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Abstract—In this paper, we study the sparse inverse ap-
proximation algorithm used in SPACE, the Layout-to-Circuit
Extractor. We briefly introduce SPACE and discuss its limitaions.
Then, we propose some solutions and demonstrate their effaicy
and accuracy with some numeric experiments.

Parasitic capacitances of interconnects in integratedité
has become more important as the feature sizes on the sircuit
are decreased and the area of the circuit is unchanged or
increased. For sub-micron integrated circuits - where the
vertical dimensions of the wires are in the same order of
magnitude as their minimum horizontal dimensions - 3D
numerical techniques are even required to accurately ctampu
the values of the interconnect capacitances.

SPACE is a layout-to-circuit extraction program, that is
used to accurately and efficiently compute 3D interconnect
capacitances of integrated circuits based upon their mask
layout description. The 3D capacitances are part of an dutpu
circuit together with other circuit components like trastsis
and resistances. This circuit can directly be used as irgut f
a circuit simulator like SPICE.

The boundary element method that is adapted in SPACE
can be described briefly as follows:

1) For the purpose of modeling IC interconnections, it is
sufficient to suppose that the chip is stratified medium '8
which the conductors are floating. For such a mediurrll
the potential at a poing can be written as:

o(p) = /DG(n q)p(q)dq,q € D
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where the Green's functiot¥(p, ¢) represents the po-
tential induced at poinp, due to a unit point charge at
point ¢. In this thesis, the Green’s functia@(p, q) is
computed with the single integration formula present
in [1].

The above equations are transformed into a matrix eq
tion by discretizing the surface charge on the conduct
as a piecewise linear and continuous distribution on a
of boundary elements.

Let N be the total number of boundary elements, t
matrix equation can be written as:

As

2) be th

3) :
consi

d=Go (2)
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the total number of boundary elements, and the parameter
hW denotes the distance over which capacitive coupling is

where® = [¢1, ¢o...¢n]" ando = [o1,09...05]" col-
lect the potentials of the boundary elements and charges
on the boundary elements respectively, @hglo; is the
potential induced at the elemehby the charge at the
boundary element.
Using this equation, we can compute the conductor
capacitance as follows: LeA be an incidence matrix
relating each boundary elements to the conductors, i.e.
A;; = 1 if element; lies on conductoy, andA;; =0
if otherwise. Also, letM be the total number of conduc-
tors, V. = [V1, Vo, ..., VM]T be the vector of conductor
potentials andQ = [Ql,Qg,...,QM]T be the vector
charges on the conductors, then:

Q=ATGgtAav=cC,V ()
Hence:

C,=ATG AV (4)

The matrixC; is the short circuit capacitance matrix.
The capacitance network is derived from the short circuit
capacitance matrix as follows:

M
Cl'j = _Csij for ’L#_], C“ = Z Csij

j=1

(®)

equently, the matriéa has to be generated and inverted.

his matrix can be very big and full. Generating and invertin

a matrix is prohibitively expensive. Moreover, thel ful

matrix would result in a too complicate circuit for sensible
verification.

a solution, SPACE adapts a scan-line algorithm, the

generalized Schur algorithm and the hierarchically Schur a

gorithm to compute a sparse inverse approximatioiGof!.

ey’uereby in effect ignoring small capacitances between con-
uctors that are physically “far” from each other. Let

e parameter denotes the distance over which capacitive
ing is significant. The CPU time and memory complexity
(Nw*) and O(w*) respectively, whereV is

dered to be significant.

For more details about the boundary element analysis,
scan-

line algorithm, the generalized Schur algorithm dred t



hierarchically Schur algorithm, please refer to the Phxithe

of N
1.

. P. van der Meijs [2].

embedded in the bounding bo)2;zp < =z < xg +
LmayO Sy < y0+Ly720 <z< ZO+L2}-

o Assume a certain 2D scan-window of dimensians x

L IMITATIONS OF THE ALGORITHMS USED INSPACE

Although, SPACE is very efficient in generating the ca-
pacitance network for 3D layouts, we believe the underlying
algorithms do have some limitations and we can improve them
easily.

1)

2)

3)

Out

Although SPACE extracts capacitance networks for three*®
dimensional layouts, we may describe its algorithm as
2.5D in the sense that it assumes the vertical dimension
of the layouts to be very thin. This assumption is quite
valid at the time when SPACE came out. However, after
many years of development in VLSI technology, circuits
with many more layers are common and the vertical *
dimension can not be ignored anymore. In fact, if we
assume the vertical dimension to be comparable with
the horizontal dimensions, the CPU time complexity of
SPACE quickly become®(N®/3w*) which is not linear ~ *
in the total number of panels.

