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Abstract — This paper describes how the Surface In-
tegrated Field Equations method (SIFE) is used to
compute 3D static/stationary electric and magnetic
fields in which high contrast materials occur. It gives
an account of the promising results that are obtained
with it when compared to traditional approaches.
Advantages of the method are the improved flexibil-
ity and accuracy for a given discretization level, at
the cost of higher computational complexity.

1 Introduction

In our previous work, we have used the Surface In-
tegrated Equations method for solving 2D electro-
magnetic problems in the time domain[1, 2] and 3D
electromagnetic problems in the time domain[3], in
which regions are present that exhibit highly con-
trasting material properties (electric and/or mag-
netic) with each other. In this paper, we develop
the method to compute 3D static electric and mag-
netic fields. When the EM field quantities do not
vary with time, the time-derivative of the fields
quantities vanishes, and we have a static or sta-
tionary field. In these cases, there is no interaction
between electric field and magnetic field, so that
the electro-stationary, electrostatic and magneto-
static case can be solved individually in one generic
system. The surface integrated equations derived
for the static and stationary electric and magnetic
fields have the same form. Therefore we may rep-
resent all such field equations in a generic form as
shown in Tab. 1. Let D be the domain of interest
with boundary ∂D and let S be any surface (S ∈ D)
with boundary ∂S. The generic surface integrated
field equation is∮

∂S

V(x) · dl =
∫

S

Qimp(x) · dA (1)

Although we can deal with more complicated rela-
tions, in this paper we consider only linear, non-
dynamic media characterized by

F(x) = ξ(x)V(x) (2)
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Let V be any volume in D with boundary ∂V , the
generic compatibility relation that applies for static
and stationary electric and magnetic fields in the
surface integrated form is

∮
∂V

F(x) · dA =
∮
V

ρimp(x)dV. (3)

Let I ∈ D be the interfaces of discontinuity, the
interface conditions are:

ν × V(x)|21 = Qimp
S (x),x ∈ I (4)

ν ·F(x)|21 = σimp(x),x ∈ I (5)

where ν × V(x) denotes the tangential component
of the field strength across the interface, ν · F(x)
denotes the normal component of flux density ac-
cross the interface. As for boundary conditions, let
∂DH ∪ ∂DE = ∂D and ∂DH ∩ ∂DE = ∅, we have:

ν × V(x) = ν × Vext(x),x ∈ ∂DV (6)

ν · F(x) = σext(x),x ∈ ∂DF . (7)

where ν × Vext(x) denotes the tangential compo-
nent of the field strength on the exterior bound-
ary, σext(x) denotes the normal component of the
electric current density, the electric flux density or
magnetic flux density on the exterior boundary.

2 Discrete field equations

In this section, we replace the continuous field
quantities in the generic field equations for static
and stationary electric and magnetic fields, pre-
sented in Sec. 1, with their discrete linear counter-
parts to derive a system of linear, algebraic equa-
tions in terms of unknown coefficients (degrees of
freedom). In the SIFE method for computing static
and stationary electric and magnetic fields, we want
the linearly approximated field quantities to sat-
isfy Eq. (1) and Eq. (3) at the bounding surfaces
of each elemental volume. Moreover, the approx-
imated field must comply with the interface con-
ditions Eq. (4), Eq. (5) and boundary conditions
Eq. (6), Eq.(7). Before introducing the discretized
field equations, we define a few geometrical quan-
tities (see Fig. 1). Let a tetrahedron with global
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Table 1: Correspondence between generic quantities and the actual static and stationary field values
Generic form stationary electric case static electric case stationary magnetic case

V E E H
F J D B
ξ σ ε μ

Qimp 0 0 Jtot

Q
imp
S 0 0 J

imp
S

ρimp −∇ · Jimp ρ 0

σimp − ν · Jimp
˛̨
˛2
1

σe 0

Vext Eext Eext Hext

σext ν · Jext ν · Dext ν · Bext

Figure 1: Tetrahedron T (n). (i, j, k, l) correspond
to a right oriented system of edges (i, j), (i, k), (i.l).

tetrahedron index n be denoted as T (n). We
denote the four nodes delimiting T (n) locally as
N (n, i), i = {0, 1, 2, 3}. Let E(n, i, j), j /=i be the
edge pointing from N (n, i) to N (n, j), and e(n, i, j)
be the vectorial length of the edge E(n, i, j). Let
F(n, k), k = {0, 1, 2, 3} be a facet of tetrahedron
Tn, which is not delimited by the node N (n, k), and
A(n, k) be the vectorial area of the facet F(n, k),
e.g.

