
Iterative solution methods based on the
Hierarchically Semi-Separable Representation

Zhifeng Sheng, P.Dewilde and Nick van der Meijs
{z.sheng, p.dewilde, n.p.vandermeijs}@EWI.TUDelft.NL

Abstract— In this paper, we study an important class of struc-
tured matrices: ”Hierarchically Semi-Separable (HSS)” matrices,
for which an efficient hierarchical state based representation
called Hierarchically Semi-Separable (HSS) representation can
be used to utilize the data sparsity of the HSS matrices. A novel
algorithm with O(n) complexity is proposed to construct sub-
optimal HSS representations from sparse matrices. Subsequently,
the limitation of the direct HSS solution method is discussed in
this paper, and a general strategy to combine standard iterative
solution methods with the HSS representation is presented. We
also describe a number of preconditioner construction algorithms
based on the HSS representation. Our numerical experiments in-
dicate that these iterative solution methods have linear complexity
in computation time.

Index Terms— Iterative solution method, hierarchically semi-
separable representation, preconditioner

I. INTRODUCTION

Matrix operation algorithms based on the HSS representa-
tion are quite interesting in its own right. Much of its research
has been triggered by a problem that can be posed simply as:
Given A ∈ Cm×n, b ∈ Cm, find solution vector(s) x ∈ Cn

such that Ax = b. (If the system A is overdetermined or
underdetermined, the Moore-Penrose solution will have to be
computed.) Many scientific problems lead to the requirement
to solve linear systems of equations or multiply a system
matrix with a vector as part of computations. Thus, the
efficient fast HSS solution algorithms as well as the fast
matrix-vector multiplication algorithm are quite useful, given
the computation can be done efficiently.

Unfortunately, matrix operation algorithms based on HSS
representation are not always efficient, they are only so when
the rank of the off-diagonal sub-matrices are small. In [1],
[2], [3], the computation complexity analysis has been done
with the assumption that the rank of the off-diagonal sub-
matrices are neglectable; while in practice, the system matrix
of 2D or 3D problems does not fit in this category. To
reduce the rank of the off-diagonal sub-matrices, the rows
and columns of the system matrix shall be reordered. Graph
theory has been of great help in re-arranging the non-zero
entries of sparse matrices to reduce the fill-in or to move
as many non-zeros as possible onto the diagonal to reduce
the number of iterations needed. The most commonly used
heuristic for performing reordering is the minimum degree
algorithm [4], [5], An alternative approach, nested dissection
ordering [6], has many appealing theoretical properties, but
building an implementation that gives comparable ordering
qualities and run times to the minimum degree method has

been proven to be very difficult. Some promising results have
been demonstrated e.g [7], [8].

None of these new methods has produced consistently better
ordering than the minimum degree reordering method, and
all require a significant amount of run time [9]. What is
worse, even with these methods, the rank of the off-diagonal
sub-matrices is not as small as expected. For simplicity, we
assume that the rank of off-diagonal sub-matrices is less or
equal to k, the upper bound of the computation complexity of
the fast HSS matrix-vector multiplication is O(nk2) where
n is the dimension of the system matrix. For the direct
solving algorithm with HSS representation, the computation
complexity would be approximately of O(nk3).

Therefore, it meaningful to develop iterative HSS solu-
tion methods where the approximate solution is improved
iteratively. For each iteration, matrix-vector multiplication is
the crucial operation. If the number of iterations needed is
sufficiently small, the iterative solution methods will take
less time than the direct HSS solution method does. Another
benefit is that, in our application, we will have to solve
a system of Maxwell equations in time domain, where the
solution of a time instance does not differ too much from the
solution of the previous time instance. This indicates that the
solution of the previous time instance can be used as a good
initial guess for the solution of the current time instance, the
number of iterations can thus be reduced. In practice, it is
not necessary to get a very accurate result. In our case, a few
percent of error is tolerable. This helps us to further reduce
the number of iterations needed. To summarize, all these above
give us a good motivation to study iterative solution methods
based on the HSS representation.

