
5724 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 11, NOVEMBER 2017

Decentralized Prediction-Correction Methods for
Networked Time-Varying Convex Optimization

Andrea Simonetto , Member, IEEE, Alec Koppel, Aryan Mokhtari, Geert Leus, Fellow, IEEE,
and Alejandro Ribeiro , Member, IEEE

Abstract—We develop algorithms that find and track the
optimal solution trajectory of time-varying convex optimiza-
tion problems that consist of local and network-related
objectives. The algorithms are derived from the prediction-
correction methodology, which corresponds to a strategy
where the time-varying problem is sampled at discrete time
instances, and then, a sequence is generated via alterna-
tively executing predictions on how the optimizers at the
next time sample are changing and corrections on how
they actually have changed. Prediction is based on how
the optimality conditions evolve in time, while correction is
based on a gradient or Newton method, leading to decen-
tralized prediction-correction gradient and decentralized
prediction-correction Newton. We extend these methods to
cases where the knowledge on how the optimization pro-
grams are changing in time is only approximate and propose
decentralized approximate prediction-correction gradient
and decentralized approximate prediction-correction New-
ton. Convergence properties of all the proposed methods
are studied and empirical performance is shown on an
application of a resource allocation problem in a wireless
network. We observe that the proposed methods outperform
existing running algorithms by orders of magnitude. The nu-
merical results showcase a tradeoff between convergence
accuracy, sampling period, and network communications.

Index Terms—Distributed algorithms, optimization meth-
ods, time-varying optimization, wireless sensor networks.

I. INTRODUCTION

D ECENTRALIZED tracking methods are used to solve
problems in which distinct agents of a network aim at

minimizing a global objective that varies continuously in time.

Manuscript received November 7, 2016; accepted March 28, 2017.
Date of publication April 17, 2017; date of current version October 25,
2017. The work in this paper is supported by NSF CAREER CCF-
0952867, ONR N00014-12-1-0997, ASEE SMART, and ARL MAST CTA.
This paper expands the results and presents proofs that are referenced
in [1], [2]. Recommended by Associate Editor C. Hadjicostis. (Corre-
sponding author: Andrea Simonetto.)

A. Simonetto is with IBM Research Ireland, Dublin 15, Ireland (e-mail:
andrea.simonetto@ibm.com).

G. Leus is with the Faculty of Electrical Engineering, Mathematics and
Computer Science, Delft University of Technology, 2628 CD Delft, The
Netherlands (e-mail: g.j.t.leus@tudelft.nl).

A. Koppel, A. Mokhtari, and Alejandro Ribeiro are with the De-
partment of Electrical and Systems Engineering, University of Penn-
sylvania, Philadelphia, PA 19104 USA (e-mail: akoppel@seas.upenn.
edu; aryanm@seas.upenn.edu; aribeiro@seas.upenn.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2017.2694611

We focus on a special case of this problem, where the objective
may be decomposed into two parts: The first part is a sum of
functions that are locally available at each node; the second is
defined along the edges of the network, and is often defined by
the cost of communication among the agents. Problems of this
kind arise, e.g., in estimation, control, and robotics [3]–[9].

One approach to continuous-time optimization problems of
this kind is to sample the objective function at discrete time in-
stances tk , k = 0, 1, 2, . . . , and then, solve each time-invariant
instance of the problem, via classical methods such as gradient
or Newton descent. If the sampling period h := tk+1 − tk is
chosen arbitrarily small, then doing so would yield the solu-
tion trajectory y∗(tk) with arbitrary accuracy. However, solving
such problems for each time sample is not a viable option in
most application domains, since the computation time to obtain
each optimizer exceeds the rate at which the solution trajectory
changes, unless y∗(t) is approximately stationary.

Prediction-correction algorithms [10], by making use of tools
of nonstationary optimization [11]–[13], have been developed
to iteratively solve convex programs that continuously vary in
time. These methods operate by predicting at time tk the optimal
solution at the discrete time instance tk+1 via an approximation
of the variation of the objective function F over this time slot.
Then, this prediction is revised by executing gradient or Newton
descent. However, these methods are designed only for central-
ized settings. We focus on time-varying convex programs in
decentralized settings, where nodes can only communicate with
their neighbors. As a consequence, the prediction-correction
methods suggested in [10] are not directly applicable.

One approach to solving problems of this type are decentral-
ized running algorithms, which run at the same time scale as
the optimization problem and dynamically react to changes in
the objective function. Performance guarantees for such meth-
ods yield convergence to a neighborhood of the true optimizer
y∗(tk) on the order of the sampling period O(h), despite the
fact that only one round of communication is allowed per
discrete time step [4], [14]–[20]. The aforementioned works
mostly consider strongly convex objectives with no constraints.
Notably, [18] and [19] describe a running dual decomposi-
tion and a running alternating direction method of multipliers
algorithm. Notice that these methods implement only correction
steps, and thus, cannot effectively mitigate the error from the
non-stationarity of the optimizer.

In this paper, we generalize the prediction-correction method-
ology of [10] to decentralized settings such that each node of a

0018-9286 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2923-3361
https://orcid.org/0000-0003-4230-9906

SIMONETTO et al.: DECENTRALIZED PREDICTION-CORRECTION METHODS FOR NETWORKED TIME-VARYING CONVEX OPTIMIZATION 5725

network, after communicating with its neighbors, estimates its
local component of the optimal trajectory at the discrete time
instance tk+1 from information regarding the objective at time
tk , and then, corrects this local prediction at time tk+1 , via
additional communications within the network. To develop this
generalization, in the prediction step, we truncate the Taylor
series of the objective function’s Hessian inverse. This approxi-
mation is necessary since the computation of the objective func-
tion’s Hessian inverse, which is required for the prediction step,
requires global communication. In the correction step, we use
decentralized approximations of gradient descent and of New-
ton’s method to correct the predicted solution by descending
towards the optimal solution of the observed objective func-
tion. In addition, we consider cases in which the prediction of
how the cost function changes in time is unavailable, and must
be estimated. This time-derivative approximation is particularly
useful in target tracking [21] or designing learning-based control
strategies [22], [23].

The main contributions of this paper are the following.
1) We develop prediction-correction algorithms for a class

of time-varying networked optimization problems, which
can be implemented in a distributed fashion over a net-
work of computing and communicating nodes. The cor-
rection term is either derived from a gradient method or
from a (damped) Newton step.

2) In order to compute the prediction (and correction for
Newton) direction, we employ a novel matrix splitting
technique, for which the one developed in [24] and[25]
is a special case (only valid for adjacency matrices).
The novel methodology relies on the concept of block
diagonal dominance.

3) We prove convergence of all the algorithms and charac-
terize their convergence rate. For the case of the (damped)
Newton correction step, we compute the (local) conver-
gence region and argue global convergence in case of a
damped step.

This paper is organized as follows. In Section II, we begin
by introducing the optimization problem of interest and by
providing some examples for the proposed formulation. We
then derive a family of algorithms, which contains four distinct
methods (see Section III). We analyze their convergence
properties in Section IV, establishing that the sequence of
iterates generated by all these algorithms converges linearly to a
bounded tracking error. We observe a tradeoff in the implemen-
tation between approximation accuracy and communication
cost. In Section V, we numerically analyze the methods on
a resource allocation problem in wireless sensor networks.
Finally, in Section VI, we conclude.1

1Notation: Vectors are written as y ∈ Rn and matrices as A ∈ Rn×n . ‖ · ‖
denotes the Euclidean norm, in the case of vectors, matrices, and tensors. The
gradient of the function f (y; t) with respect to y at the point (y, t) is indicated
as ∇yf (y; t) ∈ Rn , while the partial derivative of the same function w.r.t. t at
(y, t) is ∇t f (y; t) ∈ R. Similarly, the notation ∇yyf (y; t) ∈ Rn×n denotes
the Hessian of f (y; t) w.r.t. y at (y, t), whereas ∇tyf (y; t) ∈ Rn denotes the
partial derivative of the gradient of f (y; t), w.r.t., time t at (y, t), i.e. the mixed
first-order partial derivative vector of the objective. Consistent notation is used
for higher order derivatives.

II. PROBLEM FORMULATION

We consider a connected undirected graph G = (V,E), with
vertex set V containing n nodes and edge set E containing
m edges. Consider yi ∈ Rp as the decision variable of node i
and t as a nonnegative scalar that represents time. Associated
with each node i are time-varying strongly convex functions
fi(yi ; t) : Rp × R+ → R and gi,i(yi ; t) : Rp × R+ → R. The
local functions fi may be interpreted as, e.g., the merit of a
particular choice of control policy [5] or statistical model [3].
Moreover, associated with each edge (i, j) ∈ E is a continu-
ously time-varying convex function gi,j (yi ,yj ; t) : Rp × Rp ×
R+ → R. These edge-wise functions represent, e.g., the cost of
communicating across the network [26].

We focus on problems where nodes aim at cooperatively
minimizing the global smooth strongly convex cost function
F : Rnp × R+ → R, which can be written as the sum of lo-
cally available functions f : Rnp × R+ → R, and a function
g : Rnp × R+ → R induced by the network structure G. In par-
ticular, the function f(y; t) is the sum of the locally available
functions fi(yi ; t), as follows:

f(y; t) :=
∑

i∈V

f i(yi ; t) (1)

where we have defined y ∈ Rnp in (1) as the stacking of the
nodes’ decision variables yi , i.e., y = (y1T; . . . ;yn T)T. The
function g(y; t) induced by the structure of the network is
the sum of locally available functions gi,i(yi ; t) and the func-
tions gi,j (yi ,yj ; t) associated to the edges of the network

g(y; t) :=
∑

i∈V

gi,i(yi ; t) +
∑

(i,j)∈E

gi,j (yi ,yj ; t) . (2)

Our goal is to solve the time-varying convex program

y∗(t) :=argmin
y∈Rn p

F (y; t) := f(y; t) + g(y; t), for t ≥ 0 (3)

that is the foundation of many problems in cooperative con-
trol and network utility maximization. Our goal is to enable
the nodes to determine their own component of the solution
y∗(t) of (3) for each time t in a decentralized fashion, i.e., a
protocol such that each node only requires communication with
neighboring nodes. Notice that nodes can minimize the objec-
tive function f(y; t) independently, while minimization of the
function g(y; t) requires coordination and information exchange
across the network. Before developing distributed protocols to
solve (3), we present a couple of examples to clarify the problem
setting.

