
Double Smoothing for Time-Varying Distributed
Multiuser Optimization

Andrea Simonetto and Geert Leus
Faculty of EEMCS, Delft University of Technology, 2826 CD Delft, The Netherlands

e-mails: ta.simonetto, g.j.t.leusu@tudelft.nl

Abstract—Constrained optimization problems that couple dif-
ferent cooperating users sharing the same communication net-
work are often referred to as multiuser optimization programs.
We are interested in convex discrete-time time-varying multiuser
optimization, where the problem to be solved changes at each
time step. We study a distributed algorithm to generate a
sequence of approximate optimizers of these problems. The
algorithm requires only one round of communication among
neighboring users between subsequent time steps and, under
mild assumptions, converges linearly to a bounded error floor
whose size is dependent on the variability of the optimization
problem in time. To develop the algorithm we employ a double
regularization both in the primal and in the dual space. This
increases the convergence rate and helps us in the convergence
proof. Numerical results support the theoretical findings.

I. INTRODUCTION

We are interested in time-varying multiuser optimization

problems arising often in network resource management.

These problems are constrained optimization programs as-

sociated with a finite set of users i P t1, . . . , Nu. Each

user i has, at discrete-time k, a private convex cost function

fk
i pxiq : R

ni Ñ R that depends on its decision vector xi

only. The decision vectors are typically coupled by a convex

constraint set and, sometimes, by an extra coupled term in the

cost function. The time-varying multiuser optimization prob-

lem can be formulated as the following convex minimization

for each discrete-time k ě 0

minimize
x

fkpxq :“
N
ÿ

i“1

fk
i pxiq ` ckpxq (1a)

subject to dkj pxq ď 0, for j “ 1, . . . ,m (1b)

xi P Xi, for i “ 1, . . . , N, (1c)

where x P R
n is the stacked vector of all the local decision

variables xi, the function ckpxq : R
n Ñ R is a coupling

convex function, each of the dkj pxq : Rn Ñ R is a convex

function that describes the j-th coupled constraint, and finally

Xi is a local convex set (often a box constraint).

In this paper, we seek distributed (iterative) algorithms

that generate a sequence of approximate decision variables

vpkq which eventually converges to an optimizer of (1).

The algorithms we consider are distributed, since they will

allow each user to communicate only with neighboring users,

and they are time-varying, since they will require only one

communication round between subsequent discrete time steps.

Different distributed algorithms can solve the multiuser

problem (1) when it is time-invariant, e.g., the saddle-point
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method of [1], distributed double smoothing [2], [3], and the

alternating direction method of multipliers [4]–[6]. These tech-

niques are iterative, and in the time-varying case, they would

require (theoretically) an infinite amount of communication

among neighboring nodes (between consecutive time steps k
and k`1) to converge to an optimizer of (1). Specific methods

that account for a finite number of messages and still guarantee

convergence have been proposed in [7]–[16], but they are all

limited to restricted versions of (1), typically, strongly convex

and (often) unconstrained problems.

In this paper, we attack the constrained time-varying mul-

tiuser problem in its generality and we prove that the method

of [2] (originally intended for time-invariant scenarios) works

also in the time-varying case under some standard assumptions

on the variability of the optimization problem in time. We

approximate the original problem (1) by employing a double

regularization (both in the primal and dual space), and show

linear convergence of the proposed primal-dual algorithm to

the optimizer of the regularized problem up to a bounded error

dependent on the variability of the optimization problem in

time. This fast convergence, together with the price of a limited

and a priori quantifiable (and tunable) suboptimality, makes

the chosen regularization particularly suitable in time-varying

cases. Interestingly, the double regularization (also known as

double smoothing) massages the original problem (1) in a

way that it becomes easier to manipulate and offers us an

unexpected advantage in the time-varying convergence proof.

II. ASSUMPTIONS AND FORMAL PROBLEM FORMULATION

We work under the following setting and assumptions.

Assumption 1: The cost function fkpxq and the constraint

functions dkj pxq are convex and continuously differentiable for

each k ě 0. The constraint sets Xi are nonempty, closed,

convex, and bounded.