II. HIERARCHICALLY SEMI-SEPARABLE REPRESENTATION

The Hierarchical Semi-Separable representation (pioneered
by Chandrasekaran and Gu [1]) of a matrix (or operator) A is
a layered representation of the multi-resolution type, indexed
by the hierarchical level. At the top level 1, it is a 2×2 block
matrix representation of the form:

A =
[

A1;1,1 A1;1,2

A1;2,1 A1;2,2

]
(1)

in which we assume that the ranks of the off-diagonal blocks
are low so that they can be represented by an ’economical’
factorization (’H’ indicates Hermitian transposition, for real
matrices just transposition), as follows:

A =
[

D1;1 U1;1B1;1,2V
H
1;2

U1;2B1;2,1V
H
1;1 D1;2

]
(2)

343

2

The second hierarchical level is based on a further but similar
decomposition of the diagonal blocks, respectively D1;1 and
D1;2:

D1;1 =
[

D2:1 U2;1B2;1,2V
H
2;2

U2;2B2;2,1V
H
2;1 D2;2

]
(3)

D1;2 =
[

D2;3 U2;3B2;3,4V
H
2;4

U2;4B2;4,3V
H
2;3 D2;4

]
(4)

for which we have the further level compatibility assumption

span(U1;1) ⊂ span
([

U2;1

0

])
⊕ span

([
0

U2;2

])
(5)

span(V1;1) ⊂ span
([

V2;1

0

])
⊕ span

([
0

V2;2

])
(6)

This spanning property is characteristic for the HSS structure,
it allows for a substantial improvement on the numerical com-
plexity for e.g. vector-matrix multiplication as a multiplication
with the higher level structures always can be done using lower
level operations, using the translation operators R and W

Uk−1;i =
[

Uk;2i−1Rk;2i−1

Uk;2iRk;2i

]
, i = 1, 2...2k−1 (7)

Vk−1;i =
[

Vk;2i−1Wk;2i−1

Vk;2iWk;2i

]
, i = 1, 2...2k−1. (8)

Notice the use of indexes: at a given level i rows respectively
columns are subdivided in blocks indexed by 1, · · · , i. Hence
the ordered index (i; k, `) indicates a block at level i in
the position (k, `) in the original matrix. The same kind of
subdivision can be used for column vectors, row vectors and
bases thereof (as are generally represented in the matrices U
and V).

In [10] it is shown how this multilevel structure leads to
efficient matrix-vector multiplication and a set of equations
that can be solved efficiently as well. For the sake of com-
pleteness we review this result briefly. Let us assume that
we want to solve the system Tx = b and that T has an
HSS representation with deepest hierarchical level K. We
begin by accounting for the matrix-vector multiplication Tx.
The dataflow diagram for a two level hierarchy representing
operator-vector multiplication is shown in Figure 1. At the leaf
node (K; i) we can compute

gK;i = V H
K;ixK;i (9)

If (k; i) is not a leaf node, we can infer, using the hierarchical
relation

gk;i = V H
k;ixk;i = WH

k+1;2i−1gk+1;2i−1 + WH
k+1;2igk+1;2i

(10)
These operations update a ’hierarchical state’ gk;i upward in
the tree. To compute the result of the multiplication, a new
collection of state variables {fk;i} is introduced for which it
holds that

bk;i = Tk;i,i + Uk;ifk;i (11)

and which can also be computed recursively downward by the
equations
[

fk+1;2i−1

fk+1;2i

]
=

[
Bk+1;2i−1,2igk+1;2i + Rk+1;2i−1fk,i

Bk+1;2i,2i−1gk+1;2i−1 + Rk+1;2ifk;i

]

(12)
the starting point being f0; = [], an empty matrix. At the leaf
level we can now compute (at least in principle - as we do
not know x) the outputs from

bK;i = DK;ixK;i + UK;ifK;i (13)

Solution can also be done in time linear with the dimension
of T , but the algorithms are a lot more complicated than fast
matrix-vector multiplication, see [1], [3]. Almost all matrix
operations have their HSS version. A relatively complete set
of Hierarchically Semi-separable Algorithms is given in [2].