Example 1 (Estimation of distributed processes): We con-
sider a network of interconnected sensors monitoring a time-
varying distributed process. We represent this process by a
vector-valued function u(x, t) ∈ Rp , with x ∈ R3 being the
spatial coordinate, and t denoting time. We assume that the pro-
cess is spatially smooth so that the value of u(x, t) at close-by
spatial coordinates is also similar. We focus on the case that a net-
work of n sensors is deployed in a spatial regionA ⊂ R3 . The ith
node acquires measurements zi(xi , t) that are noisy linear trans-
formations of the true process zi(xi , t) = hi Tu(xi , t) + ηi(t),
where xi is the location of the sensor i, hi is its regressor,
and the noise ηi(t) ∼ N (0, σi) is Gaussian distributed inde-

5726 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 11, NOVEMBER 2017

pendently across time with covariance σi . This problem setting
comes up in earth sciences [27], [28] and acoustics [29], but it
is also relevant in robotics [9], [30], [31]. By considering the
task of learning a spatially regularized least-squares estimate
û ∈ Rnp of the process u(x, t) at different locations, we obtain
the time-varying networked convex program

min
û1 ∈Rp ,...,ûn ∈Rn

1
2

n∑

i=1

‖hi Tûi − zi(xi , t)‖2
1

σ i

+
β

2

∑

j∈N i

wij‖ûi − ûj‖2
2 (4)

where Ni denotes the neighborhood of node i, ûi is the esti-
mated value of the process u(x, t) at time t and location xi , the
constant β > 0 is a regularizer that incentivizes closely located
sensors to obtain similar estimates, and the nonnegative weights
wij may be defined according to a function of the distance
between sensors. The first term in (4) defines the estimation ac-
curacy in terms of the squared error and is identified as a sum of
functions, which only depend on local information, which is a
special case of (1). The second term in (4) couples the decisions
of node i with its neighbors j ∈ Ni , and it is of the form (2).
Thus, (4) is an instance of (3).

Example 2 (Resource allocation problems): Consider a re-
source allocation problem in a wireless sensor network [26],
[32], [33]. Associate with sensor i a time-varying utility func-
tions fi : Rp × R+ and decision variable yi ∈ Rp representing
the resources allocated to node i in a network G of n sensors.
To allocate resources in this network, one must respect channel
capacity and interference constraints. These constraints may be
formulated in aggregate as network-flow constraints, obtaining
the time-varying resource allocation problem

min
y1 ∈Rp ,...,yn ∈Rp

∑

i∈V

f i(yi ; t) subject to Ay = b(t) . (5)

In (5), A ∈ Rlp×np denotes the augmented graph edge inci-
dence matrix. The matrix A is formed by l × n square blocks
of dimension p. If the edge e = (j, k) with j < k links node
j to node k the block (e, j) is [A]ej = Ip and the block
[A]ek = −Ip , where Ip denotes the identity matrix of dimen-
sion p. All other blocks are identically null. Moreover, the time-
varying vectors b(t) ∈ Rlp are induced by channel capacity and
rate transmission constraints.

In many situations, especially in commercial settings where
the nodes are consumer devices, one seeks to solve decentralized
approximations of (5). One way to do so is to consider the
approximate augmented Lagrangian relaxation of (5), and solve
instead

min
y1 ∈Rp ,...,yn ∈Rp

∑

i∈V

f i(yi ; t) +
1
β2 ‖Ay − b(t)‖2 (6)

which is now unconstrained [34]. Notice that the parameter
β > 0, which behaves similarly to a Lagrange multiplier, tunes
the approximation level and penalizes the violation of the ap-
proximated constraint ‖Ay − b(t)‖2 . Observe that the first term
in (6) is precisely the same as (1). Moreover, block-wise de-

composition of the second term yields edge-wise expressions of
the form ‖(yi − yj) − bi(t)‖2 , which may be identified as the
functions gi,j (yi ,yj ; t) in (2).

III. ALGORITHM DEVELOPMENT

To solve the time-varying optimization problem in (3), the
first step is sampling the continuously time-varying objective
function F (y; t) at time instants tk with k = 0, 1, 2, . . . , leading
to a sequence of time-invariant convex problems

y∗(tk) := argmin
y∈Rn p

F (y; tk) k � 0 . (7)

The sequence of optimal decision variables y∗(tk) defined in
(7) are samples of the optimal trajectory y∗(t) defined in (3).
Since solving (7) for each time instance tk is impractical even
for moderately sized networks, we instead devise a method to
generate a sequence of approximate optimizers for (7), which
eventually remains close to the true optimizer y∗(tk) in (7) up to
a constant error. More formally, we seek to generate a sequence
{yk} for which

lim sup
k→∞

‖yk − y∗(tk)‖ = const. (8)

and whose rate, convergence, and asymptotical error constants
depend on the sampling period h and the number of exchanged
messages per node per time instance k.

To do so, we build upon prediction-correction methods, which
at the current time sample tk predict the optimal decision vari-
able at the next time sample tk+1 , i.e., from an arbitrary initial
variable y0 , for each time k � 0, predict a new approximate
optimizer as

yk+1|k = yk + h pk (9)

where index k is associated with time sample tk , and simi-
larly for k + 1, w.r.t., tk+1 , pk ∈ Rnp is the prediction direc-
tion, yk+1|k is the predicted variable for step k+1, and h is the
sampling period. Then, after observing the sampled objective
function at tk+1 , we correct the predicted vector yk+1|k by

yk+1 = yk+1|k + γ ck+1 (10)

for a certain correction direction ck+1 ∈ Rnp , which defines a
descent direction, with nonnegative constant step size γ > 0.

A. Decentralized Prediction Step

Solving the strongly convex time-invariant problem (7) ac-
counts in finding the unique decision variable for which

∇yF (y∗(tk); tk) = 0. (11)

For any other variable yk �= y∗(tk), the gradient ∇yF (yk ; tk)
would not be null and we can use it to quantify the suboptimality
of y, w.r.t., y∗(tk).

We design the prediction direction as the one that maintains
the suboptimality level when determining yk+1|k (the rationale
being that when arrived at optimality, we will keep it while
predicting). Formally, we wish to determine yk+1|k as the vector
for which

∇yF (yk+1|k ; tk+1) = ∇yF (yk ; tk). (12)

SIMONETTO et al.: DECENTRALIZED PREDICTION-CORRECTION METHODS FOR NETWORKED TIME-VARYING CONVEX OPTIMIZATION 5727

Of course, implementing (12) requires information at future
times tk+1 at the present tk , an impossibility without clairvoy-
ance. Instead, we approximate the left-hand side by adopting a
Taylor expansion, obtaining

∇yF (yk ; tk) + ∇yyF (yk ; tk)(yk+1|k − yk)

+h∇tyF (yk ; tk) = ∇yF (yk ; tk) (13)

which may be reordered so that yk+1|k is on the left-hand side,
yielding

yk+1|k = yk − h [∇yyF (yk ; tk)]−1∇tyF (yk ; tk) . (14)

The update (14) describes the discrete-time iso-suboptimality
dynamics. This prediction step (14) in principle would allow
us to maintain a consistent level of suboptimality, but our fo-
cus on decentralized methods precludes its use. This is be-
cause execution of (14) requires computing the Hessian inverse
∇yyF (yk ; tk)−1 , which is not implementable by a network
due to the fact that ∇yyF (yk ; tk)−1 is a global computation.
The Hessian ∇yyF (yk ; tk) = ∇yyf(y; t) + ∇yyg(y; t) con-
sists of two terms: The first term ∇yyf(y; t) is a block diagonal
matrix and the second term ∇yyg(y; t) is a block neighbor
sparse matrix that inherits the structure of the graph. There-
fore, the global objective function’s Hessian ∇yyF (y; t) has
the sparsity pattern of the graph and can be computed by ex-
changing information with neighboring nodes. Nonetheless, the
Hessian inverse, required in (14), is not neighbor sparse and its
computation requires global information.

To develop a decentralized protocol to approximately execute
(14), we generalize a recently proposed technique to approxi-
mate the Hessian inverse [∇yyF (yk ; tk)]−1 , which operates
by truncating its Taylor expansion [24], [25]. To do so, define
diag[∇yyg(yk ; tk)] as the block diagonal matrix, which con-
tains the diagonal blocks of the matrix ∇yyg(yk ; tk), and write
the Hessian ∇yyF (yk ; tk) as

∇yyF (yk ; tk) = Dk − Bk (15)

where the matrices Dk and Bk are defined as

Dk := ∇yyf(yk ; tk) + diag[∇yyg(yk ; tk)] (16a)

Bk := diag[∇yyg(yk ; tk)] −∇yyg(yk ; tk) . (16b)

Since F is strongly convex, and by Assumption 2 [Cf.,
Section IV], the matrix Dk is a positive definite block diagonal
matrix and encodes second-order local objective information.
The structure of the matrix Bk is induced by that of the graph:
The diagonal blocks of Bk are null and the nondiagonal block
Bij

k is nonzero and given by −∇yi yj gi,j (yi
k ,yj

k ; tk) iff i and j
are neighbors.

Given that Dk is positive definite, we can write

∇yyF (yk ; tk) = D1/2
k (I − D−1/2

k BkD
−1/2
k)D1/2

k . (17)

Consider now the Taylor series (I − X)−1 =
∑∞

τ =0 Xτ for

X = D−1/2
k BkD

−1/2
k to write the inverse of (17) as

[∇yyF (yk ; tk)]−1 = D−1/2
k

∞∑

τ =0

(
D−1/2

k BkD
−1/2
k

)τ

D−1/2
k

(18)

whose convergence (as well as the fact that the absolute values
of all the eigenvalues of X are strictly less than one so that the
Taylor series holds) will be formally proved in Appendix A. We
approximate the Hessian inverse [∇yyF (yk ; tk)]−1 in (18) by
its Kth order approximate H−1

k,(K) , which is formed by truncat-
ing the series in (18) to its first K+1 terms as

H−1
k,(K) = D−1/2

k

K∑

τ =0

(
D−1/2

k BkD
−1/2
k

)τ

D−1/2
k . (19)

Since the matrix Dk is block diagonal and Bk is block neighbor
sparse, it follows that the Kth order approximate inverse H−1

k,(K)
is K-hop block neighbor sparse, i.e., its ij-th block is nonzero if
there is a path between nodes i and j with length K or smaller.
Substituting the approximation in (19) into (14), the prediction
step may be written as

yk+1|k = yk + h pk,(K) (20)

where the approximate prediction direction pk,(K) is given by

pk,(K) := −H−1
k,(K)∇tyF (yk ; tk). (21)

Although the computation of the approximate prediction di-
rection pk,(K) requires information of K-hop neighbors, we
establish that it can be computed in a decentralized manner via
K communication rounds among neighboring nodes.

Proposition 1: Consider the prediction step (20) and the ap-
proximate prediction direction pk,(K) in (21). Define pi

k ,(K) and

∇tyF i(yk ; tk) as the ith subvector of the vectors pk,(K) and

∇tyF (yk ; tk) associated with node i. Consider Dij
k and Bij

k

as the ijth block of the matrices Dk and Bk in (16a)–(16b). If
node i computes for τ = 0, . . . ,K − 1, the recursion

pi
k ,(τ +1) = −(Dii

k)−1

⎛

⎝
∑

j∈N i

Bij
k pj

k ,(τ) + ∇tyF i(yk ; tk)

⎞

⎠

(22)
with initial condition pi

k ,(0) = −(Dii
k)−1∇tyF i(yk ; tk), the re-

sult yields the approximate prediction direction pi
k ,(K) .

