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Abstract—In this paper, we study the sparse inverse ap-
proximation algorithm used in SPACE, the Layout-to-Circuit
Extractor. We briefly introduce SPACE and discuss its limitations.
Then, we propose some solutions and demonstrate their efficiency
and accuracy with some numeric experiments.

I. I NTRODUCTION TOSPACE

Parasitic capacitances of interconnects in integrated circuits
has become more important as the feature sizes on the circuits
are decreased and the area of the circuit is unchanged or
increased. For sub-micron integrated circuits - where the
vertical dimensions of the wires are in the same order of
magnitude as their minimum horizontal dimensions - 3D
numerical techniques are even required to accurately compute
the values of the interconnect capacitances.

SPACE is a layout-to-circuit extraction program, that is
used to accurately and efficiently compute 3D interconnect
capacitances of integrated circuits based upon their mask
layout description. The 3D capacitances are part of an output
circuit together with other circuit components like transistors
and resistances. This circuit can directly be used as input for
a circuit simulator like SPICE.

The boundary element method that is adapted in SPACE
can be described briefly as follows:

1) For the purpose of modeling IC interconnections, it is
sufficient to suppose that the chip is stratified medium in
which the conductors are floating. For such a medium,
the potential at a pointp can be written as:

Φ(p) =

∫

D

G(p, q)ρ(q)dq, q ∈ D (1)

where the Green’s functionG(p, q) represents the po-
tential induced at pointp, due to a unit point charge at
point q. In this thesis, the Green’s functionG(p, q) is
computed with the single integration formula presented
in [1].

2) The above equations are transformed into a matrix equa-
tion by discretizing the surface charge on the conductors
as a piecewise linear and continuous distribution on a set
of boundary elements.

3) Let N be the total number of boundary elements, the
matrix equation can be written as:

Φ = Gσ (2)

whereΦ = [φ1, φ2...φN ]
T andσ = [σ1, σ2...σN ]

T col-
lect the potentials of the boundary elements and charges
on the boundary elements respectively, andGijσj is the
potential induced at the elementi by the charge at the
boundary elementj.

4) Using this equation, we can compute the conductor
capacitance as follows: LetA be an incidence matrix
relating each boundary elements to the conductors, i.e.
Aij = 1 if elementi lies on conductorj, andAij = 0
if otherwise. Also, letM be the total number of conduc-
tors, V = [V1, V2, ..., VM ]

T be the vector of conductor
potentials andQ = [Q1, Q2, ..., QM ]T be the vector
charges on the conductors, then:

Q = AT G−1AV = CsV (3)

Hence:

Cs = ATG−1AV (4)

5) The matrixCs is the short circuit capacitance matrix.
The capacitance network is derived from the short circuit
capacitance matrix as follows:

Cij = −Csij for i/=j, Cii =

M
∑

j=1

Csij (5)

Consequently, the matrixG has to be generated and inverted.
This matrix can be very big and full. Generating and inverting
such a matrix is prohibitively expensive. Moreover, the full
matrix would result in a too complicate circuit for sensible
verification.

As a solution, SPACE adapts a scan-line algorithm, the
generalized Schur algorithm and the hierarchically Schur al-
gorithm to compute a sparse inverse approximation ofG−1.
Thereby in effect ignoring small capacitances between con-
ductors that are physically “far” from each other. Letw
be the parameter denotes the distance over which capacitive
coupling is significant. The CPU time and memory complexity
of SPACE areO(Nw4) andO(w4) respectively, whereN is
the total number of boundary elements, and the parameter
w denotes the distance over which capacitive coupling is
considered to be significant.

For more details about the boundary element analysis,
scan-line algorithm, the generalized Schur algorithm and the
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hierarchically Schur algorithm, please refer to the PhD thesis
of N. P. van der Meijs [2].

II. L IMITATIONS OF THE ALGORITHMS USED INSPACE

Although, SPACE is very efficient in generating the ca-
pacitance network for 3D layouts, we believe the underlying
algorithms do have some limitations and we can improve them
easily.

1) Although SPACE extracts capacitance networks for three
dimensional layouts, we may describe its algorithm as
2.5D in the sense that it assumes the vertical dimension
of the layouts to be very thin. This assumption is quite
valid at the time when SPACE came out. However, after
many years of development in VLSI technology, circuits
with many more layers are common and the vertical
dimension can not be ignored anymore. In fact, if we
assume the vertical dimension to be comparable with
the horizontal dimensions, the CPU time complexity of
SPACE quickly becomesO(N5/3w4) which is not linear
in the total number of panels.