III. HIERARCHICALLY SEMI-SEPARABLE
REPRESENTATION CONSTRUCTION FROM SPARSE MATRICES

The construction of HSS representations has been discussed
in [11], in which O(n2) construction algorithms have been
given. In this section we describe a O(n) HSS representation
construction algorithm for sparse matrices. We will show that
the construction algorithm needs almost no computation, but
matrix search operation is needed to find empty rows and
columns in the sparse matrix.

The construction algorithm is a downsweep algorithm. Once
the root is constructed, its leaves can be split recursively until
a certain criterion is satisfied. In order to develop the top-down
HSS construction algorithm for sparse matrices, we need the
leaf-split algorithm presented in [1], [11]. Two other lemmas
will help us with the HSS construction from sparse matrices.

A. Leaf-split

One big leaf can be split into two smaller leaves, and the
input-output relation is not changed. Leaf split modification
can be done on any leaf. Its dataflow modification and the
dataflow notations have been studied in [12]. The formula to
generate the matrices of the new leaves from those of the large
one is given below:

1) Partitioning: Firstly, we partition the translation ma-
trices in the following way. Note that the dimensions of
the partitions should be appropriate, so that the following
calculations below are legal. Let:

Uk−1;i =
[

Uk−1;i;(1)

Uk−1;i;(2)

]
, Vk−1;i =

[
Vk−1;i;(1)

Vk−1;i;(2)

]
(14)

bk−1;i =
[

bk;2i−1

bk;2i

]
, xk−1;i =

[
xk;2i−1

xk;2i

]
(15)

Dk−1;i =
[

Dk;2i−1 Dk−1;i;(12)

Dk−1;i;(21) Dk;2i

]
(16)

344

3

Fig. 1. HSS Data-flow diagram; arrows indicate matrix-vector multiplication of sub-data, nodes correspond to states and are summing incoming data (the
top levels f0 and g0 are empty).

Fig. 2. Leaf split dataflow diagram: the leaf split algorithm takes one leaf and returns a node that keeps the same input-output relation

2) Factorization: Then, the matrices in the right hand of
Figure 2 should hold the following equations (see Lemma 1):

[
Uk−1;i;(1) Dk−1;i;(12)

0 V H
k−1;i;(2)

]

=
[

Uk;2i−1 0
0 I

] [
Rk;2i−1 Bk;2i−1,2i

0 WH
k;2i

] [
I 0
0 V H

k;2i

]

(17)[
V H

k−1;i;(1) 0
Dk−1;i;(21) Uk−1;i;(2)

]

=
[

I 0
0 Uk;2i

] [
WH

k;2i−1 0
Bk;2i,2i−1 Rk;2i

] [
V H

k;2i−1 0
0 I

]

(18)
Note that: U , V should be chosen such that they are column

orthonormal.
[

Rk;2i−1

Rk;2i

]
and

[
Wk;2i−1

Wk;2i

]
should also be

column orthonormal. In this way, we guarantee that the
error is not amplified through propagation, we call a HSS

representation with these properties a HSS representation in
the proper form. Note that: In the proper form, the matrices
B do not have to be column orthonormal, but they should be
of low rank such that the HSS representation is efficient.

Lemma 1: Assuming A11 and A12 has dependent rows, it is
possible (nontrivially) to factor a block upper triangular matrix
into the form:

[
A11 A12

0 A22

]
=

[
Q1 0
0 I

] [
B11 B12

0 B22

] [
I 0
0 Q2

]

(19)
Proof: First consider a rank revealing factorization of the

top row:
[

A11 A12

]
= Q1

[
R11 R12

]
(20)

followed by an rank revealing factorization of
[

R12

A22

]
=

[
L12

L22

]
Q2 (21)

345

4

Then it follows that:[
A11 A12

0 A22

]
=

[
Q1 0
0 I

] [
R11 L12

0 L22

] [
I 0
0 Q2

]

(22)
and our result follows with B11 = R11, B12 = L12, B22 =
L22.

