such that � q  � ^ fÃ^ 9 #c/ �Ý 9ô . The projection scheme had^8/ �

.

– Spatial whitening. In this scheme, we try to make the interference plus noise white again. This com-
ponent is equal to Ý 9ô Ñ)Ñ µ xhÝ 9 Þ , so we pre- and postmultiply with square-root factors of it: * k /  �Ý 9ô ·Ñ ·Ñ5µ x �Ý 9 Þ # R q _ 9�* k  �Ý 9ô ·Ñ ·Ñ5µ x �Ý 9 Þ # R q _ 9 /  Ò # R q _ 9�* �  Ò # R q _ 9 x Þ :

– Subtraction of a reference signal. If we have a reference antenna that receives a ‘clean’ copy of the
interfering signal, then we might try to subtract this reference signal from the telescope signals. There
are many adaptive schemes for doing so, e.g., LMS. The general scheme is as illustrated in figure 7.
In this figure, the Ñ -vector of the interferer is found by cross-correlating with the reference antenna.
We also estimate its power. After correcting for the noise power on the reference antenna, we can
reconstruct and subtract Ñ5áe u¥# .
This scheme is rather similar to the original projection approach where we reduce the dimension to the
noise subspace, viz. equation (13). The main difference is that, now, we reduce the dimension from¯ x � antennas back to ¯ antennas, so there is no loss of dimensions from the astronomy point of view.
It appears that this only has advantages if the reference antenna has a better INR than the telescopes.
Also, we need as many reference antennas as there are interferers.

7 IMAGING AFTER SPATIAL FILTERING

In the previous section, we discussed spatial filtering techniques. It was shown that an attractive scheme
for removing the interference is by projecting it out. However, by doing so we replace the observed vis-
ibilities

D  ut5A Ev A�# in the matrix * � by some (known) linear combination. In this section, we discuss the
implications of this for the imaging.

7.1 Classical inverse Fourier imaging

The relation between sky brightness

.  �� E� # and visibilities
D  ut Ev # (where t , v are taken at frequency, ) is D  ut Ev #c/ PcP .  �� E� #UQ R B WI�%�F�g�4��] b � b �

We have measured
D

on a discrete set of baselines ±� ut5A Ev A # ² . The dirty image (via direct Fourier inversion
with weights Ä´A ) is defined by. �  �� E� #hGI/ i A Ä A D  ut ALEv�A #UQ B WI��[Z�F�g�N[`�H]
It is equal to the 2D convolution of the true image with the dirty beam:. �  �� E� #È/ � A Ä´A D  ut5A Ev A�#ÇQ B WZ��[Ê�F�g�[ê�H]/ � A Ä´A|ÅZÆÇÆ .  ��oÈ E� È`#ÇQ R B WZ��[Ê�ÊÉZ�g�[ê�.ÉÊ] b �oÈ b � ÈÌËUQ B WZ��[Ê�F�g�[ê�H]/ Æ�Æ .  ��oÈ E� È`# Å � A Ä A Q B WZ��[�W � R �ÊÉÊ]`�g�[�WZ� R ��É�]�] Ë b �oÈ b � È/ Æ�Æ .  �� È E� È # ¯ w  ��HfO� È E� f � È # b � È b � È
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or . � / .�Í ¯ w E ¯ w  �� E� #zGI/ i A Ä´A Q B WI��[ê���g�[ê��]¯ w is the dirty beam, centered at the origin. The weights ±¨Ä A ² are designed to obtain an acceptable
beamshape, with low side lobes, in spite of the irregular sampling.

Specializing to a point source model,

.  �� E� #�/ � k . k le ��|fO� k E� f � k # , where

. k
is the intensity of

the source at location  �� k E� k # , givesD  ut Ev #�/ i k . k Q�R B WZ�%� s �g�4� s ]. �  �� E� #�/Üi k . k ¯ w  ��´f8� k E� f � k #
Thus, every point source excites the dirty beam centered at its location  �� k E� k # .
From the dirty image

. �
and the dirty beam

¯ w , the desired image

.
is obtained via a deconvolution

process. A popular method for doing this is the CLEAN algorithm. The algorithm assumes that
¯ w has

its peak at the origin, and consists of a loop in which a candidate location  �� k E� k # is selected as the largest
peak in

. �
, and subsequently a small multiple of

¯ w  ���fÐ� k E� f � k # is subtracted from

. �
. The objective

is to minimize the residual, until it converges to the noise level.