2) Again, when the vertical dimension is not ignorable, the
memory complexity of SPACE becomesN2/3w4, which
not only means that much more memory is needed, but
also indicates that much more entities in the Green’s
function matrix must be computed. And the computation
of Green’s functions is a major factor of the CPU time
needed.

3) Due to historical reasons, SPACE adapt the Hierarchical
Schur algorithm in the X axis and then apply the Schur
algorithm on the Y axis. This is not a very consistent
scheme, in the sense that, with this kind of scheme,
SPACE with exactly the same configuration would gen-
erate different capacitance network for the same layout
depending on which direction the layout aligns with.

Out of the considerations above, we propose a multi-level
hierarchical Schur algorithm which we shall present in the
following sections.

III. M ULTI -LEVEL HIERARCHICAL SCHUR ALGORITHM

The straight-forward idea is to apply the hierarchical Schur
algorithm along both the X and Y axis. And we can even go
further by applying the hierarchical Schur algorithm alongX,
Y and Z axises. In this way, we can efficiently deal with a
genuine three dimensional layout. In this section, we referto
these algorithms as multi-level hierarchical Schur algorithms.

A. Notations

Before, we present the Multi-level hierarchical Schur algo-
rithms, we would like to introduce a few notations that will
be used consistently hereafter in this chapter.

• Let the 3D layout of interconnects be discretized with
boundary elements;Lx, Ly, Lz be its maximum dimen-
sions in x, y, z axises, respectively.

• Let x0, y0, z0 be the smallest coordinates of the layout
in x, y and z axises, we have the layout completely

embedded in the bounding box{Ω; x0 ≤ x ≤ x0 +
Lx, y0 ≤ y ≤ y0 + Ly, z0 ≤ z ≤ z0 + Lz}.

• Assume a certain 2D scan-window of dimensionswx ×
wy, {Ω(i, j); 1 ≤ i ≤ ⌈Lx/wx⌉, 1 ≤ i ≤ ⌈Ly/wy⌉}
denotes a sub-domain that{x0 + (i − 1) × wx ≤ x ≤
x0 + i×wx, y0 + (j − 1)×wy ≤ y ≤ y0 + j ×wy , z0 ≤
z ≤ z0 + Lz} which is bounded in the 2D scan-window
W(i, j).

• Assume a certain 3D scan-window of dimensionswx ×
wy × wz , {Ω(i, j, k); 1 ≤ i ≤ ⌈Lx/wx⌉, 1 ≤ i ≤
⌈Ly/wy⌉, 1 ≤ i ≤ ⌈Lz/wz⌉} denotes a sub-domain
{x0+(i−1)×wx ≤ x ≤ x0+i×wx, y0+(j−1)×wy ≤
y ≤ y0 + j × wy, z0 + (k − 1)×wz ≤ z ≤ z0 + i ×wz}
which is bounded in the 3D scan-windowW(i, j, k).

• Let ∪ donates a binary merging operator that collects
boundary elements from both sub-domains and number
them locally, for instance,Ω(i, j)∪Ω(i, j + 1) or equiv-
alently

⋃j+1
m=j Ω(i, m).

• Let G be an operator which generates a matrix of
Green’s functions for all boundary elements in a certain
domain/sub-domain, for instance,G(Ω(i, j, k)) produces
the matrix GΩ(i,j,k) which contains all Green’s func-
tions for the boundary elements within the sub-domain
Ω(i, j, k). For this matrix, a local numbering of the
boundary elements is used.

• Let �
[

GΩ(i,j,k)

]

or equivalently� [G(Ω(i, j, k))] de-
notes a embedding process that takes the matrixGΩ(i,j,k)

with local numbering and embed it into a larger empty
matrix (matrix with only zero entries) according to the
map between the local numbering and global numbering
of the boundary elements. The embedding operator can be
specified more precisely. Assume there areM boundary
elements that are locally numbered inΩ(i, j, k), and there
areN boundary elements that are globally numbered in
Ω. Then there is a unique incidence matrixIΩ(i,j,k) of
dimensionM × N that maps the local indexes to the
global indexes, i.eIΩ(i,j,k)(m, n) = 1 if the boundary
with local index m is numbered with global indexn.
IΩ(i,j,k)(m, n) = 0, if otherwise. The transpose of this
incidence matrix maps the global indexes to the local
indexes. And we have:

�
[

GΩ(i,j,k)

]

= IΩ(i,j,k)GΩ(i,j,k)I
T
Ω(i,j,k). (6)

And apparently, the incidence matrix has the following
property:

IT
Ω(i,j,k)IΩ(i,j,k) = I (7)

Here,I denotes a identity matrix of dimensionsM ×M .
• G−1

SI denotes a sparse approximation ofG−1.

