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1 Introduction

In this paper we will present a fast backward stable algorithm for the solution
of certain structured matrices which can be either sparse or dense. It essen-
tially combines the fast solution techniques for banded plus semi-separable linear
systems of equations of Chandrasekaran and Gu [4] with similar techniques of
Dewilde and van der Veen for time-varying systems [12].

We will also use the proposed techniques to suggest fast direct solvers for
a class of spectral methods for which there had been no known fast direct solvers
(not even unstable ones). This will illustrate the usefulness of the algorithms
presented in this paper. This is the spectral method by Kress [11] for solving the
integral equations of classical exterior scattering theory in two dimensions.

To be more specific, let A be an N ×N (possibly complex) matrix satisfying
the matrix structure. Then there exist n positive integers m1, · · · ,mn with N =
m1 + · · ·+mn to block-partition A as A = (Ai,j), where Aij ∈ Cmi×mj satisfies

Aij =



Di, if i = j,
UiWi+1 · · ·Wj−1V

H
j , if j > i,

PiRi−1 · · ·Rj+1Q
H
j , if j < i.

(1)

Here we use the superscript H to denote the Hermitian transpose. The sequences
{Ui}n−1

i=1 , {Vi}n
i=2, {Wi}n−1

i=2 , {Pi}n
i=2, {Qi}n−1

i=1 , {Ri}n−1
i=2 and {Di}n

i=1 are all
matrices whose dimensions are defined in Table 1. While any matrix can be
represented in this form for large enough ki’s and li’s, our main focus will be
on matrices of this special form that have relatively small values for the ki’s
and li’s (see Section 3). In the above equation, empty products are defined to
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Table 1. Dimensions of matrices in (1). ki and li are column dimensions of Ui

and Pi, respectively

Matrix Ui Vi Wi Pi Qi Ri

Dimensions mi × ki mi × ki−1 ki−1 × ki mi × li mi × li+1 li+1 × li

be the identity matrix. For n = 4, the matrix A has the form

A =




D1 U1V
H
2 U1W2V

H
3 U1W2W3V

H
4

P2Q
H
1 D2 U2V

H
3 U2W3V

H
4

P3R2Q
H
1 P3Q

H
2 D3 U3V

H
4

P4R3R2Q
H
1 P4R3Q

H
2 P4Q

H
3 D4


 .

We say that the matrix A is sequentially semi-separable if it satisfies (1).
In the case where all Wi and Ri are identities, A reduces to a block-diagonal
plus semi-separable matrix, which can be handled directly using techniques in
Chandrasekaran and Gu [4]. It is shown in [12] that this class of matrices is
closed under inversion and includes banded matrices, semi-separable matrices as
well as their inverses as special cases.

It should be noted that the sequentially semi-separable structure of a given
matrix A depends on the sequence mi. Different sequences will lead to differ-
ent representations. Through out this paper we will assume that the Di’s are
square matrices. The methods in this paper can be generalized to non-square
representations too, but that matter will not be pursued here.

2 Fast Backward Stable Solver

In this section we describe a recursive and fast backward stable solver for the
linear system of equations Ax = b, where A satisfies (1) and b itself is an un-
structured matrix

We assume that the sequentially semi-separable matrix A is represented by
the seven sequences {Ui}n−1

i=1 , {Vi}n
i=2, {Wi}n−1

i=2 , {Pi}n
i=2, {Qi}n−1

i=1 , {Ri}n−1
i=2 and

{Di}n
i=1 as in (1). We also partition x = (xi ) and b = ( bj ) such that xi and bi

have mi rows. As in the 4 × 4 example, there are two cases at each step of the
recursion.

Case of n > 1 and k1 < m1: Elimination. Our goal is to do orthogonal
eliminations on both sides of A to create an (m1−k1)×(m1−k1) lower triangular
submatrix at the top left corner of A.

We perform orthogonal eliminations by computing QL and LQ factorizations

U1 = q1

(
0
Û1

)
m1 − k1
k1

and
(
qH1 D1

)
=

(m1 − k1 k1

m1 − k1 D11 0
k1 D21 D22

)
w1,
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where q1 and w1 are unitary matrices. To complete the eliminations, we also
need to apply qH1 to b1 and w1 to Q1 to obtain

qH1 b1 =
(

m1 − k1 β1

k1 γ1

)
and w1Q1 =

(
m1 − k1 Q11

k1 Q̂1

)
.