We define the gradient map gkpxq : Rn Ñ R
n as gkpxq :“

´

∇x1
pfk

1
px1q ` ckpxqqT, . . . ,∇xN

pfk
N px1q ` ckpxqqT

¯T

,

and assume

Assumption 2: The gradient map gkpxq is Lipschitz contin-

uous with constant L over the set X :“
śN

i“1
Xi for k ě 0,

}gkpxq ´ gkpyq} ď L}x ´ y}, for all x,y P X, k ě 0,

and in addition, the gradient ∇xd
k
j pxq is also Lipschitz

continuous over X with a constant Lj ą 0.

Assumption 3: (Slater Condition) There exists a Slater vec-

tor x̄k P X such that dkj px̄kq ă 0 for all j “ 1, . . . ,m.



We introduce a time-invariant undirected communication

network through which the users communicate. We label as

G “ pV,Eq the network graph comprised of a vertex set

V “ t1, . . . , Nu and an edge set (the communication links).

In particular, if user i and l can communicate, then pi, lq P E.

We assume that,

Assumption 4: User i can communicate with all the users

it is coupled with via the constraint set and/or the cost. I.e,

for k ě 0, for each user i,

1) if the gradient ∇xi
ckpxq is a function of xl, then either

pi, lq P E or i “ l;
2) if dkj pxq is a function of xi, then it cannot be also a

function of xl if pi, lq R E.

Assumptions 1 till 3 are used often in multiuser problems

and they are not very restrictive. In particular, we do not

assume strong convexity of the cost function (often required

in time-varying schemes). Even Assumption 4 is not strict:

it means that the users are coupled only locally (with their

neighbors), which is rather reasonable for networked systems.

By Assumptions 1 and 3, there exists an optimizer of the

multiuser convex program (1) for each discrete time k, which

we indicate with xk,˚, and a unique minimum fk,˚.

Our aim is to find xk,˚ by a distributed iterative scheme:

distributed, i.e., each user i communicates only via the links

in the edge set E to determine its own decision variable x
k,˚
i ;

iterative, i.e., we seek algorithms that generate a sequence of

approximate optimizers tvpkqu for which

lim
kÑ8

}vpkq ´ xk,˚} “ 0. (2)

Condition (2) could be realized if the users were allowed to

exchange an infinite amount of messages between subsequent

time steps. Here, we look at time-varying algorithms which

allow the users only one round of communication at each

time step k, and thus we expect convergence to xk,˚ up to

an error floor dependent on the variability of the optimization

problem in time. An additional challenge that one could face

with problems as (1) is that they are not strictly convex, and

the available distributed methods for such problems (in the

time-invariant scenario) exhibit either slow convergence with

low computational complexity (e.g., the subgradient method

of [1] that converges as Op1{kq) or faster convergence (up to

linear, i.e., Oprkq, r ă 1) but higher computational complexity

(e.g., ADMM [5]). We see next how one can have both linear

convergence and the computational complexity of first-order

gradient methods in the same algorithm. In particular, we see

how to accelerate convergence by double smoothing and gen-

erate a fast converging sequence of approximate optimizers.

III. DOUBLE SMOOTHING AND DISTRIBUTED ALGORITHM

We introduce a distributed gradient-based optimization

method that employs a fixed regularization in the primal and

dual spaces. This regularization serves to approximate the

primal problem (1) in a way that can be solved by gradient-

based methods with improved convergence properties.

Let λj P R` be the dual variable associated to the inequality

constraint dkj pxq ď 0, and let ν ą 0, ǫ ą 0 be strictly

positive scalars. Let λ be the stacked vector of all the dual

variables (for all j). Motivated by [2], we define a regularized

Lagrangian function associated to the primal problem (1) as

L
k
ν,ǫpx,λq:“fkpxq ` 1

2
ν}x}2 `

m
ÿ

j“1

λjd
k
j pxq ´ 1

2
ǫ}λ}2. (3)

This regularized Lagrangian function is by definition a strictly

convex function of the primal variable x and a strictly concave

function of the dual variable λ.