Again, when the vertical dimension is not ignorable, the
memory complexity of SPACE becom@&/3w*, which

not only means that much more memory is needed, but
also indicates that much more entities in the Green’'s
function matrix must be computed. And the computation
of Green’s functions is a major factor of the CPU time *
needed.

Due to historical reasons, SPACE adapt the Hierarchical
Schur algorithm in the X axis and then apply the Schur
algorithm on the Y axis. This is not a very consistent
scheme, in the sense that, with this kind of scheme,
SPACE with exactly the same configuration would gen-
erate different capacitance network for the same layout
depending on which direction the layout aligns with.

of the considerations above, we propose a multi-level

hierarchical Schur algorithm which we shall present in the
following sections.

M ULTI-LEVEL HIERARCHICAL SCHUR ALGORITHM

The straight-forward idea is to apply the hierarchical $Schu
algorithm along both the X and Y axis. And we can even go
further by applying the hierarchical Schur algorithm alofig
Y and Z axises. In this way, we can efficiently deal with a
genuine three dimensional layout. In this section, we rafer
these algorithms as multi-level hierarchical Schur attoms.

A. Notations

Before, we present the Multi-level hierarchical Schur algo
rithms, we would like to introduce a few notations that will
be used consistently hereafter in this chapter. R

Let the 3D layout of interconnects be discretized with

wy, {Qi,5);1 < i < [La/wg],1 < i < [Ly/wyl}
denotes a sub-domain théto + (1 — 1) x w, < z <
To+iX Wy, Yo+ (J—1) xwy <y <yo+jXwy,z <

z < zp + L.} which is bounded in the 2D scan-window
W(i, j).

Assume a certain 3D scan-window of dimensians x

wy X wy, {Qi,4,k);1 < i < [Ly/wy],1 < i <
[Ly/wy],1 < i < [L,/w.]} denotes a sub-domain
{zo+(i—1)xw, <z < zog+ixXws, Yo+ (J—1)xwy, <
y<yot+ixwyzo+k—1)xw, <z<zo+iXw,}
which is bounded in the 3D scan-window(z, j, k).

Let U donates a binary merging operator that collects
boundary elements from both sub-domains and number
them locally, for instance)(i, j) U Q(i, j + 1) or equiv-
alently 2 Q(i, m).

Let G be an operator which generates a matrix of
Green'’s functions for all boundary elements in a certain
domain/sub-domain, for instano&(2(i, j, k)) produces
the matrix Gg; j,x) Which contains all Green’s func-
tions for the boundary elements within the sub-domain
Q(i,7,k). For this matrix, a local numbering of the
boundary elements is used.

Let O [Ga, k] or equivalentlyd[G((i, j, k))] de-
notes a embedding process that takes the meti; ; 1)
with local numbering and embed it into a larger empty
matrix (matrix with only zero entries) according to the
map between the local numbering and global numbering
of the boundary elements. The embedding operator can be
specified more precisely. Assume there afeboundary
elements that are locally numbered(, j, k), and there
are N boundary elements that are globally numbered in
Q. Then there is a unique incidence matfi; ;) of
dimensionM x N that maps the local indexes to the
global indexes, i.dq ;) (m,n) = 1 if the boundary
with local indexm is numbered with global index.
Iog,j6) (m,n) = 0, if otherwise. The transpose of this
incidence matrix maps the global indexes to the local
indexes. And we have:

O [Gagim] = Tagm Gagim I, m- (6)

And apparently, the incidence matrix has the following
property:
Q)

Lot loaimn =1

Here,I denotes a identity matrix of dimensiof$ x M.
Géll denotes a sparse approximation@f .

boundary elementst.,, Ly, L, be its maximum dimen- B. Two dimensional scan-window algorithm

sions in X, y, z axises, respectively.

o Let xg,y0,20 be the smallest coordinates of the layout With the whole layout discretized with boundary elements
in X, y and z axises, we have the layout completelgnd then segmented with 2D scan-windows of size w, the
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sparse inverse to thé& is defined as: matrices do not appear in the above formula and we do

G

(Lo jw]—1 [Lyjw]—1 i1 a1 not h.avle toI c;)\mpute them (expli_ci;[)ly. r,]AII cqmp_utations_ can
-1 _ ~1 remain local. As soon as a (partial) short-circuit capaciea
si= > (2 de (u, L_J,Q(m’n))] matrix is generated, we will use it to modified the short-
[L,/w]-1 m%i:'j circuit capacitance matrix of the whole layout. Therefare,
_ Z O[G—( U Q(m, j any instant, the program only has to analyse a (small) segmen
of the whole circuit. This enables the algorithm to deal with
Lo jw]—1 [Lyjw]-1 i large circuit with consuming little computer memory. Fornmo
g " 4 . details, we refer to the PhD thesis of Dr. N. P. van der Meijs
- Z { Z DG (U Q(i,n))] [2] and we invite interested readers to look into prototype
that we have implemented. Let the lengths in the three axises
e be comparable, the total number of two dimensional scan-
- Z DG Q@D B windows is of O(N?/3w=2). The total number of panels
inside each scan-window is of ord&(N'/3w?). A system of