Lemma 2: A sparse matrix A with empty rows can be
trivially decomposed into Q and Ā where:

A = QĀ (23)

Q is column orthonormal, and Ā collects all non-empty rows
in A. Suppose A has n non-empty rows. Q is an incidence
matrix.
Example:



1 2 3 0
0 0 0 0
0 2 1 0
1 0 1 0


 = QĀ =




1 0 0
0 0 0
0 1 0
0 0 1







1 2 3 0
0 2 1 0
1 0 1 0




Lemma 3: A sparse matrix A with empty columns can be
trivially decomposed into Ā and Q where:

A = ĀQH (24)

Q is column orthonormal, and Ā collects all non-empty
columns in A. Suppose A has n non-empty columns. Q is
an incidence matrix.
Example:




1 2 3 0
0 2 1 0
1 0 1 0


 = ĀQH =




1 2 3
0 2 1
1 0 1







1 0 0
0 1 0
0 0 1
0 0 0




H

3) Formal algorithm: With the leaf-split method at our
disposal, we can then replace the rank revealing factorizations
in Lemma 1 with the sub-optimal factorizations in Lemma 2
and 3. The pseudo-code of this top-down method follows:

Downsweep: Input a leaf Leaf, a certain condition d to termi-
nate the construction process; output a tree that is constructed
from the leaf.

1) if (dk;i = false) then (node,leftleaf,rightleaf) = leaf-
split(Leaf);
return
Node(node, Downsweep(leftleaf, dk+1;2i−1),
Downsweep(rightleaf,dk+1;2i));

2) else return Leaf;

Main: Input a plain matrix A. Output the HSS representation
of A.

1) Build a dummy leaf L with A, of which U = |, V = |,
D = A;

2) HSSrepresentation = Downsweep(L, d0,1);

This construction algorithm needs not computation. All splits
can be done with sparse matrix arithmetics; therefore, it is
efficient in terms of memory usage. With the data structure that
enables fast matrix search for empty rows and columns, the
algorithm is also quite fast. However, the HSS representation

constructed with this algorithm is not optimal. It produces
a sub-optimal HSS representation in return some shorter
computational time.

IV. DESIGN OF THE HSS ITERATIVE SOLVER

Practical iterative solvers consist of standard iterative solu-
tion methods (CG, CGS, GMRES, etc), appropriate precon-
ditioners, efficient matrix-vector multiplication methods, and
accurate convergence estimation. We have implemented some
iterative algorithms with OCAML [13] and camlfloat [14].
For the Krylov space iterative solvers, we have implemented
solvers like CG, CGS, BiCG, Bi-CGSTAB and so on (all
based on the HSS representation). With all the algorithms
under the HSS framework, it is quite easy to combine the
HSS representation and its fast algorithms with any iterative
solution methods.

V. PRECONDITIONERS

As well studied by other researchers, the convergence rate of
various iterative methods depends on spectral properties of the
coefficient matrix. Thus, the system matrix can be transformed
into an equivalent one in the sense that it has the same solution,
but has more favorable spectral properties. A preconditioner
is the matrix that effects such transformation[15].

A preconditioner is in fact an approximation to the original
system matrix A; In order to archive any speedup, this pre-
conditioner should be easy to compute and the inverse of this
approximation matrix should be easy to apply on any vector.
For the solution problem (Ax = b, knowing A, b, compute x),
suppose the left preconditioner M approximates A in some
way, the transformed system would be:

M−1Ax = M−1b (25)

In this section, we shall describe a few preconditioners, for
which the OCAML implementations of their construction
algorithms and solution algorithms are available, to accelerate
the convergence rate.

A. Block diagonal preconditioner

Given the solution problem (Ax = b), with the assumption
that A is given in its HSS representation. The simplest
preconditioner M consists of just the diagonal blocks of the
HSS matrix A.

M = D (26)

where D collects only the on-diagonal sub-matrices(Dk;i) of
the HSS representation of the matrix A. This is also known
as the block Jacobi preconditioner. The inverse of this block
diagonal matrix M can be computed by inverting the matrix
block-wise.

346

5

B. Symmetric Successive Overrelaxation preconditioniner

Another ’cheap’ preconditioner is the SSOR preconditioner.
Like the Block Jacobi preconditioner, this preconditioner can
be derived without any work and additional storage.

