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Abstract
ForagivenmatrixH whichhasd singularvalueslargerthanε, anexpressionfor all rank-d

approximantŝH suchthat(H− Ĥ) has2-normlessthanε is derived.Theseapproximantshave
minimal rank, and the set includesthe usual‘truncatedSVD’ low-rank approximation.The
main stepin theprocedureis a generalizedSchuralgorithm,which requiresonly O(1/2m2n)
operations(for an m × n matrix H). The column spanof the approximantis computedin
this step,and updatingand downdatingof this spaceis straightforward. The algorithm is
amenableto parallel implementation.

1 Introduction
Let H be a given m × n matrix, having d singular valueslarger than 1 and none equal to 1.
Denoteby

�
⋅

�
the matrix 2-norm. In this paper, we describean algorithm to computeall

possiblematricesĤ suchthat
(a)

�
H − Ĥ

�
≤ 1 ,

(b) rank(Ĥ) = d.

Sucha matrix Ĥ is a low-rank approximationof H in 2-norm. The problemcanbe generalized
trivially by scalingH, in which casewe computeĤ suchthat

�
H − Ĥ

�
≤ ε and suchthat the

rank of Ĥ is equalto the numberof singularvaluesof H larger thanε.
One way to obtain an Ĥ which satisfies(a) and (b) is by computing a singular value

decomposition(SVD) of H, and setting all singular values that are smaller than 1 equal to
zero. This ‘truncatedSVD’ approximantactuallyminimizestheapproximationerror:

�
H − Ĥ

�
=

σd+1 < 1, and is optimal in Frobeniusnorm as well. However, the SVD is computationally
expensive.We will describea generalizedSchurmethodwhich doesnot requireknowledgeof
thesingularvalues,but producesrankd 2-normapproximantsusingonly O(1/2m2n) operations.
The column spanof the approximantis obtainedin the first phaseof the algorithm, which is
a Hyperbolic QR-factorizationof the matrix [I H]. The computationof the approximantitself
requiresan additionalmatrix inversion.

TheSchurmethodprovidesa generalformulawhich describesthesetof all possible2-norm
approximantsof rank d. The Frobenius-normapproximantis also includedin this set,andmay
in principlebeobtainedasthesolutionof a non-linearoptimizationproblemover theparameters
of the set.

The proposedSchur method for matrix approximationis a specializationof a recently
developedextensionof Hankel-normmodel reductiontheory to time-varyingsystems[3, 8, 7].
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Other methodsto alleviate the computationalburden of the SVD while retaining important
informationsuchas rank andprincipal subspacesare the URV decomposition[5] and the rank
revealingQR decomposition(RRQR)[2, 1]. TheSchurmethodrequiresapproximatelythesame
numberof operations,but hasa simplerandmoreuniform dependencestructure.No condition
estimationor otherglobaloperationsareneeded,andthe numberof operationsto determinethe
columnspaceof the approximantis independentof the valuesof the entriesof the matrix.

Notation Thesuperscript(⋅)∗ denotescomplexconjugatetransposition,� (A) is thecolumnrange
(span)of the matrix A, Im is the m× m identity matrix, and 0m×n is an m × n matrix with zero
entries.

A matrix Θ is J-unitary if it satisfies

Θ∗JΘ = J , ΘJΘ∗ = J , J =

�
I

−I � .(1)

J is a signaturematrix; the identitymatricesneednot haveequalsizes.We partitionΘ according
to J as

Θ =

�
Θ11 Θ12

Θ21 Θ22 � .(2)

The J-unitarity of Θ implies Θ∗
22Θ22 = I + Θ∗

12Θ12 and Θ22Θ∗
22 = I + Θ21Θ∗

21. Hence,Θ22 is
invertible,and �

Θ−1
22

�
≤ 1 ,

�
Θ12Θ−1

22
�

< 1 .(3)

2 Basic Approximation Theorem
THEOREM 2.1. Let H bean m× n matrix with d singularvalueslarger than1 andnoneequalto
1. Thenthere existsa J-unitary matrix Θ suchthat

[I H]Θ = [A′ B′] , A′ = � m− d d

m A 0 � , B′ = � d n − d

m B 0 � .(4)

Partition Θ into 2 × 2 blocksas in (2), and define

Ĥ = [B 0]Θ−1
22 .(5)

Ĥ is a rank d approximantsuchthat
�

H − Ĥ
�

≤ 1. Thecolumnspanof Ĥ is equalto that of B,
which is of full rank d.
Proof. ConsiderI − HH∗. It is non-singularby assumption,and hencethere is a J-Cholesky
factorizationsuchthat

I − HH∗ = XJ′X∗ ,

whereX is an m × m factor, and hasfull rank m. Put X = [A B], partitionedaccordingto J′,
so that XJ′X∗ = AA∗ − BB∗. Since[I H] hasfull range,theremustbe an n × m matrix, T say,
mappingit to X, i.e. [I H]T = X. SinceX is alsoof full rank, it follows thatTJ′T∗ = J. T canbe
extendedto a squareinvertibleJ-unitary matrix Θ suchthat (4) holds[7].