The idea of double smoothing (that is a regularization both

in the primal and dual space) is to construct the (easier to

solve) approximate saddle-point problem

minimize
xiPXi,@i

maximize
λjPR`,@j

L
k
ν,ǫpx,λq (4)

whose unique primal-dual optimizer is the couple

pxk,opt,λk,optq and whose primal objective value is fk,opt

(which exists due to Assumptions 1 and 3). In general, it is

expected that the solutions of the primal problem (1) and the

regularized saddle-point problem (4) are different, meaning

}xk,˚ ´xk,opt} ‰ 0 and }fk,˚ ´fk,opt} ‰ 0. Furthermore, the

solution of the regularized problem (4) does not necessarily

satisfy the inequality constraints of the primal problem (1).

However, it is possible to bound the suboptimality and the

distance from the primal optimizer, along with the constraint

violation, by some function of the regularization parameters

ν and ǫ. Thus, while we are solving an approximation of the

primal problem (1) we have bounds on the distance from the

primal optimal solution. In this context, the regularization

procedure can be seen as a way to speed up the convergence

of standard gradient-like methods, and it may lead to a closer

iterate to the optimum fk,˚ of the original problem given

a finite number of iterations even though an approximate

regularized problem is being solved. This last property

is actually very important when (as in our case) at each

discrete time the regularized problem is changing due to

its time-varying nature. For further details we refer to the

original works on (time-invariant) regularization and double

smoothing techniques [2], [17].

Based on the regularized time-varying program (4), we pro-

pose the following primal-dual gradient-based iterations. We

equip each user i with an initial local approximate minimizer

vip0q at time 0, and an initial approximate value for the dual

optimizer µjp0q “ 0 for all j for which ∇xi
dkj pxq ‰ 0. We

also indicate µpkq as the stacked version of µjpkq at time k.

Then we compute, for i “ 1, . . . , N , and for j “ 1, . . . ,m

vipk ` 1q “ PXi

”

vipkq ´ α∇xi
L
k
ν,ǫpx,λq

ˇ

ˇ

vpkq,µpkq

ı

(5a)

µjpk ` 1q “ PR`

”

µjpkq ` α∇λj
L
k
ν,ǫpx,λq

ˇ

ˇ

vpkq,µpkq

ı

, (5b)

where P is the projection operator, and α ą 0 a suitable fixed

stepsize. By nature of the multiuser problem, the iterations (5)

are structurally distributed. To see this, it is sufficient to

expand the gradients of the regularized Lagrangian as

∇xi
L
k
ν,ǫpx,λq

ˇ

ˇ

vpkq,µpkq
“

´

∇xi
fk
i pxiq`∇xi

ckpxq`νxi`
m
ÿ

j“1

λj∇xi
dkj pxq

¯

ˇ

ˇ

vpkq,µpkq
,



∇λj
L
k
ν,ǫpx,λq

ˇ

ˇ

vpkq,µjpkq
“

´

dkj pxq ´ ǫλj

¯

ˇ

ˇ

vpkq,µjpkq
,

and notice that under Assumption 4 each user i has all the

elements to compute the gradient w.r.t. its decision variable xi

and w.r.t. the coupling multipliers λj . The final algorithm is

summarized in Algorithm 1. The main difference with its time-

invariant version in [2] is that, at each time step, not only the

local variables get updated, but also the optimization program

changes. It is important to note that this seemingly innocent

modification could completely jeopardize the convergence

properties of the algorithm. In the next section, we formally

prove that this is actually not the case under some quite

reasonable assumptions on the variability of (4).

Algorithm 1 Double smoothing distributed algorithm

Initialize locally vip0q, µjp0q “ 0. Then for k ě 0:

1) communicate within the neighborhood vipkq;

2) update local variable vipkq and the coupling multipliers

µjpkq by using (5);

3) go to step 1.

IV. PROPERTIES OF THE PROPOSED SOLUTION

We analyze now the convergence properties of Algorithm 1;

in particular, we are interested in its ability to yield a se-

quence of primal-dual approximate optimizers tvpkq,µpkqu
that inevitable converge to the primal-dual optimal solution

of the regularized problem (4) up to a bounded error floor.