Suppose the original system A is symmetric, we shall
decompose A as

A = D + L + LT (27)

where L is a block lower triangular HSS matrix and D is a
block diagonal matrix. The SSOR matrix is defined as

M = (D + L)D−1(D + L)T (28)

usually, M is parameterized by ω as follows:

M(ω) =
1

(2− ω)
(
1
ω

D + L)(
1
ω

D)−1(
1
ω

D + L)T (29)

The optimal value of ω will reduce the number of iteration
needed significantly. However, computing the value of the
optimal ω needs the spectral information which is normally not
available in advance and prohibitively expensive to compute.
The direct solution method of such block triangular HSS
system(1

ω D + L) has been discussed in [2], [11].

C. Fast model reduced preconditioner

A downsweep model reduction can be done on the HSS
representation to reduce its HSS complexity at the cost of
loss in data. Here, we only review the algorithm, for details
on proof and analysis, refer to [12].

Suppose A is a HSS matrix of which the HSS representation
is defined by sequences U , V , R, W , B, D. The downsweep
model reduction algorithm consists of two possible operations:

1) Reduction at node/leaf: When needed, model reduction
could be done on nodes. Given a node like the one shown
on the left of Figure 3, with the tolerance specified, we
can decompose the translation matrices with economical rank
revealing factorization as follows:
[

Rk;2i−1 Bk;2i−1,2i

]
= Ūk;2i−1

[
R̄k;2i−1 B̂k;2i−1,2i

]
+O(ε)
(30)[

Rk;2i Bk;2i,2i−1

]
= Ūk;2i

[
R̄k;2i B̂k;2i,2i−1

]
+ O(ε)

(31)[
WH

k;2i

B̂k;2i,2i−1

]
=

[
W̄H

k;2i

B̄k;2i−1,2i

]
V̄ H

k;2i + O(ε ′) (32)

[
WH

k;2i−1

B̂k;2i,2i−1

]
=

[
W̄H

k;2i−1

B̄k;2i−1,2i

]
V̄ H

k;2i−1 + O(ε ′) (33)

Or equivalently:
[

Rk;2i−1 Bk;2i−1,2i

0 W H
k;2i

]

=

[
Ūk;2i−1 0

0 I

][
R̄k;2i−1 B̄k;2i−1,2i

0 W̄ H
k;2i

][
I 0
0 V̄ H

k;2i

]
+O(ε ′)

(34)[
Rk;2i Bk;2i,2i−1

0 W H
k;2i−1

]

=

[
Ūk;2i 0

0 I

][
R̄k;2i B̄k;2i,2i−1

0 W̄ H
k;2i−1

][
I 0
0 V̄ H

k;2i−1

]
+ O(ε ′)

(35)
Thus the translation matrices of this node have been reduced
as: R̄k;2i−1, R̄k;2i, W̄k;2i−1, W̄k;2i, B̄k;2i−1,2i and B̄k;2i,2i−1.
The factors Ūk;2i−1, Ūk;2i, V̄k;2i−1 and V̄k;2i will be propa-
gated to its children and modified their translation matrices.

2) Downsweep modification: After these factors Ūk;i, V̄k;i

of a node are computed, they will be sweep to the children of
this node, and modify their translation matrices as in Figure
3.

1) If the child is a non-leaf node

R̄k;2i−1 = Rk;2i−1Ūk;i, R̄k;2i = Rk;2iŪk;i (36)

W̄k;2i−1 = Wk;2i−1V̄k;i, W̄k;2i = Wk;2iV̄k;i (37)

2) If the child is a leaf

Ûk;i = Uk;iŪk;i, V̂ k;i = Vk;iV̄k;i (38)

After this modification, reduction method can be done on this
modified node to reduce its complexity. When the downsweep
recursion reaches the leaves of the HSS representation, the
whole HSS representation has been model reduced under a
certain tolerance.

D. Fast model reduction with HSS LU factorization precondi-
tioner

It is known that the standard CG method only works
for symmetric positive definite matrices. For the matrices
that are not symmetric positive definite, the standard CG
method would converge quite slowly or not at all. We will of
course expect the transformed system to be symmetric positive
definite, if the original system is so.