Let H = UΣV∗ be an SVD of H. Then (I − Σ2) has the samesignatureas AA∗ − BB∗: d
negativeentries,and m − d positive entries. Hence,A hasm − d columnsand is of full rank,
while B hasd columnsandis of full rank.

By equation(4), [B 0] = IΘ12 + HΘ22, so that H − Ĥ = −Θ12Θ−1
22, which is contractive

(equation(3)). Hence
�

H − Ĥ
�

≤ 1. �
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3 Parametrization of All 2-Norm Approximants
Let H be a given matrix, and let Θ, A and B be as definedbefore in equation(4). Theorem
3.1 gives a chain fraction formula of all possible2-norm approximantsof H, of rank equalto
d (thereare no approximantsof rank lessthand). The parametrizationis in termsof an m× n
matrix SL, which hasthe following 2 × 2 block partitioning:

SL =

� d n − d

m− d (SL)11 (SL)12

d (SL)21 (SL)22 � .(6)

THEOREM 3.1. Let H : m × n be a given matrix, with d singular valueslarger than 1 and
noneequal to 1. DefineΘ, A′, B′ as in equation(4). Supposethat a matrix Ĥ satisfies

(a)
�

H − Ĥ
�

≤ 1 ,
(b) rank(Ĥ) ≤ d.

Thenrank(Ĥ) = d, and Ĥ = H − S where

S= (Θ11SL − Θ12)(Θ22 − Θ21SL)−1 ,(7)

for someSL with
�

SL
�

≤ 1 and (SL)12 = 0. Ĥ satisfies

Ĥ = (B′ − A′SL)(Θ22 − Θ21SL)−1 .(8)

Proof.
�

S
�

=
�

H − Ĥ
�

≤ 1. Define[G∗
1 G∗

2] := [S∗ I]Θ. Using Θ−1 = JΘ∗J gives�
−S
I � = Θ

�
−G1

G2 � .(9)

Because
�

Θ−1
22Θ21

�
< 1 and

�
S

�
≤ 1, G2 is invertible. The J-unitarity of Θ and the

contractivenessof S implies G∗
1G1 ≤ G∗

2G2. HenceSL := G1G−1
2 is well definedandcontractive,

and(9) yields (7). It remainsto showthat (SL)12 = 0. Make the partitionings

G1 =

�
m− d G11

d G12 � , G2 =

�
d G21

n − d G22 � , G−1
2 = � d n − d

(G−1
2 )1 (G−1

2 )2 � ,

which areconformthepartitioningsof A′ andB′. Then(SL)12 = 0 ⇔ G11(G−1
2 )2 = 0. Theproof

thatG11(G−1
2 )2 = 0 consistsof 4 steps.

1. [H∗ In]Θ = 	 (0n×(m−d) ∗) (0n×d ∗) 
 , where‘∗’ standsfor any matrix.

Proof:
[I H] = [A′ B′]Θ−1

⇔
�

I
H∗ � = Θ−∗

�
A′∗

B′∗ � = JΘJ

�
A′∗

B′∗ �
⇒ 0 = [H∗ In]J

�
I

H∗ � = [H∗ In]ΘJ

�
A′∗

B′∗ �
⇒ [H∗ In]Θ = [(0 ∗) (0 ∗)] .

(In the last step,we usedthe fact that [A B] is of full rank.)
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2. [G∗
1 G∗

2] = −Ĥ∗[Im 0]Θ + [H∗ In]Θ.

Proof: [G∗
1 G∗

2] = [S∗ I]Θ = [−Ĥ∗ 0]Θ + [H∗ I]Θ.

3. � (G∗
11) ⊂ � (Ĥ∗) , � (G∗

21) = � (Ĥ∗) , Ĥ hasrank d.

Proof: From the precedingtwo items,it follows directly that� (G∗
11) ⊂ � (Ĥ∗) , � (G∗

21) ⊂ � (Ĥ∗) .

G2 is invertible, hence � (G∗
21) is of full dimensiond. Since the rank of Ĥ is less than

or equal to d, it follows that the rank of Ĥ is preciselyequal to d, and henceactually� (G∗
21) = � (Ĥ∗).