We need an additional assumption that bounds the variability

of (4) between subsequent time steps.
Assumption 5: The difference of the optimizers of (4) at

two subsequent time steps is bounded as

}xk`1,opt ´ xk,opt} ď δx, k ě 0,

and the difference in the constraint sets at optimality is

bounded as

|dk`1

j pxk`1,optq ´ dkj pxk,optq| ď δd, j “ 1, . . . ,m, k ě 0.

Assumption 5 on the variability of the optimizers is nor-

mally asked in time-varying optimization. The difference with

the current literature is that we need to require also a bounded

variability condition on the constraint set. This is due to the

fact that our problem (in contrast with the ones presented in

the current literature) is constrained. This constraint variability

bound is in fact a bound on the variability of the dual

optimizers, as one might have already guessed. This relation

is clearly unveiled in the next proposition.
Proposition 1: Define the map of all constraints dkpxq :

R
n Ñ R

m as dkpxq :“ pdk
1
pxq, . . . , dkmpxqqT. The dual

optimizers of (4) satisfy for k ě 0

}λk`1,opt λ́k,opt} ď }dk`1pxk`1,optq́ dkpxk,optq}{ǫď
?
mδd{ǫ.

Proof: The proof is based on the optimality conditions

of (4) and is made easier by the regularization term in the dual

space (ǫ). The complementary slackness condition for (4) is1

λ
k,opt
j

`

dkj pxk,optq ´ ǫλ
k,opt
j

˘

“ 0, for j “ 1, . . . ,m.

1This can be shown in different ways, one of which is by finding the fixed
points of (5) at given k as in [2].

Since λ
k,opt
j ě 0, we have λ

k,opt
j “ maxt0, dkj pxk,optq{ǫu, or

λ
k`1,opt
j ´λ

k,opt
j “ pmaxt0, dk`1

j pxk`1,optqu´
maxt0, dkj pxk,optquq{ǫ,

and finally

|λk`1,opt
j ´ λ

k,opt
j | “ |maxt0, dk`1

j pxk`1,optqu´
maxt0, dkj pxk,optqu|{ǫ ď |dk`1

j pxk`1,optq ´ dkj pxk,optq|{ǫ,
where the last inequality comes by direct calculation. Stacking

these last inequalities together for all j and by Assumption 5

the claim follows.

We note that the proof of Proposition 1 is made possible

by the employed regularization and a similar result would be

more difficult to derive for a generic constrained problem. We

are now ready for the convergence result. First of all, we define

the Lipschitz constant Lν,ǫ [2, Lemma 3.4]

Lν,ǫ “
a

pL ` ν ` Md ` MνLdq2 ` pMd ` ǫq2, (6)

Ld “ }pL1, . . . , Lmq}2,
where L and Lj are defined in Assumption 2, Md “
maxxPX }∇xd

k
j pxq} (for all j, k), and Mν “ max }µpkq},

for all k2.

Theorem 1: Let ζpkq :“ pvpkqT,µpkqTqT be the stacked

vector of the primal-dual variables generated using Algo-

rithm 1. Let zk,opt :“ pxk,optT,λk,optTqT be the primal-dual

solution of the regularized problem (4) for a given choice of ν
and ǫ. Let ρ “ mintν, ǫu and let Lν,ǫ be defined as (6). Under

Assumptions 1 till 5, if the stepsize is picked as α ă 2ρ{L2

ν,ǫ,

then convergence goes as

}ζpk ` 1q ´ z
k`1,opt} ď r}ζpkq ´ z

k,opt} `
b

δ2
x

` mδ2d{ǫ2,

with linear convergence rate r “
b

1 ´ 2ρα ` α2L2
ν,ǫ ă 1.

Proof: (Sketch) The proof uses similar arguments as the

one in Theorem 3.5 of [2] to establish

}ζpk ` 1q ´ z
k,opt} ď r}ζpkq ´ z

k,opt},
successively, it employs the triangle inequality to bound }ζpk`
1q ´ z

k`1,opt} as

}ζpk ` 1q ´ z
k`1,opt} ď }ζpk ` 1q ´ z

k`1,opt}`
b

δ2
x

` }λk`1,opt ´ λk,opt}2,

and finally uses Proposition 1 to link }λk`1,opt ´ λk,opt} to

δd, from which the claim is derived.