The left preconditioner alone is often not what is used in
practice; because the transformed matrix M−1A is generally
not symmetric, even though A and M are symmetric. There-
fore, the standard CG method is not immediately applicable
to this system. We can of course use the CGS and the BICG
method which can handle nonsymmetric positive definite
systems; however, it is advantageous to use the standard CG
method due to its simplicity and low computational cost in
each iteration.

One way to remedy the preconditioner for the standard
CG method is to LU factorize the left preconditioner as
M = M1M2, and apply M1 and M2 separately as the left
preconditioner and the right preconditioner. Then the original
system would be transformed into the following:

M−1
1 AM−1

2 (M2x) = M−1
1 b (39)

Here M1 is called the left preconditioner; M2 is called the right
precondtioner. If M is symmetric, that is M1 = MT

2 (note that
if the original HSS matrix is symmetric, the preconditioner
constructed by the algorithm presented in section V-C is
symmetric as well), one can easily prove that the transformed
coefficient matrix M−1

1 AM−1
2 is symmetric. Thus the stan-

dard CG method is applicable again. M1 and M2 can be
constructed by a LU factorization (details with proof in [2])
on the HSS matrix M .

347

6

Fig. 3. Fast model reduction on nodes. It reduces the HSS complexity of a node at the cost of loss in data

E. Preconditioners summary

Summarizing Table I compares the preconditioners and their
solution methods we proposed, including effort and storage
needed to construct these preconditioners.

VI. NUMERICAL RESULT

To study the behavior of the iterative HSS solver we
developed, we choose to experiment with the HSS CG, HSS
CGS, HSS BiCG, HSS Bi-CGSTAB method and the direct
HSS solver on smooth matrices A defined as:

Aij =
{

c× n i = j
n

|i−j| i/=j
(40)

(n is the dimension of the matrix, c is a parameter to control
the diagonal dominance. We choose the value of c to be 2,
so that the matrix is positive definite.) The required solution
accuracy of iterative solver is specified to be 10−6; the initial
guess for the solution is given as vector of zeros; the right
hand side is a random vector. The goal is to compute x so
that Ax = b.

It can be seen that from Figure 4 that the CPU time needed
by the HSS CG method is comparable with that of the HSS
direct solver. Among the CG like methods, the standard CG
method takes the least time, however, its applicability is not as
good as that of the others. The HSS CGS method takes about
half of the time needed by the HSS BiCG method; however,
it is worth mentioning that the behavior of the CGS method
is highly irregular. It may even fail to deliver a solution when
other CG variants do (the diverging cases are not plotted in
Figure 4). Bi-CGSTAB is more stable than CGS and it does
not require the matrix transpose. These are consistent with the
analysis of these CG variants in [15]. It can also be seen from
Figure 4 that the time curve of iterative methods are irregular
in general, while the direct solver scales well with the size of
the matrices (if the system matrices are smooth on off-diagonal
sub-matrices).

One question still remains: under what situation should the
iterative methods be preferred over the direct solver? As we
mentioned, the core operation of iterative methods is matrix-
vector multiplication; this operation scales better with the HSS
complexity than the direct HSS solution method does. This
indicates that the iterative methods should be adapted under

Fig. 4. Numerical experiment with solvers: CPU time needed to solve system
matrices of different sizes with different solution methods

the circumstance that the off-diagonal sub-matrices of the HSS
matrices is not of low rank. We shall do a series of experiments
to see how the iterative methods and direct method would scale
with the smoothness.

We choose to work on the smooth matrix A defined as:

Aij =
{

c× n i = j
n× cos(k|i− j|π) i/=j

(41)

Here, k is used to control the smoothness, a larger k would
result in more high frequency components, which would then
result in less smooth matrices and increase the HSS complexity
of the HSS representation. n is the dimension of the matrix.
n here is specified as 2000; that is the matrices are of size
2000 × 2000. c controls diagonal dominance; we choose the
value of c be 2. A series of experiments with different k is
performed on the HSS CG method, the HSS direct solution
method and the direct solution method from LAPACK.