A (n, 0) =
1
2

[e (n, 1, 2)× e (n, 2, 3)] .

Let V (n) be the volume of the tetrahedron T (n),
T be the set of tetrahedrons in the mesh and h the
average length of edges in the mesh.

Definition 1. we define: NC
V as the set of nodes

on which V(x) is totally continuous, that is, the set
of continuity nodes[3], and ND

V as the set of nodes
on which V(x) is continuous in its tangential com-
ponent and discontinuous in its normal component,
that is, the set of discontinuity nodes[3]. We have

N = N
C
Q

⋃
N

D
Q, N

C
Q

⋂
N

D
Q = ∅,

Definition 2. For n ∈ IT and i ∈ {0, 1, 2, 3},
VN (n,i) =

∑
k={1,2,3}

[
V

N (n,i)
k ik

]
, ∀N (n, i) ∈ N

C
V.

or

VN (n,i) =∑
j={0,1,2,3}j/=i

[
V E(n,i,j)

(
−|e(n, i, j)|

3V (n)
A(n, j)

)]
,

∀N (n, i) ∈ N
D
V

where V
N (n,i)
k and V E(n,i,j) are the unknown linear

expansion coefficients (degrees of freedom).

By discretizing Eq. (1) applied on every facet of
every tetrahedron, we obtain

1

2
e(n, l, k) · VN (n,j) +

1

2
e(n, j, l) · VN (n,k)

+
1

2
e(n, k, j) · VN (n,l)

=
X

h=j,k,l

»
1

3
A(n, i) · Qimp(x(n, h))

–
, (8)

By discretizing Eq. (3) applied on the bounding
surface of every tetrahedron, we obtain:

−
X

h=i,j,k,l

»
1

3
A(n, h) · ξ(x(n, h))VN (n,h)

–

=
X

h=i,j,k,l

»
1

4
V (n)ρimp(x(n, h))

–
, (9)

where n ∈ IT ; (i, j, k, l) is an even permutation of
(0, 1, 2, 3) and VN (n,i) is defined in Def. 2.

The interface condition Eq. (4) is satisfied exactly
by the correct field interpolation. By discretizing
Eq. (5) applied on every facet that is on the inter-
faces of discontinuity, we obtain

X
j={j1,k1,l1}

»
1

3
A(n1, i1) · ξ(x(n1, j))VN (n1,j)

–

+
X

j={j2,k2,l2}

»
1

3
A(n2, i2) · ξ(x(n2, j))VN (n2,j)

–

=
X

j={j1,k1,l1}

»
1

3
A(n1, i1)σimp(x(n1, j))

–
, (10)
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Table 2: Configuration of the two sub-domains

Di sub-domains μr

D0 0 ≤ x1 < 0.5 and 0 ≤ x2 < 0.5 1000
D1 0.5 < x1 ≤ 1 or 0.5 < x2 ≤ 1 1

where T (n1) ∈ T and T (n2) ∈ T , n1/=n2. T (n1)
and T (n2) share a same face locally labeled as
F(n1, i1) in T (n1) and F(n2, i2) in T (n2), re-
spectively. (i1,j1,k1,l1) and (i2,j2,k2,l2) are both
even permutations of (0, 1, 2, 3). There exists j ∈
{j1,k1,l1} such that N (n1, j) ∈ N

D
V.

We implement the boundary condition Eq. (6)
and Eq.(7) implicitly on each node of the boundary.

3 The least-squares method

With the equations (8), (9), (10), and the discrete
boundary conditions, one can prove that the system
of equations has more equations than unknowns.
Such a system may have no solution at all. One
thing we can do is to find an approximate solu-
tion which minimizes a quadratic functional repre-
senting the error. With the weighted least-squares
method[4], we can easily construct a set of normal
equations, which we then solve with an iterative
method to obtain an approximated electromagnetic
field strength in the domain of computation. The
method is numerically stable because the normal
equations are positive definite by construction.