Proof: By direct computation. See [24, Sec. III] for a com-
parable derivation. �

The recursion in (22) allows for the computation the K-th
order approximate prediction direction pi

k ,(K) by K rounds of
exchanging information with neighboring nodes. The ith sub-
vector of the mixed partial gradient ∇tyF i(yk ; tk) associated
with node i is given by

∇tyF i(yk ; tk) = ∇tyi f i(yi
k ; tk) + ∇tyi gi,i(yi

k ; tk)

+
∑

j∈N i

∇tyi gi,j (yi
k ,yj

k ; tk). (23)

Node i can compute ∇tyF i(yk ; tk) by having access to the
decision variables of its neighbors yj

k . In addition, according to
the definition of the block diagonal matrix Dk in (16), its ith

5728 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 11, NOVEMBER 2017

Algorithm 1: Decentralized Prediction at Node i.

Input: The local variable yi
k , the sampling period h, the

approximation level K.
1: Compute Dii

k [cf., (24)]
2: Exchange the variable yi

k with neighbors j ∈ Ni

3: Compute the local mixed partial gradient
∇tyF i(yk ; tk) [cf., (23)]

4: Compute Bij
k := −∇yi yj gi,j (yi

k ,yj
k ; tk) for j ∈ Ni

[cf., (25)]
5: Compute pi

k ,(0) = −(Dii
k)−1∇tyF i(yk ; tk).

6: for τ = 0, 1, 2, . . . ,K − 1 do
7: Exchange prediction direction pi

k ,(τ) with neighbors

j ∈ Ni

8: Compute the recursion [cf., (22)]

pi
k ,(τ +1) = −(Dii

k)−1

⎛

⎝
∑

j∈N i

Bij
k pj

k ,(τ) + ∇tyF i(yk ; tk)

⎞

⎠

9: end for
10: Predict the next trajectory yi

k+1|k = yi
k + h pi

k ,(K)
[cf., (26)]

Output: The predicted variable yi
k+1|k .

block can be written as

Dii
k := ∇yi yi f i(yi

k ; tk) + ∇yi yi gi,i(yi
k ; tk)

+
∑

j∈N i

∇yi yi gi,j (yi
k ,yj

k ; tk) (24)

which is available at node i, after receiving yj
k . These ob-

servations imply that the initial prediction direction pi
k ,(0) =

(Dii
k)−1∇tyF i(yk ; tk) can be computed locally at node i.

Further, the blocks of the neighbor sparse matrix Bk are
given by

Bij
k := −∇y i y j gi,j (yi

k , yj
k ; tk), for j ∈ Ni (25)

which are available at node i. Therefore, node i can compute the
recursion in (22) by having access to the τ th level approximate
prediction direction pj

k ,(τ) of its neighbors j ∈ Ni . After the
K rounds of communication with neighboring nodes, to predict
the local variable yi

k+1|k at step tk , node i executes the local
update

yi
k+1|k = yi

k + h pi
k ,(K) . (26)

Thus, the prediction step in (20) yields a decentralized protocol
summarized in Algorithm 1.

B. Time-Derivative Approximation

In practical settings, knowledge of how the function F
changes in time is unavailable. This issue may be mitigated
by estimating the term ∇tyF (y; t) via a first-order back-
ward derivative: Let ∇̃tyFk be an approximate version of
∇tyF (yk ; tk) computed as a first-order backward derivative

∇̃tyFk = (∇yF (yk ; tk) −∇yF (yk ; tk−1))/h . (27)

Algorithm 2: Approximate Prediction at Node i.

Input: The local variable yi
k , the sampling period h, the

approximation level K.
1: Compute Dii

k [cf. (24)]
2: Exchange the variable yi

k with neighbors j ∈ Ni

3: Compute the approximate local mixed partial gradient
∇̃tyF i

k [cf. (27)]
4: Compute Bij

k := −∇yi yj gi,j (yi
k ,yj

k ; tk) for j ∈ Ni

[cf. (25)]
5: Compute p̃i

k ,(0) = −(Dii
k)−1∇̃tyF i

k

6: for τ = 0, 1, 2, . . . ,K − 1 do
7: Exchange prediction direction p̃i

k ,(τ) with neighbors
j ∈ Ni

8: Compute the recursion [cf. (22)]

p̃i
k ,(τ +1) = −(Dii

k)−1

⎛

⎝
∑

j∈N i

Bij
k p̃j

k ,(τ) + ∇̃tyF i
k

⎞

⎠

9: end for
10: Predict the next trajectory yi

k+1|k = yi
k + h p̃i

k ,(K)
[cf. (26)]

Output: The predicted variable yi
k+1|k .

The approximation ∇̃tyFk requires only information of the pre-
vious discrete time slot. Using (27), we can approximate the
prediction direction as

p̃k,(K) := −H−1
k,(K)∇̃tyFk . (28)

This may be obtained in a decentralized way via K rounds of
communication among neighboring nodes, which may be es-
tablished as a trivial extension of Proposition 1. Algorithm 1
may be modified to instead make use of the decentralized ap-
proximate prediction step in (28), as done in Algorithm 2. Once
we obtain this local prediction of the optimizer at the next time
tk+1 , using information at the current time tk , the problem (3)
is sampled at time tk+1 . We make use of this new information
in the correction step, as discussed next.

C. Decentralized Correction Step

The predicted variable yk+1|k [cf., (21)] is then corrected
via (10) by making use of the objective at time tk+1 . Different
correction strategies give rise to different correction updates,
whose relative merits depend on the application domain at hand.
We present two distinct correction steps next.

1) Gradient Correction Step: After the objective at
time tk+1 is observed, we may execute the correction step (10)
with ck+1 = −∇yF (yk+1|k ; tk+1), resulting in

yk+1 = yk+1|k − γ∇yF (yk+1|k ; tk+1) (29)

which is a gradient correction step. This step is computable in a
decentralized fashion since the local component of the gradient

SIMONETTO et al.: DECENTRALIZED PREDICTION-CORRECTION METHODS FOR NETWORKED TIME-VARYING CONVEX OPTIMIZATION 5729

Algorithm 3. Decentralized Gradient Correction at Node i:

Input: The local predicted variable yi
k+1|k . The step size γ.

1: Exchange the predicted variable yi
k+1|k with neighbors

j ∈ Ni

2: Observe F i(·; tk+1), find ci
k+1 = −∇yF i

(yk+1|k ; tk+1) [cf., (30)]
3: Correct the trajectory yi

k+1 = yi
k+1|k + γci

k+1
[cf., (31)]

Output: The corrected variable yi
k+1 .

F (yk+1|k ; tk+1) at node i is given by

∇yF i(yk+1|k ; tk+1) = ∇yi f i(yi
k+1|k ; tk+1) +

∇yi gi,i(yi
k+1|k ; tk+1)+

∑

j∈N i

∇yi gi,j (yi
k+1|k ,yj

k+1|k ; tk+1).

(30)

To implement the expression in (30), node i only requires access
to the decision variables yj

k+1|k of its neighbors j ∈ Ni . Thus,

if nodes exchange their predicted variable yi
k+1|k with their

neighbors they can compute the local correction direction ci
k+1

as in (30) and update their predicted variable yi
k+1|k as

yi
k+1 = yi

k+1|k + γci
k+1 . (31)

We call DPC-G as the decentralized prediction-correction
method that uses gradient descent in the correction step
(Algorithm 3) and the exact prediction step (Algorithm 1) in
the prediction step. We call DAPC-G as the decentralized ap-
proximate prediction-correction method that uses gradient de-
scent in the correction step (Algorithm 3) and the approximate
prediction step (Algorithm 2) in the prediction step. Both DPC-
G and DAPC-G require K + 2 communication rounds among
neighboring nodes per time step.

2) Newton Correction Step: The correction step in (10)
could also be considered as a Newton step if we used ck+1 =
−∇yyF (yk+1|k ; tk+1)−1∇yF (yk+1|k ; tk+1). However, as in
the discussion regarding the prediction step, computation of the
Hessian inverse ∇yyF (yk+1|k ; tk+1)−1 requires global com-
munication. Consequently, we approximate the Hessian inverse
∇yyF (yk+1|k ; tk+1)−1 by truncating its Taylor series as in (19).
To be more precise, we define H−1

k+1|k,(K ′) as the K ′th level
approximation of the Hessian inverse as

H−1
k+1|k,(K ′) = D−1/2

k+1|k

K ′∑

τ =0

(
D−1/2

k+1|kBk+1|kD
−1/2
k+1|k

)τ

D−1/2
k+1|k

(32)
where the matrices Dk+1|k and Bk+1|k are defined as

Dk+1|k := ∇yyf(yk+1|k ; tk+1) + diag[∇yyg(yk+1|k ; tk+1)]
(33a)

Bk+1|k := diag[∇yyg(yk+1|k ; tk+1)] −∇yyg(yk+1|k ; tk+1) .
(33b)

Algorithm 4: Decentralized Newton Correction at Node i.

Input: The local predicted variable yi
k+1|k . The

approximation level K ′. The step size γ.
1: Exchange the predicted variable yi

k+1|k with neighbors

j ∈ Ni

2: Observe F i(·; tk+1), compute ∇yF i(yk+1|k ; tk+1)
[cf., (30)]

3: Compute matrices Dii
k+1|k and Bij

k+1|k , j ∈ Ni as

Dii
k+1|k := ∇yi yi f i(yi

k+1|k ; tk+1)

+ ∇yi yi gi,i(yi
k+1|k ; tk+1)

+
∑

j∈N i

∇yi yi gi,j (yi
k+1|k ,yj

k+1|k ; tk+1)

Bij
k+1|k := −∇yi yj gi,j (yi

k+1|k ,yj
k+1|k ; tk+1)

4: Compute ci
k+1,(0) = −(Dii

k+1|k)−1∇yF i(yk+1|k ; tk+1)
5: for τ = 0, 1, 2, . . . ,K ′ − 1 do
6: Exchange correction step ci

k ,(τ) with neighboring nodes

j ∈ Ni

7: Compute ci
k+1,(τ +1) as

ci
k+1,(τ +1) = − (Dii

k+1|k)−1

⎛

⎝
∑

j∈N i

Bij
k+1|kcj

k+1,(τ)

+ ∇yF i(yk+1|k ; tk+1)

⎞

⎠

8: end for
9: Correct the trajectory prediction
yi

k+1 = yi
k+1|k + γci

k+1,(K ′)

Output: The corrected variable yi
k+1 .

Notice that the only difference between the decomposition ma-
tricesDk+1|k andBk+1|k for the correction step and the matrices
Dk and Bk for the prediction step is the arguments for the in-
puts y and t. The prediction matrices Dk and Bk are evaluated
for the function F (.; tk) and the variable yk , while the correc-
tion matrices are evaluated for the function F (.; tk+1) and the
variable yk+1|k .

Thus, we can approximate the exact Hessian inverse
∇yyF (yk+1|k ; tk+1)−1 with H−1

k+1|k,(K ′) as in (32) and apply
the correction step as

yk+1 = yk+1|k − γ H−1
k+1|k,(K ′)∇yF (yk+1|k ; tk+1) (34)

which requires K ′ exchanges of information among neighbor-
ing nodes. In practice, one can use the same algorithm for the
prediction direction pk,(K) to compute the correction direc-
tion ck,(K ′) := −H−1

k+1|k,(K ′)∇yF (yk+1|k ; tk+1), where now
the gradient takes the place of the time derivative.