=2 J=1 n=j

Then we may replace th@ ! in Eq. (4) with the above sparselinear equations are to be solved in each scan-window and the

approximation and we have: complexity is ofO(wS V). Therefore, assuming the lengths in

[Lo/w]—1 [Ly/w]—1 i1 g4 trr:g thlree_a;]xisgs bfezOE:J(sz/gar%ble, :jhg CPU time comrilexity of
C.~ AT { OjG Q(m, n))] this algorithm is o w*). and its memory complexity
Z Z gg is of O(N?/3w*).
[Ly/w]-1 i+l . . . .
_ . C. Three dimensional scan-window algorithm
- Y oe i aman - oo .
g e Similarly, we may apply the scan-window algorithm along
(Lo jw]—1 [Ly/w]—1 i1 X, Y and Z axises. And we assume the whole layout be

_1 ) discretized with boundary elements and then segmented with
Z { Z biG (U (i, n 3D scan-windows of sizey x w x w, the sparse inverse to the
G is then defined as:

Ly/w]—
[Ly/w]-1 [Lg/w]—1 [Ly/wl=1 [L./w]-1

- Y oeteena O Gi= X (X (X

j=2
Let C4(Q(i,5)) = ATO[G~1(Q(i, j))]A denote the (partial)  z:/wl-1 [Ly/wl=1 [Ls/w]-1
short-circuit capacitance matrix generated®g#, j). With the — — Z OG ™ (22)]} — Z { Z
definition of the embedding operator, We can write k=2 j
[Lz/w]—1
LNy T —1 .. T
Cs(Q2i, 7)) = Ao ;)G (Q(%J))Isz(i j)A (10) _ Z O[G ()]}
We also have a local incidence matrixq; ;) that relates k=2
boundary elements with local indexes to conductor potentia [La/w]=1 [Ly/wl=1 [Lz/w]-1
i.e Aggij(m,n) = 1 if the boundary element with the - Z { Z { Z
local indexm lies on the conductor, and 0 if otherwise. i — 1
Due to the fact that Eqg. (10) only involves the boundary (L. jw]-1
elements inQ(i,j), the additional information inA that _ Z O[G(Q6)]}
counts other boundary elements will not be taken into accoun 6
Therefore, we may compute the global approximated short- k=2
circuit capacitance matrix as: [Ly/wl=1 [Lz/w]-1 B el
it Tt e - Z { Z O[G" (@) - Z G (@)} (12)
= - —
> 2 e«lJUammy
i=1 j=1 m=in=j where:
[Ly/w]—-1 i+1 i+1 j+1 k+1 i+1 j+1
- Y el amin o = UUU (I,m,n), Qo= UU (1,m, k),
j=2 m=i =1 m=j n=k =1 m=j
[Lo/w]—1 [Ly/w]—1 j+1 [Ly/w]—1 i+1 k+1 i+1

oY cdlUein- > cu@Gar any @ o= |JJewin), =]k
=2 j=1 =i

n=j j= I=i n=k
Explicit computation of Jthe matrix i;vjerse is not recom A T
mended. Therefore, we may comp@e*(2(i, j))Aq;, ;) by P = "!H hmn), L = 79,_9(2 m. k)
solving system of linear equation&(Q(,j))x = A - e -
Both direct solution method and iterative solution methadc o _ U QG j,n), Qs = Qi j, k). (13)
be used here. Note that, global indexes and global incidence e
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Let C,(y) = AT(Q)G1(Q)A(Q;) denote the (par- computed.
tial) short-circuit capacitance matrix generated for;! €

{1,2,3,4,5,6,7,8}, we may compute the approximated short- |CEPPIOX_ cexact,

Again, explicit computation of the matrix inverse is no
recommended. Therefore, we may comp@e?(;)A ()
by solving system of linear equation&(€;)x = A(€);). Both
direct solution method and iterative solution method can |
used here. i 05 Ol'$he Ieng?;l7ofscan—0\;v8indow (b%l'sge 10 Iogallrilhm\c axlilél) 2 i3

Note that, as soon as a (partial) short-circuit capacitan
matrix is generated, we will use it to modified the short-, _ _ _
circuit capacitance matrix of the whole layout. Therefae, E;%aéianclhria;ﬁgge mean square errors in the computed -sirocit
any instant, the program only has to analyse a (small) segmen
of the whole circuit. This enables the algorithm to deal with
large circuit with consuming little computer memory.