B. Two dimensional scan-window algorithm

With the whole layout discretized with boundary elements
and then segmented with 2D scan-windows of sizew×w, the
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sparse inverse to theG is defined as:

G−1

SI =

⌈Lx/w⌉−1
∑

i=1

{

⌈Ly/w⌉−1
∑

j=1

�[G−1(

i+1
⋃

m=i

j+1
⋃

n=j

Ω(m, n))]

−

⌈Ly/w⌉−1
∑

j=2

�[G−1(
i+1
⋃

m=i

Ω(m, j))]}

−

⌈Lx/w⌉−1
∑

i=2

{

⌈Ly/w⌉−1
∑

j=1

�[G−1(

j+1
⋃

n=j

Ω(i, n))]

−

⌈Ly/w⌉−1
∑

j=2

�[G−1(Ω(i, j))]} (8)

Then we may replace theG−1 in Eq. (4) with the above sparse
approximation and we have:

Cs ≈ A
T

⌈Lx/w⌉−1
∑

i=1

{

⌈Ly/w⌉−1
∑

j=1

�[G−1(

i+1
⋃

m=i

j+1
⋃

n=j

Ω(m, n))]

−

⌈Ly/w⌉−1
∑

j=2

�[G−1(

i+1
⋃

m=i

Ω(m, j))]}

−

⌈Lx/w⌉−1
∑

i=2

{

⌈Ly/w⌉−1
∑

j=1

�[G−1(

j+1
⋃

n=j

Ω(i, n))]

−

⌈Ly/w⌉−1
∑

j=2

�[G−1(Ω(i, j))]}A (9)

Let Cs(Ω(i, j)) = AT
�[G−1(Ω(i, j))]A denote the (partial)

short-circuit capacitance matrix generated forΩ(i, j). With the
definition of the embedding operator, We can write

Cs(Ω(i, j)) = AT IΩ(i,j)G
−1(Ω(i, j))IT

Ω(i,j)A (10)

We also have a local incidence matrixAΩ(i,j) that relates
boundary elements with local indexes to conductor potential,
i.e AΩ(i,j)(m, n) = 1 if the boundary element with the
local index m lies on the conductorn, and 0 if otherwise.
Due to the fact that Eq. (10) only involves the boundary
elements inΩ(i, j), the additional information inA that
counts other boundary elements will not be taken into account.
Therefore, we may compute the global approximated short-
circuit capacitance matrix as:

Cs ≈

⌈Lx/w⌉−1
∑

i=1

{

⌈Ly/w⌉−1
∑

j=1

Cs(

i+1
⋃

m=i

j+1
⋃

n=j

Ω(m, n))

−

⌈Ly/w⌉−1
∑

j=2

Cs(

i+1
⋃

m=i

Ω(m, j))}

−

⌈Lx/w⌉−1
∑

i=2

{

⌈Ly/w⌉−1
∑

j=1

Cs(

j+1
⋃

n=j

Ω(i, n)) −

⌈Ly/w⌉−1
∑

j=2

Cs(Ω(i, j))} (11)

Explicit computation of the matrix inverse is not recom-
mended. Therefore, we may computeG−1(Ω(i, j))AΩ(i,j) by
solving system of linear equations,G(Ω(i, j))x = AΩ(i,j) .
Both direct solution method and iterative solution method can
be used here. Note that, global indexes and global incidence

matrices do not appear in the above formula and we do
not have to compute them explicitly. All computations can
remain local. As soon as a (partial) short-circuit capacitance
matrix is generated, we will use it to modified the short-
circuit capacitance matrix of the whole layout. Therefore,at
any instant, the program only has to analyse a (small) segment
of the whole circuit. This enables the algorithm to deal with
large circuit with consuming little computer memory. For more
details, we refer to the PhD thesis of Dr. N. P. van der Meijs
[2] and we invite interested readers to look into prototype
that we have implemented. Let the lengths in the three axises
be comparable, the total number of two dimensional scan-
windows is of O(N2/3w−2). The total number of panels
inside each scan-window is of orderO(N1/3w2). A system of
linear equations are to be solved in each scan-window and the
complexity is ofO(w6N). Therefore, assuming the lengths in
the three axises be comparable, the CPU time complexity of
this algorithm is ofO(N5/3w4). and its memory complexity
is of O(N2/3w4).