We call DPC-N as the decentralized prediction-
correction method that uses Newton descent in the cor-
rection step (Algorithm 4) and the exact prediction step

5730 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 11, NOVEMBER 2017

TABLE I
COMMUNICATION REQUIREMENTS FOR THE PRESENTED ALGORITHMS

Method Comms. Vars. Vars. Communicated

DPC-G/ DAPC-G Pred. K + 1 pi
k , yi

k (K + 1)p
Corr. 1 yi

k + 1 |k p

DPC-N/ DAPC-N Pred. K + 1 pi
k , yi

k (K + 1)p
Corr. K ′ + 1 ci

k , yi
k + 1 |k (K ′ + 1)p

(Algorithm 1) in the prediction step. We call DAPC-N as the de-
centralized approximate prediction-correction method that uses
Newton descent in the correction step (Algorithm 4) and the ap-
proximate prediction step (Algorithm 2) in the prediction step.
Both DPC-N and DAPC-N require K + K ′ + 2 rounds of com-
munication per iteration.

For the reader’s ease, we report in Table I the total commu-
nication counts per iteration for the presented algorithms. In
particular, we report the amount of communication rounds re-
quired among the neighboring nodes, as well as the variables that
have to be transmitted and the total number of scalar variables
to be sent (per neighbor).

IV. CONVERGENCE ANALYSIS

We continue by establishing the convergence of the meth-
ods presented in Section III. In particular, we show that as time
passes the sequence {yk} approaches a neighborhood of the op-
timal trajectory y∗(tk) at discrete time instances tk . To establish
our results, we require the following conditions.

Assumption 1: The local functions fi are twice differen-
tiable and the eigenvalues of their Hessians ∇yi yi f i(yi ; t) for
all i are contained in a compact interval [m,M] with m > 0.
Hence, the aggregate function f(y; t) :=

∑
i∈V f i(yi ; t) has a

uniformly bounded spectrum, i.e.

mI
 ∇yyf(y; t)
 MI. (35)

Assumption 2: The functions gi,i(yi ; t) and gi,j (yi ,yj ; t)
are twice differentiable. The Hessian of the aggregate in (2),
denoted as ∇yyg(y; t), is block diagonally dominant [35], i.e.,
for all i

∥∥∇yi yi g(yi ,yj ; t)−1
∥∥−1 �

n∑

j=1,j �=i

∥∥∇yi yj gi,j (yi ,yj ; t)
∥∥

(36)
where by definition ∇yi yi g(yi ,yj ; t) = ∇yi yi gi,i(yi ; t) +
∇yi yi gi,j (yi ,yj ; t). The block diagonal element ∇yi yi g
(yi ,yj ; t) has eigenvalues contained in a compact interval
[�/2, L/2] with � > 0.

Assumption 3: The derivatives of the global cost F (y; t) de-
fined in (3) are bounded for all y ∈ Rnp and t � 0 as

‖∇tyF (y; t)‖ � C0 , ‖∇yyyF (y; t)‖ � C1

‖∇ytyF (y; t)‖ � C2 , ‖∇ttyF (y; t)‖ � C3 . (37)

From the bounds on the eigenvalues of Hessians ∇yyf(y; t)
and ∇yyg(y; t) in Assumptions 1 and 2, respectively, and from
the block diagonal Gerschgorin Circle Theorem [35] it follows

that the spectrum of ∇yyg(y; t) lies in the compact set [0, L],
and the one of the Hessian of the global cost ∇yyF (y; t) uni-
formly satisfies

m I
 ∇yyF (y; t)
 (L + M) I . (38)

Assumptions 1 and 2, besides guaranteeing that the problem
stated in (3) is strongly convex and has a unique solution for
each time instance, imply that the Hessian ∇yyF (y; t) is in-
vertible. Moreover, the higher order derivative bounds imply
the Lipschitz continuity of the gradients, Hessians, and mixed
partial derivatives of the Hessians. These conditions, in addition
to higher order derivative conditions on F , as in Assumption 3,
frequently appear in the analysis of methods for time-varying
optimization, and are required to establish convergence [13],
[18], [19].

Assumptions 1 and 3 are sufficient to show that the solu-
tion mapping t �→ y∗(t) is single-valued and locally Lipschitz
continuous in t, and in particular

‖y∗(tk+1) − y∗(tk)‖ � 1
m
‖∇tyF (y; t)‖(tk+1 − tk) � C0h

m
(39)

see, for example, [36, Th. 2F.10]. This gives us a link between
the sampling period h and the allowed variations in the optimiz-
ers. This also gives a better understanding on the time-varying
assumptions on the uniform boundedness of the time derivatives
of the gradient ∇tyF (y; t) and ∇ttyF (y; t). In particular the
bounds C0 and C3 require that the change and the rate of change
of the optimizer be bounded. If the optimizer were the position
of a moving target to be estimated, then C0 and C3 would be
a bound on its velocity and acceleration. Finally, the bound on
∇ytyF (y; t) means that the quantity ∇tyF (y; t) is Lipschitz
continuous, w.r.t., y uniformly in t. That is to say that close
by points y and y′ need to have similar gradient time deriva-
tives: e.g., if the target position is perturbed by a small amount
δy, then its velocity is perturbed by an amount not bigger than
C2δy.

A. Discrete Sampling Error

We start the convergence analysis by deriving an upper bound
on the norm of the approximation error Δk ∈ Rnp that we
estimate through a Taylor approximation in (13). The error is
defined as the difference between the predicted yk+1|k in (14)
(with yk = y∗(tk)) and the exact prediction y∗(tk+1), starting
from the same initial condition y∗(tk), i.e.

Δk := yk+1|k − y∗(tk+1). (40)

In the following proposition, we upper bound the norm ‖Δk‖
of the discretization error, which encodes the error due to the
prediction step and is central to all our convergence results.

Proposition 2: Let Assumptions 1–3 hold true. De-
fine the discretization constant Δ as Δ = (C2

0 C1)/2m3 +
(C0C2)/m2 + (C3)/2m. The norm of Δk in (40) is upper
bounded by

‖Δk‖ � Δ h2 = O(h2). (41)

SIMONETTO et al.: DECENTRALIZED PREDICTION-CORRECTION METHODS FOR NETWORKED TIME-VARYING CONVEX OPTIMIZATION 5731

Proposition 2, which is established as [10, Proposition 1],
states that the norm of the discrete sampling error ‖Δk‖ is
bounded above by a constant, which is in the order of O(h2).

A second source of error to take into account, when studying
the asymptotic behavior of the algorithms in Section III, is the
error due to approximating the Hessian inverse by a truncated
Taylor expansion in (19). We bound this error as a function of the
approximation level K, which is the number of communication
rounds among neighboring nodes.

Proposition 3: Under Assumptions 1 and 2, the Kth order
approximate inverse Hessian in (19) is well-defined. In addition,
its eigenvalues are upper bounded as

‖H−1
k,(K)‖ � H :=

m + L/2
m(m + �/2)

. (42)

Furthermore, if we define the error of the Hessian inverse ap-
proximation as ek = ‖I −∇yyF (yk ; tk)H−1

k,(K)‖, the error ek

is bounded above as

ek � 	K +1 , where 	 := (L/2)/(m + L/2). (43)

Proof: See Appendix A. �
Besides quantifying the error coming from approximating

the Hessian inverse, Proposition 3 provides tradeoffs between
communication cost and convergence accuracy. It shows that a
larger K leads to more accurate approximation of the Hessian
inverse at the price of more communications.

B. Gradient Tracking Convergence

In the following theorem, we establish that the sequence gen-
erated by the DPC-G and DAPC-G algorithms asymptotically
converges to a neighborhood of the optimal trajectory whose
radius depends on the discretization error.

Theorem 1: Consider the sequence {yk} generated by the
DPC-G or DAPC-G algorithm, which uses Algorithm 1 (or
2) as prediction step and Algorithm 3 as correction step. Let
Assumptions 1–3 hold and define constants ρ and σ as

ρ := max{|1 − γm|, |1 − γ(L + M)|},

σ := 1 + h

[
C0C1

m2 +
C2

m

]
. (44)

Further, recall the definition of 	 in (43) and define the function
Γ : (0, 1) × N → R as Γ(,K) = (C0/m)	K +1 . Choose the
step size as

γ < 2/(L + M) (45)

so that ρ < 1. Then,
1) for any sampling period h, the sequence {yk} converges

to y∗(tk) Q-linearly up to a bounded error, as

lim sup
k→∞

‖yk−y∗(tk)‖=O(h)+O(hΓ(,K))+O(h2)

(46)

2) if the sampling period h is chosen such that

h <

[
C0C1

m2 +
C2

m

]−1

(ρ−1 − 1) (47)

then the sequence {yk} converges to y∗(tk) Q-linearly
up to a bounded error as

lim sup
k→∞

‖yk − y∗(tk)‖ = O(hΓ(,K)) + O(h2).

(48)

Proof: See Appendix B, where the error bounds and con-
vergence rate constant are explicitly computed in terms of the
functional bounds of Assumptions 1–3. �

Theorem 1 establishes the convergence properties of DPC-G
and DAPC-G for particular parameter choices. In both cases,
the linear convergence to a neighborhood is shown, provided
the step size satisfies γ < 2/(L + M). Moreover, the accuracy
of convergence depends on the choice of the sampling period h,
and for any sampling period, the result in (46) holds. In this case,
the accuracy of convergence is of the order O(h). If the sampling
period h is chosen such that ρσ < 1 (that is (47) holds), then the
result in (48) is valid.

If ρσ < 1 is satisfied and the approximation level K is chosen
sufficiently large, then Γ(,K) is negligible and we regain an
error bound of O(h2), which is compatible with centralized
algorithms [10].

C. Newton Tracking Convergence

We turn to analyzing the DPC-N and DAPC-N algorithms.
Theorem 2: Denote {yk} as the sequence generated by

the DPC-N or DAPC-N method, which, respectively, uses
Algorithm 1 or 2 as its prediction, and Algorithm 4 as its correc-
tion. Let Assumptions 1–3 hold and fix K and K ′ as the Hessian
inverse approximation levels for the prediction and correction
steps, respectively, with the function Γ defined as in Theorem 1.
Fix the step size as γ ∈ (0, 1]. There exist bounds K̄, h̄, and R̄,
such that if the sampling rate h is chosen as h � h̄, K and K ′

are chosen as K,K ′ � K̄, and the initial optimality gap satis-
fies ‖y0 − y∗(t0)‖ � R̄, then {yk} converges Q-linearly to the
solution trajectory y∗(tk) up to a bounded error as

lim sup
k→∞

‖yk − y∗(tk)‖ = O(hΓ(,K)[γΓ(,K ′) + 1 − γ])

+ O(h2 [γΓ(,K ′)+γΓ(,K)2 +1−γ])

+ O(h3γΓ(,K)) + O(h4 γ). (49)

In addition, if the step size γ is chosen arbitrarily small, the
attraction region R̄ can be made arbitrarily large.