7.2 Inverse Fourier imaging after projections

If we take projections or any other linear combination © / ~ & AÄB � of the visibilities ± D  ut ANEv�A # ² during
measurements, as in section 6, we have instead available¦ ç¨§�  * #c/Î© ¦ ç¨§  "* � # Ë Ï  utXA Ev A #O/ i B &^AÄB D  ut�B Ev B�#
Suppose we compute the dirty image in the same way as before, but now from Ï ,. �  �� E� #ÜGI/ � A Ï  utXA Ev A�#ÇQ B WI��[Ê�F�g�[ê�H]/ � A � B &CAÄB D  uteB Ev B�#ÇQ B WI��[ê�F�g�N[��H]
Then . �  �� E� #È/ � A � B &CAÄB D  uteB Ev B�#UQ B WI��[Ê���g�[`�H]/ � A � B &CAÄB Å Æ�Æ .  �� È E� È #ÇQ R B WZ�^\� É �g� \4� É ] b � È b � È Ë Q B WI��[Z�F�g�N[��H]/ ÆDÆ .  ��oÈ E� È�#�Å � A � B &CAÄB�Q R B WZ�^\� É �g� \4� É ] Q B WZ��[Ê�F�g�[ê��] Ë b �oÈ b � È/ ÆDÆ .  ��oÈ E� È�# ¯  �� E�nE �³È E� È�# b �oÈ b � È
where ¯  �� E�nE � È E� È #hGI/ i A i B &CAÄB�Q�R B WI�C\N� É �g� \ � É ] Q B WI��[Ê�F�g�[ê�H]
Thus, the dirty image is again obtained via a convolution, but the dirty beam is now space-varying.

¯  �� E�nE �³È E� È�#
is a beam centered at  ��³È E� È�# and measured at  �� E� # .
With a point source model. �  �� E� #O/ i k . k ¯  �� E�nE � k E� k #�/ i k . k ¯ k  �� E� #
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where ¯ k  �� E� #hGI/ i A i B &CAÄB�Q R B WZ�^\L� s �g��\ � s ] Q B WI��[Z�F�g�[ê��]
Again, every point source excites a beam centered at its location  �� k E� k # , but the beams may all be differ-
ent: they are space varying. Nonetheless, they are completely known if we know the linear combinations
that we took during observations.

In principle, the CLEAN algorithm is easily extended to work with space-varying beams, but at a large
computational cost since the beam at each supposed source location has to be computed. However, CLEAN
is strongly based on the assumption that a beam has a large peak at its center, since this is how we find
candidate point source locations. In the new situation, the beam shape depends on © , and it is not a priori
clear what it will look like.

7.3 Maximum likelihood imaging

Let us consider the imaging step from a more fundamental viewpoint. In principle, the construction of
the image using the observed correlation matrices and assuming the parametric model can be viewed as a
parameter estimation problem. One of the most important inference methods is the maximum likelihood
method. Given a parametric model for the received data, choose the parameters which maximizes the
probability of obtaining the observed data. This is different than the most probable image approach [3]
where no parametric model is imposed on the image, leading to maximum entropy image formation. Max-
imum likelihood estimators (MLEs) are known to be consistent and efficient (i.e., they provide unbiased
estimators with minimum variance), under very general conditions, and thus are the natural choice for
many parameter estimation problems.

In deriving the maximum likelihood estimator of the image parameters, we should take into account the
Gaussianity of the astronomical signals. Contrary to the claim in [14], the corresponding MLE is not
equivalent to parametric optimization of the CLEAN cost function. Using the discrete point source model
we obtain: * k /ÈÛ k Í k  �Ð�#eÎÏÍ°µk  �Ð¢#eÛ�µk x Ý 9�Þ (15)

where the
b

astronomical sources are Gaussian with covariance matrix Î /ÒÑ � � C ~ . q E�Ò�Ò�ÒÓE . o � and sky
coordinates Ð /å± - � ² o� prq , and the noise is Gaussian with covariance Ý 9 Þ . Let

·* k be the sample covariance
matrix during the m -th epoch, based on

¸ k
collected samples. The likelihood of the observations at them -th epoch given map parameters Ð E Î E Ý 9 E Û k is then given byÓ �� « 3 * k 3 Q�R�ÔÖÕ WØ× K �s�Ù× s ]]Ú ¹ s

Using all observation epochs we obtain that the log-likelihood function is given by (after omitting con-
stants) Û  ·* q E :�:�: E ·*�ÜÏ3 Î E Ð E ±�Û k�² Ü q E Ý 9 #U/åf Üik�prq ¸ k @BADC 3 * k 3�f Üik�prq ¸ kSÝ �� "* R qk ·* k # (16)

where Þ is the number of epochs. The MLE is found by maximizing (16) over Î E Ð E ±�Û k�² Ü q E Ý 9 . This is
rather complicated, and efficient ways to implement it will be discussed elsewhere. A simplified model
where perfect calibration is assumed has been analyzed in [13], where a generalized least squares solution
has been proposed.