4. G11(G−1
2 )2 = 0.

Proof: From the precedingitem, we haveG11 = ∆G21 (somematrix ∆). Hence

G2(G2)−1 = I

⇔
�

G21

G22 � [(G−1
2 )1 (G−1

2 )2] =

�
I 0
0 I �

⇒ G21(G−1
2 )2 = 0

⇒ G11(G−1
2 )2 = ∆G21(G−1

2 )2 = 0 . �
4 Computation of Θ
We indicatea Schuralgorithmfor computingthe factorization[I H] Θ = [A′ B′] (viz. [8]).
The computationsconsistof elementary(Givens)hyperbolicrotationswhich recursivelycreate
zeroentriesat selectedpositions:it may beviewedasa HyperbolicQR factorization.Thebasic
operationsare J-unitary elementaryrotationsof up to six different types,and we haveto keep
track of signaturesto determinewhich type to use.

Usingtheelementaryrotations,we computeΘ in two steps:Θ = ~ΘΠ, where ~Θ is a J-unitary
matrix with respectto an unsortedsignaturematrix, andΠ is a permutationmatrix which sorts
the signaturematrix of ~Θ.

Let ~θ be someelementaryrotation, such that [a b] ~θ = [∗ 0], and such that ~θ~j2
~θ∗ = ~j1,

~θ∗~j1
~θ = ~j2, for unsorted2 × 2 signaturematrices~j1,~j2. Thereare six possibilities; we omit the

details(see[6]). For a given elementaryrotation ~θ, let ~Θ(i,k) be the embeddingof this rotation
into an (m+ n) × (m+ n) J-unitarymatrix, so that a planerotationin the i-th andm+ k-th planes
is obtained. ~Θ consistsof a seriesof suchembeddedrotations,

~Θ = ~Θ(m,1)
~Θ(m−1,1) ���� ~Θ(1,1) ⋅ ~Θ(m,2) ���� ~Θ(1,2) ⋅ ���� ⋅ ~Θ(m,n) ��� ~Θ(1,n) .

where ~Θ(i,k) is suchthat it producesa zeroat entry (i, m+ k), viz.���
1 × × ×

1 × × ×
1 × × × ���� ~Θ(m,1)

→

���
1 × × × ×

1 × × × ×
× 0 × × ���� ~Θ(m−1,1)

→���
1 × × × × ×

× × 0 × ×
× 0 × × ���� → ���� ~Θ(1,n)

→

���
× × × 0 0 0

× × 0 0 0
× 0 0 0 ���� .
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This schemeensuresthat [I H] ~Θ = [ ~X 0], where ~X is a resultinguppertriangularinvertible
matrix; it containsthe columnsof A andB in somepermutedorder.

To computethis ordering, and to computethe rotations ~θ, we have to keep track of the
signatureof eachcolumn. Initially, all columnsof I havepositive signature,and all columns
of H havenegativesignature.At the (i, k)-th step,the signature~j1 of the elementaryrotation ~θ
is setequalto the signatureof the columnsof the entrieson which this rotationacts. From ~j1
andtheseentries,~θ and~j2 arecomputed;the latterbecomesthenewsignatureof thesecolumns,
after the rotation. By preservationof inertia, thesecolumnsmay have the samesignature,or
havetheir signaturesreversed.Havingperformedm× n suchsteps,we haveobtained[ ~X 0], and
thesignatureof its columnsis givenby an unsortedsignaturematrix ~J. Let Π be a permutation
matrix suchthat J = Π∗~JΠ. Then Θ = ~ΘΠ, [A′ B′] = [ ~X 0]Π, and [I H]Θ = [A′ B′] is the
requiredfactorization.

5 Concluding Remarks
The recursiveconstructionof Θ using the Schur methodis not always possible,unlessextra
conditionson the singular valuesof certain submatricesof H are posed[6]. This is a well-
knowncomplicationfrom which all indefiniteSchurmethodssuffer andthat canbe treatedonly
by global matrix operations(asin [4]).

In many applications,only the column spanof the approximantis needed. This spaceis
equalto the columnspanof B (in (5)) or of B − A(SL)11 (in (8)), and is obtainedasa resultof
theSchuralgorithm. Θ needsto be storedonly if Ĥ is to be computed.

The Schur algorithm is amenableto parallel implementations. Becauseof the uni-
directional recursivestructureof the computations,updatingand downdatingthe factorization
is straightforward.Updating(addingnew columnsof H) correspondsto augmenting[ ~X 0] at
the right with new columnsand continuing the factorization,whereasdowndating(removing
columnsof H) can effectively be carriedout by augmenting[ ~X 0] at the right with theseold
columns,but now giving thema positivesignature[6].
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