Proof: See Appendix C. The proof is constructive, thus we
also characterize the bounds on the sampling period, approxi-
mation levels, the attraction region, and finally, the constants in
the asymptotic error and in the linear convergence rate. �

Theorem 2 states that DPC-N/DAPC-N converge to a
bounded tracking error defined in (49) once the algorithm
reaches an attraction region. The error bound in (49) depends,
as expected, on the sampling period h and the approxima-
tion levels K and K ′. In the worst case, the asymptotic error
floor will be of the order O(h). However, in some cases, we
may achieve tighter tracking guarantees. For example, if the
approximation level K and K ′ are chosen sufficiently large,

5732 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 11, NOVEMBER 2017

then the terms Γ(ρ,K) and Γ(ρ,K ′) are negligible, yielding

lim sup
k→∞

‖yk − y∗(tk)‖ = O(h2 [1 − γ]) + O(h4 γ) . (50)

This is to say that the asymptotic dependence of the error of
DPC-N/DAPC-N on the sampling period h varies from a worst-
case O(h) to as tight as O(h4) (for the selection γ = 1).

Remark 1: (Step-size choice) The step-size choice of the pre-
sented Newton correction methods affects the convergence at-
traction region and the convergence speed. For large enough
K,K ′ and small enough h, if we choose γ = 1, we obtain a stan-
dard Newton method with convergence region R̄ = 2m/C1σ

2 ,
the fastest convergence speed, and smallest asymptotical er-
ror O(h4). This convergence region is larger depending on how
small C1 is: for quadratic functions C1 = 0, and the convergence
is global. If we choose γ � 1, then the convergence region is
R̄ = 2m(τ − 1 + γ)/γC1σ

2 , where τ , with 1 − γ < τ < 1, is
the linear convergence rate [Cf., Appendix C]. This means that
the attraction region can be made arbitrarily big, while the con-
vergence rate is made smaller and smaller, and the asymptotical
error is O(h2). Finally, an interesting choice is γ = h � 1: when
h is sufficiently small, then the Newton prediction/correction
approximate well a continuous-time algorithm and the conver-
gence (albeit made slow) is global. In practice, the choice of
the step size depends on the application at hand. One can even
decide to run the DPC-G algorithm till convergence and then
switch to DPC-N as an hybrid scheme, or to adopt an increasing
step size selection. These extensions are left as future research.

V. NUMERICAL EVALUATION

We turn to studying the empirical validity of the performance
guarantees established in Section IV. In particular, we consider
the resource allocation problem in a network of interconnected
devices, as in Example 2 of Section II. As presented in (5),
the local objective functions fi(yi ; t) represent a time-varying
utility indicating the quality of transmission at a particular de-
vice i and the constraints represent channel rate and capacity
constraints. These constraints depend on the connectivity of the
network, which is encoded in the augmented incidence matrix
A, defined following (5).

By adopting an approximate augmented Lagrangian method,
we obtain (6), which is an instance of (3). Consider the case
where decisions are the variables yi ∈ Rp, p = 10, for which
each local utility fi(yi ; t) associated with sensor i is given as

fi(yi ; t) =
1
2
(yi − ci(t))TQi(yi − ci(t))

+
p∑

l=1

log
[
1 + exp

(
bi,l(yi,l − di,l(t))

)]
(51)

where yi,l indicates the lth component of the ith decision vari-
able yi , while Qi ∈ Rp×p , bi,l ∈ R, ci(t) ∈ Rp, di,l(t) ∈ R are
(time-varying) parameters. Straightforward computations re-
veal that the second-order derivative of fi with respect to yi

is contained in the bounded interval [λmin(Qi), λmax(Qi) +
maxl{(bi,l)2/4}].

Fig. 1. Error with respect to the sampling time instance k for differ-
ent algorithms applied to the continuous-time sensor network resource
allocation problem (6), with sampling interval h = 0.1.

Experimentally, we consider cases were each Qi and bi,l

are selected uniformly at random, and in particular, Qi =
diag(Up

[1,2]) + viviT, with vi ∼ N p
0,1 (that is vi is a random

vector drawn from a Gaussian distribution of mean zero and
standard deviation one). With this choice Qi is positive defi-
nite. In addition bi,j ∼ U1

[−2,2] . Finally, ci(t) and di,l(t) are the
time-varying functions

ci,l(t) = 10 cos(θi,l
c + ω t), θi,l

c ∼ U [0, 2π) (52a)

di,l(t) = 10 cos(θi,l
d + ω t), θi,l

d ∼ U [0, 2π) (52b)

with ω = 0.1. The sensors in the n = 50 node wireless network
are deployed randomly in the area [−1, 1]2 and can communi-
cate if they are closer than a range of r = 2.5

√
2/

√
n, which

generates a network of l links. We set the vector of rate and
capacity constraints to b = 0 yielding a dynamic network flow
problem, with approximation level β =

√
20.

A. Comparisons in Absolute Terms

We first analyze the behavior of DPC-G, DAPC-G, DPC-N,
and DAPC-N with respect to the decentralized running gradient
method of [20]. Unless otherwise stated the DPC-N and DAPC-
N algorithms run with unitary step size (γ = 1).

In Fig. 1, we depict how the different algorithms reach conver-
gence as time passes for a fixed sampling interval of h = 0.1.
Observe that the running gradient method achieves the worst
tracking performance of around ‖yk − y∗(tk)‖ ≈ 10, whereas
DPC-G for various levels of communication rounds in the pre-
diction step K achieves an error near 10−1 . Using second-order
information in the correction step, as with DPC-N and DAPC-
N, achieves superior performance, with tracking errors of at
least ‖yk − y∗(tk)‖ ≈ 10−5 . Moreover, the time approxima-
tion in DAPC-G and DAPC-N does not degrade significantly the
asymptotic error, while the number of communication rounds
K and K ′ play a more dominant role, especially in the case of
DPC-N.

We also observe this trend in Fig. 2, where we analyze
the behavior varying the sampling period h. We approximate
the asymptotic error bound as maxk>k̄ {‖yk − y∗(tk)‖}, for a
given k̄, where we set k̄ = 800 for h � 1/16 or k̄ = 2000 for

SIMONETTO et al.: DECENTRALIZED PREDICTION-CORRECTION METHODS FOR NETWORKED TIME-VARYING CONVEX OPTIMIZATION 5733

Fig. 2. Asymptotic error bound maxk> k̄ {‖yk − y∗(tk)‖} as compared
with the sampling interval h. Dotted straight lines represent error bounds
O(hr) for r = 1, 2, 4.

Fig. 3. Error with respect to the sampling time instance k for DPC-G
and DPC-N with different step size γ , applied to the continuous-time
sensor network resource allocation problem (6), with sampling interval
h = 0.1.

h < 1/16. We may observe empirical confirmation of the er-
ror bounds established by Theorems 1 and 2 in Section IV. In
particular, the running gradient has an asymptotic error approx-
imately as O(h), whereas that of DPC-G varies between O(h)
and O(h2) depending on the approximation level K and h.
Moreover, DPC-N achieves an asymptotic tracking error vary-
ing between O(h) and O(h4).

In Fig. 3, we depict the behavior in time for different choices
of step size γ for DPC-N. As we notice, varying from a small step
size γ = 0.1 = h to the biggest one of γ = 1, the convergence
becomes faster (yet theoretically more local). An increasing
choice of step size as γ = 1 − .9/k seems to combine both
larger convergence region, reasonably fast convergence, and
small asymptotical error.

Since DPC-N is a computationally more demanding method
in terms of communication requirements and computational la-
tency, we study the effect of fixing the former parameter.

B. Comparisons With Fixed Communication Effort

In practice, the communication and computation require-
ments for each of the nodes of the network will be fixed by
hardware and bandwidth constraints. Let us fix the time, as
a percentage of the sampling period h, for the prediction and

Fig. 4. Asymptotic error with respect to the sampling period h for dif-
ferent algorithms when the number of communication rounds is chosen
according to bandwidth constraints as in (53).

correction step. Let us say that we have at most a time of rh
(r � .5) to do prediction and rh to do correction.

Each time a new function is sampled, each of the proposed
algorithms will perform a number of correction steps nC � 1.
Each of them will consist of either nC gradient steps, involving
each broadcasting p scalar values to the neighbors and receiv-
ing pNi scalar values from them, or nC approximate Newton
steps, involving each broadcasting p(K ′ + 1) scalar values to
the neighbors and receiving pNi(K ′ + 1) scalar values.

Once the corrected variable is derived, it can be implemented
(e.g., generating the control action). In the remaining time, while
waiting for another sampled cost function, the proposed algo-
rithms can perform a prediction step, involving for each node
broadcasting p(K + 1) scalar values to the neighbors and re-
ceiving pNi(K + 1) scalar values from them. For the running
schemes, there is no prediction, but we assume here that the vari-
ables are further optimized by other extra correction steps, and
hence, start at the next time with a better initialization. These
further correction steps, say nEC, can be gradient or Newton.

Define t̄ to be the time required for one round of broadcast-
ing and receiving data from and to the neighbors and assume
that it is the same for each node and it scales linearly with
the number of communication rounds K and K ′ (since it has
to be done sequentially). Suppose, as empirically observed, that
the computation time for the nodes is negligible, w.r.t., the com-
munication time. In this context, the number of correction and
prediction rounds can be chosen according to the constraints on
time

(RG) nCt̄ = rh nECt̄ = rh (53a)

(RN) nC(K ′ + 1)t̄ = rh nEC(K + 1)t̄ = rh (53b)

(DPC-G) nCt̄ = rh (K + 1)t̄ = rh (53c)

(DPC-N) nC(K ′ + 1)t̄ = rh (K + 1)t̄ = rh (53d)

where RG indicates the running gradient method and RN the
running Newton. In the following simulation, we fix r = 0.5,
K = K ′ and nC, nEC to be 1 for RN and DPC-N. We fix t̄ =
1/10 s (for bigger values of p, that is the dimension of the
decision variable, this time will be longer, and vice versa).

In Fig. 4, we report the results in terms of asymptotical
error when optimizing the number of communication rounds

5734 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 11, NOVEMBER 2017

TABLE II
SUMMARY OF PROPOSED METHODS AND CONVERGENCE RESULTS

Method DPC-G DAPC-G DPC-N DAPC-N

Prediction Alg. 1 Alg. 2 Alg. 1 Alg. 2
Correction Alg. 3 Alg. 3 Alg. 4 Alg. 4
Best error bound O (h2) O (h2) O (h4) O (h4)

according to (53), for different sampling periods. In this con-
text, e.g., for h = 1 s, we can run RG with nC = nEC = 5 cor-
rection and extra correction rounds, RN with K = K ′ = 4 com-
munication rounds for correction and extra correction, DPC-G
with K = 4 communication rounds for prediction and nC = 5
rounds of correction, and DPC-N with K = K ′ = 4 commu-
nication rounds for prediction and correction, respectively. For
the other values of sampling period h, similar calculations give
us the optimized values for nC, nEC, K, and K ′. As we observe,
when the sampling period is big enough so that DPC-N is im-
plementable, then it seems to be the best strategy to go for.2 We
also notice that running gradient, even with the extra correction
steps, should be avoided unless all the remaining algorithms are
unviable (as for h = 1/5 s).