From Figure 5, we can see that the solution methods based
on the HSS representation are preferred when the system
matrix is non-smooth; it is obvious that the direct solution
method does not scale well with the increasing value of k,
while the CPU time needed by HSS CG method increases

348

7

TABLE I
HSS PRECONDITIONERS: CONSTRUCTION AND SOLUTION

Preconditioner Construction Storage
needed

Inverse solution Remarks

Block Jacobi without effort not needed direct inverse Only suitable for diagonal dom-
inant matrix

Block SSOR without effort not needed HSS forward and backward
substitution [2], [11]

simple double sided precondi-
tioner

Fast model reduction Model reduction [12] needed Fast HSS direct Solvers [1], [2],
[3]

advanced, high cost

Fast model reduction with LU
factorization

Model reduction and
HSS LU [12], [2]

needed HSS forward and backward
substitution [2], [11]

advanced double sided precon-
ditioner, high cost

Fig. 5. Numerical experiment with solvers on 2000×2000 system matrices:
the CPU time needed to solve system matrices of fixed dimension with
different smoothness

smoothly with the value of k.
After the above comparison, it is safe to conclude that HSS

iterative method should be preferred over direct HSS solution
method, if the HSS complexity of the HSS representation
is not small compared to the dimension of the matrix. Or
equivalently, the iterative method should be preferred when the
matrix is not very smooth. However if the matrix is completely
not smooth, the solution methods based on HSS representation
described in this paper are not recommended.

VII. CONCLUSIONS

We studied the limitation of direct HSS solution method.
A general strategy to combine the HSS representation and
its algorithms with iterative solution algorithms has been
given. With this strategy, any iterative algorithm can be easily
combined with the HSS representations. We implemented and
tested a number of iterative solution algorithms based on HSS
representations. All these numerical experiments suggest that
when the off-diagonal blocks of the system matrix are not
so smooth, the iterative algorithms based HSS representations
exceed its direct counterpart in CPU time and memory usage.
We also proposed and implemented a number of precondition-
ers based on HSS representation to improve the convergence
of the iterative methods.

REFERENCES

[1] S. Chandrasekaran, M. Gu, and W. Lyons, “A fast and stable adaptive
solver for hierachically semi-separable representations,” unpublished
document, April 2004.

[2] Z. Sheng, P. Dewilde, and S. Chandrasekaran, “Algorithms to solve
hierarchically semi-separable systems,” Operator Theory: Advances and
Applications, 2006, accepted.

[3] S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons, and T. Pals, “A fast
solver for hss representation via sparse matrices,” August 2005.

[4] A. George and J. W. H. Liu, “The evolution of the minimum degree
ordering algorithm,” SIAM Rev., vol. 31, pp. 1–19, 1989.

[5] W. F. Tinney and J. W. Walker, “Direct solutions of sparse network
equations by optimally ordered triangular factorization,” J. Proc. IEEE,
vol. 55, pp. 1801–1809, April 1967.

[6] A. George, “Nested dissection of a regular finite element mesh,” SIAM
J. Numer. Anal, vol. 10, pp. 345–363, 1973.

[7] T. Bui and C. Jones, “A heuristic for reducing fill in sparse matrix
factorization,” in Proc.Parallel Processing for Scientific Computing,
SIAM, Philadelphia, pp. 445–452, 1993.

[8] C. Ashcraft and J. W. H. Liu, “A partition improvement algorithm for
generalized nested dissection,” Tech. Rep. BCSTECH-94-020, Boeing
Computer Services, Seattle, WA, 1994.

[9] B. Hendrickson and E. Rothberg, “Improving the run time and quality
of nested dissection ordering,” SIAM J. SCI. COMPUT., vol. 20, pp.
468–489, 1998.

[10] S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons, and T. Pals, “A fast
solver for hss representations via sparse matrices,” in Technical Report.
Delft University of Technology, August 2005.

[11] W. Lyons, “Fast algorithms with applications to pdes,” PhD thesis, June
2005.

[12] Z. Sheng, “Hierarchically semi-separable representation and its applica-
tions,” Master thesis, 2006.

[13] J. Hickey, Introduction to the Objective Caml Programming Language,
October 2005.

[14] W. Lyons and S. Chandrasekaran, Camlfloat Tutorial, 2004.
[15] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,

V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst, Templates for
the solution of Linear Systems: Building Blocks for Iterative Methods.
Philadelphina, PA: SIAM, 1994.

349