7.4 CLEAN and self-calibration

Since the direct optimization of (16) appears to be intractable, it is natural to resort to least-squares model
fitting. In the case of the CLEAN algorithm we just try to fit in the least squares sense a parametric model
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to equations (15), but assuming perfect calibration, i.e., Û k / Þ . The LS cost function is given by:

~ �Ð+/ë± ·- � ² E ·Î � / ��� �Ð Ì ß Üik�prq � ·* k fhÍ k  �Ð¢#eÎÏÍÀµk  �Ð #Úf Ý 9�Þ � 9� (17)

( Î is constrained to be diagonal with positive entries.) It is interesting to observe that if one ignores
the Gaussianity of the astronomical signals, instead introducing nuisance parameters for each of the as-
tronomical signal samples, one ends up with a likelihood function equivalent to the above CLEAN cost
function. In a variety of simpler cases in array signal processing, this is known to have a degraded per-
formance compared to (16).

With unknown array gains, equation (17) generalizes toÅ �Ð+/ë± ·- � ² E ·Î E ± �Û k ² ËÕ/ �~� �Ð Ì ß;Ì à Û soá Üik�prq � ·* k f Û k Í k  �Ð¢#eÎÏÍ µk  �Ð¢#eÛ µk f Ý 9 Þ � 9� (18)

The solution can be obtained by the “self-cal” algorithm: an alternating least squares algorithm which
solves iteratively for the parameters Î E ± - � ² by a CLEAN step (with fixed gains), and the gain parameters±�Û k�² by a calibration step (with fixed source parameters Î E Ð ).

It has not been noted before in the literature that the latter step admits a direct algebraic solution. Indeed,
to minimize (18) with fixed ±�Í k�² and Î , we we can minimize separately for each m the related expression� ·* k f�Û k Í k ÎÏÍ µk Û µk f Ý 9 Þ � 9�
Let â W k ] be the vector of diagonal elements of Û k . We can define for each m a  I¯ÿùí¯�# matrix 8 W k ] with
entries 8 W k ]AÄB /  ·* k f Ý 9 Þ #FAÄB �Í k ÎÏÍ µk # A7B
and fit â W k ] with entries ã W k ]A such that 8 W k ]AÄB /7ã W k ]Aåäã W k ]B (19)

In the usual self-calibration algorithm, this equation is solved iteratively using phase closure relations.
Instead, we can resort to the algebraic structure of the problem and obtain a closed form solution. In
matrix form, (19) is 8 W k ] /sâ W k ] â W k ] µ (20)

This asks for the best hermitian rank-one approximation to the matrix 8 W k ] , which is known to be given
by ·â W k ] /çæ � qzèÇq
where � q is the largest eigenvalue of 8 W k ] and

èÇq
is its corresponding eigenvector. This also shows that

for each sky model the calibration step has (w.p. 1) a unique solution that minimizes (18).

A satisfactory consequence is the convergence of the self-calibration iteration. This follows from the
iterative least squares interpretation of the complete self-calibration procedure, together with the fact that
the minimization of (18) along any coordinate always reduces its value.
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7.5 Effect of spatial filtering

Now that we have a matrix formulation for the self-calibration algorithm it will be easy to see the effect
of spatial filtering on the imaging process. The measurement equation now becomes* k /}Í k ÎÏÍ µk x  �Í ô # k  "* ô # k  �Í ô # µk xhÝ 9 Þ (21)

The interference is removed by linear operations ¤ k , for example projections, acting on the left and right
of * k . This modifies the least squares optimization problem toÅ �Ð+/ë± ·-Sé ² E ·Î E ± �Û k ² Ë / �~� �Ð Ì ß;Ì à Û soá Üik�prq � ¤ k�ê ·* k f Û k Í k  �Ð #eÎÏÍ µk  �Ð�#eÛ µk f Ý 9�Þlë ¤ µk � 9� : (22)

The cost function is similar to (18) and thus its minimization does not pose stronger computational de-
mands. The main difference is that the initialization of the multidimensional search will become more
complicated because the Fourier relation between the measured data and the sky brightness now leads to
a deconvolution problem with space-varying beams (section 7.2).

8 Conclusions

We considered various aspects of multichannel interference suppression for radio-astronomy. It was shown
that sub-band processing will be necessary in order to exploit narrow-band techniques. We have ana-
lyzed a simple case demonstrating the great improvements that are possible by multichannel detection
and blanking of intermittent interference. We have also discussed spatial filtering techniques and their
effect on the image formation process. The main conclusion is that spatial filtering is very interesting but
requires to be taken into account in the imaging step.

During the writing of this paper, we have applied the multichannel detection and blanking algorithm to
measured GSM signals, resulting in great improvements of the spectral estimates. This will be reported
elsewhere.
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