VI. CONCLUSION

We considered continuously varying convex programs whose
objectives may be decomposed into two parts: A sum of locally
available functions at the nodes and a part that is shared between
neighboring nodes. To solve this problem and track the solution
trajectory, we proposed a decentralized iterative procedure that
samples the problem at discrete times. Each node predicts where
the solution trajectory will be at the next time via an approxi-
mation procedure in which it communicates with its neighbors,
and then, corrects this prediction by incorporating information
about how the local objective is varying, again via a decentral-
ized local approximation. We developed an extension of this
tool which allows for the case when the dynamical behavior of
the objective must be estimated.

We established that this decentralized approximate second-
order procedure converges to an asymptotic error bound which
depends on the length of the sampling interval and the amount
of communications in the network. Moreover, we established
that this convergence result also applies to the case where time
derivatives must be approximated. A summary of the proposed
methods and their performance guarantees is given in Table II.
Finally, we applied the developed tools to a resource allocation
problem in a wireless network, demonstrating its practical utility
and its ability to outperform existing running methods by orders
of magnitude.

APPENDIX A
PROOF OF PROPOSITION 3

We generalize the proofs of Propositions 2 and 3 in [24]
to establish the result. Start by defining the matrix D̂k =

2This conclusion depends on the condition number: large condition numbers
favor Newton methods, small ones gradient methods, see also [10].

diag[∇yyg(yk ; tk)], which is positive definite due to Assump-
tion 1. Thus, we can write

‖D−1/2
k BkD

−1/2
k ‖ = ‖D−1/2

k D̂1/2
k D̂−1/2

k

× BkD̂
−1/2
k D̂1/2

k D−1/2
k ‖

� ‖D−1/2
k D̂1/2

k ‖2‖D̂−1/2
k BkD̂

−1/2
k ‖ (54)

where the inequality in (54) is implied by the Cauchy-Schwartz
inequality. We proceed to bound both terms on the right-hand
side (RHS) of (54), starting with the rightmost term. The ma-
trix D̂−1/2

k BkD̂
−1/2
k is conjugate to the matrix D̂−1

k Bk , which
means that the latter has the same eigenvalues of the former. By
construction, the matrix BkD̂−1

k is equivalent to

D̂−1
k Bk = I − D̂−1

k ∇yyg(yk ; tk). (55)

The matrix ∇yyg(yk ; tk) is block diagonally dominant
(Assumption 2); by the definition of the matrix D̂k , this means

‖[D̂−1
k]ii‖−1 �

n∑

j=1,j �=i

∥∥∥∇yi yj gi,j (yi
k ,yj

k ; t)
∥∥∥ for all i. (56)

Now consider the matrix D̂−1
k ∇yyg(yk ; tk), by the block Ger-

shgorin Circle theorem [35] its eigenvalues are contained in the
circles defined by all the μ’s that verify

‖(I − μI)−1‖−1 �
n∑

j=1,j �=i

∥∥∥[D̂−1
k]ii∇yi yj gi,j (yi

k ,yj
k ; t)

∥∥∥ � 1

(57)
where the last inequality comes from (56). Therefore the eigen-
values are contained in the compact set [0, 2]. This means that
the matrix D̂−1

k Bk in (55) has eigenvalues contained in the com-
pact set [−1, 1]. Taken with the fact that the Frobenius norm of
the matrix D̂−1/2

k BkD̂
−1/2
k is bounded above by its maximum

eigenvalue, we have

‖D̂−1/2
k BkD̂

−1/2
k ‖ � 1. (58)

With this bound in place, we shift focus to the first term on
the RHS of (54). Note that the matrices Dk and D̂k are both
symmetric and positive definite and therefore we can write
‖D−1/2

k D̂1/2
k ‖2 = ‖D−1/2

k D̂kD
−1/2
k ‖. Notice that the matrix

D−1/2
k D̂kD

−1/2
k is block diagonal where its ith diagonal block

is given by

I + ∇yi yi g(yi
k ,yj

k ; tk)−
1
2 ∇yi yi f i(yi

k ; tk)

× ∇yi yi g(yi
k ,yj

k ; tk)−
1
2 . (59)

Using the bounds in Assumptions 1 and 2, and the fact that
for positive definite matrices λmin(AB) � λmin(A)λmin(B),
we obtain that the eigenvalues of the matrix D−1/2

k D̂kD
−1/2
k

blocks are bounded below by 1 + 2m/L. Thus, we obtain

‖D̂−1
k Dk‖ = ‖D−1/2

k D̂kD
−1/2
k ‖ � 1 + (2m/L) . (60)

Since the eigenvalues of D−1/2
k D̂kD

−1/2
k are lower bounded by

1 + 2m/L, we obtain that

‖D−1
k D̂k‖ = ‖D1/2

k D̂−1
k D1/2

k ‖ � (1 + (2m/L))−1 . (61)

SIMONETTO et al.: DECENTRALIZED PREDICTION-CORRECTION METHODS FOR NETWORKED TIME-VARYING CONVEX OPTIMIZATION 5735

Substituting the upper bounds in (58) and (61) into (54) yields

‖D−1/2
k BkD

−1/2
k ‖ � 	 . (62)

Note that (62) implies that the eigenvalues of D−1/2
k BkD

−1/2
k

are strictly less than one, and thus, the expansion in (18) is valid.
We use the result in (62) to prove the claim in (42). Given the

approximation in (19), we know that

‖H−1
k,(K)‖ � ‖D−1

k ‖
K∑

τ =0

‖D−1/2
k BkD

−1/2
k ‖τ

� 1
m + �/2

K∑

τ =0

	τ =
1 − 	K +1

(m + �/2)(1 −)
(63)

where the second inequality comes from formula for a finite
geometric series. Moreover, we can derive an upper bound for
the RHS of (63), and use the definition of 	 to obtain

1 − 	K +1

(m + �/2)(1 −)
� 1

(m + �/2)(1 −)
=

2m + L

m(2m + �)
=: H.

(64)

Combining the inequalities in (63) and (64), the claim in (42)
follows. Moreover, the bound on the error ek follows from [24,
Proposition 3] with the definition of 	 [cf., (62)], yielding

ek = ‖I −∇yyF (yk ; tk)H−1
k,(K)‖ = ‖D− 1

2
k BkD

− 1
2

k ‖K +1

(65)
from which the bound (43) follows. �

APPENDIX B
PROOF OF THEOREM 1

We only study the proof for DPC-G; the one for DAPC-G
is similar (only the numerical constants change) and omitted
in reason of space (the complete proof is available in [37,
Appendix C]).

First, we establish that discrete-time sampling error bound
stated in (48) is achieved by the updates of DPC-G. For sim-
plicity, we modify the notation to omit the arguments yk and tk
of the function F . In particular, define

∇yyF := ∇yyF (yk ; tk) , ∇tyF := ∇tyF (yk ; tk)

∇yyF ∗ :=∇yyF (y∗(tk); tk) , ∇tyF ∗ := ∇tyF (y∗(tk); tk).
(66)

Begin by considering the update of DPC-G, the prediction step,
evaluated at a generic point yk sampled at the current sample
time tk and with associated optimizer y∗(t)

y∗(tk+1) = y∗(tk) − h [∇yyF ∗]−1∇tyF ∗ + Δk . (67)

Rewrite the approximate prediction step yk+1|k = yk +
h pk by adding and subtracting the exact prediction step
h [∇yyF]−1∇tyF , yielding

yk+1|k = yk + hpk,(K)

+ h [∇yyF]−1∇tyF − h [∇yyF]−1∇tyF. (68)

Subtract (67) from (68), take the norm, and apply the triangle
inequality to the resulted expression to obtain

‖yk+1|k − y∗(tk+1)‖ � ‖yk − y∗(tk)‖+
h

∥∥[∇yyF]−1∇ty F − [∇yyF ∗]−1∇tyF ∗∥∥

+ h
∥∥pk,(K) − [∇yyF]−1∇tyF

∥∥ + ‖Δk‖.
(69)

We proceed to analyze the three terms on the RHS of (69). The
last term ‖Δk‖ is bounded above by h2Δ as in (41).

We proceed to find an upper bound for the second sum-
mand in the RHS of (69). We use the same reasoning as in [10,
Appendix B], which yields (cf. [10, Eq. (62)])

h
∥∥[∇yyF]−1∇tyF − [∇yyF ∗]−1∇tyF ∗∥∥ �

C0C1h

m2 ‖yk − y∗(tk)‖ +
C2h

m
‖yk − y∗(tk)‖.

(70)

Finally, we proceed to analyze the third term in (69). Rewrite
this term using the definition of the prediction step pk,(K) =
−H−1

k,(K)∇tyF , and apply the mixed first-order partial deriva-
tive bound ‖∇tyF (y; t)‖ � C0 stated in Assumption 2 to obtain

h ‖H−1
k,(K)∇tyF −∇yyF−1∇tyF‖ �

C0h ‖H−1
k,(K) −∇yyF−1‖ . (71)

Observe that ‖H−1
k,(K) −∇yyF−1‖ is bounded above by

‖∇yyF−1‖‖∇yyFH−1
k,(K) − I‖. This observation in con-

junction with the upper bound for the error vector ek =
‖∇yyFH−1

k,(K) − I‖ in Proposition 3 implies that

‖H−1
k,(K) −∇yyF−1‖ �

‖∇yyF−1‖‖∇yyFH−1
k,(K) − I‖ � 	K +1

m
. (72)

Combining the results in (71) and (72) shows that the third in
the RHS of (69) is upper bounded by

h
∥∥pk,(K) − [∇yyF]−1∇tyF

∥∥ � hC0

m
	K +1 . (73)

By substituting the bounds in (70) and (73) into (69) and con-
sidering the definitions of σ in (44) and Γ(,K) in Theorem 1,
we obtain

‖yk+1|k − y∗(tk+1)‖ � σ‖yk − y∗(tk)‖ + h Γ(,K) + h2Δ.
(74)

For the correction step [cf., (29)] , we may use the standard
property of projected gradient descent for strongly convex func-
tions with Lipschitz gradients. The Euclidean error norm of the
projected gradient descent method converges linearly as

‖yk+1 − y∗(tk+1)‖ � ρ‖yk+1|k − y∗(tk+1)‖ (75)

where ρ = max{|1 − γm|, |1 − γ(L + M)|}; see e.g., [10].
Plug the correction error in (75) into the prediction error in
(74) to obtain

‖yk+1 − y∗(tk+1)‖ � ρσ‖yk − y∗(tk)‖ + ρϕ (76)

5736 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 11, NOVEMBER 2017

where ϕ := h Γ(,K) + h2Δ. Therefore

‖yk+1 − y∗(tk+1)‖ � (ρσ)k+1‖y0 − y∗(t0)‖ + ρϕ

k∑

i=0

(ρσ)i .