Equations (1) have now become

(
qH1 0
0 I

)
A

(
wH

1 0
0 I

)(
w1 0
0 I

)
x =

(
qH1 0
0 I

)
b−




0
P2

P3R2

P4R3R2
...

PnRn−1 · · ·R2



τ,

(2)
We now orthogonally transform the unknowns x1 and solve the (m1 − k1)×

(m1 − k1) lower triangular system of equations. Let
(

m1 − k1 z1
k1 x̂1

)
= w1x1.

Then the first m1−k1 equations of (2) has been simplified to D11z1 = β1. Hence
we compute z1 = D−1

1 β1 by forward substitution.
We further compute b̂1 = γ1−D21z1. This in effect subtracts the D21 portion

of the columns from the right-hand side. Finally we compute τ̂ = τ+QH
11z1. This

simple operation merges the previous pending subtraction at the right-hand side
and the subtraction of the first m1 − k1 columns (those corresponding to z1)
from the new right-hand side.

At this stage, we discard the first m1 − k1 equations and are left with a new
linear system of equations

Âx̂ = b̂−




0
P2

P3R2

P4R3R2
...

PnRn−1 · · ·R2



τ̂

with exactly the same form as (1). To see this, we note that among the seven
sequences {Ui}n−1

i=1 , {Vi}n
i=2, {Wi}n−1

i=2 , {Pi}n
i=2, {Qi}n−1

i=1 , {Ri}n−1
i=2 and {Di}n

i=1,
everything remains the same except that U1, Q1, and D1 have been replaced by
Û1, Q̂1, andD22. Among the partitioned unknown subvectors xi’s and right hand
side subvectors bi’s, the only changes are that x1 and b1 have been replaced by x̂1

and b̂1, respectively. Of course, the new linear system of equations has a strictly
smaller dimension, hence we can indeed proceed with this recursion. After we
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have computed the unknowns x2 to xn and the transformed unknowns x̂1, we
can recover x1 using the formula

x1 = wH
1

(
z1
x̂1

)
.

Case of k1 ≥ m1: Merge. We perform merging in this case. In the case
n > 1 and m1 ≤ k1, we cannot perform eliminations. Instead we merge the
first two block rows and columns of A while still maintaining the sequentially
semi-separable structure.

We merge the first two blocks by computing

D̂1 =
(

D1 U1V
H
2

P2Q
H
1 D2

)
, Û1 =

(
U1W2

U2

)
, and Q̂1 =

(
Q1R

H
2

Q2

)
.

We merge x1 and x2 into x̂1, and we merge the right hand sides by computing

b̂1 =
(

b1
b2 − P2τ

)
and τ̂ = R2τ.

Let Â and b̂ denote the matrix A and the vector b after this merge. We can
rewrite (1) equivalently as

Âx̂ = b̂−




0
P2

P3R2

P4R3R2
...

Pn−1Rn−2 · · ·R2



τ̂ .

Clearly Â is again a sequentially semi-separable matrix associated with the seven
hatted sequences except that we have reduced the number of blocks from n to
n− 1.

To complete the recursion, we observe that if n = 1, the equations (1) become
the standard linear system of equations and can therefore be solved by standard
solution techniques.

2.1 Flop Count

The total flop count for this algorithm can be estimated as follows. For simplicity
we assume that compression and merging steps always alternate. We also assume
without loss of generality that b has only one column. Then we can show that
the leading terms of the flop count are given by

2
n∑

i=1

(mi + ki−1)k2
i + (mi + ki−1)3 + (mi + ki−1)2li+1

+k2
imi+1 + kili+1(mi+1 + li + li+2).
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To get a better feel for the operation count we look at the important case
when mi = m, ki = k and li = l. Then the count simplifies to

2n
(
m3 +m2(3k + l) +m(3k + l) +m(3kl + 5k2) + 2k3 + k2l + 2kl2

)
.

We observe that the count is not symmetric in ki and li. Therefore sometimes it
is cheaper to compute a URV T factorization instead. This matter is also covered
in [4]. When k = l, the count simplifies further to

2n(m3 + 4m2k + 8mk2 + 5k3).

If we make the further assumption that m = k then we get the flop count 36nk3.
Note that the constant in front of the leading term is not large.