C. Three dimensional scan-window algorithm

Similarly, we may apply the scan-window algorithm along
X, Y and Z axises. And we assume the whole layout be
discretized with boundary elements and then segmented with
3D scan-windows of sizew×w×w, the sparse inverse to the
G is then defined as:

G
−1

SI =

⌈Lx/w⌉−1
∑

i=1

{

⌈Ly/w⌉−1
∑

j=1

{

⌈Lz/w⌉−1
∑

k=1

�[G−1(Ω1)]

−

⌈Lz/w⌉−1
∑

k=2

�[G−1(Ω2)]} −

⌈Ly/w⌉−1
∑

j=2

{

⌈Lz/w⌉−1
∑

k=1

�[G−1(Ω3)]

−

⌈Lz/w⌉−1
∑

k=2

�[G−1(Ω4)]}}

−

⌈Lx/w⌉−1
∑

i=2

{

⌈Ly/w⌉−1
∑

j=1

{

⌈Lz/w⌉−1
∑

k=1

�[G−1(Ω5)]

−

⌈Lz/w⌉−1
∑

k=2

�[G−1(Ω6)]}

−

⌈Ly/w⌉−1
∑

j=2

{

⌈Lz/w⌉−1
∑

k=1

�[G−1(Ω7)] −

⌈Lz/w⌉−1
∑

k=2

�[G−1(Ω8)]}} (12)

where:

Ω1 =

i+1
⋃

l=i

j+1
⋃

m=j

k+1
⋃

n=k

Ω(l, m, n), Ω2 =

i+1
⋃

l=i

j+1
⋃

m=j

Ω(l, m, k),

Ω3 =

i+1
⋃

l=i

k+1
⋃

n=k

Ω(l, j, n), Ω4 =

i+1
⋃

l=i

Ω(l, j, k),

Ω5 =

j+1
⋃

m=j

k+1
⋃

n=k

Ω(i, m, n), Ω6 =

j+1
⋃

m=j

Ω(i, m, k),

Ω7 =

k+1
⋃

n=k

Ω(i, j, n), Ω8 = Ω(i, j, k). (13)
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Let Cs(Ωl) = AT (Ωl)G
−1(Ωl)A(Ωl) denote the (par-

tial) short-circuit capacitance matrix generated forΩl; l ∈
{1, 2, 3, 4, 5, 6, 7, 8}, we may compute the approximated short-
circuit capacitance matrix as:

Cs ≈

⌈Lx/w⌉−1
∑

i=1

{

⌈Ly/w⌉−1
∑

j=1

{

⌈Lz/w⌉−1
∑

k=1

Cs(Ω1) −

⌈Lz/w⌉−1
∑

k=2

Cs(Ω2)}

−

⌈Ly/w⌉−1
∑

j=2

{

⌈Lz/w⌉−1
∑

k=1

Cs(Ω3) −

⌈Lz/w⌉−1
∑

k=2

Cs(Ω4)}}

−

⌈Lx/w⌉−1
∑

i=2

{

⌈Ly/w⌉−1
∑

j=1

{

⌈Lz/w⌉−1
∑

k=1

Cs(Ω5) −

⌈Lz/w⌉−1
∑

k=2

Cs(Ω6)}

−

⌈Ly/w⌉−1
∑

j=2

{

⌈Lz/w⌉−1
∑

k=1

Cs(Ω7) −

⌈Lz/w⌉−1
∑

k=2

Cs(Ω8)}}

Again, explicit computation of the matrix inverse is not
recommended. Therefore, we may computeG−1(Ωl)A(Ωl)
by solving system of linear equations,G(Ωl)x = A(Ωl). Both
direct solution method and iterative solution method can be
used here.