(77)
Substitute k + 1 by k and simplify the sum in (77), making use
of the fact that ρσ < 1, which yields

‖yk − y∗(tk)‖ � (ρσ)k‖y0 − y∗(t0)‖ + ρϕ

[
1 − (ρσ)k

1 − ρσ

]
.

(78)
Observing (78) together with the definition of ϕ, (48) follows.
In particular, if ρσ < 1 (that is (47) holds), the sequence {yk}
converges Q-linearly to y∗ up to an error bound as

lim sup
k→∞

‖yk − y∗(tk)‖ =

[
ρ

1 − ρσ

] (
h Γ(,K) + h2

[
C0C2

m2 +
C3

2m
+

C2
0 C1

2m3

])
.

(79)

To establish the result stated in (46), observe that
in the worst case, we may upper bound the term
‖[∇yyF]−1∇tyF − [∇yyF ∗]−1∇tyF ∗‖ in (69) by∥∥[∇yyF]−1∇tyF‖ + ‖[∇yyF ∗]−1∇tyF ∗∥∥, which yields

∥∥[∇yyF]−1∇tyF − [∇yyF ∗]−1∇tyF ∗∥∥ � 2C0

m
. (80)

Substituting the upper bound in (80) into (69) yields

‖yk+1|k − y∗(tk+1)‖ � ‖yk − y∗(tk)‖ + h
2C0

m
+ ϕ. (81)

Using the definition ϕ = h Γ(,K) + h2Δ and observing the
relation in (75), we can write

‖yk+1 − y∗(tk+1)‖ � ρ‖yk − y∗(tk)‖ + ρ

[
2h

C0

m
+ ϕ

]
.

(82)
Recursively applying (82) backwards to the initial time

‖yk − y∗(tk)‖ � ρk‖y0 − y∗(t0)‖ +ρ

[
2hC0

m
+ ϕ

][
1 − ρk

1 − ρ

]

(83)
and by sending k → ∞, we can simplify (83) as

lim sup
k→∞

‖yk − y∗(tk)‖ =
2C0ρh

m(1 − ρ)

+
ρ

1 − ρ
hΓ(,K)+h2 ρ

1 − ρ

[
C0C2

m2 +
C3

2m
+

C2
0 C1

2m3

]

(84)

which is (46). The result in (84) holds if ρ < 1, which is the
case if γ < 2/(L + M), as stated in Theorem 1. �

APPENDIX C
PROOF OF THEOREM 2

Also in this case, we prove the theorem only for DPC-N,
while for DAPC-N—which is very similar—is given in [37,
Appendix E].

Since DPC-N and DPC-G are identical in their prediction
steps, we may consider the prediction error result established
during the proof Theorem 1, i.e., the expression in (74) with
k = 0. We turn our attention to the correction step, and consider,
in particular, the gap to the optimal trajectory before and after
correction at time tk+1 as

‖yk+1−y∗(tk+1)‖=‖yk+1|k − γ H−1
k+1|k∇yF − y∗(tk+1)‖.

(85)
Subsequently, we simplify notation by defining the shorthands

∇yF := ∇yF (yk+1|k ; tk+1) ,∇yyF :=∇yyF (yk+1|k ; tk+1)

∇yF ∗ := ∇yF (y∗(tk+1); tk+1),

∇yyF ∗ := ∇yyF (y∗(tk+1); tk+1)

∇tyF := ∇tyF (yk+1|k ; tk+1) ,

∇tyF ∗ := ∇tyF (y∗(tk+1); tk+1) . (86)

Add and subtract γ ∇yyF−1∇yF to the expression inside the
norm in (85) which is the exact damped Newton, and use the
triangle inequality to obtain

‖yk+1 − y∗(tk+1)‖ � ‖yk+1|k − y∗(tk+1)

− γ∇yyF−1∇yF‖ + γ‖(∇yyF−1 − H−1
k+1|k)∇yF‖.

(87)

We proceed to bound the two terms in the RHS of (87). Consider
the first term: left multiply by ∇yyF and its inverse, and left
factor out the Hessian inverse ∇yyF−1 . Making use of the
Cauchy–Schwartz inequality, the first term of RHS of (87) is
bounded above as

‖yk+1|k − γ∇yyF−1∇yF − y∗(tk+1)‖
� (1 − γ)‖yk+1|k − y∗(tk+1)‖

+ γ‖∇yyF−1‖‖∇yyF (yk+1|k − y∗(tk+1)) −∇yF‖ .
(88)

We use now the same arguments as in [10, Appendix C, Eqs.
(83)–(85)] to show that (88) can be upper bounded by

(1 − γ)‖yk+1|k − y∗(tk+1)‖ +
γC1

2m
‖yk+1|k − y∗(tk+1)‖2 .

(89)

With this upper estimate in place for the first term on the RHS
of (87), we shift focus to the second term. Use the Cauchy–
Schwartz inequality to obtain ‖(∇yyF−1 − H−1

k+1|k)∇yF‖
is bounded above by ‖∇yyF−1‖‖∇yyFH−1

k+1|k − I‖‖∇yF‖.

Use the upper bound 1/m for the spectrum of ∇yyF−1 and the
Hessian approximation error [cf., (43)] to obtain

‖(∇yyF−1 − H−1
k+1|k)∇yF‖ � 	K ′+1

m
‖∇yF‖. (90)

Now, focusing on the second term in the product on the RHS
of (90), we use of the optimality criterion of y∗(tk+1), which is
equivalent to ∇yF ∗ = 0, to write

‖∇yF‖ = ‖∇yF −∇yF ∗‖ � (L + M)‖yk+1|k − y∗(tk+1)‖
(91)

SIMONETTO et al.: DECENTRALIZED PREDICTION-CORRECTION METHODS FOR NETWORKED TIME-VARYING CONVEX OPTIMIZATION 5737

where we have used the Lipschitz property of the gradients.
Substituting the upper bound in (91) into (90) and considering
the definition Γ(,K ′) = (C0/m)	K ′+1 lead to

‖(∇yyF−1 − H−1
k+1|k)∇yF‖

� L + M

C0
Γ(,K ′)‖yk+1|k − y(tk+1)‖. (92)

Apply the bounds (89)–(92) to the RHS of (87)

‖yk+1 − y∗(tk+1)‖ � γ
C1

2m
‖yk+1|k − y∗(tk+1)‖2

+
(

γ
L + M

C0
Γ(,K ′)+1 − γ

)
‖yk+1|k − y∗(tk+1)‖ .

(93)

Now we consider the prediction step, which by (74), we have

‖yk+1|k − y∗(tk+1)‖ � σ‖yk − y∗(tk)‖ + ϕ (94)

with ϕ = h Γ(,K) + h2Δ as defined in Appendix B. Substi-
tuting the relation (94) into (93) allows us to write

‖yk+1 − y∗(tk+1)‖ � γ
C1

2m
(σ‖yk − y∗(tk)‖ + ϕ)2

+
(

γ
L + M

C0
Γ(,K ′) + 1 − γ

)
(σ‖yk − y∗(tk)‖ + ϕ) .

(95)

The RHS of (95) is a quadratic function of the error ‖yk −
y∗(tk)‖ at time tk , which upper bounds the error sequence at
the subsequent time tk+1 . For certain selections of parameters
K, K ′, and h, (95) defines a contraction. To determine the
conditions for which this occurs, we solve for an appropriate
radius of contraction. Let τ > 0 be a positive scalar such that

α2‖yk − y∗(tk)‖2 + α1‖yk − y∗(tk)‖ + α0 (96)

� τ‖yk − y∗(tk)‖ + α0

where the coefficients α0 , α1 , and α2 of the quadratic polyno-
mial of the error ‖yk − y∗(tk)‖ are defined from the RHS of
(95), and given as

α2 = γ
C1

2m
σ2 , α1 = σ

[
γ

C1

m
ϕ + γ

L + M

C0
Γ(,K ′) + 1 − γ

]

α0 = ϕ

[
γ

C1

2m
ϕ + γ

L + M

C0
Γ(,K ′) + 1 − γ

]
. (97)

Based on (96), to guarantee the Q-linear convergence of the error
sequence ‖yk − y∗(tk)‖, we require τ < 1, which by simple
algebra it is satisfied if

α1 < τ, ‖y0 − y∗(t0)‖ � (τ − α1)/α2 . (98)

Finally, we need to require that the second condition in (98)
holds true for all k, that is ‖yk+1 − y∗(tk+1)‖ � ‖yk −
y∗(tk)‖, which implies

τ(τ − α1)/α2 + α0 � (τ − α1)/α2 . (99)

Conditions (98) and (99), the definitions of α0 , α1 , and α2
in (97), and ϕ = h Γ(,K) + h2Δ establish the small enough
conditions on sampling period and optimality gap as well as

the large enough conditions on the approximation levels K,K ′

in Theorem 2, for any chosen τ < 1. In particular, the terms
α0 and α1 are polynomial functions of the sampling period h
and the approximation levels K and K ′. Conditions (98) and
(99) describe a system of nonlinear inequalities for any fixed
1 − γ < τ < 1. For arbitrarily small h and large K and K ′, α0
and α1 can be made 0 and 1 − γ, respectively. Formally

lim
h→0, K,K ′→∞

α0 = 0, lim
h→0, K,K ′→∞

α1 = 1 − γ. (100)

When α0 = 0 and α1 = 1 − γ conditions (98) and (99) hold
with attraction region R̄ = 2m(τ − 1 + γ)/γC1σ

2 . Since α0
and α1 go to their limits monotonically with h,K,K ′, then—
by continuity—there exists a large enough K̄ and small enough
attraction region R̄ for which conditions (98) and (99) can be
achieved. The convergence region in (98) is dictated by the
Newton step and by the step-size choice γ. If the cost function
is a time-varying quadratic function, then C1 = 0, and the con-
vergence region is the whole space. If γ is chosen very small,
then also in this case the convergence region becomes arbitrarily
large, as expected.

By selecting the error polynomial coefficients as (97) and
recursively applying (96) backward in time, we obtain

‖yk − y∗(tk)‖ � τk‖y0 − y∗(t0)‖ + α0

[
1 − τk

1 − τ

]
(101)

which since τ < 1, the right side of the (101) is finite, imply-
ing (49), after the expansion of the coefficients. �

REFERENCES

[1] A. Simonetto, A. Mokhtari, A. Koppel, G. Leus, and A. Ribeiro, “A
decentralized prediction-correction method for networked time-varying
convex optimization,” in Proc. IEEE 6th Int. Workshop Comput. Adv.
Multi-Sensor Adapt. Process., Cancun, Mexico, Dec. 2015, pp. 509–512.

[2] A. Simonetto, A. Koppel, A. Mokhtari, G. Leus, and A. Ribeiro, “A quasi-
newton prediction-correction method for decentralized dynamic convex
optimization,” in Proc. Eur. Control Conf., Aalborg, Denmark, Jun. 2016,
pp. 1934–1939.

[3] P. Alriksson and A. Rantzer, “Distributed Kalman filter using weighted
averaging,” in Proc. 17th Int. Symp. Math. Theory Netw. Syst., Kyoto,
Japan, Jul. 2006, pp. 1–6.