Theorem 1 says that Algorithm 1 produces a sequence con-

verging linearly to the primal-dual optimizer of the regularized

problem, up to a bounded error. This error depends on the

variability of the problem in time. It is quite straightforward,

to determine such a bound given Theorem 1 (by using the

properties of geometric series),

lim inf
kÑ8

}ζpk ` 1q ´ z
k`1,opt} ď 1

1 ´ r

b

δ2
x

` mδ2d{ǫ2. (7)

2We can show that either µpkq stays bounded, or we can project it onto a
bounded set, since the optimal multipliers are bounded [2].



Remark 1: As we are using a regularized problem to solve the

original optimization (1) to increase convergence speed, we expect

to introduce a certain degree of suboptimality (i.e., |fk,opt ´ fk,˚|)

and constraint violation. These effects are quantified in [2, Lemma

3.3] for a fixed k, and not reported here for sake of space.

Remark 2: Theorem 1 is often only an existence result: it says

that there exists a small enough stepsize α that induces convergence.

However, since Lν,ǫ is difficult to determine in practice, this α needs

to be determined by trial-and-error. These “small enough” results are

typical in distributed optimization [18].

V. NUMERICAL CASE STUDY

We use now a case study to show the numerical properties of

the proposed algorithm (the time-invariant detailed description

is given in [2]). The network has a set of N users, sharing a

set of m links (see Figure 1 for an example). A user i P N
has a cost function fk

i pxiq of its traffic rate xi P R as

fk
i pxiq “ ´σipkq logp1 ` xiq, for i “ 1, . . . , N,

where σipkq is a time-varying non-negative scalar. Each user

selects an origin-destination pair of nodes on this network and

faces congestion as

cpxq “ xT
A

T
Ax,

where A P N
mˆN
t0,1u is the matrix that encodes the network

structure, that is: Aji “ 1 if the traffic of user i goes through

link j and 0 otherwise. The coupling in the constraints has

the form Aj:x ď Cj , for all j, for which Cj is the maximum

capacity of link j. The multiuser problem is

minimize
x

N
ÿ

i“1

´σipkq logp1 ` xiq ` xT
A

T
Ax (8a)

subject to Aj:x ď Cj , for j “ 1, . . . ,m (8b)

xi P Xi, for i “ 1, . . . , N, (8c)

and fits the generic model problem (1).

We use the same parameters of [2], we set α “ 0.02, ν “
0.1, ǫ “ 0.01, and we let the σipkq to vary as

σipk ` 1q “ σip0qpp1 ´ ηq ` η cosp2πqk ` ϕq2q, η P r0, 1s,
where the σip0q’s are selected as the fixed ones in [2], q “
0.005, and ϕ “ 2πUr0,1s. Assumptions 1 till 5 are verified in

the chosen setting, and the values of δx and δd can be tuned

by the parameter η.
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Fig. 1. The network with 5 users and 9 links used in the case study
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Fig. 2. Convergence results for different η and estimated theoretical bounds.
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Fig. 3. Suboptimality results for different η and different distributed methods.

Convergence results to the primal-dual optimizer of the

regularized problem are displayed in Figure 2 for different

values of η (for η “ 0 the problem becomes time-invariant and

therefore convergence is exact). We also show the estimated

bounds, computed by using (7) and by estimating the rate r by

curve fitting on the linearly convergent part (see Remark 2).

We notice that the bound is rather tight. The average relative

error }ζpkq ´ z
k,opt}{}zk,opt} in the interval k P r100, 500s is

.050, .008, and .002, for η “ .50, .10, and .02, respectively.

Relative suboptimality w.r.t. the optimum of the original

problem is shown in Figure 3, where we also compare the

proposed method with the subgradient method of [1] (which

converges to the optimum of the original problem in time-

invariant cases but it is not proven to be convergent for time-

varying scenarios). As we see, the proposed method converges

faster to an approximate optimum, and it performs even better

than [1] for η ą 0.

Future research directions will consider Nesterov-type fast

gradient methods and linearized versions of ADMM as [19] to

obtain similar fast converging and low complexity solutions, as

well as non-smooth cost functions, e.g., l1-regularizers, which

are often employed in statistical signal processing.



REFERENCES
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