4 Numeric experiments

We test the SIFE method on a (admittedly rare)
example of a situation where at the same time there
exists a theoretical solution. The configuration is
a domain D = {0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤
x3 ≤ 0.5},bounded by PEC boundary condition (
ν ·B(x) = 0, ∀x ∈ ∂D). Jtot(x) is chosen such that
the exact magnetic field strength is:

H(x) =
π sin(πx1) cos(πx2)

μ(x)
i1 − π cos(πx1) sin(πx2)

μ(x)
i2

The electric current density in the domain is then

Jtot(x) =
2π2 sin(πx1) sin(πx2)

μ(x)
i3

4.1 Configuration with high contrast

The computational domain consists of two homo-
geneous sub-domains as defined in Tab. 2. To
show the necessity of hybrid finite elements, we
compute the solution offered for this configuration

by the SIFE method based on hybrid elements,
the SIFE method based on nodal elements, and
the weighted Galerkin method based on nodal el-
ements. Fig. 2(a) shows the results. It is appar-
ent that the SIFE method based on hybrid finite
elements maintains the optimal convergence rate
which is of order O(h2) in both sub-domains. How-
ever, nothing comes for free, as shown in Fig. 2(b),
the BICG-stable linear iterative solver for the SIFE
method based on hybrid finite elements has to use
incomplete CC with fill level 2 to reach the same
convergence (10−12), otherwise the solution is very
difficult to find. Fortunately, the order of compu-
tational cost does not change; still it is of order
O(h−2).
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(a) convergence
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Figure 2: The RMSE(H) in the two sub-domains
computed with different methods vs. the number of
finite elements in the mesh (a).The number of iter-
ations needed by different methods vs. the number
of finite elements in the mesh. Bicg-stable method
+ nest dissection reordering + ICC(1)/ICC(2) (b).

4.2 Configuration with very high contrast

To test the limit of the SIFE method based on hy-
brid elements in handling extremely high contrast,
we take the same configuration as that in Section
4.1, except now the relative permeability in homo-
geneous sub-domain 0 ranges from 1 to 1× 1011. A
series of numeric experiments are conducted with
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Figure 3: The relative root mean square error in D0 and D1 vs. the ratio of contrast (a). The number of
iterations needed by iterative linear solvers versus the ratio of contrast; BICG-stable + nested dissection
reordering + ICC(2). the accuracy of the iterative linear solver: 1 × 10−12(b).

the same interface conforming mesh. We show the
comparison between the SIFE method based on
hybrid elements with the SIFE method based on
nodal elements and the weighted (w=0.3) Galerkin
method based on nodal elements. As shown in Fig-
ure 3(a), as the ratio of contrast increases, the solu-
tion computed with the SIFE method based on hy-
brid elements stays stable and accurate in both sub-
domain 0 and sub-domain 1. The solution becomes
inaccurate in the case of extremely high contrast
1012, because we implemented the boundary con-
dition implicitly. With the presence of extremely
high relative permeability, some off-diagonal entries
of the system matrix obtained by the SIFE method
based on hybrid elements are comparable with the
weighting factor for the implicit boundary condi-
tions, which is approximately 1020. In these ex-
treme cases, the implicit boundary conditions will
fail and the system matrix is close to singular. The
same phenomena can be observed in Fig. 3(b). The
computational costs for the SIFE method based on
hybrid elements is higher than for the other two
methods. However, the computational cost of the
SIFE method based on hybrid elements does not
increase with the contrast ratio.

5 Conclusions

The SIFE method holds considerable promise to
solve three dimensional static and stationary elec-
tric and magnetic problems, in which high contrasts
between different types of materials exist and ir-
regular structures are present. It handles irregular
structures and partial discontinuities in a system-
atically correct and elegant fashion. Its accuracy
and stability are demonstrated and verified with
numerical experiments. A EM simulation software

has been implemented with OO C++.
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