2.2 Experimental Run-Times

We now report the run-times of this algorithm on a PowerBook G4 running at
400 MHz with 768 MB of RAM. We used the ATLAS BLAS version 3.3.14 and
LAPACK version 3 libraries. For comparison we also report the run-times of
the standard dense solvers from LAPACK and ATLAS BLAS. All timings are
reported in Table 2. The columns are indexed by the actual size of the matrix,
which range from 256 to 8192. The horizontal rows are indexed by the value ofmi

which is set equal to ki and li for all i and ranges from 16 to 128. These are
representative for many classes of problems (see [9]). In the last row we report
the run-times in seconds of a standard dense (Gaussian elimination) solver from
the LAPACK version 3 library running on top of the ATLAS BLAS version
3.3.14. These are highly-tuned routines which essentially run at peak flop rates.

From the table we can see the expected linear dependence on the size of the
matrix. The non-quadratic dependence on mi (and ki and li) seems to be due
to the dominance of the low-order complexity terms. For example we observe
a decrease in run-time when we increase mi from 64 to 128 for a matrix of
size 256! This is because at this size and rank the matrix has no structure and
essentially a dense solver (without any of the overhead associated with a fast
solver) is being used. There is also a non-linear increase in the run-time when
we increase the size from 256 to 512 for mi = ki = li = 128. This is due to the
lower over-heads associated with standard solver.

Restricting our attention to the last two rows in Table 2 where mi = ki =
li = 128 for all i, we observe that the fast algorithm breaks even with the dense
solver for matrices of size between 512 and 1024. (The estimated flop count
actually predicts a break-even around matrices of size 940.) For matrices of size
4096 we have speed-ups in excess of 17.2401. Since the standard solver becomes
unusually slower for matrices of size 8192 (possibly due to a shortage of RAM)
we get a speed-up of 130 at this size. The speed-ups are even better for smaller
values of mi’s.

We could further speed up the fast algorithm by using Gaussian elimination
with partial pivoting instead of orthogonal transforms. This approach would still
be completely stable as long as the dimensions of the diagonal blocks remain
small.
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Table 2. Run-times in seconds for both the fast stable algorithm and standard
solver for random sequentially semi-separable matrices with mi = ki = li for
all i

size

mi = li = ki for all i 256 512 1024 2048 4096 8192

16 0.04 0.08 0.16 0.36 0.67 1.34
32 0.08 0.19 0.42 0.83 1.66 3.44
64 0.18 0.48 1.12 2.36 4.8 9.87
128 0.15 1.01 2.73 6.09 12.91 26.9

Standard Solver (GEPP) 0.15 0.72 4.57 30.46 222.57 3499.46

3 Constructing Sequentially Semi-separable Matrices

In this section we consider the problem of computing the sequentially semi-
separable structure of a matrix given the sequence {mi}n

i=1 and a low-rank rep-
resentation of some off-diagonal blocks. The second assumption is to allow for
the efficient computation of the sequentially semi-separable representation of
matrices possessing some other structure. The method presented can be applied
to any unstructured matrix, thus proving that any matrix has a sequentially
semi-separable structure (of course, ki and li will usually be large in this case,
precluding any speed-ups).

3.1 General Construction Algorithm

Let A represent the matrix for which we wish to construct a sequentially semi-
separable representation corresponding to the sequence {mi}n

i=1, where
∑
mi =

N , the order of the matrix. Our procedure is similar to that of Dewilde and van
der Veen [12]. Since the upper triangular part and lower triangular parts are so
similar, we will only describe how to construct the sequentially semi-separable
representation of the strictly block upper triangular part of A. The basic idea is
to recursively compress off-diagonal blocks into low-rank representations.

Let Hi denote the off-diagonal block

Hi =



U1W2 · · ·WiV

H
i+1 · · · U1W2 · · ·Wn−1V

H
n

...
...

...
UiV

H
i+1 · · · UiWi+1 · · ·Wn−1V

H
n


 , (3)

and let Hi ≈ EiΣiF
H
i denote a low-rank (also called economy) SVD of Hi.

That is, we assume that the matrix of singular values Σi, is a square invertible
matrix, all of whose singular values below a certain threshold have been set
to zero. Therefore, Ei and Fi have an orthonormal set of columns, but they
may not be unitary. Following Dewilde and van der Veen [12] we will call Hi

the ith Hankel block. Each Hi is a µi × νi matrix with µi = m1 + · · ·+mi and
νi = mi+1 + · · ·+mn.
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Observe that we can obtainHi+1 fromHi by dropping the firstmi+1 columns
ofHi and then appending to the resulting matrix the lastmi+1 rows ofHi+1. We
will discuss the details of computing the SVD of Hi+1 from that of Hi shortly.