Note that, as soon as a (partial) short-circuit capacitance
matrix is generated, we will use it to modified the short-
circuit capacitance matrix of the whole layout. Therefore,at
any instant, the program only has to analyse a (small) segment
of the whole circuit. This enables the algorithm to deal with
large circuit with consuming little computer memory.

Let the lengths in the three axises be comparable, the
number of three dimensional scan-window is ofO(Nw−3).
The total number of panels inside each scan-window is of
orderO(w3). A system of linear equations are to be solved in
each scan-window and the complexity is ofO(w9). Therefore,
assuming the lengths in the three axises be comparable, the
CPU time complexity of this algorithm is ofO(Nw6). and its
memory complexity is ofO(w6).

D. Numeric result

To test the accuracy and complexity of these algorithms
above, we implemented a random layout generator which
grows random conductors in a three dimensional domain.
Through the random layout generator, one can specify the
boundary of the three dimensional domain, the number of
conductors to be generated and the maximum length of each
conductor. These randomly generated conductors do not over-
lap with each other and each conductor is simply connected.
In Fig 1, we show a few examples of the layouts generated.

To study the accuracy and computational cost of these
algorithms, we generate a layout consisting of 20 conductors
each with 100 unit of length as shown in Fig. 1(b), and then
compute its short-circuit capacitance matrices with one di-
mensional scan-line algorithm, two dimensional scan-window
algorithm and three dimensional scan-window algorithm, re-
spectively. The results are compared with the exact solution
and the relative mean square errors defined in Eq. (14) are

computed.

RMSEc =
‖C

approx
s − Cexact

s ‖

‖Cexact
s ‖

(14)

The layout as shown in Fig. 1(b) is computed with different
algorithms combined with scan-windows of different sizes.
The experimental results are shown in Fig. 2 and Fig. 3.
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Fig. 2. The relative mean square errors in the computed short-circuit
capacitance matrices.
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Fig. 3. The CPU time needed to computed the short-circuit capacitance
matrices Vs the scan-window size.

Fig. 2 shows that all these scan algorithms are convergent with
the increasing window size, and no surprise that with the same
size for scan window, 1D scan-line algorithm is more accurate
than the 2D scan-window algorithm which is slightly more
accurate than the 3D scan-window algorithm. It is also clear
that the total RMSE error is dominated by the approximation
made at the higher levels. Fig. 2 shows that 3D scan-window
algorithm is more efficient than the other two algorithms. It
also confirms that the CPU time needed for the 3D scan-
window algorithm increases more sharply with the size of the
scan-window. Other than these, we also observed that all three
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(a) 15 conductors in 40x40x40 (b) 20 conductors in 40x40x40

Fig. 1. The randomly generated layout of conductors in threedimensional domain. The surface mesh of the layout (b) consists of 7172 boundary elements.

algorithms deliver more accurate result when more conductors
are clustered together. This because nearby conductors shield
each other and local interactions become more dominate.

E. Adaptive three dimensional scan-window algorithm

As shown in Fig. 2, the error made by scanning along the
X axis dominates the total relative mean square error. And
a larger scan window along Y and Z axis would not help
too much as long as the scan-window along X axis is small.
Therefore, it is reasonable to use a bigger scan window along
the X axis and decrease the size of scan-window along Y
axis and Z axis. That iswx > wy > wz > 0. The adaptive
algorithm is very similar to the original three dimensional
scan-window algorithm algorithm, except scan-windows of
different sizes are used along X, Y and Z axises.

To study the accuracy and computational cost of the adap-
tive 3D scan-window algorithm, we compute the short-circuit
capacitance matrices of the layout as shown in Fig. 1(b). And
then we compare the result with the exact solution. The relative
mean square error is defined in Eq. (14).

As shown in Fig. 2 and Fig. 3, the adaptive 3D scan-
window algorithm achieves comparable accuracy with much
less computational time. Note that, one can apply different
schemes to decrease the size of scan-windows, and they may
deliver different results.

IV. SUMMARY

In this paper, we proposed a series of efficient scan-
window algorithms that can be used in SPACE for capacitance
extraction. Numeric experiments have confirmed that the Hier-
archical (adaptive) 3D scan-window algorithm is efficient and
sufficiently accurate. Due the simplicity of these algorithms, it

should be simple to adapt them in SPACE. This would enhance
the capacity of SPACE in handling 3D layout of circuits.
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