Let the lengths in the three axises be comparable, t Ni——
number of three dimensional scan-window is @fNw~?). 4.2 | --2D scan-vindow
The total number of panels inside each scan-window is i
orderO(w?). A system of linear equations are to be solved i
each scan-window and the complexity is@fw®). Therefore,
assuming the lengths in the three axises be comparable,
CPU time complexity of this algorithm is @@(Nw°). and its
memory complexity is ofD(w?®).

circuit capacitance matrix as: RMSE. = |cexact (14)
S
[Lo/w]=1 [Ly/w]=1 [Lz/w]-1 [Lz/w]—1 The layout as shown in Fig. 1(b) is computed with different
Cs =~ Z { Z { Z Cs(fh) - Z C:(22)} algorithms combined with scan-windows of different sizes.
i=1 j=1 k=1 k=2 The experimental results are shown in Fig. 2 and Fig. 3.
[Ly/w]—=1 [L,/w]-1 [Ly/w]—1
- Z { Z Cé(QS) - Z C-S(Q‘l)}} RMSE vs the length of scan-window
j=2 k=1 k=2 r —+-1D scan-line
=6-2D scan-window
[Ly/w]—1 ’—Ly/w]*l [Lz/w]—1 [Lz/w]—1 -ﬂrgDsgan—window |
D adaptive scan-window
- Z { Z { Z CS(QS) - Z CS(QG)} -1.5- :
i=2 j=1 k=1 k=2 ?
[Ly/wl=1 [Ls/w]-1 [Lz/w]—1 El
- > Y c@- D caop
j=2 k=1 k=2 3

CPU time vs the length of scan-window

w
Q

w
D

w
N
T

CPU time (s) base 10 logarithmic axis

n
)
T

D. Numeric result

g
D
T

To test the accuracy and complexity of these algorithn : ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
above, we implemented a random layout generator whi 0405 08 O cca indow (ke 10 locaritmic iy T2
grows random conductors in a three dimensional doma....

Through the random Iay.OUt g?nerator’ or!e can specify tpie. 3. The CPU time needed to computed the short-circuibcitgmce
boundary of the three dimensional domain, the number gﬁmces Vs the scan-window size.

conductors to be generated and the maximum length of each

conductor. These randomly generated conductors do not ovEify. 2 shows that all these scan algorithms are convergéimt wi
lap with each other and each conductor is simply connectele increasing window size, and no surprise that with theesam
In Fig 1, we show a few examples of the layouts generatedize for scan window, 1D scan-line algorithm is more aceurat

To study the accuracy and computational cost of the#fiean the 2D scan-window algorithm which is slightly more
algorithms, we generate a layout consisting of 20 condact@ccurate than the 3D scan-window algorithm. It is also clear
each with 100 unit of length as shown in Fig. 1(b), and thehat the total RMSE error is dominated by the approximation
compute its short-circuit capacitance matrices with one dnade at the higher levels. Fig. 2 shows that 3D scan-window
mensional scan-line algorithm, two dimensional scan-aimd algorithm is more efficient than the other two algorithms. It
algorithm and three dimensional scan-window algorithm, ralso confirms that the CPU time needed for the 3D scan-
spectively. The results are compared with the exact salutizvindow algorithm increases more sharply with the size of the
and the relative mean square errors defined in Eqg. (14) a@n-window. Other than these, we also observed that ak thr
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(a) 15 conductors in 40x40x40 (b) 20 conductors in 40x40x40

Fig. 1. The randomly generated layout of conductors in tlieeensional domain. The surface mesh of the layout (b) stssif 7172 boundary elements.

algorithms deliver more accurate result when more condsicteshould be simple to adapt them in SPACE. This would enhance
are clustered together. This because nearby conductalsl shihe capacity of SPACE in handling 3D layout of circuits.

each other and local interactions become more dominate.
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Therefore, it is reasonable to use a bigger scan window along
the X axis and decrease the size of scan-window along Y
axis and Z axis. That isv, > w, > w, > 0. The adaptive
algorithm is very similar to the original three dimensional
scan-window algorithm algorithm, except scan-windows of
different sizes are used along X, Y and Z axises.
To study the accuracy and computational cost of the adap-
tive 3D scan-window algorithm, we compute the short-circui
capacitance matrices of the layout as shown in Fig. 1(b). And
then we compare the result with the exact solution. Theivelat
mean square error is defined in Eq. (14).
As shown in Fig. 2 and Fig. 3, the adaptive 3D scan-
window algorithm achieves comparable accuracy with much
less computational time. Note that, one can apply different
schemes to decrease the size of scan-windows, and they may
deliver different results.

IV. SUMMARY

In this paper, we proposed a series of efficient scan-
window algorithms that can be used in SPACE for capacitance
extraction. Numeric experiments have confirmed that the-Hie
archical (adaptive) 3D scan-window algorithm is efficienta
sufficiently accurate. Due the simplicity of these algarith it
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