For now, we want to compute the representation of Hi in (3) using the SVDs.
Partition the SVD of Hi ≈ EiΣiF

H
i as:

Ei =
(

µi−1 Ei,1

mi Ei,2

)
and Fi =

(
mi+1 Fi,1

νi+1 Fi,2

)
. (4)

Observe that we can pick Ui = Ei,2 and Vi+1 = Fi,1Σ
H
i (of course ΣH

i = Σi).
How do we pick Wi? Observe that Hi+1 and Hi share a large block of the

matrix. It follows from the sequentially semi-separable representation that we
should pick Wi+1 such that EiWi+1 will give a column basis for the upper por-
tion of Hi+1. It follows that we should pickWi+1 to satisfy the following require-
ment, EiWi+1 = Ei+1,1. We can solve this easily to obtain Wi+1 = EH

i Ei+1,1.
The proof that these formulas work can be seen by substituting them back

into the sequentially semi-separable representation beginning with H1.
However, we are still not done. To compute the sequentially semi-separable

representation efficiently it is important to compute the SVD of Hi+1 quickly.
To do that we need to use the SVD of Hi. As we mentioned earlier, Hi+1 is
obtained from Hi by dropping the first mi+1 columns of Hi and then appending
to the resulting matrix the last mi+1 rows of Hi+1, which we will call Z. Hence
we can rewrite Hi+1 in the notation of (4) as

Hi+1 ≈
(
EiΣiFi,2

Z

)
=

(
Ei 0
0 I

) (
ΣiFi,2

Z

)
.

Hence we compute the low-rank SVD
(
ΣiFi,2

Z

)
≈ ẼS̃F̃H and obtain the

low-rank SVD of Hi+1 as follows:

Hi+1 ≈
((

Ei 0
0 I

)
Ẽ

)
S̃F̃H .

Finally, we note that the sequentially semi-separable representation for the
lower triangular part of A can be computed by applying exactly the same pro-
cedure above to AH . The computational costs are similar as well.

This algorithm takes O(N2) flops, where the hidden constants depend
on mi, ki and li. The algorithm can be implemented to require only O(N)
memory locations. This is particularly important in those applications where
a large dense structured matrix can be generated (or read from a file) on the fly.
Many computational electromagnetics problems involving integral equations fall
in this class.

We can replace the use of singular value decompositions with rank-revealing
QR factorizations (QR factorizations with column pivoting) quite easily. This
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may result in some speed ups with little loss of compression. The only difficulty
might be the lack of easily available software.

A totally different alternative is to use the recursively semi-separable (RSS)
representation presented in the paper by Chandrasekaran and Gu [4]. This is
usually easier to compute efficiently, but may be less flexible.

In many important applications the sequentially semi-separable representa-
tion needs to be computed only once for a fixed problem size and stored in a file.
In such cases the cost of the exact algorithm is not important. Such cases include
computing the sequentially semi-separable structure of spectral discretization
methods of Greengard and Rokhlin [23, 29] for two-point boundary value prob-
lems and that of Kress [11] for integral equations of classical potential theory in
two dimensions.

4 Two-Dimensional Scattering

For two-dimensional exterior scattering problems on analytic curves for acoustic
and electro-magnetic waves, Kress’ method of discretization of order 2n will lead
to a 2n× 2n matrix of the form

A = I +R	K1 +K2,

where K1 and K2 are low-rank matrices and

Rij = −2π
n

n−1∑
m=1

1
m

cos
m|i− j|π

n
− (−1)|i−j|π

n2
.

From the results in [9] we see that it is sufficient to verify that R is a se-
quentially semi-separable matrix of low Hankel-block ranks. It would then follow
that A is a sequentially semi-separable matrix of low Hankel-block ranks. In Ta-
ble 3 we exhibit the peak Hankel block ranks of R. The rows are indexed by
the (absolute) tolerance we used to determine the numerical ranks of the Hankel
blocks. In particular we used tolerances of 10−8 and 10−12 that are useful in
practice. The columns are indexed by the size of R.

As can be seen the ranks seem to depend logarithmically on the size N , of R.
This implies that the fast algorithm will take O(N log2N) flops to solve linear
systems involving A. We observe that the sequentially semi-separable represen-
tations of R for different sizes and tolerances need to be computed once and
stored off-line. Then using the results in [9] we can compute the sequentially
semi-separable representation of A rapidly on the fly.
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Table 3. Peak Hankel block ranks for the spectral method of Kress, Martensen
and Kussmaul for the exterior Helmholtz problem.

size

tolerance 256 512 1024 2048 4096 8192

1E-8 28 32 34 37 38 40
1E-12 40 46 52 58 62 66
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