[4] M. Farina, G. Ferrari-Trecate, and R. Scattolini, “Distributed moving hori-
zon estimation for linear constrained systems,” IEEE Trans. Autom. Con-
trol, vol. 55, no. 11, pp. 2462–2475, Nov. 2010.

[5] P. Ögren, E. Fiorelli, and N. Leonard, “Cooperative control of mobile sen-
sor networks: Adaptive gradient climbing in a distributed environment,”
IEEE Trans. Autom. Control, vol. 49, no. 8, pp. 1292–1302, Aug. 2004.

[6] F. Borrelli and T. Keviczky, “Distributed LQR design for identical dynam-
ically decoupled systems,” IEEE Trans. Autom. Control, vol. 53, no. 8,
pp. 1901–1912, Sep. 2008.

[7] F. Arrichiello, “Coordination control of multiple mobile robots,” Ph.D.
thesis, Università degli studi di Cassino, Cassino, Italy, 2006.

[8] Y. Kim and M. Mesbahi, “On maximizing the second smallest eigen-
value of a state-dependent graph Laplacian,” IEEE Trans. Autom. Control,
vol. 51, no. 1, pp. 116–120, Jan. 2006.

[9] R. Graham and J. Cortes, “Adaptive information collection by robotic
sensor networks for spatial estimation,” IEEE Trans. Autom. Control,
vol. 57, no. 6, pp. 1404–1419, Jun. 2012.

[10] A. Simonetto, A. Mokhtari, A. Koppel, G. Leus, and A. Ribeiro, “A class
of prediction-correction methods for time-varying convex optimization,”
IEEE Trans. Signal Process., vol. 64, no. 17, pp. 4576–4591, Sep. 2016.

[11] B. T. Polyak, Introduction to Optimization. Optimization Software, Inc.,
New York, NY, USA, 1987.

[12] V. M. Zavala and M. Anitescu, “Real-time nonlinear optimization as a
generalized equation,” SIAM J. Control Optim., vol. 48, no. 8, pp. 5444–
5467, 2010.

5738 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 11, NOVEMBER 2017

[13] A. L. Dontchev, M. I. Krastanov, R. T. Rockafellar, and V. M. Veliov,
“An Euler-Newton continuation method for tracking solution trajectories
of parametric variational inequalities,” SIAM J. Control Optim., vol. 51,
no. 51, pp. 1823–1840, 2013.

[14] M. Kamgarpour and C. Tomlin, “Convergence properties of a decentral-
ized Kalman filter,” in Proc. 47th IEEE Conf. Decis. Control, Cancun,
Mexico, Dec. 2008, pp. 3205–3210.

[15] S.-Y. Tu and A. H. Sayed, “Mobile adaptive networks,” IEEE J. Sel. Topics
Signal Process., vol. 5, no. 4, pp. 649–664, Aug. 2011.

[16] D. Bajovic, D. Jakovetic, J. Xavier, B. Sinopoli, and J. M. F. Moura,
“Distributed detection via Gaussian running consensus: Large devia-
tions asymptotic analysis,” IEEE Trans. Signal Process., vol. 59, no. 9,
pp. 4381–4396, Sep. 2011.

[17] M. M. Zavlanos, A. Ribeiro, and G. J. Pappas, “Network integrity in
mobile robotic networks,” IEEE Trans. Autom. Control, vol. 58, no. 1,
pp. 3–18, Jan. 2013.

[18] F. Y. Jakubiec and A. Ribeiro, “D-MAP: Distributed maximum a posteriori
probability estimation of dynamic systems,” IEEE Trans. Signal Process.,
vol. 61, no. 2, pp. 450–466, Jan. 15, 2013.

[19] Q. Ling and A. Ribeiro, “Decentralized dynamic optimization through the
alternating direction method of multipliers,” IEEE Trans. Signal Process.,
vol. 62, no. 5, pp. 1185–1197, Mar. 1, 2014.

[20] A. Simonetto and G. Leus, “Distributed asynchronous time-varying con-
strained optimization,” in Proc. Asilomar Conf. Signals, Syst. Comput.,
Nov. 2014, pp. 2142–2146.

[21] A. Koppel, A. Simonetto, A. Mokhtari, G. Leus, and A. Ribeiro, “Target
tracking with dynamic convex optimization,” in Proc. IEEE Glob. Conf.
Signal Inf. Process., 2015, pp. 1210–1214.

[22] H. Yin, P. Mehta, S. Meyn, and U. V. Shanbhag, “Learning in mean-field
games,” IEEE Trans. Autom. Control, vol. 59, no. 3, pp. 629–644, Mar.
2014.

[23] P. Guan, M. Raginsky, and R. Willett, “Online Markov decision processes
with Kullback-Leibler control cost,” IEEE Trans. Autom. Control, vol. 59,
no. 6, pp. 1423–1438, Jun. 2014.

[24] A. Mokhtari, Q. Ling, and A. Ribeiro, “Network Newton—Part I: Algo-
rithm and convergence,” arXiv preprint arXiv:1504.06017, 2015.

[25] A. Mokhtari, Q. Ling, and A. Ribeiro, “Network Newton—Part II: Conver-
gence rate and implementation,” arXiv preprint arXiv:1504.06020, 2015.

[26] D. Palomar and M. Chiang, “A tutorial on decomposition methods for
network utility maximization,” IEEE J. Sel. Areas Commun., vol. 24, no.
8, pp. 1439–1451, Aug. 2006.

[27] A. Loukas, M. A. Zúñiga, I. Protonotarios, and J. Gao, “How to identify
global trends from local decisions? event region detection on mobile net-
works,” in Proc. Int. Conf. Comput. Commun., Toronto, CA, USA, Apr.
2014, pp. 1177–1185.

[28] V. Roy, S. Gishkori, and G. Leus, “Spatial rainfall mapping from path-
averaged rainfall measurements exploiting sparsity,” in Proc. IEEE Global
Conf. Signal Inf. Process., Altanta, GA, USA, Dec. 2014, pp. 321–325.

[29] J. A. Martinez, R. Heusdens, and R. C. Hendriks, “A generalized fourier
domain: Signal processing framework and applications,” Signal Process.,
vol. 93, no. 5, pp. 1259–1267, 2013.

[30] B. Grocholsky, A. Makarenko, and H. Durrant-Whyte, “Information-
theoretic coordinated control of multiple sensor platforms,” in Proc. IEEE
Int. Conf. Robot. Autom., Taipei, Taiwan, Sep. 2003, pp. 1521–1526.

[31] N. E. Leonard, D. A. Paley, R. E. Davis, D. M. Fratantoni, F. Lekien, and
F. Zhang, “Coordinated control of an underwater glider fleet in an adaptive
ocean sampling field experiment in monterey bay,” J. Field Robot., vol. 27,
no. 6, pp. 718–740, 2010.

[32] L. Xiao and S. Boyd, “Optimal scaling of a gradient method for distributed
resource allocation,” J. Optim. Theory. Appl., vol. 129, no. 3, pp. 469–488,
2006.

[33] E. Ghadimi, I. Shames, and M. Johansson, “Multi-step gradient methods
for networked optimization,” IEEE Trans. Signal Process., vol. 61, no. 21,
pp. 5417–5429, Nov. 2013.

[34] P. Wan and M. D. Lemmon, “Event-triggered distributed optimization
in sensor networks,” in Proc. Int. Conf. Inf. Process. Sensor Netw., San
Francisco, CA, USA, Apr. 2009, pp. 49–60.

[35] D. G. Feingold and R. S. Varga, “Block diagonally dominant matrices
and generalization of the Gerschgorin circle theorem,” Pacific J. Math.,
vol. 12, no. 4, pp. 1241–1250, 1962.

[36] A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution
Mappings. New Yoek, NY, USA: Springer, 2009.

[37] A. Simonetto, A. Koppel, A. Mokhtari, G. Leus, and A. Ribeiro, “Decen-
tralized prediction-correction methods for networked time-varying convex
optimization,” arXiv:1602.01716, 2016.

[38] E. K. Ryu and S. Boyd, “Primer on monotone operator methods,” Appl.
Comput. Math., vol. 15, pp. 3–43, 2016.

Andrea Simonetto (M’12) received the Ph.D.
degree in systems and control from the Delft Uni-
versity of Technology, Delft, The Netherlands, in
2012.

He is a Research Staff Member with the Opti-
mization and Control Group, IBM Research Ire-
land, Dublin, Ireland. His current research in-
terests include optimization and control for large
scale systems, with applications in smart energy
and transportation.

Alec Koppel received the B.A. degree in mathe-
matics and the M.S. degree in systems science
from Washington University, St. Louis, MO, USA,
in 2011 and 2012, respectively. He is currently
working toward the Ph.D. degree with the De-
partment of Electrical and Systems Engineer-
ing, University of Pennsylvania, Philadelphia,
PA, USA.

He is a participant in the SMART Scholarship
program sponsored by the U.S. Army Research
Laboratory, Adelphi, MD, USA. His research fo-

cuses on signal processing, machine learning, and optimization.

Aryan Mokhtari received the B.Sc. degree in
electrical engineering from the Sharif Univer-
sity of Technology, Tehran, Iran, in 2011, and
the M.Sc. degree in electrical engineering from
the University of Pennsylvania, Philadelphia, PA,
USA, in 2014. Since 2012, he has been working
toward the Ph.D. degree in the Department of
Electrical and Systems Engineering, University
of Pennsylvania, Philadelphia, PA, USA.

His research interests include stochastic and
distributed optimization and machine learning.

Geert Leus (F’12) received the M.Sc. and Ph.D.
degrees in applied sciences from the Katholieke
Universiteit Leuven, Leuven, Belgium, in June
1996 and May 2000, respectively.

He is currently a Full Professor with the
Faculty of Electrical Engineering, Mathematics
and Computer Science, Delft University of Tech-
nology, Delft, The Netherlands.

Dr. Leus received the 2002 IEEE Signal Pro-
cessing Society Young Author Best Paper Award
and the 2005 IEEE Signal Processing Society

Best Paper Award. He is a Fellow of the European Association for
Signal Processing. He was the Chair of the IEEE Signal Processing
for Communications and Networking Technical Committee. He is cur-
rently a Member-at-Large to the Board of Governors of the IEEE Signal
Processing Society and he serves as the Editor in Chief of the EURASIP
Journal on Advances in Signal Processing.

Alejandro Ribeiro (M’07) received the B.Sc. de-
gree in electrical engineering from the Universi-
dad de la Republica Oriental del Uruguay, Mon-
tevideo, Uruguay, in 1998 and the M.Sc. and
Ph.D. degree in electrical engineering from the
Department of Electrical and Computer Engi-
neering, University of Minnesota, Minneapolis,
MN, USA, in 2005 and 2007, respectively.

From 1998 to 2003, he was a member of
the Technical Staff with Bellsouth, Montevideo.
After his M.Sc. and Ph.D studies, in 2008, he

joined the University of Pennsylvania, Philadelphia, PA, USA, where he
is currently the Rosenbluth Associate Professor with the Department of
Electrical and Systems Engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

